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Abstract. We consider the problem of computing the greatest common divisor
of a set of univariate polynomials and present applications of this problem in sys-
tem theory and signal processing. One application is blind system identification:
given the responses of a system to unknown inputs, find the system. Assuming
that the unknown system is finite impulse response and at least two experiments
are done with inputs that have finite support and their Z-transforms have no com-
mon factors, the impulse response of the system can be computed up to a scaling
factor as the greatest common divisor of the Z-transforms of the outputs. Other
applications of greatest common divisor problem in system theory and signal pro-
cessing are finding the distance of a system to the set of uncontrollable systems
and common dynamics estimation in a multi-channel sum-of-exponentials model.
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1 Introduction

Finding the greatest common divisor of a set of univariate polynomials is a classic prob-
lem in algebra, which is still an active research topic. Numerically it is an ill-conditioned
problem: small perturbations in the input data (the polynomials’ coefficients) may re-
sult in large changes in the solution (the greatest common divisor coefficients). This
requires computing an approximate common divisor.

There are two different formulations of the approximate common divisor problem.
In the first one, the degree of the common divisor is a priori specified and the smallest
perturbation on the polynomial coefficients that leads to polynomials with common di-
visor of such a degree is sought [12, 29, 25, 17, 22]. In the second formulation, refered
to as ε-common divisor, the size of the maximum perturbation is given and perturbed
polynomials with maximal degree common divisor is sought [23, 3, 28]. The two prob-
lems are dual to each other. In fact, they are two different scalarizations of the biob-
jective problem where the size of the perturbation is minimized while the degree of the



perturbed polynomials common divisor is maximized. The two formulations trace the
same Pareto optimal trade-off curve.

The approximate greatest common divisor problem is a non-convex optimization
problem, for which there are no efficient global solution methods. The existing methods
can be classified as local optimization methods and convex relaxations. Local optimiza-
tion methods require an initial approximation and are in general computationally more
expensive than the relaxation methods, however, the local optimization methods explic-
itly optimize the desired criterion (size of the coefficient perturbation), which ensures
that they produce at least as good result as a relaxation method, provided the solution
of the relaxation method is used as an initial approximation for the local optimization
method. For a recent overview of computational approaches, we refer the reader to [25].

Applications of the greatest common divisor in systems, control, and signal process-
ing, however, are surprisingly missing from the broad literature on the theoretical and
computational aspects of the problem. We present here applications that are directly
solvable by a greatest common divisor computation. Subsequently existing greatest
common divisor methods, algorithms and software can be used in the applications. Vice
versa, methods, algorithms and software developed for the applications can be viewed
as and used for greatest common divisor computation.

In this paper, we consider the following approximate common factor computation
problem: given polynomials p1, . . . , pN and a natural number d,

minimize over p̂1, . . . , p̂N
N

∑
i=1
‖pi− p̂i‖2

2

subject to deg
(

gcd(p̂1, . . . , p̂N)
)
≥ d.

(1)

(gcd(p1, . . . , pN) is the greatest common divisor of the polynomials p1(z), . . . , pN(z).)
Section 2 shows application of (1) for blind finite impulse response system identifica-
tion. Section 3 shows application of (1) for computing the distance of a given linear
time-invariant system to the set of uncontrollable systems. Section 4 shows application
of (1) for estimation of common dynamics across multiple channels of an autonomous
linear time-invariant system.

2 Blind finite impulse response system identification

The identification problem considered in this section is defined as follows.

Problem 1 (Blind finite impulse response system identification).
Given output observations y1, . . . ,yN of a finite impulse response system, generated by
unknown signals u1, . . . ,uN , find the impulse response h of the system.

The Z-transform of a finite duration time-domain signal yi is a polynomial yi(z).
(We use the argument z, as in yi(z), to indicate that the signal is in the Z-domain.)

Theorem 1. Assuming that at least N = 2 responses y1, . . . ,yN of a finite impulse re-
sponse system are given,

1. the inputs u1, . . . ,uN have finite support, and



2. gcd
(
u1(z), . . . ,uN(z)

)
= 1,

the impulse response h of the system is up to a scaling factor α ∈R the greatest common
factor of y1(z), . . . ,yN(z),

h(z) = α gcd
(
y1(z), . . . ,yN(z)

)
.

Proof. Let ? be the convolution operator. We have,

yi = h?ui, for i = 1, . . . ,N.

