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Abstract

A measurement is a dynamical process that aims to estimate the true value of a measurand. The measurand is the input

that excites a sensor, and, as a consequence, the sensor output is a transient response. The main approach to estimate

the input is applying the sensor transient response to another dynamical system. This dynamical system is designed by

deconvolution to invert the sensor dynamics and compensate the sensor response. Digital signal processors enable an

alternative approach to estimate the unknown input. There exists a data-driven subspace-based signal processing method

that estimates a measurand, assuming it is constant during the measurement. To estimate the parameters of a measurand

that varies at a constant rate, we extended the data-driven input estimation method to make it adaptive to the affine input.

In this paper, we describe the proposed subspace signal processing method for the measurement of an affine measurand and

compare its performance to a maximum-likelihood input estimation method and to an existing time-varying compensation

filter. The subspace method is recursive and allows real-time implementations since it directly estimates the input without

identifying a sensor model. The maximum-likelihood method is model-based and requires very high computational effort.

In this form, the maximum-likelihood method cannot be implemented in real-time, however, we used it as a reference to

evaluate the subspace method and the time-varying compensation filter results. The effectiveness of the subspace method

is validated in a simulation study with a time-varying sensor. The results show that the subspace method estimation has

relative errors that are one order of magnitude smaller and converges two times faster than the compensation filter.

Keywords: Affine input estimation, Subspace estimation method, Maximum-likelihood estimation method, Recursive

least squares, Dynamic weighing
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1. Introduction

Measurements estimate the unknown value of a physical quantity, namely the measurand. The to-be-measured physical

quantity is applied as an input signal to a sensor. The sensor is a dynamical system and its output changes as a consequence

of the input excitation and the sensor initial conditions. The goal of a measurement is to estimate accurately the measurand

value using the sensor transient response. The transient response of a stable sensor decays to a steady state response. In5

steady state, the most accurate estimation of the input true value is simply found using the sensor static gain. However,

the steady state is reached in theory after an infinite period of time and in practice we require fast estimations. The

trade-off between accuracy and speed exists in all measurements.

The measurand can be assumed to be constant or variable during the measurement. A dynamic measurement is present

when the fluctuations of the measurand impact on the input estimation. A typical example of a dynamic measurement10
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problem is a low-bandwidth sensor excited with a fast changing input. Some characteristics of the input, like the minimum

or maximum or the effects of the environment on the measured quantity, occur in small periods of time. The detection of

the input characteristics is needed in several scientific and industrial applications such as measurements of temperature

[1], pressure [2], acceleration [3], force [4, 5] and mass [6, 7].

The solution to dynamic measurement problems is non-trivial. An approach is to add a dynamical system to compensate15

the sensor transient response, inverting the effects of the sensor dynamics. The purpose of such a compensator is to reduce

the transient time. The sensor dynamics are considered in the design of finite and infinite impulse response compensation

digital filters based on deconvolution [8] or synthesized to correct dynamic errors [5]. The model-based deconvolution

design of compensators implies that the measurand true value should be known a-priori for certain applications, such as

mass determinations [7, 9]. In the literature most of the measurements systems are assumed linear time-invariant, but the20

compensation digital filters can be linear [10], nonlinear [6] or time-varying [11].

The digital signal processors enable a different approach where the input estimation can be obtained with algorithms

that do not necessarily recreate the dynamics of a system. One of the authors of this paper proposed a data-driven signal

processing method that estimates the measurand true value using subspace techniques [12, 13]. The subspace estimation

method bypasses the model identification step to estimate the unknown input directly from the response data. This25

method was developed to estimate inputs modeled as step functions of unknown scaling level. We extended the subspace

input estimation method to estimate the parameters of inputs that vary at a constant rate.

The inputs that vary at a constant rate are found in applications where the measurand activates the sensor gradually.

An example of this activation is the measurement of mass while the to-be-weighted object is transported by a conveyor

belt, and the profile of the input is a saturated ramp. Current solutions to the weighing in motion are low pass filters that30

estimate the mass using the saturated ramp [10, 11]. The signal processing affine input estimation methods are motivated

by the need to obtain the mass of the object from the ramp before it reaches saturation. The ramp is parameterized as a

straight line model where the slope and the interception are the parameters of interest.

This paper describes a subspace method for the estimation of the affine input parameters. This method is a recursive

algorithm that can be implemented in real-time since it has low computational cost. The subspace method is independent35

of the sensor model and, therefore, it is suitable for a variety of applications. The dynamic weighing is one of the

applications and was chosen as an implementation example. The effectiveness of the method is evaluated in a simulation

study. The performance of the proposed method is compared to that of a maximum-likelihood (ML) estimation method

based on local-optimization and a time-varying compensation filter.

The ML method resembles the model predictive control approach in the sense that a cost function is minimized40

iteratively to optimize the parameters of a sensor model using the observed sensor response in a receding time horizon

[14]. The difference is that the ML method aims to estimate the unknown value of the affine input parameters instead of

identifying a model and controlling the dynamic system. The ML method is more appropriate for off-line processing of the

sensor transient response. Nevertheless, the ML method can estimate the parameters of the affine input, the parameters

of a sensor model, and the initial conditions of the sensor.45

The uncertainty of the subspace method is assessed using a Taylor expansion of the estimate and Monte Carlo random

sampling approach [15]. The Monte Carlo approach requires a large set of generated random samples, and for simple sys-

tems it is the recommended method. There exists a deterministic sampling approach to study the uncertainty propagation

of complex systems [16, 17]. Deterministic sampling aims to represent the minimal statistical information that is relevant
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to the uncertainty estimation in a finite set. The uncertainty of the ML method is assessed using the derivatives of the50

residual error that constructs the to-be-minimized cost function. The covariance of the optimization method estimate is

found using the inverse of the Hessian matrix [18].

This paper is organized as follows. Section 2 describes the step-input estimation method and presents the formulation

of the affine input estimation problem. Section 3 explains the proposed solution methods to the affine estimation problem

and illustrate the implementation using the weighing system example. Section 4 discuses the effectiveness of the proposed55

methods observed from simulation results. Section 5 concludes the paper.

