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Abstract

A structured errors-in-variables (EIV) problem arising in metrology is studied. The observations of a sensor

response are subject to perturbation. The input estimation from the transient response leads to a structured

EIV problem. Total least squares (TLS) is a typical estimation method to solve EIV problems. The TLS

estimator of an EIV problem is consistent, and can be computed efficiently when the perturbations have zero

mean, and are independently and identically distributed (i.i.d). If the perturbation is additionally Gaussian,

the TLS solution coincides with maximum-likelihood (ML). However, the computational complexity of

structured TLS and total ML prevents their real-time implementation. The least-squares (LS) estimator

offers a suboptimal but simple recursive solution to structured EIV problems with correlation, but the

statistical properties of the LS estimator are unknown. To know the LS estimate uncertainty in EIV

problems, either structured or not, to provide confidence bounds for the estimation uncertainty, and to find

the difference from the optimal solutions, the bias and variance of the LS estimates should be quantified.

Expressions to predict the bias and variance of LS estimators applied to unstructured and structured EIV

problems are derived. The predicted bias and variance quantify the statistical properties of the LS estimate

and give an approximation of the uncertainty and the mean squared error for comparison to the Cramér-Rao

lower bound of the structured EIV problem.

Keywords: structured errors-in-variables problems, least-squares estimation, Cramér-Rao lower bound,

statistical analysis, uncertainty assessment, Monte Carlo simulation

1. Introduction

Errors-in-variables (EIV) are linear estimation problems in which the regression matrix and the regressor

are perturbed Van Huffel and Vandewalle (1991), Markovsky and Van Huffel (2007). In structured EIV

problems, the regression matrix has a given structure that depends on the problem formulation. Hankel,

Toeplitz, or other application-specific matrices appear in problems of metrology Markovsky (2015), system5

identification Söderström (2007), image restoration Feiz and Rezghi (2017), nuclear magnetic resonance
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spectroscopy Cai et al. (2016), direction-of-arrival estimation Pan et al. (2018), and time-of-arrival estimation

Jia et al. (2018).

In metrology, the direct estimation of the input from the sensor transient response is formulated as a

structured EIV problem. The only observed signal is the sensor output. To estimate a step input, the10

regression matrix, and the regressor are built from the step response observations Markovsky (2015), and

the structure in the regression matrix is block-Hankel. This data-driven estimation methodology reduces

the estimation time of the classical two-stage approach where a sensor model is first identified, and later the

input is estimated using the sensor model Azam et al. (2015); Niedźwiecki et al. (2016).

Total least-squares (TLS) is the typical estimator for unstructured EIV problems and is consistent15

when the perturbations have zero mean, and the covariance is a given positive definite matrix. When

the perturbations are i.i.d. normally distributed, the solution of the TLS is equivalent to that of the

maximum likelihood estimator (ML) Markovsky and Van Huffel (2007). For structured EIV problems, the

TLS estimator does not give general results since each specific structure requires a particular treatment Van

Huffel et al. (2007), and the ML estimator leads to non-convex optimization problems where finding the20

global optimum is not guaranteed Rhode et al. (2014). Moreover, the computational complexity of TLS and

ML inhibits real-time implementation to solve structured EIV problems.

The least-squares (LS) estimator is a suboptimal but simple solution to structured EIV problems that

admits a recursive form for easy real-time implementations. Some of the reported works that propose

LS estimators for structured EIV problems include the design of a fast algorithm for matrices with small25

displacement rank Mastronardi and O’Leary (2007), the study of the estimator consistency Palanthandalam-

Madapusi et al. (2010), the determination of the bias, and the mean squared error of the parameter estimates

in the identification of AR models Kiviet and Phillips (2012) Kiviet and Phillips (2014), and a discussion of

the causes of bias and inconsistency in homogeneous estimators Yeredor and De Moor (2004).

In measurement applications, it is highly relevant to assess the uncertainty of the input estimate. The30

uncertainty of the reported LS estimators for structured EIV problems has not been addressed, and then,

remains unknown. The estimator uncertainty is expressed using the estimation bias and covariance Pintelon

and Schoukens (2012). To know the LS estimator uncertainty, we quantified the bias and the covariance of

the LS solution of EIV problems in the unstructured and structured cases. This extends the perturbation

analysis of the LS estimator of unstructured and uncorrelated problems that was investigated in Stewart35

(1990) and in Vaccaro (1994). This paper presents a study of the statistics of the LS estimate of unstructured

and structured EIV problems. We provide a discussion of the unstructured case as a reference, to get an

insight of the impact that the structure of the regression matrix and the correlation between the regression

matrix and the regressor perturbations have on the uncertainty of the LS estimate. The structured case is

motivated by the metrology estimation problem Markovsky (2015), where the EIV problem has a Hankel40

structure, and the perturbations are correlated. The study of the metrology input estimate illustrates a
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methodology to conduct statistical analysis for any structured EIV problem. The mathematical expectation

of the second-order Taylor series expansion of the LS estimate boils down to expressions that quantify the

first and second-order moments of the LS estimate. Via Monte Carlo simulations, we validated the accuracy

of the bias, and the covariance approximations. The derived approximations predict the LS estimate bias,45

and the covariance, for given sample size and perturbation level. The predicted variance gives the uncertainty

of the LS estimate. We observed that, for the step input estimation problem, the mean squared error of the