Since the system is finite impulse response h(z) := Z(h) is a polynomial. Under as-
sumption 1, ui(z) := Z(ui) are also polynomials. Therefore, yi(z) := Z(yi)

yi(z) = h(z)ui(z), for i = 1, . . . ,N (2)

are polynomials. It follows from (2) that h(z) is a common factor of y1, . . . ,yN . By
assumption 2, h(z) is the greatest common factor of y1, . . . ,yN . ut

With noisy data
yi

d = ȳi + ỹi, for i = 1, . . . ,N

(the subscript index “d” stands for “data”), where ȳi is the “true value” and ỹ is the
measurement noise, y1

d, . . . ,y
N
d are generically co-prime, i.e., they have no nontrivial

common factor. Assuming that the noise ỹ is zero mean, white, Gaussian, the maximum-
likelihood estimator of the “true impulse response” h̄ is given by the following problem

minimize over ŷ1, . . . , ŷN , û1, . . . , ûN , and ĥ
N

∑
i=1
‖yi

d− ŷi‖2
2

subject to ŷi = ĥ? ûi, for i = 1, . . . ,N.

(3)

Note that since we include ĥ as an optimization variable, we assume that its length (or
equivalently the order n̄ = dim(h̄)−1 of the true system) is a priori known.

Problem (3) is an approximate common factor computation problem.

Theorem 2. Problems (3) and (1) are equivalent.

3 Distance to uncontrollability

Verifying whether a given linear time-invariant system is controllable involves rank
computation. Arbitrary small perturbations of the system’s parameters can switch the
property. This issue is addressed by the notion of distance to uncontrollability, which is
quantitative rather than qualitative measure of controllability. The definition of distance
to uncontrollability, considered in the literature [19], is a property of the parameters A
and B in a state space representation of the system. Using the notion of controllability
in the behavioral setting [21] we define a representation invariant measure of distance
to uncontrollability and propose an algorithm for computing it.



Consider a linear time-invariant system B with a state space representation

B = Bi/s/o(A,B,C,D) := {w = (u,y) | σx = Ax+Bu, y =Cx+Du}, (4)

where A ∈Rn×n, B ∈Rn×m, C ∈Rp×n, and D ∈Rp×m are parameters of B; and σ is the
shift operator (σx)(t) = x(t+1) (in discrete-time) or the derivative operator σx= dx/dt
(in continuous-time).

We adopt the behavioral setting [21], i.e., a system is viewed as a set of trajectories.
For a given system B, the parameters A, B, and C of the state space representation (4)
of B are not unique due to the fact that for any change of basis x′ = V x of the state
space, B(VAV−1,V B,CV−1,D) is the same model as B(A,B,C,D), i.e.,

Bi/s/o(A,B,C,D) = Bi/s/o(VAV−1,V B,CV−1,D).

In addition, the parameters A, B, and C are not unique due to nonminimality of the state
dimension; for example

Bi/s/o(A,B,C,D) = B

([
A A12

A21 A22

]
,

[
B
0

]
,
[
C 0
]
,D
)
,

for any A12 ∈ Rn×∆n, A21 ∈ R∆n×n, and A22 ∈ R∆n×∆n.
A state space representation with parameters A and B is state controllable if and

only if the matrix
C (A,B) :=

[
A AB · · · An−1B

]
is full rank. Note that this classical notion of controllability is a property of the pair of
matrices (A,B) and is not a property of a system B due to the nonuniqueness of a state
space representation. The question of whether a given state space representation is state
controllable is a rank test problem for the structured matrix C (A,B). A corresponding
quantitative measure is the distance of C (A,B) to rank deficiency, i.e., the smallest
(∆A,∆B), such that

C (Â, B̂) := C (A,B)+C (∆A,∆B)

is rank deficient.
Consider the set of m×n structured matrices S and define the distance measure

dr(A) := min
∆A∈S

‖∆A‖ subject to A+∆A has rank r,

where ‖·‖ is a matrix norm. With S =Rm×n, dr(A) is a distance to unstructured rank-r
matrices. In the special cases of spectral and Frobenius norms, the unstructured distance
dr(A) can be computed using the singular value decomposition of A.

Motivated by the issues of computing the numerical rank of a matrix, C. Paige
defined in [19] the distance to uncontrollability

dunctr(A,B) :=minimize over Â, B̂
∥∥∥[A B

]
−
[
Â B̂
]∥∥∥

F

subject to (Â, B̂) is uncontrollable.



This problem falls into a broader category of distance problems [10], such as distance
to instability, distance to positive definiteness, etc. There is a big volume of literature
devoted on the problem of computing dunctr(A,B), see, e.g., [14, 6, 13, 11, 8]. The mea-
sure dunctr(A,B), however, is not invariant of the state space representation because it
depends on the choice of basis. This issue is resolved in the behavioral setting, where
controllability is defined as a property of the system rather then a property of a particular
representation.

