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Abstract. Structured low-rank approximation is used in model reduction, system
identification, and signal processing to find low-complexity models from data.
The rank constraint imposes the condition that the approximation has bounded
complexity and the optimization criterion aims to find the best match between the
data—a trajectory of the system—and the approximation. In some applications,
however, the data is sub-sampled from a trajectory, which poses the problem of
sparse approximation using the low-rank prior. This paper considers a modified
Hankel structured low-rank approximation problem where the observed data is a
linear transformation of a system’s trajectory with reduced dimension. We refor-
mulate this problem as a Hankel structured low-rank approximation with missing
data and propose a solution methods based on the variable projections princi-
ple. We compare the Hankel structured low-rank approximation approach with
the classical sparsity inducing method of `1-norm regularization. The `1-norm
regularization method is effective for sum-of-exponentials modeling with a large
number of samples, however, it is not suitable for damped system identification.

Keywords: low-rank approximation, Hankel structure, sparse approximation, miss-
ing data estimation, sum-of-exponentials modeling, `1-norm regularization.

1 Introduction

The problem considered is defined as follows: Given

– full row rank matrix A ∈ Rng×np with ng < np,
– vector of measurements b,
– structure specification S : Rnp → Rm×n, and
– rank constraint r,



minimize over p̂ ‖b−Ap̂‖2

subject to rank
(
S (p̂)

)
≤ r.

(1)

The measurements b are obtained as

b = Ap̄+ b̃,

where p̄ is a vector that we aim to estimate (the ”true value”) and b̃ is zero mean Gaus-
sian measurement noise with covariance matrix that is a multiple of the identity. The
prior knowledge that makes the estimation of p̄ a well posed problem is that it is sparse
in the sense that the matrix S (p̄) has low rank:

rank
(
S (p̄)

)
≤ r. (2)

Therefore, we impose the low-rank prior knowledge on the estimate p̂ in problem (1).
Problem (1) is a structured low-rank approximation problem. Its novel element with

respect to related problems considered in the literature [4, 5, 3, 2, 14, 12] is that a subset
of ng samples are observed. In structured low-rank approximation problem formulations
considered in the literature, all np samples are available for the estimation of p̄. Our
main result, presented in Section 2, is a reformulation of problem (1) as an equivalent
structured low-rank approximation problem with missing data [12]. Section 3 presents
a solution method based on the variable projection principle [6].

Section 4 considers the special case of (1) when the structure S is Hankel. Hankel
structured low-rank approximation has applications in computer algebra, system theory,
and signal processing. In the case of a Hankel matrix structure, the rank constraint (2)
is equivalent to the constraint that the to-be-estimated vector p̄ satisfies a recursive
relation [9, 11]

a0 pt +a1 pt+1 + · · ·+ar pt+r = 0, for t = 1, . . . ,np− r.

Equivalently, (p̄1, . . . , p̄np) is a sum-of-polynomials-times-damped-exponentials discrete-
time signal [13]. In system theoretic terms, (p̄1, . . . , p̄np) is the output of a discrete-
time autonomous linear time-invariant system of order at most r. Therefore, (1) can be
viewed as the problem of identifying an autonomous linear time-invariant system from
partial noisy measurements that are a linear transformation of a system’s output.

We compare the approach of solving the autonomous linear time-invariant system
identification problem via (1) with method based on `1-norm regularization. This latter
approach imposes sparsity on the frequency domain representation of the signal. Indeed,
an r-sparse frequency domain signal is a sum of r complex exponentials in the time-
domain. However, the frequencies are constrained to belong to the grid {kω0 | k ∈ Z},
where ω0 := 2π/np. Therefore, the accuracy of the `1-norm regularization method for
autonomous linear time-invariant system identification is limited. Another essential dif-
ference between (1) and the `1-norm approach is that the `1-norm approach can not deal
with damped exponentials and polynomials. Indeed, damping gives rise to “skirts” in
the frequency domain, so that the signal is no longer k-sparse in the frequency domain,
however, it is sparse in the sense of (2). Section 5 shows numerical examples.



2 Link to missing data estimation

We use the notation p1:ng for the subvector
[
p1 · · · png

]> consisting of the first ng ele-
ments of p.

Theorem 1. Problem (1) is equivalent to the structured low-rank approximation prob-
lem with missing values

minimize over p̂′ ‖b− p̂′1:ng‖2

subject to rank
(
S ′(p̂′)

)
,

(3)

where
S ′(·) := S (V ·) and p̂′ =V−1 p̂,

with a nonsingular matrix V , such that AV =
[
Ing 0

]
.

Proof. Using the change of variables p̂′ = V−1 p̂, where V is a nonsingular matrix,
problem (1) becomes

minimize over p̂′ ‖b−A′ p̂′‖2

subject to rank
(
S ′(p̂′)

)
≤ r,

(4)

where A′=AV and S ′(·) :=S (V ·). By the full row rank assumption, we can choose V ,
so that

A′ = AV =
[
Ing 0

]
. (5)

With this choice of V , problem (4) becomes (3).