LS estimate is near to the minimum variance limit given by the Cramér-Rao lower bound of the structured

EIV problem. By following this methodology, the bias and variance of the solutions of EIV problems with

other structures is determined, and therefore, the uncertainty of the estimate.50

The organization of the paper is as follows. Section 2 presents a brief description of the structured EIV

problem that illustrates the methodology. The problem is the estimation of the step input unknown level

by processing of the sensor transient response. Section 3 describes the statistical analysis of the LS solution

for unstructured and structured EIV problems. Section 4 discusses the results obtained from Monte Carlo

simulations that validate the bias and variance expressions. Section 5 presents a summary of the findings55

of this work, and concludes the paper.

2. Step input estimation method

The step input estimation method estimates the unknown value u ∈ IR of the input u = us, where s

is the unit step function (s(t) = 0 if t < 0 and 1 elsewhere), applied to a bounded-input bounded-output

stable linear time-invariant system of order n and given dc-gain g ∈ IR. The method processes the sequence

of step response observations
(
ỹ(0), . . . , ỹ(T )

)>
, where ỹ(t) ∈ IR for t = 0, . . . , T , where T is the number of

samples, and

ỹ(t) = y(t) + ε(t). (1)

The exact system response y is affected by additive i.i.d. normally distributed perturbation ε with zero

mean and given variance σ2ε . The observed response of the system is a step-invariant discretization of the

continuous-time response.60

The step input level estimation is formulated as the minimization problem

x̂ = argmin
x

∥∥∥ỹ − K̃x
∥∥∥2
2
, (2)

where ỹ =
(
ỹ(n+ 1), . . . , ỹ(T )

)>
, the first element of the to-be-estimated vector x =

(
u, `>

)>
is the step

input level, the vector ` is linked to the system initial conditions, and the matrix

K̃ =


g ∆ỹ(1) ∆ỹ(2) · · · ∆ỹ(n)

g ∆ỹ(2) ∆ỹ(3) · · · ∆ỹ(n+ 1)
...

...
...

...

g ∆ỹ(T − n) ∆ỹ(T − n+ 1) · · · ∆ỹ(T − 1)

 , (3)
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is a Hankel matrix of (T −n)− block rows, constructed from consecutive differences ∆ỹ(t) = ỹ(t)− ỹ(t− 1)

of the observed transient response, augmented in the left side with a (T −n)-vector of elements equal to the

known dc-gain g, (see Markovsky (2015)). The perturbations ε enter in matrix K̃ and we can express

K̃ = K + E, (4)

where K is exact data information and E is the additive perturbation noise given as

E =


0 ∆ε(1) ∆ε(2) · · · ∆ε(n)

0 ∆ε(2) ∆ε(3) · · · ∆ε(n+ 1)
...

...
...

...

0 ∆ε(T − n) ∆ε(T − n+ 1) · · · ∆ε(T − 1)

 . (5)

The underlying system of equations ỹ = K̃x in the minimization problem (2) is an errors-in-variables

(EIV) problem with Hankel structure. For metrology applications, the least-squares (LS) approximate

solution of this system of equations offers a simple alternative, in its recursive form, to implement the

estimation method in real-time. The LS solution is examined even when it may have some bias because

the perturbation errors in K̃ are correlated to the perturbations in ỹ. The classical LS results for the bias65

and the covariance cannot be invoked because LS assumes that the additive perturbation only affects the

regressor, and that there is no correlation between the regressor and the regression matrix. The recursive

LS method allows for a real-time implementation of the step input estimation method. Details of the step

input estimation method are described in Markovsky (2015).

3. Statistical analysis70

For an overdetermined system of linear equations, the least-squares (LS) solution is given by

x̂ = K̃†ỹ = (K̃>K̃)−1K̃>ỹ, (6)

where K̃† is the pseudo-inverse of K̃. The objective of the statistical analysis is to obtain the bias and the

covariance of the solution x̂. The bias and the covariance are computed using the mathematical expectation

operator E{·}. First we substitute (1) and (4) in (6) obtaining

x̂ =
(

(K + E)>(K + E)
)−1

(K + E)>(y + ε),

which is equivalent to

x̂ = (I + M)−1Q−1(K + E)>(y + ε), (7)

where

Q = K>K, and M = Q−1(K>E + E>K + E>E). (8)
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Applying a second-order Taylor expansion of the inverse matrix

(I + M)−1 ≈ I−M + M2, (9)

that is valid when the SNR is sufficiently high, and therefore E and M are small, satisfying the constraint

on the spectral radius ‖M‖ < 1. The neglected term in the Taylor series expansion is of the order O(‖M‖3).