2. Preliminaries

This section describes the step input estimation method and presents a formulation of the affine input estimation

problem. The step input estimation method does not require a sensor model to estimate the unknown level of the step

input by processing the sensor step response. The affine input estimation problem is formulated as a signal processing60

estimation problem where the parameters of the affine input can be obtained from the sensor response.

2.1. Step input estimation method

The step input estimation method estimates the unknown value u ∈ IR, that is the level of a step input u = us, where

s is the unit step function. The step input u is applied to a stable linear time-invariant sensor of order n and static gain

γ ∈ IR. The input estimate û is obtained by processing the measured sequence of output observations
(
y(0), . . . , y(T )

)
,

where y(t) ∈ IR for t = 1, . . . , T , where T is the sample size, and

y = y + ε. (1)

The exact sensor response y is perturbed by additive measurement noise ε. The measurement noise ε is assumed to be

independent and normally distributed of zero mean and given variance σ2
ε .

The measured sensor response is a zero-order hold discretization of the continuous-time response. The discrete-time65

sensor response is considered to be piecewise constant.

The step input can be estimated by solving the minimization problem

x̂ = argmin
x

‖y −Kx‖22 . (2)

where y =
[
y(n+ 1) . . . y(T )

]>
, x̂ =

[
û ̂̀>]>, is a vector whose first element is the input estimation û and the

n-vector ̂̀ is a linear transformation of the sensor initial conditions. The matrix

K =


γ ∆y(1) ∆y(2) · · · ∆y(n)

γ ∆y(2) ∆y(3) · · · ∆y(n+ 1)
... . .

.
. .
.

. .
.

γ ∆y(T − n) ∆y(T − n+ 1) · · · ∆y(T − 1)

 (3)

is a Hankel matrix of (T − n) − block rows, constructed from the consecutive differences ∆y(t) = y(t) − y(t − 1) of the

measured transient response, augmented in the left with a (T − n)-vector of elements equal to the sensor static gain γ.

The minimization problem (2) is a structured errors-in-variables (EIV) problem. The structure of the EIV problem is

due to the presence of the Hankel matrix in K. The measurement noise ε enters in the regression matrix K and we can

express

K = K + E, (4)
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where K is exact data information and E is the corresponding perturbation noise. Details of the method formulation are

described in [12].70

The recursive least squares (RLS) algorithm provides a solution to the structured EIV problem and enables real-time

implementations of the estimation method. The RLS has an exponential forgetting factor that selects the observations of

the transient response to perform the estimation. With the exponential forgetting, the subspace estimation method tracks

the evolution of any time-varying applied input. The affine input is one case in which the input evolves proportionally to

time.75

2.2. Affine input estimation problem

The affine input is modeled as a straight line u = at+ b with parameters the slope a and the interception b. The affine

input estimation problem is formulated as a signal processing problem as follows.

Problem. Given the sequence of measured output observations y = (y(1), . . . , y(T )) , y(t) ∈ IR, of a stable linear time-

invariant system of order n, and static gain γ, generated by an affine input u = at+b, estimate the parameters of the affine80

input, i.e., find the values of the parameters â, b̂ ∈ IR such that û = ât + b̂ approximates u. The measured observations

y = y+ε are exact sensor responses y perturbed by additive noise ε assumed to be independent and normally distributed

of zero mean and given variance σ2
ε .

Motivating example. Dynamic weighing is an application example where the affine input can be observed. The weighing

of objects in a conveyor belt gives the sensor input an ideal straight line profile when the conveyor belt moves at a constant85

speed. The straight line represents the mass coming gradually into the weighing scale sensor in the conveyor belt. The

mass can be estimated from the slope a of the straight line model. The mechanical vibrations of the conveyor belt perturb

the input and the sensor response is affected by measurement noise. The interest is to estimate the mass of the object

using the sensor response observations.

Consider the weighing scale modeled as a second order mass-spring-damper system, such as the one shown in the

diagram of Figure 1. The application of an affine input turns the linear time-invariant system into a linear time-varying

system, whose dynamics depends on the input u(t) = at+ b, as it is described by the differential equation:

d

dt

((
at+ b+m

) dy
dt

)
+ kd

dy

dt
+ ksy =

(
at+ b+m

)
g (5)

where m is the mass of the scale, kd is the damping constant, ks is the elasticity constant, and g = 9.81 m/s
2

is the90

gravitational acceleration.

The weighing system admits a state space representation where the states x1 = y and x2 = ẏ are the position and the

speed of the weighing scale:

ẋ =

 0 1

−ks
at+ b+m

−(kd + a)

at+ b+m

x +

0

g

 , y =
[
1 0

]
x.

In this paper we use the dynamic weighing example to illustrate the implementation of the affine input estimation

methods.
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Figure 1: A second order mass-spring-damper model represents the dynamic weighing system. The dynamics of the system depend on the

affine input. The weighing system is time-varying when the applied input changes with respect to time.

3. Solution methods

In this section we describe the proposed subspace method to solve the affine input estimation problem. The method is95

motivated by the step input estimation method that is formulated as a structured errors-in-variables (EIV) problem and is

solved using recursive least squares (RLS). The exponentially weighted recursive least squares (EWRLS) is a generalization

of RLS that allows the extension of the estimation method to reconstruct the affine input.

A maximum-likelihood (ML) method that performs simultaneous system identification and input estimation is de-

scribed and its results are used as reference to compare the subspace method results.100

An example of the subspace method is illustrated with a weighing system. An existing time-varying (TV) compensation

filter that was designed for weighing applications is described briefly. This TV filter is also used to compare the results of

the proposed subspace method.

3.1. Subspace method

RLS is a special case of the EWRLS that can solve the minimization problem (2). The minimization problem is a

structured EIV problem and its EWRLS solution is equivalent to

x̂ = argmin
x

∥∥∥W1/2 (y −Kx)
∥∥∥2
2
. (6)

where y, x̂, and K are defined in (2) and (3) and W ∈ R(T−n)×(T−n) is a diagonal matrix of descending powers of the105

weight λ ∈ [0, 1), i.e., W = diag
(
λT−n, . . . , λ2, λ1

)
. The weight λ is a data selection forgetting factor since it enables

to apply different weights to the residuals y −Kx. When λ = 1, we have the same solution as RLS. When λ < 1, the

older residuals are weighted with lower values than the residuals of recent observations. In this way, the solution of the

minimization problem depends more on new data.