Definition 1 ([26]). A time-invariant system B is controllable if for any two trajecto-
ries wp,wf ∈B, there is ∆ t > 0 and a trajectory wc ∈B, such that wp(t) = wc(t), for
all t < 0, and wf(t) = wf(t), for all t ≥ ∆ t.

Checking the controllability property in practice is done by performing a numerical
test on the parameters of a specific representation of the system. For a single-input
single-output linear time-invariant system with an input/output representation

Bi/o(p,q) := { [u
y ] | p(σ)y = q(σ)u} (5)

is controllable if and only if the polynomials are co-prime.

Theorem 3 ([21]). Consider the polynomials p(z) and q(z) and let the degree of p be
higher than or equal to the degree of q. The single-input single-output system Bi/o(p,q)
is controllable if and only if p and q are co-prime.

By Theorem 3, the system Bi/o(p,q) is controllable if and only if p and q have no
common factors of degree one or more.

Let Lctrb be the set of uncontrollable linear time-invariant systems:

Lctrb = {B : B is linear time-invariant and uncontrollable}

and consider the distance measure

dist
(
Bi/o(p,q),Bi/o(p̂, q̂)

)
:=
∥∥∥∥[q

p

]
−
[

q̂
p̂

]∥∥∥∥
2
. (6)

The representation invariant notion of distance to uncontrollability proposed is: Given
a controllable system Bi/o(p,q), find:

dunctr(B) := min
B̂∈Lctrb

dist(B,B̂). (7)

We refer to dunctr(B) as the uncontrollability radius.

Theorem 4. Problems (7) and (1) with d= 1 are equivalent.

Proof. Follows directly from Theorem 3. ut



4 Common dynamics estimation

The problem considered in this section is defined as follows.

Problem 2. Given a set of N scalar autonomous linear time-invariant systems B1, . . . ,BN ,
find their “common dynamics”, defined as B := B1∩·· ·∩BN .

Let the systems be represented by their kernel representations Bi = ker
(

pi(σ)
)
, where

ker
(

p(σ)
)

:= {y | p0y+ p1σy+ · · ·+ pnσ
ny = 0}. (8)

Then, the kernel representation ker
(

p(σ)
)

of the common dynamics B is given by the
greatest common divisor p = gcd(p1, · · · , pN). In the case when B1, . . . ,BN have no
common dynamics (B = {0}), a problem of finding approximate common dynamics
of a specified dimension is considered. The approximate common dynamics problem is
equivalent to the approximate common divisor problem (1).

A variation of the common dynamic’s estimation problem is considered in [20]. In
this case, which we call “data-driven” in order to distinguish it from the “model-based”
problem 2, the aiming is to model a set of scalar time series y1, . . . ,yN by sums of, re-
spectively, n1, . . . ,nN damped exponentials, which have nc ≤min(n1, . . . ,nN) common
exponents. The given time series

yi =
(
yi(1), . . . ,yi(Ti)

)
are approximated by time series ŷ satisfying the model equation

ŷi(t) =
ni−nc

∑
j=1

αi jλ
t
i j +

nc

∑
j=1

βi jµ
t
j, t = 1, . . . ,Ti. (9)

Here, µ1, . . . ,µnc are the exponents common to all signals and λi1, . . . ,λini are the re-
maining exponents of the ith signal.

In [20], a subspace-type method for common dynamics estimation is proposed. As-
suming that the data is generated in the output error setup, i.e., yi = ȳi + ỹi, where the
true values ȳi satisfy the model (9) and ỹi is the measurement noise that is zero mean,
white, Gaussian, the maximum-likelihood estimator is

minimize over ŷi ∈ RTi , λi j ∈ C, µ j ∈ C, αi j ∈ C, and βi j ∈ C

√
N

∑
i=1
‖yi− ŷi‖2

2

subject to (9).
(10)

The following result shows equivalent optimization problems to (10) based on the ker-
nel and state space representations of the model.

Theorem 5. Problem (10) is equivalent to the following problems:

– kernel representation

minimize over ŷi ∈ RTi , Rs,i, Rc ‖y− ŷ‖2

subject to (Rs,i ?Rc)Hni+1(ŷi) = 0, for i = 1, . . . ,N.
(11)



– state-space representation

minimize over ŷi ∈ RTi , λi, µ , ci, c′ ‖y− ŷ‖2

subject to ŷ ∈B
(

diag(λ1, . . . ,λN ,µ),

c1 c′1
. . .

...
cN c′N

), (12)

where λi ∈ C1×(`i−`c), ci ∈ C1×(`i−`c), and c′ ∈ C1×`c .

Although these problems are not equivalent to the approximate common divisor prob-
lem (1), the solution methods are closely related. Indeed (11) is a Hankel structured
low-rank approximation problem. As shown in [25], problem (1) is a Sylvester struc-
tured low-rank approximation problem.
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