We can express the estimate as

x̂ ≈
(
I−M + M2

)
Q−1(K + E)>(y + ε). (10)

Now that the perturbation variables ε and E are no longer inside an inverse matrix, we can compute the

mathematical expectation of expressions derived from the Taylor series approximation (10) of x̂. The bias

of the estimate x̂ is obtained from

b (x̂) = µ (x̂)− x, (11)

where µ (x̂) = E {x̂}, and x = K†y = Q−1K>y is the true value. The covariance of the estimate x̂ is

obtained from

C (x̂) = E
{

(x̂− µ) (x̂− µ)>
}
. (12)

The terms derived from (10) that do not contribute to the bias and to the covariance are filtered out by

the mathematical expectation operator considering the following general rules that are valid regardless of

the existence of structure in the regression problem:

• the expected values E{E} = 0, and E{ε} = 0, since E and ε are zero-mean random variables, and

• the expected values of odd order moments, such as E{E>EE>}, are zero.75

Moreover, the second-order approximation disregards moments of order four and higher.

After removing the terms with negligible expected value, we have expressions that are approximations

of the LS estimation bias and covariance. These expressions are different depending on the type of EIV

problem considered. Subsections 3.1 and 3.2 describe the resulting expressions for the unstructured and

structured EIV problems, respectively. The perturbations in the considered unstructured EIV problem are80

independent. Comparing the expressions that result from the statistical analysis, we get an insight of what

is the impact that the structure and the correlation have on the LS solution of the structured EIV problem.

3.1. Bias and covariance of the LS estimator for an unstructured EIV problem with uncorrelated noise

First, the statistics of the least squares estimator (6) of an unstructured EIV problem is discussed,

provided that the perturbations of the regression matrix and the regressor are i.i.d. normally distributed with

zero mean, and variances σ2E and σ2ε , respectively. Therefore, the terms in the Taylor series expansion (10)

that contain products of E and ε have zero expected value. After removing the terms without contribution
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to the bias, and to the covariance, with the mathematical expectation operator, the analytic approximation

of the bias (11) is given by

bp (x̂) ≈ σE2 (2 + 2n− T )Q−1x, (13)

and the covariance (12) is approximated by

Cp (x̂) ≈ σ2ε Q−1 + σ2E trace
(
xx>

)
Q−1 − σ4E (2 + 2n− T )2 Q−1xx>Q−1, (14)

where the subscript p stands for prediction of the bias and covariance. The derivation of equations (13)

and (14) is described in Appendix 1. We use the results described in Vaccaro (1994) §3 and Stewart (1990)

§2.1 for the expected values of products of unstructured matrices with perturbations. Equations (13) and

(14) depend on the unobservable true values x, K, and on the variance of the perturbations. The observed

variables are ỹ, K̃, and from them we compute x̂. It is proposed to directly substitute the observed variables

in the analytic expressions. The substitution gives an approximation of the estimate bias and covariance

using the observed data. We have then

b̃p (x̂) ≈ σ2E (2 + 2n− T ) Q̃−1x̂, (15)

C̃p (x̂) ≈ σ2ε Q̃−1 + σ2E trace
(
x̂x̂>

)
Q̃−1 − σ4E (2 + 2n− T )2 Q̃−1x̂x̂>Q̃−1. (16)

In order to have a prediction of the estimate bias and covariance, the variances σ2E and σ2ε and the observed

variables ỹ, K̃, and x̂ are needed.85

3.2. Bias and covariance of the LS estimator for a structured EIV problem with noise correlation

This subsection describes the statistics of a structured EIV problem with correlation between the pertur-

bations of the regression matrix and the regressor. The structured EIV problem is given by the step input

estimation method (2). The correlation is a consequence of the construction of the block-Hankel matrix in

the regression matrix K̃ with the first difference of the elements in the regressor ỹ.90

The mathematical expectation operator is applied to the Taylor series expansion of the LS estimate (10).

After removing the terms with negligible expected value, and considering the structure of matrix K, the

estimation bias (11) is approximated by

bp (x̂) ≈ Q−1
((

K>B1 −B2

)
x−

(
K>B3 −B4

))
, (17)

whereas, the estimation covariance (12) is approximated by

Cp (x̂) ≈ K†
(
σ2εIT−n + C1 −C2 −C>2

)
K†> − bp (x̂)b>p (x̂) , (18)

where B1 = E
{
EK†E

}
, B2 = E

{
E>P⊥E

}
, B3 = E

{
EK†ε

}
, B4 = E

{
E>P⊥ε

}
, C1 = E

{
Exx>E>

}
,

C2 = E
{
Exε>

}
, P = KK†, and P⊥ = I − P. The derivation of equations (17) and (18) is described in

Appendix 1. The expected values B1, B2, B3, B4, C1 and C2 are obtained using the results of Lemma 1.
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Lemma 1. Let E ∈ IR(T−n)×(n+1) be the partitioned matrix

E =
[
0T−n×1 H(ε)D1,0

n+1×n

]
,

where H(ε) ∈ IR(T−n)×(n+1) is the block-Hankel matrix of T − n rows and n columns

H(ε) =


ε(0) ε(1) · · · ε(n)

ε(1) ε(2) · · · ε(n+ 1)
...