The profile of an affine input excitation can be reconstructed by solving the structured errors-in-variables problem (6)110

where y is the corresponding response of a stable dynamic system, K is constructed from the output observations, and

λ < 1.

After the affine input û has been estimated, the affine input parameters a and b are estimated by fitting û to the

straight line û = at+ b using linear regression, as follows
1 1
...

...

T − τ + 1 1


â
b̂

 =


û(τ)
...

û(T )

 (7)

where τ is a number of samples used as a tuning parameter that counteracts the time delay that exists when a LTI system

is excited with an affine input u. The subspace method can process online the sensor response to the affine excitation.
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For each new observation y(t), the estimation û is updated followed by the update of the slope â and the interception b̂.115

The values of the tuning parameters λ and τ can be obtained in the calibration of the method using the response of the

sensor.

The subspace method estimates the input applied to a dynamic system directly from the caused transient response.

This is a recursive method that can be implemented in real time to estimate the input using low cost digital signal

processors. The method is a model-free approach and can be used in a variety of physical measurements. The method120

tracks any arbitrary time-varying input and can estimate the parameters of the input when it is associated to a particular

input model.

3.1.1. Statistical analysis of the subspace method

To obtain the first and second moments of the step input estimate û, we need to study the solution

x̂ = (K>WK)−1K>Wy, (8)

of the overdetermined structured errors-in-variables EIV problem (6). Using a second order Taylor series expansion of the

inverse matrix we can approximate the LS solution as

x̂ ≈
(
I−M + M2

)
C−1(K + E)>W(y + ε). (9)

where

C = K>WK, and M = C−1(K>WE + E>WK + E>WE). (10)

The Taylor series approximation of x̂ enables the calculation of the estimate bias and covariance since the measurement

noise ε and E are no more subject to matrix inversion. The bias and the covariance of the estimate x̂ are obtained from

b (x̂) = µ− x, (11)

Cov (x̂) = E
{

(x̂− µ) (x̂− µ)
>
}
. (12)

where µ = E {x̂} is the expected value of the estimate and x is the true value. Considering the structure of the EIV

problem, the bias and the covariance of the estimate approximation (9) can be expressed as

bp (x̂) ≈ C−1
((
K>WB1 −B2

)
x−

(
K>WB3 −B4

))
, (13)

Covp (x̂) ≈ K†W
(
σ2
ε IT−n + C1 −C2 −C>2

)
WK†> − bp (x̂)b>p (x̂) , (14)

where B1 = E
{
EK†WE

}
, B2 = E

{
E>WP⊥E

}
, B3 = E

{
EK†Wε

}
, B4 = E

{
E>WP⊥ε

}
, C1 = E

{
Exx>E>

}
,

C2 = E
{
Exε>

}
, P⊥ = I−KK†W, and K† is the pseudo-inverse matrix of K.125

The bias and covariance given by expressions (13) and (14) depend on the unobservable true values x and K. The

measured observations are in the sensor step response y, and from its observations we construct K and compute x̂. The

substitution of the measured data in the expressions gives an approximation of the estimate bias and covariance. We have

then

bp (x̂) ≈ C−1
((
K>WB1 −B2

)
x̂−

(
K>WB3 −B4

))
, (15)
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Covp (x̂) ≈ K†W
(
σ2
ε IT−n + C1 −C2 −C>2

)
WK†> − bp (x̂)b>p (x̂) , (16)

where B1 = E
{
EK†WE

}
, B2 = E

{
E>WP⊥E

}
, B3 = E

{
EK†Wε

}
, B4 = E

{
E>WP⊥ε

}
, C1 = E

{
Ex̂x̂>E>

}
,

C2 = E
{
Ex̂ε>

}
, and P⊥ = I−KK†W.

The results of the expected values B1, B2, B3, B4, C1, and C2, were described by the authors of this paper in [15].

The bias and covariance were obtained to extend previous analysis conducted on EIV estimation problems without an

imposed structure [19, 20]. It was shown that the bias and variance expressions (15) and (16) are valid predictions of the130

first and second moments of the LS estimate of a Hankel structured EIV problem. The problem formulated by the step

input estimation method belongs to this type of structured EIV problems and can use the derived expressions to find the

bias and variance of the input estimate û. The bias of the estimate û is the fist element of bp (x̂) and the variance of û is

the first element in the main diagonal of Covp (x̂).

3.1.2. Cramér-Rao lower bound of the structured EIV problem135

To find the Cramér-Rao lower bound (CRLB) of the structured EIV estimation problem (2), we consider that this

structured and correlated estimation problem can be expressed as a linear in the measurements problem [18]

e(x̂, z) = M1(x̂) z =
[
IT−n −x̂T ⊗ IT−n

]
︸ ︷︷ ︸

M1(x̂)

 y

vec(K)


︸ ︷︷ ︸

z

= 0. (17)

where z = z + εz. To have the CRLB, it is necessary the existence of the true model M1(x) z = 0. The measurement

perturbation εz is assumed to be normally distributed with covariance matrix Cz, and then, the loglikelihood function of

the structured and correlated EIV problem is

ln l(z, ẑ, x̂) = −1

2
(z− ẑ)

>
C−1z (z− ẑ) + constant, (18)

where the elements of ẑ are the estimated parameters of the measurements z, that satisfy M1(x̂) ẑ = 0. The size of the

Fisher information matrix Fi(x, z) depends on the number of unknowns in ẑ and grows with the sample size. However,

the Fisher information matrix Fi(x) is obtained from Fi(x, z), by doing inversion by parts [18] §19, and can be expressed

as

Fi(x) =

(
∂e(x̂, z)

∂x

)> (
M1(x)CzM

>
1 (x)

)−1(∂e(x̂, z)

∂x

)
. (19)

The partial derivatives are evaluated at the true values x. Thus, the covariance matrix of the measurements is

Cz = σ2
ε


IT−n 0T−n D1

0T−n 0T−n 0T−n×n(T−n)

D>1 0n(T−n)×T−n D2

 (20)

where

D1 =
[
D1,n
T−n×T−n D1,n−1

T−n×T−n · · · D1,1
T−n×T−n

]
,

D2 =


D2,1
T−n×T−n D2,0

T−n×T−n · · · D2,2−n
T−n×T−n

D2,2
T−n×T−n D2,1

T−n×T−n · · · D2,3−n
T−n×T−n

...
...