Note that if the original structure S is affine, the new structure S ′ is also affine.

Example 1. Let A consists of the first ng rows of the np×np discrete cosine transform
matrix C. Since C is orthonormal, we have that V = C> satisfies condition (5). The
change of variables p̂′ =V> p̂ then transforms the problem into the frequency domain.

3 Solution method

Next, we present a local optimization method for solving problem (3). First, we repre-
sent the rank constraints in the kernel form

rank
(
S (p̂)

)
≤ r ⇐⇒ there is R ∈ R(m−r)×m, such that

RS (p̂) = 0 and R is full row rank. (6)

Then, we use the variable projection principle to eliminate p̂, which results in a nonlin-
ear least-squares in R.

Representing the constraint of (3) in the kernel form (6), leads to the double mini-
mization problem

minimize over R ∈ R(m−r)×m f (R) subject to R is full row rank, (7)



where
f (R) := min

p̂
‖p− p̂‖2 subject to RS (p̂) = 0. (8)

The computation of f (R), called “inner” minimization, is over the estimate p̂ of p.
The minimization over the kernel parameter R ∈ R(m−r)×m is called “outer”. The inner
minimization problem is a projection of the columns of S (p) onto the model B :=
ker(R). Note that, the projection depends on the parameter R, which is the variable in
the outer minimization problem. Thus, the name “variable projection”.

The general linear structure

S : Rnp → Rm×n, S (p̂) =
np

∑
k=1

Sk p̂k (9)

is specified by the np matrices S1, . . . ,Snp ∈ Rm×n. Let

S :=
[
vec(S1) · · · vec(Snp)

]
∈ Rmn×np ,

so that
vec
(
S (p̂)

)
= Sp̂, or S (p̂) = vec−1(Sp̂). (10)

Define the change of variables

p̂ 7→ ∆ p = p− p̂.

Then, the constraint of the optimization problem becomes

RS (p̂) = 0 ⇐⇒ RS (p−∆ p) = 0
⇐⇒ RS (p)−RS (∆ p) = 0

⇐⇒ vec
(
RS (∆ p)

)
= vec

(
RS (p)

)
⇐⇒

[
vec(RS1) · · · vec(RSnp)

]︸ ︷︷ ︸
G(R)

∆ p = G(R)p︸ ︷︷ ︸
h(R)

⇐⇒ G(R)∆ p = h(R).

Assuming that
np ≤ (m− r)n (11)

the inner minimization problem (8) with respect to the new variable ∆ p is a generalized
linear least norm problem

f (R) = min
∆ p

‖∆ p1:ng‖2 subject to G(R)∆ p = h(R). (12)

(12) is not a standard least norm problem due to the presence of missing data (or equiv-
alently singularity of the cost function), however, it has an analytic solution [12, Theo-
rem 2.1].

For the outer minimization problem in (7), i.e., the minimization of M over R, sub-
ject to the constraint that R is full row rank, we use general purpose constrained local
optimization methods [15], representing the full row rank constraint as RR> = Im−r.
This is a nonconvex optimization problem, so that there is no guarantee that a globally
optimal solution is found.



4 Hankel structured sparse approximation problems and
`1-norm regularization

In this section, we consider the special case of problem (1) when the structure S is
Hankel

Hm(p) :=



p1 p2 p3 · · · pnp−m+1

p2 p3 . .
.

pnp−m+2

p3 . .
.

pnp−m+3
...

...
pm pm+1 · · · · · · pnp


. (13)

By the result of Theorem 1, problem (1) is a Hankel structured low-rank approximation
with missing data. In turn, Hankel structured low-rank approximation is a linear time-
invariant system identification problem with missing data. Therefore, equivalently, we
consider a problem of system identification with missing data.

An alternative approach for missing data estimation with sparsity prior is `1-norm
regularization. Sparsity of a signal in the frequency domain means that the signal is a
sum of a few exponentials. In the paper, we consider real-valued time-domain signals,
so that the frequency domain signal has an additional symmetry property.

A signal that is a sum of n-complex exponentials can be represented as an output
of an autonomous linear time-invariant system of order n. Alternatively, such a signal
can be represented as the impulse response of a n-th order linear time-invariant system.
Representing exactly or approximately a given signal as an output of an autonomous
linear time-invariant system or as the impulse response of an input/output linear time-
invariant system are fundamental problems in system theory and system identification.