...
...

ε(T − n− 1) ε(T − n) · · · ε(T − 1)

 ,

constructed from samples of the i.i.d. normally distributed random variable ε ∼ N (0, σ2
ε). Let D1,k

r×c and D2,k
r×c be the

first and second-order finite differences matricial operators of dimensions r × c starting from the subdiagonal k, for

example,

D1,−1
4×3 =


0 0 0

−1 0 0

1 −1 0

0 1 −1

 , D2,0
4×3 =


−1 0 0

2 −1 0

−1 2 −1

0 −1 2

 .
For a compatible deterministic matrix A, or vector a, the following expected values hold.

E {EAE} = Z, where zi1 = 0, and zij = σ2
ε Tr

(
A
[
0T−n D2,j−i

T−n×n

])
, for i = 1, · · · , T − n, and j = 2, · · · , n+ 1.

E
{
E>AE

}
= Z, where z1j = 0, zi1 = 0, and zij = σ2

ε Tr
(
A D2,j−i+1

T−n×T−n

)
, for i = 2, · · · , n+ 1, and j = 2, · · · , n+ 1.

E
{
EAE>

}
= Z, where zij = σ2

ε Tr

A

 0 0>n

0n D2,j−i+1
n×n

 , for i = 1, · · · , T − n, and j = 1, · · · , T − n.

E {EAε} = z, where zi = σ2
ε Tr

(
A
[
0T−n D1,n+1−i

T−n×n

])
, for i = 1, · · · , T − n.

E
{
E>Aε

}
= z, where z1 = 0, and zi = σ2

ε Tr
(
A D1,n+2−i

T−n×T−n

)
, for i = 2, · · · , n+ 1.

E
{
Eaε>

}
= Z, where each column Zj = −σ2

ε D1,−j
T−n×n+1Rn+1 a, for j = 1, · · · , T − n, with Rn+1 =

 Rn

0

 ,
where Rn is a reversal matrix.

The proof of the lemma is given in Appendix 2.

The matrices B1, B2, B3, B4, C1 and C2 are considered in the different cases of Lemma 1. Each expected95

value in the lemma is a matrix, or a vector, whose elements are found following the indicated operations.

These operations mainly compute the trace of a product of the corresponding deterministic matrix A, and a

matrix constructed from the finite differences matricial operator, which can be of first order D1 or of second

order D2. The total number of operations in the computation of the bias and the covariance is O
(
T 3 + n2

)
,

but this order can be reduced since the D matrices are sparse.100

The formulas for the bias and covariance (17) and (18) depend on the perturbation variance and on

the unobservable variables x and K. The substitution of the observed variables in the expression gives an

approximation of the estimate bias and covariance based on the observed system response. We have then

bp̃ (x̂) ≈ Q̃−1
((

K̃>B̃1 − B̃2

)
x̂−

(
K̃>B̃3 − B̃4

))
, (19)
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and

Cp̃ (x̂) ≈ K̃†
(
σ2εIT−n + C̃1 − C̃2 − C̃>2

)
K̃†> − bp̃ (x̂)b>p̃ (x̂) , (20)

where B̃1 = E
{
EK̃†E

}
, B̃2 = E

{
E>P̃⊥E

}
, B̃3 = E

{
EK̃†ε

}
, B̃4 = E

{
E>P̃⊥ε

}
, C̃1 = E

{
Ex̂x̂>E>

}
,

C̃2 = E
{
Ex̂ε>

}
, C̃ = K̃>K̃, P̃ = K̃K̃†, and P̃⊥ = I− P̃.

3.3. Cramér-Rao lower bound of the structured errors-in-variables problem

The Cramér-Rao lower bound (CRLB) provides the lower limit on the variance of the estimate

CRLB(x) =

(
I +

∂b(x̂)

∂(x̂)

)>
Fi−1(x)

(
I +

∂b(x̂)

∂(x̂)

)
, (21)

where b(x̂) is the bias of the estimate and Fi(x̂) is the Fisher information matrix Pintelon and Schoukens

(2012). The Fisher information matrix is defined as the expected value of the Hessian of the negative

likelihood function

Fi(x) = −E
{
∂2l(x̂)

∂x̂2

}
, (22)

where the partial derivatives are evaluated in x̂ = x.