...

D2,n
T−n×T−n D2,n−1

T−n×T−n · · · D2,1
T−n×T−n

 ,
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and the matrices D1,k
r×c and D2,k

r×c are the first and second order finite differences matricial operators of dimensions r × c

starting from the subdiagonal k, for example

D1,1
2×3 =

1 −1 0

0 1 −1

 , and D2,0
3×3 =


−1 0 0

2 −1 0

−1 2 −1

 .
The Cramér-Rao lower bound for a biased estimator of the minimization problem (2) is

CRLBb(x) =

(
In+1 +

∂b (x̂)

∂x

)>
Fi−1(x)

(
In+1 +

∂b (x̂)

∂x

)
, (21)

whereas for an unbiased estimator, it is CRLBub(x) = Fi−1(x)

3.2. Maximum-likelihood method

Using a model of the sensor, the ML method estimates the sensor initial conditions and the parameters of the applied

affine input. The affine input parameters a and b are the slope and the interception of the straight line model u = at+ b.140

Algorithm 1 lists the steps of the proposed ML method. This is an iterative minimization method that uses the Jacobian

of the residual error function r = ŷ−y to search the direction that minimizes the difference between the measured sensor

response y and the simulated response ŷ.

Algorithm 1 ML Affine input estimation.

Input: y, and sensor model parameters

Initialize θ = (a, b,xini)

for each N observations of y do

Simulate model response ŷ(θ)

Compute error r(θ) = y − ŷ(θ)

Minimize r>r over θ

using analytic Jacobian ∂r/∂θ

Update θ

end for

Output: Optimized parameters â, b̂, and x̂ini

To initialize the optimization variables a, b, and xini, we use the subspace estimation method using at least the first

2n + 2 samples. With the initial affine input parameters we simulate a sensor excitation and, since we are using few145

samples, we have an approximation of the initial conditions. The optimization variables updates are computed every N

new observations. The minimization can be done using the Levenberg-Marquardt algorithm [21].

3.2.1. Covariance of the ML method estimates

The ML method simulates a dynamic system, and computes the Jacobian of the residual error in each iteration. The

analytic formulation of the Jacobian benefits the estimation method in two ways: it speeds up the minimization and gives

direct access to the variance of the estimates. The covariance matrix of the ML estimates can be expressed as [18]

Cov (x̂) =

((
∂r

∂θ

)>(
∂r

∂θ

))−1
. (22)
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3.2.2. ML affine input estimation example

We use the previously described dynamic weighing system to illustrate the ML method. In this case, the formulation

of the problem is:

Minimize over a, b,xini rT r, subject to:

ẋ =

 0 1

−ks
at+b+m

−(a+kd)
at+b+m

x +

0
xini,1

at+b+m

g
xini,2

at+b+m

 1

δ(t)

 ,
ŷ =

[
1 0

]
x.

(23)

where a, b are the affine input parameters, m, kd, and ks are the model parameters, the model states x are the position150

and the speed of the weighing scale, the difference between the sensor response y and the simulated response ŷ is the

residual r = ŷ − y. The model initial conditions xini are considered optimization variables and appear in the augmented

column of the input matrix.

The analytic Jacobian for the weighing system example is described in the appendix.

3.3. Time-varying compensation filter155

The time-varying (TV) filter described in [11] was designed to compensate the measured responses of a conveyor

weighing system, considering they are modeled as a saturated ramp. The TV filter consists of three low-pass infinite

impulse response (IIR) filters in cascade, where the i− th IIR filter is given by

ŷi(t) + k1(t)ŷi(t− 1) = k2(t) (ŷi−1(t) + ŷi−1(t− 1)) (24)

for i = 1, . . . , 3 and t = 0, . . . , T . The sensor response is fed to the filter, then ŷ0(t) = y(t), and the output of the TV

filter ûltv(t) = ŷ3(t) is an estimation of the affine input. Since in our case we are processing only the ramp without the

saturation, the estimates âltv and b̂ltv of the input parameters are obtained by fitting a straight line to the estimated input

ûltv using linear regression.

The time-varying coefficients k1(t) and k2(t) are computed from

k1(t) =
fc(t)− k3

πTs

fc(t) + k3
πTs

, k2(t) =
1 + k1(t)

2
, k3 =

√
3
√

2− 1 (25)

where Ts is the sampling time and fc(t) is a heuristic ”cutoff” frequency

fc(t) = fu + (fl − fu)β(t−1)/α(T−1) (26)

that changes between the lower fl and upper fu limits, where the coefficient β is lower than one, and α is the decay rate.

The lower frequency value fl and the coefficient β are fixed and the variables fu and α are optimized off-line by solving

the minimization problem

minimize over fu, α max

(
µãltv
µspec

,
µb̃ltv
µspec

,
σãltv
σspec

,
σb̃ltv
σspec

)
+ max

(ηi
T

)
(27)

where µãltv , µb̃ltv , σãltv and σb̃ltv are the mean values and the standard deviations of the estimation errors ãltv = âltv − a,160

and ãltv = b̂ltv− b, and where a and b are the true values of the input parameters. The values µspec and σspec are specified

in the OIML recommendation R51 [22] for mass measurements that use a conveyor belt.
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4. Simulation results

The results of the affine input parameters estimation are discussed in this section. We performed a simulation study

using the weighing system presented as an example. We compared the performance of the proposed subspace method to a165

conventional time-varying (TV) filter, that was conceived for weighing applications, and to the maximum-likelihood (ML)

method.