Next, we explain the similarities and differences between sparse approximation by
`1-norm minimization in the frequency domain and sparse approximation by Hankel
structured low-rank approximation. The underlying assumption for the `1-norm mini-
mization problem is that the data b is generated as

b = Dx+ b̃, (14)

where D is a ng× np matrix with ng < np, x is k-sparse with k� np, and b̃ is a zero
mean Gaussian random vector with covariance matrix σ2I. Moreover, it is assumed that
D consists of the first ng rows of the inverse discrete cosine transform matrix C>. Due to
the properties of D (submatrix of the inverse discrete cosine transform) and x (k-sparse
vector), b̄ := Dx is a sum of k cosines with frequencies on the grid

0
2π

np
,1

2π

np
,2

2π

np
, . . .(np−1)

2π

np
. (15)

Assuming that enough observations are available, namely

ng ≥ 2r+1, where r := 2k,

the Hankel matrix Hr+1(b̄) with r+1 rows and ng− r columns, constructed from b̄ has
rank r. Vice versa,

rank
(
Hr+1(b̄)

)
≤ r (16)



implies that b̄ is a sum of at most 2n polynomials-times-damped-exponentials.
Note that (16) does not impose a constraint that the frequencies are on (15); they

can be any real numbers in the interval [0,2π). Also (16) allows damped cosines while
the model b̄ = Dx does not allow damping. Therefore, (16) is not equivalent to b̄ = Dx
with x k-sparse. For large values of np, (15) approximates “well” the interval [0,2π).

5 Numerical examples

In this section we consider the Hankel structured low-rank approximation problem

minimize over b̂ ‖b−Ap̂‖2

subject to rank
(
Hr+1(p̂)

)
≤ r

(17)

First, we specialize the variable projections method described in Section 3 to the Hankel
structured case and demonstrate on a simulation example that the resulting algorithm
allows us to separate signal from noise. Then, we compare numerically the variable
projections method with the `1-norm regularization method in setup of (14).

Autonomous system identification from data with missing values

In the case of Hankel structure (13), the matrices Sk in (9) are

S1 =


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...
...
...

...
0 0 0 · · · 0

 ,


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...
...
...

...
0 0 0 · · · 0

 ,


0 0 1 · · · 0
0 1 0 · · · 0
1 0 0 · · · 0
...
...
...

...
0 0 0 · · · 0

 , . . . ,


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...
...
...

...
0 0 0 · · · 1


and the G(R) matrix in (12) is

G(R) =


R0 R1 · · · Rr

R0 R1 · · · Rr
. . .

. . .
. . .

R0 R1 · · · Rr

 ,
where all missing elements are zeros. Fast (O(np)) implementation of the variable pro-
jection algorithm, taking into account the structure of G(R) for the cost function and
Jacobian evaluation is presented in [16].

Example 2. A random second order (r = 2) autonomous linear time-invariant system is
generated in Matlab by the function drss and a random trajectory p̄ of the system with
np = 50 samples is then generated. The sampling matrix A is

[
Ing 0

]
, where ng = 20,

i.e., only the first 40% of the samples of p̄ are observed. Finally, zero mean, white,
Gaussian noise with standard deviation s is added to the true samples.



Figure 1 shows the relative estimation error

e := ‖b̄− p̂1:ng‖2/‖b̄‖2

from a Monte Carlo experiment with standard deviations varying in the interval [0,0.1]
(signal-to-noise ratio varying from 46dB to infinity). The result shows that the low-rank
prior allows us to filters noise from the data. Indeed, the error e in using the noisy data
(solid black line) is higher and increases faster than the error e in using the estimate p̂
(the solution of problem (3) obtained with the variable projections algorithm).

Moreover, it can be shown that in the simulation setup of the example, the solution
of problem (1) gives the maximum likelihood estimator, so that it is statistically optimal.
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Fig. 1. The maximum likelihood (ML) estimator obtained by solving problem (1) with the vari-
able projections algorithm (blue dashed line) improves the relative estimation error in comparison
with the use of the raw noisy data (black solid line).

Comparison with the `1-norm regularization method

In this section, we consider data generated from the compressive sensing model (14)
with np = 100, ng = 20, k = 2, and noise standard deviation s = 0.1. The true data p̄
is a sum of two sines with frequencies on the grid (15). With this simulation setup, the
`1-norm regularization method recovers the correct frequencies with 100% success rate.

The low-rank constraint (2) with Hankel structured matrix and rank n = 4 imposes
the weaker prior that the signal is a sum-of-damped exponentials, i.e., damping is al-
lowed and the frequencies are not assumed to be on the grid (15). Nevertheless, in the
above simulation example the estimator defined by problem (17) also recovers the cor-
rect frequencies with 100% success rate.

Both the `1-norm regularization method and (17) fail when the number of given
samples ng is decreased and/or the noise standard deviation s is increased. The `1-
norm regularization method fails for a smaller number of samples and at a higher noise
standard deviation s. The reader can reproduce the reported results by downloading the
SLRA package (http://slra.github.io/) and

http://homepages.vub.ac.be/˜imarkovs/software/ica18.tar
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