The minimization problem (2) is equivalent to a structured EIV problem that can be expressed as a

linear in the measurements problem Pintelon and Schoukens (2012)

e(x̂, z̃) = M1(x̂) z̃ =
[
IT−n −x̂T ⊗ IT−n

] ỹ

vec(K̃)

 = 0. (23)

where z̃ = z + εz. The CRB requires that the true model M1(x) z = 0 exists. Under the assumption of

the measurement perturbation εz being normally distributed with covariance matrix Cz, the loglikelihood

function of the structured EIV problem is

ln l(z̃, ẑ, x̂) = −1

2
(z̃− ẑ)>C−1z (z̃− ẑ) + constant, (24)

where ẑ are parameters of the measurements z̃ that have to be estimated and satisfy M1(x̂) ẑ = 0. The

size of the Fisher information matrix Fi(x, z) depends on the number of unknowns in ẑ and grows with

the sample size. Moreover, in Chapter 19 of Pintelon and Schoukens (2012) it is shown that the Fisher

information matrix Fi(x) can be obtained from Fi(x, z) after doing inversion by parts, giving

Fi(x) =

(
∂e(x̂, z)

∂x

)> (
M1(x) Cz M>1 (x)

)−1(∂e(x̂, z)

∂x

)
, (25)

where the partial derivatives are evaluated at the true values x, and the covariance matrix of the measure-
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ments is

Cz = σ2ε



IT−n 0T−n D1,n
T−n×T−n D1,n−1

T−n×T−n · · · D1,1
T−n×T−n

0T−n 0T−n 0T−n 0T−n · · · 0T−n(
D1,n
T−n×T−n

)>
0T−n D2,1

T−n×T−n D2,0
T−n×T−n · · · D2,2−n

T−n×T−n(
D1,n−1
T−n×T−n

)>
0T−n D2,2

T−n×T−n D2,1
T−n×T−n · · · D2,3−n

T−n×T−n
...

...
...

...
...(

D1,1
T−n×T−n

)>
0T−n D2,n

T−n×T−n D2,n−1
T−n×T−n · · · D2,1

T−n×T−n


. (26)

The Cramér-Rao lower bound for an biased estimator of the minimization problem (2) is given by

CRBb(x) =

(
In+1 +

∂b (x̂)

∂x

)>
Fi−1(x)

(
In+1 +

∂b (x̂)

∂x

)
, (27)

and for an unbiased estimator it is CRBub(x) = Fi−1(x).105

4. Simulation results

Two Monte Carlo (MC) simulation studies were conducted to test the obtained bias and variance for-

mulas. One MC simulation was devoted to the unstructured EIV problem and the other to the structured

EIV problem that corresponds to the step input estimation method (2). The MC simulations performed

NMC = 106 runs of the LS estimator with different realizations of the perturbation [E ε]. In the structured

EIV problem the perturbation E is correlated with ε. The perturbations variance was selected to have a

signal-to-noise ratio (SNR) in the interval [30 dB, 80 dB], according to

SNR = 20 log10

√
1

T

T∑
t=1

y(t)2

σε
. (28)

For high enough SNR, the constraint ‖M‖ < 1 is valid and the Taylor series expansion (9) holds. In this

case, the derived expressions predict the LS estimate bias and variance. Thus, it is relevant to monitor the

evolution of the largest M eigenvalue to detect the lower limit of the SNR that allows the validity of the

predictions.110

The MC simulations provide empirical values of the bias and variance, through the sample mean and

sample variance of the LS estimate x̂. The results presented in this Section focus the interest in the first

element of x̂, because in the structured EIV problem, the step input estimate is û = x̂[1].

4.1. Monte Carlo simulation results for an unstructured EIV problem with uncorrelated perturbations

The MC simulation of the unstructured EIV problem solution was conducted using the following settings.115

The exact data elements in the matrix K ∈ IR(T−n)×(n+1) are normally distributed with zero mean and

variance one, for T = 200 and n = 2. The to-be-estimated exact data is the vector x =
[
1 2 3

]>
. The
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perturbations E and ε are normally distributed with zero mean and variances subject to σ2E = 2σ2ε . These

settings are similar to those of the structured case, aiming to have comparable situations.

The difference between the sample mean of the estimate x̂[1] and its true value x[1] is the empirical bias

be.

be =
1

NMC

NMC∑
i=1

(
x̂[1]

)
i
− x[1] ≈ µ

(
x̂[1]

)
− x[1]. (29)

The standard deviation of the estimate x̂[1] is used to obtain the standard error σe of the MC simulation,

which decreases with respect to the square root of the number of MC runs NMC Hammersley and Handscomb

(1975):

σe =
σ
(
x̂[1]

)
√
NMC

, where σ2
(
x̂[1]

)
=

1

NMC − 1

NMC∑
i=1

((
x̂[1]

)
i
− µ

(
x̂[1]

))2
. (30)

In each of the NMC runs we also obtain the aproximations of the estimation bias bp̃[1] and variance

Cp̃[1,1] from observed data, using Equations (15), and (16). Similarly as before, we get the sample mean of

the aproximations to have bias and variance predictions from observed data

bp̃ =
1

NMC

NMC∑
i=1

(
bp̃[1]

)
i
, and vp̃ =

1

NMC

NMC∑
i=1

(
Cp̃[1,1]

)
i
. (31)

The standard error of the bias prediction bp̃ is given by

σp̃ =

√√√√ 1

NMC (NMC − 1)

NMC∑
i=1

((
bp̃[1]

)
i
− bp̃

(
x̂[1]

))2
. (32)

The predicted bias bp = bp[1] and variance vp = Cp[1,1] from exact data are obtained with one evaluation120

of the expressions (13) and (14).