A second order weighing system was excited with an affine input to get the transient response. The parameters of the

weighing system are m = 15 g, d = 5.5 Ns/m and k = 10250 N/m. The applied affine input u = 100t + 10 represents a

mass that changes from 10 g to 110 g, at a constant rate, in a time interval of 0.1 s. This change of mass represents one170

example of the weighing input in a conveyor weighing system when an object of 100 g is measured while it is moving at

constant speed. The sensor response is acquired using sampling time Ts = 0.1 ms. In Figure 2 the input u is represented

with the dotted line, the oscillatory curve is the corresponding sensor ramp response y, and û is a typical input estimate

obtained with the subspace method.

0 0.02 0.04 0.06 0.08 0.1

0

20

40

60

80

100

120

Figure 2: The sensor transient response y to an affine input excitation u = at + b is processed by the estimation methods to estimate the

parameters a and b. In the figure we observe an example of the input estimate û obtained with the subspace method. The input parameters

are calculated from û using linear regression.

In each simulation, the sensor response was perturbed with an independent realization of additive normally distributed175

measurement noise. The added perturbation noise has signal-to-noise ratios (SNR) in the interval [20 dB, 60 dB], values

that are realistic in practical applications. The SNR is defined as the ratio of signal power to the noise power, that is

equivalent to the root-mean-square value of the true signal to the variance of the perturbation noise, and in dB is given as

SNR = 20 log10

1

T

T∫
0

y(t)2dt

σε
(28)

4.1. Results of the subspace method

The subspace method processed online the sensor transient response. The first estimation was obtained with 2n + 1180

samples. The method updated recursively the value of the estimated parameters for each new collected sample, using

the forgetting factor λ listed in Table 1. In Figure 3 we observe the relative errors of the estimates â and b̂ obtained

10



when SNR = 40 dB. The relative errors are smaller than 5 % after 400 and 500 samples are processed, i.e., 0.04 s and

0.05 s, respectively. As more samples are collected, the parameter estimation improves. Figure 4 shows the final value of

the relative errors, found at t = 0.1 s, for the different SNR values considered. The relative errors are smaller than 2 %185

regardless of the measurement noise level.

Table 1: The values of the forgetting factor λ and the samples shift τ that configure the subspace method for the different values of SNR. These

values were obtained after calibration of the method and fixed during the simulation study.

SNR [dB] 20 30 40 50 60

λ 0.939 0.940 0.955 0.959 0.959

τ 15 15 17 14 20
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Figure 3: The relative errors of the affine input parameters estimation decrease as the subspace method processes more samples. The relative

errors of the estimates â and b̂ are smaller than 5 % after 400 and 500 samples, respectively (Ts = 0.1 ms).
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Figure 4: The minimum value of the estimation relative errors obtained with the subspace method is less than 2 % regardless of the SNR

between 20 dB and 60 dB.
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The Cramér-Rao lower bound (CRLB) of the errors-in-variables problem formulated by the subspace method was

numerically computed for different sample size using Equation (19). The CRLB is the minimum variance that the

estimates â and b̂ can have. The average of 104 runs with independent noise realizations allows to find the empirical mean

squared error (MSE) of the estimates, defined as

MSEâ = (bp (â))
2

+ vp (â) , and MSEb̂ = (bp(̂b))2 + vp(̂b), (29)

where bp (â) and bp(̂b) are the bias, and vp (â) and vp(̂b) are the variances of the input parameters. Figure 5 shows that

the mean squared errors MSEâ and MSEb̂ are near to their theoretical minimum CRLBa and CRLBb within two orders

of magnitude, when SNR = 40 dB. Figure 6 shows the final value of the Cramér-Rao lower bounds and the empirical

mean-squared errors, found at t = 0.1 s, for the different SNR values considered. Both MSEâ and MSEb̂ are less than one190

order of magnitude near to CRLBa and CRLBb, respectively, for SNR ≤ 30 dB. The difference increases for larger SNR

but the maximum is two orders of magnitude for SNR = 60 dB.

Table 2 shows a comparative view of the estimation mean-squared-errors maximum values when the ramp that excites

the sensor corresponds to different masses and time durations. For each mass and duration, the sensor responses were

perturbed with measurement noise of SNR in the interval [20 dB, 60 dB]. The sensor parameters and sampling frequency195

are fixed and are the same described in the first paragraph of this section. The maximum values of the MSE are mainly

found at low SNR values between 20 and 40 dB. The higher levels of noise increase the uncertainty of the estimation

defined in terms of the MSE. For fast ramp excitations, the MSE’s increase considerably. The used sampling frequency

constrains the estimation method effectiveness for the ramp input duration of 0.05 s or shorter and there it is recommended

to use a higher sampling frequency that will reduce the estimation MSE.200
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Figure 5: When the SNR of the sensor response is 40 dB, the mean squared errors of the slope estimate â and the interception estimate b̂,

obtained by the subspace method, are two orders of magnitude above the theoretical minimum variance given by the Cramér-Rao lower bound.

A numerical sensitivity analysis of the subspace method was conducted by adding uncertainty to ramp input generation

and looking into the estimation results. The uncertainty σs of the speed in which the ramp increases, and the uncertainties

of the input parameters, represented by σa,b, were selected to be 0%, 5% and 10% of their true values. A Monte Carlo

simulation with 104 runs was performed for each SNR and the maximum values of the estimation uncertainty are shown in

Table 3. According to these results, the input parameters uncertainties σa,b affect more the uncertainty of the estimation205

12



20 30 40 50 60
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 6: The Cramér-Rao lower bounds of the estimates CRLBa and CRLBb determine the minimum uncertainty that can be achieved and

increases with the measurement noise. The empirical mean squared errors MSEâ and MSEb̂ are near to the Cramér-Rao lower bounds within

one order of magnitude for SNR smaller than 30 dB, and within two orders of magnitude for SNR between 40 dB and 60 dB.

Table 2: The maximum values of the estimation mean squared errors observed when the subspace method processed the sensor transient

responses caused by ramp excitations of masses 0.1, 0.3, 0.5, and 1.0 kg, that last 0.05, 0.1 and 0.5 s, with signal to noise ratios in the interval

[20 dB, 60 dB] occur mainly at 40 dB and for lower SNR. There is an increment in the MSE values when the ramp excitation is faster.

Time [s] Mass [kg] 0.1 0.3 0.5 1.0

0.05 MSEâ : 3.55x100(@40 dB) 13.5x100(@50 dB) 3.80x100(@20 dB) 8.29x100(@50 dB)

MSEb̂ : 3.10x10−3(@40 dB) 1.11x10−2(@40 dB) 1.07x10−2(@40 dB) 1.92x10−2(@60 dB)

0.1 MSEâ : 3.08x10−2(@30 dB) 1.16x100(@40 dB) 8.34x10−1(@60 dB) 1.27x100(@50 dB)

MSEb̂ : 5.99x10−5(@30 dB) 1.17x10−1(@50 dB) 2.10x10−2(@40 dB) 3.76x10−2(@40 dB)

0.5 MSEâ : 3.03x10−2(@20 dB) 2.98x10−1(@20 dB) 3.25x100(@20 dB) 8.60x10−2(@20 dB)

MSEb̂ : 3.10x10−5(@50 dB) 9.86x10−4(@40 dB) 2.06x10−5(@50 dB) 1.74x10−5(@20 dB)

than the speed uncertainty σs. The parameter that is more affected by the input parameters uncertainty is the interception

b̂, since the uncertainty of the slope â is smaller.

Table 3: A sensitivity analysis of the subspace method was conducted by adding uncertainty to the ramp input. The speed σs, and the input

parameters σs uncertainties are 0%, 5%, and 10% of their true values. The table shows the maximum values of the estimates uncertainty. The

speed uncertainty causes a smaller spread of the estimates than the input parameters uncertainty.

σs : 0% 5% 10%

σa,b : 0% â [kg/s] 0.990± 9.6% (@50 dB) 0.999± 8.2% (@20 dB) 0.996± 8.2% (@50 dB)

b̂ [g] 10.0± 10.3% (@20 dB) 9.91± 14.2% (@30 dB) 9.99± 21.7% (@60 dB)

5% â [kg/s] 0.994± 9.7% (@50 dB) 0.993± 11.3% (@20 dB) 0.997± 8.0% (@50 dB)

b̂ [g] 9.98± 22.4% (@50 dB) 10.02± 33.2% (@30 dB) 9.94± 16.6% (@50 dB)

10% â [kg/s] 1.00± 20.3% (@40 dB) 1.00± 22.0% (@50 dB) 0.996± 17.7% (@40 dB)

b̂ [g] 9.97± 46.8% (@40 dB) 9.78± 58.8% (@50 dB) 9.91± 41.6% (@40 dB)
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4.2. Results of the maximum-likelihood method

The maximum-likelihood (ML) method processed off-line the sensor transient response. The ML method used the first

50 samples to initialize the optimization variables and updated the variables every N = 1 sample. In Figure 3 are shown210

the relative errors of the estimates â, b̂, x̂ini,1, and x̂ini,2. The convergence of the ML estimates gives relative errors below

5 % after three iterations. The largest relative error observed is in the scale velocity x̂ini,2 estimate, which is more sensitive

than the other optimization variables.
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Figure 7: The affine input parameters and the sensor initial conditions are estimated with the ML method. After three iterations the relative

errors of the estimates are smaller than 5 %.

Using the analytic Jacobian and Equation (22), we computed the covariance of the estimate. In Figure 8 are shown the

variances of the optimization variables taken from the diagonal of the covariance matrix. We can see that the variances215

of â and b̂ decrease faster than the variances of x̂ini,1 and x̂ini,2 as more samples are processed.
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Figure 8: The variances of the ML estimates are calculated using the information provided by the analytic Jacobian. The variances of the

affine input parameters estimates decrease faster than the variances of the initial conditions estimates.

The ML method is computationally more expensive than the subspace method because the ML method simulates the

response of a sensor model to optimize the input parameters and the sensor initial conditions. A typical run of the ML
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method takes 30 s to complete. With this execution time, the ML estimation can only be performed offline. Nevertheless,

the ML method objectives are to give the best estimation possible and to serve as a reference to assess the results of the220

other methods. An efficient implementation of the ML method to make it feasible for real-time implementation is not

trivial and requires additional research that is considered a topic for future research.

A numerical sensitivity analysis of the ML method was conducted by adding uncertainty to the ramp input, and to the

parameters of the time-varying model. The ramp input was perturbed with uncertainty of the speed in which the ramp

increases σs, and with uncertainty on the input parameters σa,b. The perturbation uncertainty of the model parameters225

m, d, and k is represented by σm,d,k. The perturbation uncertainty was simulated by adding normally distributed random

noise with standard deviation equal to 0%, 5% and 10% of the corresponding true values of the perturbed parameters.

A Monte Carlo simulation with 103 runs was conducted for each SNR in the SNR innterval of interest, and in Table 4

are shown the maximum values of the observed estimation uncertainties. The results show that the speed uncertainty

σs has a small impact on the estimation uncertainty. On the contrary, the input parameters uncertainties σa,b, and the230

uncertainties of the model parameters σm,d,k cause a large increment in the uncertainty of the estimation.

4.3. Results of the time-varying filter

We fixed the frequency lower value fl = 0.01 Hz and the base β = 0.01. The upper value fu and the decay rate α

were found using optimization (27). We chose the values µspec = 0.5 and σspec = 0.24 as they are specified in the OIML

recommendation [22] for a mass of 100 g measured in a conveyor belt. The optimized values of the frequency upper value235

and the decay rate, using a dataset of 100 transient responses, were fu = 26.94 Hz and α = 5.71.

Figure 9 shows the relative errors of the estimates â and b̂ computed with the TV filter after processing the sensor

transient response. The relative error of the slope estimate is below 5 % after 300 samples but the relative error of the

interception estimate is near 10 %. The convergence rate of the estimate â was similar to that of the subspace method.
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Figure 9: The relative errors of the time-varying filter estimation converge slower than with the subspace method. The relative errors of â and

b̂ are smaller than 5 % only after 800 and 950 samples, respectively. With the subspace method the relative errors are below 5 % after 400 and

500 samples.
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Table 4: A sensitivity analysis of the ML method was conducted by adding uncertainty to ramp input, and to the model parameters. The

perturbation uncertainty was selected with standard deviation of 0%, 5%, and 10% of the parameters true values. The observed maximum

estimation uncertainties are shown in the table. The speed uncertainty σs affects less the input estimation, but the uncertainties of the input

parameters σa,b, and the model parameters σm,d,k cause an increase of the estimation parameters spread around their mean values.