Figure 1 shows the empirical bias and the bias predictions, with their corresponding standard errors,

for the unstructured (plots in the left) and structured (plots in the right) EIV problems. The simulation

settings for the structured and correlated EIV problem are described in the following subsection. In the

figure, it can be observed that the empirical bias be is proportional to the perturbation noise variance while125

the standard error σe is proportional to the perturbation noise standard deviation. The bias predictions bp

and bp̃ are accurate since they coincide with the empirical bias be in all the SNR interval for unstructured

EIV problems, In both unstructured and structured EIV cases, the standard errors of the MC estimates

σe and σp̃ are smaller than the bias estimates be and bp̃. The bias estimates are spread near their sample

means. The uncertainty is smaller than the bias, therefore, the MC simulation is meaningful.130

The absolute and relative errors between the predicted and the empirical bias are shown in Figure 2.

The absolute errors decrease with respect to the perturbation variance. The relative errors are lower than

5% for SNR between 30 dB and 70 dB. There is an increment in the relative errors for SNR above 55 dB.

As the SNR increases, the empirical and the predicted bias decrease, as well as the bias error between them.

In order to reveal the bias error, more Monte Carlo runs are needed to reduce the uncertainty of the Monte135
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Figure 1: We observe the results of the LS solutions for the unstructured (left) and the structured (right) EIV problems. These

results are the empirical bias be, the predicted bias from exact data bp, the predicted bias from observed data bp̃, the empirical

standard error σe, and the standard error from the estimations using observed data σp̃. The estimation biases are proportional

to the perturbation variance and the estimation standard errors are proportional to the perturbation standard deviation. Since

the standard errors are smaller than the biases, the MC simulation is meaningful.

Carlo simulation that depends on the square root of NMC, see Equation (30). If NMC is insufficient, the

uncertainty of the Monte Carlo simulation hides the bias error and we see this increasing effect of the relative

errors.
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Figure 2: The MC simulation shows that when we solve an unstructured EIV problem with LS, the absolute errors (left)

between the predicted bias and the empirical bias are proportional to the perturbation noise variance as it is expected, and

the relative errors (right) are smaller than 5% for SNR below 70 dB. The bias prediction computed from exact data bp is very

similar to that computed using observed data bp̃.

The errors between the predicted and the empirical variance are shown in Figure 3. The absolute and

relative errors decrease with respect to the perturbation variance. The relative errors are lower than 5% for140

SNR above 40 dB.

Figure 4 shows the absolute and the relative errors between the predictions computed from observed
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Figure 3: The MC simulation shows that when we solve an unstructured EIV problem with LS, the absolute errors (left)

between the predicted variances and the empirical variance are proportional to the perturbation noise variance, and the relative

errors (right) are smaller than 5% for SNR higher that 40 dB. The variance prediction computed using exact data vp is very

similar to that computed from observed data vp̃.

data and those computed from exact data. The absolute errors between both predictions are proportional

to the perturbation noise variance. The bias and variance predictions, from either exact data or observed

data, are equivalent for SNR above 35 dB since the relative errors are lower than 5%. The substitution145

of observed data on the prediction formulas is a valid procedure that allows the prediction of the estimate

statistics.
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Figure 4: The MC simulation shows that when we solve an unstructured EIV problem with LS, the absolute errors (left)

between the prediction with observed data and the prediction with exact data are proportional to the perturbation noise

variance. The use of observed data instead of exact data in the prediction formulas is valid when the SNR is above 35 dB since

the relative errors (right) are smaller than 5%.

4.2. Monte Carlo simulation results for a structured EIV problem with correlated perturbations

The MC simulation of the structured EIV problem (2) solution was conducted processing T = 200

samples of the transient response ỹ generated by a linear time invariant system of order n = 2, after a150

12



step input excitation with u = 1 units, where the units represent any physical quantity. The processed

step response is shown in Figure 5. The steady state response of the system is reached after 400 samples

because from there on the relative error between the instantaneous values of the transient response and

the steady-state response value is smaller than 2%. Processing 200 samples ensures that the step input

estimation is computed from transient data only.155

0 100 200 300 400 500

0

0.5

1

1.5

2

Figure 5: The structured EIV problem is constructed with 200 samples of the step response to ensure that only transient data

is used. The relative errors between the values of y and the steady state value are smaller than 2% after 400 samples, as it is

indicated with dashed lines.

The empirical bias is the sample mean of the NMC estimates minus the true value

be =
1

NMC

NMC∑
i=1

ûi − u ≈ µ (û)− u. (33)

The standard error associated to this empirical bias estimation Hammersley and Handscomb (1975) is defined

as

σe =
σ (û)√
NMC

, where σ2 (û) =
1

NMC − 1

NMC∑
i=1

(ûi − µ (û))2. (34)

The plots on the right side of Figure 1 show the empirical bias, the bias predictions (17) and (19), and

their corresponding standard errors, for the structured EIV problem. The empirical bias be is proportional

to the perturbation noise variance, and the bias predictions bp and bp̃ coincide with the empirical bias be

only for SNR above 40 dB. This indicates that the SNR drops to a point where the constraint ‖M‖ < 1is

no longer satisfied. At an SNR of 30 dB the perturbation noise affects the bias prediction from observed160

data and it is three times smaller than the empirical bias.