σs 0% 5% 10%

σa,b 0% â [kg/s] 0.999± 0.7% (@20 dB) 1.0± 0.7% (@20 dB) 0.999± 0.4% (@30 dB)

b̂ [g] 10.0± 1.1% (@20 dB) 9.99± 1.1% (@20 dB) 10.0± 0.5% (@30 dB)

x̂ini,1 [g] 0.1± 0.6% (@40 dB) 0.1± 0.6% (@20 dB) 0.1± 0.2% (@30 dB)

x̂ini,2 [g/s] 0.1± 122% (@40 dB) 0.1± 130% (@40 dB) 0.09± 38% (@50 dB)

5% â [kg/s] 1.0± 9.0% (@50 dB) 0.997± 5.2% (@40 dB) 1.0± 5.6% (@40 dB)

b̂ [g] 9.88± 25.4% (@50 dB) 9.97± 5.2% (@20 dB) 10.01± 4.7% (@40 dB)

x̂ini,1 [g] 0.1± 0.6% (@20 dB) 0.1± 0.57% (@20 dB) 0.1± 6.24% (@30 dB)

x̂ini,2 [g/s] 0.1± 116% (@40 dB) 0.09± 128% (@40 dB) 0.11± 115% (@40 dB)

10% â [kg/s] 1.00± 10.4% (@30 dB) 0.995± 10.3% (@20 dB) 0.996± 10.3% (@20 dB)

b̂ [g] 9.94± 10.5% (@20 dB) 9.96± 10.4% (@20 dB) 10.0± 10.5% (@20 dB)

x̂ini,1 [g] 0.1± 0.6% (@20 dB) 0.1± 0.6% (@20 dB) 0.1± 0.6% (@20 dB)

x̂ini,2 [g/s] 0.11± 108% (@50 dB) 0.11± 110% (@40 dB) 0.1± 137% (@50 dB)

σm,d,k 0% â [kg/s] 0.999± 0.7% (@20 dB) 1.0± 0.69% (@20 dB) 1.0± 0.33% (@30 dB)

b̂ [g] 10.0± 1.1% (@20 dB) 10.0± 1.13% (@20 dB) 10.0± 0.46% (@30 dB)

x̂ini,1 [g] 0.1± 0.6% (@40 dB) 0.1± 0.19% (@30 dB) 0.1± 0.18% (@30 dB)

x̂ini,2 [g/s] 0.1± 122% (@40 dB) 0.1± 130% (@40 dB) 0.09± 38% (@50 dB)

5% â [kg/s] 0.994± 15.3% (@20g dB) 1.0± 0.7% (@20 dB) 1.01± 21.5% (@20 dB)

b̂ [g] 10.3± 79.4% (@20 dB) 10.0± 1.2% (@20 dB) 9.91± 19.0% (@20 dB)

x̂ini,1 [g] 0.1± 0.2% (@30 dB) 0.1± 0.6% (@20 dB) 0.1± 0.19% (@20 dB)

x̂ini,2 [g/s] 0.10± 113% (@40 dB) 0.1± 119% (@40 dB) 0.11± 323% (@30 dB)

10% â [kg/s] 1.01± 22% (@30 dB) 1.01± 16.0% (@30 dB) 0.987± 28% (@50 dB)

b̂ [g] 0.1± 26% (@30 dB) 9.93± 14.8% (@30 dB) 10.4± 93% (@50 dB)

x̂ini,1 [g] 0.1± 0.6% (@20 dB) 0.1± 0.6% (@20 dB) 0.1± 0.6% (@20 dB)

x̂ini,2 [g/s] 0.1± 121% (@40 dB) 0.09± 136% (@40 dB) 0.11± 111% (@40 dB)

4.4. Discussion of the observed results240

The subspace method obtains an estimation of the affine input parameters with a recursive least squares solution of a

structured errors-in-variables problem. Updating the parameter estimates without matrix inversion simplifies the method

implementation on digital signal processors of low cost. The price we pay by computing the least squares solution of an

errors-in-variables problem is an increase in the bias of the estimates. Nevertheless, the empirical mean squared errors of

the estimates are at most two orders of magnitude larger than the Cramér-Rao lower bound, meaning that the estimates245

uncertainty is low, even when the SNR is lower than 40 dB.

The proposed subspace method is a general method that can be used in different applications, with realistic signal-to-

noise ratios. It is suitable not only for mass measurements. The weighing example shows that the subspace method can
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be used even when the measurement system is linear time-varying.

It was shown that the time-varying (TV) compensation filter can be modified to estimate the mass only from the250

increasing section of the saturated ramp, without the need of processing the saturation part. The modified TV filter can

be implemented in real-time as the subspace method after a previous off-line coefficients optimization stage with sensor

measured data. Nevertheless, the estimation results of the subspace method are better than the TV filter since they are

twice as fast and one order of magnitude more acurate.

The subspace method can estimate the affine input parameters from the sensor response using few parameters, the255

sensor order n, the sensor static gain γ, and the RLS forgetting factor λ. The subspace method does not necessarily requires

optimization of λ using a dataset of measured sensor responses. It is required to tune λ online during the calibration of

the system and later λ remains fixed during the measurements.

The results of the sensitivity analysis show how the uncertainty of the subspace method estimates is affected when the

ramp input is subject to perturbation. The impact on the uncertainty on the slope â and the interception b̂ parameters is260

different. The ramp speed uncertainty σs is added to the uncertainty of the parameter b̂, but does not contribute to the

uncertainty of the parameter â. On the other hand, the ramp parameters uncertainty ramp speed uncertainty σa,b is added

to the uncertainty of the estimates of both parameters â and b̂. This is not surprising since the estimation parameters are

linked to the ramp input parameters.

The maximum-likelihood (ML) method is an approach that requires larger computational resources. This is an iterative265

method and in each iteration computes a simulation of a dynamic system followed by the evaluation of the residual error

Jacobian matrix. The advantage of the ML method is that we can estimate simultaneously sensor parameters and the

initial conditions of the sensor. In the weighing case presented as an illustrative example it was not possible to incorporate

other parameters of the sensor because they are not identifiable. According to the estimation relative errors, that are lower

than 0.01 after 100 samples, from there on the ML method estimates are near to the true values and we may not require270

to run the method along all the measurement period. With only the first 100 samples we have an accurate parameter

estimation and variance assessment.

However, the main drawback of the ML method that prevents online implementations is the required computational

power to iteratively simulate the response of a sensor model. It takes an average of 30 s to complete an estimation with

the ML method, and this time is too large for fast changing inputs. The development of an efficient ML method, suitable275

for real-time implementation, is not straightforward, and is proposed for future research.

The results of the sensitivity analysis of the ML method show that the uncertainty of the ramp input speed σs does not

have an impact on the estimates uncertainty. Similar to the subspace case, the uncertainty of the ramp input parameters

σa,b is additive to the uncertainty of the estimated parameters â and b̂, but does not contribute to the uncertainty of

the first element of the initial conditions. On the other hand, the estimates uncertainty is affected by the perturbation280

on the model parameters σm,d,k. It is observed that the uncertainty of the estimated parameters â and b̂ increases two

and three times the uncertainty of the model parameters. This implies that we need to have an accurate model of the

dynamic system to have a small uncertainty on the estimated input parameters. Unfortunately, the uncertainty of the

second element of the inital conditions is always very high and this is not because of the perturbation of the ramp speed

or the model parameters. This issue requires more investigation to see if it is due the identifiability of the parameter in285

the particular example we have.
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5. Conclusions

An adaptive subspace method was proposed for the estimation of affine input parameters given the measurement of the

caused sensor transient response. The subspace estimation method is a recursive method that allows online implementation.

This method tracks the input of a system, using exponential forgetting, to process the system response. The subspace290

method is model-free and estimates directly the input parameters without identifying a sensor model. Therefore, it can be

applied to the measurement of different physical magnitudes. In the specific weighing example described in the manuscript,

the input is an affine function. The method is also applicable when the sensor is time-varying. The subspace method is

computationally cheap, simple and suitable for implementation on digital signal processor of low computational power.

A maximum-likelihood estimator based on local optimization was designed to obtain a comparative reference for the295

other methods. The maximum-likelihood method estimates the affine input parameters and also model parameters and

the sensor’s initial conditions. This method simulates, in a receding horizon scheme, the response of a sensor model

to estimate the input and minimizes the sum of the squares of the residual between the measured and the estimated

responses. The main drawback of the maximum-likelihood method is its computational cost and efficient implementation

of the method is left for future work.300

A linear time-invariant weighing system is used as an test example for the estimation methods. The weighing system

becomes time-varying when an affine input excites the system. The estimation methods are compared in a simulation

study where the time-varying sensor response is perturbed by measurement noise, that is assumed white of zero mean

and known variance. The subspace method results are also compared to those of an existing digital time-varying filter.

The coefficients of the time-varying filter require offline optimization. The estimation results obtained with the subspace305

method converges two times faster and is one order of magnitude smaller than those obtained with the time-varying

filter. The empirical mean squared errors of the subspace method estimation is two orders of magnitude larger than the

theoretical minimum given by the Crámer-Rao Lower bound.

Future work of this research is the practical implementation of the subspace method for real-time measurements.

Acknowledgments310

The research leading to these results has received funding from the European Research Council (ERC) under the

European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC Grant agreement number 258581 ”Structured

low-rank approximation: Theory, algorithms, and applications” and Fund for Scientific Research Vlaanderen (FWO)

projects G028015N ”Decoupling multivariate polynomials in nonlinear system identification” and G090117N ”Block-

oriented nonlinear identification using Volterra series”; and Fonds de la Recherche Scientifique (FNRS) – FWO Vlaanderen315

under Excellence of Science (EOS) Project no 30468160 ”Structured low-rank matrix / tensor approximation: numerical

optimization-based algorithms and applications”.

Appendix

The entries of the Jacobian matrix are the first order partial derivatives of the residual error r with respect to the

optimization variables. The state space representation of the weighing model allows to find the analytical expression of

the Jacobian. The partial derivative of the residual error r with respect to the optimization variable a is

Ja =
∂r

∂a
=
∂ŷ

∂a
=
[
1 0

] ∂x
∂a

=
[
1 0

]
xa (30)
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where we use xa = ∂x/∂a to simplify the notation. Now, from the derivative of the state equation, we have

ẋa =

 0 1

−ks
at+b+m

−(a+kd)
at+b+m

xa +

 0 0

kst
(at+b+m)2

kdt−b−m
(at+b+m)2

x− t δ(t)

(at+ b+m)2
xini. (31)

Then, the partial derivative of the error r with respect to the optimization variable a results in an additional dynamic

system.320

By repeating the procedure, we obtain the partial derivatives with respect to b as follows:

ẋb =

 0 1

−ks
at+b+m

−(a+kd)
at+b+m

xb +

 0 0

ks
(at+b+m)2

a+kd
(at+b+m)2

x− δ(t)

(at+ b+m)2
xini,

Jb =
[
1 0

]
xb.

(32)

The partial derivatives of the error r with respect to the initial conditions yield the following two Jacobians

ẋxini,1
=

 0 1

−ks
at+b+m

−(a+kd)
at+b+m

xxini,1
+

 δ(t)
at+b+m

0

 ,
Jxini,1 =

[
1 0

]
xxini,1 .

(33)

and

ẋxini,2 =

 0 1

−ks
at+b+m

−(a+kd)
at+b+m

xxini,2 +

 0

δ(t)
at+b+m

 ,
Jxini,2

=
[
1 0

]
xxini,2

.

(34)

The Jacobian matrix is constructed using the responses of the additional dynamic systems

J =
[
Ja Jb Jxini,1 Jxini,2

]
(35)
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