The absolute and relative errors between the predicted and the empirical bias are shown in Figure 6. It

can be seen that the absolute errors are proportional to the perturbation variance, and the relative errors

are lower than 5% for SNR higher than 40 dB.
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Figure 6: The MC simulation shows that when we solve a structured EIV problem with LS, the absolute errors (left) between

the predicted bias and the empirical bias be are proportional to the perturbation noise variance, and the relative errors (right)

are smaller than 5% only for SNR above 40 dB.

The absolute and relative errors between the empirical and the predicted variance, equations (18) and165

(20), are shown in Figure 7. These absolute errors are proportional to the perturbation noise variance,

whereas the relative errors are lower than 5% for SNR higher than 45 dB.

The absolute and relative errors between the two predictions from observed data and from exact data, are

shown in Figure 8. These absolute errors are also proportional to the perturbation noise variance, and the

relative errors show that the bias and variance predictions from either of the two alternatives are equivalent170

for SNR higher than 45 dB.
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Figure 7: The MC simulation shows that when we solve a structured EIV problem with LS, the absolute errors (left) between

the predicted and the empirical variance are proportional to the perturbation variance, and the relative errors (right) between

the predicted and the empirical variance are smaller than 5% for SNR above 45 dB.

The simulation results show that the LS solution of the structured and correlated EIV problem is more

sensitive to the perturbation. This represents a low limit in the SNR interval imposed by the noise level. In

practical applications it is common to have SNRs of 40 dB and the user needs to be aware of the prediction

error that the method has. We measure this prediction error with the mean squared error (MSE), defined
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Figure 8: The MC simulation shows that when we solve a structured EIV problem with LS, the absolute errors (left) between

the predictions computed from observed data and those from exact data are proportional to the perturbation noise variance.

According to the relative errors (right), the substitution is valid for SNR higher than 45 dB.

as

MSE = σ2 + b2. (35)

By comparing the different MSEs to the CRLB of the structured EIV problem, Figure 9 shows that the

MSEs has the same proportionality as the CRLB with respect to the disturbing noise variance. The MSEs

are three times larger than the CRLB. Since the difference between MSEp̃ and the CRLB is lower than one

order of magnitude, the LS estimation of the structured EIV problem produces results that are comparable175

to the ML estimation. The MSEp̃ computed from observed data approaches the CRLB for SNR below 40

dB. This is due to the constraint violation of the Taylor series expansion.
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Figure 9: The mean squared errors of the LS estimate are close to the Cramér-Rao lower bound. This is a positive indication

of the goodness of the LS estimator for the structured EIV problem. The mean squared error of the empirical estimates is

represented by MSEe, and those of the predictions are MSEp and MSEp̃. The MSEp̃ is smaller than CRLB below 40 dB of SNR

because of the introduced bias error, but the difference between MSEp̃ and the CRLB is lower than one order of magnitude.
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5. Conclusions

We conducted a statistical analysis of a structured errors-in-variables (EIV) estimation problem with

correlation to find the first and second moments of its least-squares solution. This estimation problem occurs180

in metrology when we estimate the value of a measurand directly from the sensor transient response. The

data-driven estimation of the physical quantity is formulated as a structured EIV problem with correlation

that uses the observed transient response to construct both the regression matrix and the regressor. The

real-time implementation of the method uses a recursive least squares algorithm that is simple and has low

computational complexity. The assessment of the uncertainty is done using the estimate bias and variance.185

The conducted statistical analysis produced expressions that predict the estimate bias and variance for

given sample size and perturbation level of the observed response. The Monte Carlo simulation validated

the predictions. We compared the results of solving an unstructured and uncorrelated EIV problem with

a structured and correlated EIV problem to understand how the structure and the correlation impacts in

the estimation. We found that the predictions in the structured case are more susceptible to perturbations.190

This is due to the two approximations involved, a second-order Taylor series expansion of the estimate, and

the substitution of perturbed data on the prediction expressions. The relative error results indicate that

the estimate bias, and variance are predicted using the derived expressions, and the observed data. The

mean squared error of the estimate is close to the results of the maximum likelihood estimate given by the

Cramér-Rao lower bound.195

The bias and variance can be accurately predicted, provided that the Taylor series expansion is valid. This

constraint has to be taken into account to ensure the effectiveness of the method in practical applications.

In the example, it was observed that when the SNR lies outside the validity region, the bias and variance

estimation was at most three times larger than the empirical values.

The methodology presented in this paper can be applied to estimate the uncertainty of the solutions to200

other structured EIV problems. The bias and variance expressions obtained after the statistical analysis

depend on each specific structure.
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Appendix 1. Derivation of bias and covariance expressions.

The bias and covariance of the least-squares (LS) estimate (10) are obtained using the mathematical

expectation in the definitions (11) and (12). For an unstructured and uncorrelated EIV problem, the

expected value, and the covariance of x̂ are approximated by

E {x̂} ≈ x + Q−1E
{
K>EQ−1K>E + E>KQ−1K>E−E>E

}
x, and

C (x̂) ≈ xx> + Q−1E
{
K>εε>K + K>Exx>E>K

}
Q−1

+ Q−1E
{
K>EQ−1K>E + E>KQ−1K>E−E>E

}
xx>

+ xx>E
{
E>KQ−1E>K + E>KQ−1K>E−E>E

}
Q−1 − E {x̂}E {x̂}> ,

(36)

where we have considered the second order Taylor series approximation (9), and we have removed the

terms of zero expected value, and the terms of order higher than 2. After an elementwise evaluation of the

corresponding expected values in (36), the expressions result in

E {x̂} ≈ x + bp (x̂) = x + σE
2Q−1 (2I + 2nI− T I)x, and

Cp (x̂) ≈ σ2ε Q−1 + σ2E trace
(
xx>

)
Q−1 − σ4E (2 + 2n− T )2 Q−1xx>Q−1,

(37)

from where equations (13) and (14) are obtained.215

On the other hand, due to the correlation, the expressions that approximate the expected value of the

LS estimate of the structured and EIV problem (2) have a different form:

E {x̂} ≈ x + Q−1E
{
K>EQ−1K>E + E>KQ−1K>E−E>E

}
x

+ Q−1E
{
E>ε−K>EQ−1K>ε−E>KQ−1K>ε

}
, and

C (x̂) ≈ xx> + Q−1E
{
K>εε>K + K>Exx>E>K−K>Exε>K−K>εx>E>K

}
Q−1

+ Q−1E
{
K>EQ−1K>E + E>KQ−1K>E−E>E

}
xx>

+ xx>E
{
E>KQ−1E>K + E>KQ−1K>E−E>E

}
Q−1 − E {x̂}E {x̂}>

+ Q−1E
{
E>ε−K>EQ−1K>ε−E>KQ−1K>ε

}
x>

+ xE
{
ε>E− ε>KQ−1E>K− ε>KQ−1K>E

}
Q−1.

(38)
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These expressions have the non zero expected value terms, up to the second order. We have then

E {x̂} = x + bp (x̂) ≈ x + Q−1K> E
{
EQ−1K>E

}
︸ ︷︷ ︸

B1

−Q−1 E
{
E>
(
I−KQ−1K>

)
E
}

︸ ︷︷ ︸
B2

x

−Q−1K> E
{
EQ−1K>ε

}
︸ ︷︷ ︸

B3

+Q−1 E
{
E>
(
I−KQ−1K>

)
ε
}

︸ ︷︷ ︸
B4

, and

C (x̂) ≈ Q−1K>

E
{
εε>

}
︸ ︷︷ ︸
σ2
εIT−n

+E
{
Exx>E>

}
︸ ︷︷ ︸

C1

−E
{
Exε>

}
︸ ︷︷ ︸

C2

−E
{
εx>E>

}
︸ ︷︷ ︸

C>2

KQ−1 − bp (x̂)b>p (x̂) .

(39)

from where the expressions (17) and (18) are obtained.

Appendix 2. Proof of Lemma 1

Proof. In the first case considered in the lemma, the elements of the expected value Z = E {EAE} are

zij = E {EAE}ij = E
{
E>i AEj

}
= tr

(
A E

{
EjE

>
i

})
, (40)

where E>i is the i-th row and Ej is the j-th column of E, for i = 1, . . . , T − n, and j = 2, . . . , n + 1. The

matrix E
{
EjE

>
i

}
is the product of σ2ε times a matrix whose elements are 0 in the first column, 2 in the

(j − i− 1)-th diagonal, and -1 in the (j − i− 2)-th and (j − i)-th diagonals, and zeros elsewhere. Using the

definition of the second differential operator we express

E
{
EjE

>
i

}
= σ2ε

[
0T−n D2,j−i

T−n×n

]
. (41)

The proof of the other cases in the Lemma is similar. For the second case, the elements of the expected

value Z = E
{
E>AE

}
are

zij = E
{
E>AE

}
ij

= E
{
E>i AEj

}
= tr

(
A E

{
EjE

>
i

})
, (42)

where now E>i is the transposed i-th column and Ej is the j-th column of E, for i = 2, . . . , n + 1, and

j = 2, . . . , n+ 1. The matrix E
{
EjE

>
i

}
is σ2ε times a matrix whose elements are 2 in the (j− i)-th diagonal,

and -1 in the (j − i− 1)-th and (j − i+ 1)-th diagonals, and zeros elsewhere. Therefore we have

E
{
EjE

>
i

}
= σ2εD

2,j−i+1
T−n×T−n. (43)

The expected values that involve the vector ε are especial cases of the previous cases. The vector ε in

the expected values E {EAε}, E
{
E>Aε

}
, and E

{
EAε>

}
is

ε =
[
ε(n+ 1) ε(n+ 2) · · · ε(T )

]>
, (44)

as it is imposed by the input estimation method formulation.
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