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Abstract: Fitting a signal to a sum-of-exponentials model is a basic problem in signal processing. It can
be posed and solved as a Hankel structured low-rank matrix approximation problem. Subsequently, local
optimization, subspace, and convex relaxation methods can be used for the numerical solution. In this
paper, we show another approach, based on the recently developed concept of structured data fusion.
Structured data fusion problems are solved in the Tensorlab toolbox by local optimization methods. The
approach allows fitting of signals with missing samples and adding constraints on the model, such as
fixed exponents and common dynamics in multi-channel estimation problems. These problems are non-
trivial to solve by other existing methods. Tensorlab is publicly available and the results presented are
reproducible.
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1. INTRODUCTION

First, we define the notation and the basic sum-of-exponentials
modeling problem. Then, we list some generalization of the
basic problem and state contribution of the paper in the context
of the current state-of-the-art methods.

1.1 Sum-of-exponentials modeling

A discrete-time exponential signal is a sequence(
. . . ,expz(−1),expz(0),expz(1), . . .

)
, expz(t) := zt .

Given a set of n complex numbers z=
(
z1, . . . ,zn

)
, the nth order

sum-of-exponentials model B is defined as the set (Willems,
1986, 1987; Polderman and Willems, 1998; Markovsky et al.,
2006)

B = B(z) =
{ n

∑
j=1

c j expz j
| c ∈C

n
}
. (1)

The model B is real if all signals y∈B are real valued. In what
follows, we consider discrete-time real models.

The sum-of-exponentials model (1) is an autonomous linear
time-invariant dynamical system (Luenberger, 1979; Kailath,
1981; Sontag, 1998; Markovsky et al., 2006):

B = B(A,C) = {y | σx = Ax, y =Cx}, (2)

where σ is the shift operator

(σx)(t) := x(t + 1)

the model parameters are defined as

A = diag(z1, . . . ,zn), C = [1 · · · 1] , (3)

and the initial condition is

x(0) = [c1 · · · cn]
⊤
.

Alternatively, y ∈ B(z) is the impulse response of the linear
time-invariant system

B = B(A,B,C,D)

= {y | σx = Ax+Bu, y =Cx+Du},

where A and C are as defined in (3), and

B = [c1 · · · cn]
⊤
, D = y(0).



The restriction of the model B on the interval [1,T ] is denoted
by B|T . In the modelling problem, we are given a trajectory

y =
(
y(1), . . . ,y(T )

)
∈ B|T .

It can be shown that

B(z)|T = image
(
VT (z)

)
,

where VT (z) is the (transposed) Vandermonde matrix

VT (z) =




z1
1 · · · z1

n
...

...
zT

1 · · · zT
n


 .

Therefore, for any y ∈ B(z)|T , there exists a c ∈ Cn, such that

y =VT (z)c. (4)

The distance between a signal y and a system B is measured by
the projection of y on B

dist(y,B) := min
ŷ∈B

‖y− ŷ‖2, (5)

Here ‖ · ‖2 is the Frobenius norm or 2-norm, defined as the
square root of the sum-of-squares of the elements of the vector,
matrix or tensor.

With this notation, the sum-of-exponentials modeling problem
is defined as follows.

Problem 1. Given a time series y and order n, find a model
B(z) of order at most n, that is as close as possible to the data
y in the 2-norm sense, i.e.,

minimize dist
(
y,B(z)

)
over z ∈ C

n. (6)

This problem can be viewed as an as autonomous linear time-
invariant system identification problem or else as the iden-
tification of a linear time-invariant system from impulse re-
sponse data, called the realization problem (Kalman, 1979; Ho
and Kalman, 1966; Silverman, 1971; Markovsky, 2013). More
specifically, problem (6) defines a maximum likelihood estima-
tor in the output error setting, assuming additive zero mean,
stationary, white Gaussian noise (Markovsky, 2008; Pintelon
and Schoukens, 2012).

1.2 Literature review and contributions of the paper

The basic sum-of-exponentials modeling problem (6) is defined
in the literature, see, e.g., (Kumaresan and Tufts, 1982; Stoica
and Moses, 2005), for one scalar time series y (single channel
sum-of-exponentials modeling). Recently, the following gener-
alizations have been considered:

(1) the data y is a vector valued time series (a multi channel
sum-of-exponentials modeling),

(2) the data y consists of N ≥ 1 time-series with possibly
different lengths T1, . . . ,TN (multiple experiments sum-of-
exponentials modeling) (Markovsky and Pintelon, 2015),

(3) the data y may contain missing samples, and

The subspace methods (Van Overschee and De Moor, 1996)
which are based on the state space representation (2) are trivial
to generalize to the multi channel case as well as the case of
multiple time-series with equal lengths T1 = · · ·= TN . However,
these methods are non-trivial to generalize for multiple time-
series with different lengths as well as to data with missing
data. A subspace method for sum-of-exponentials modeling
with missing data is proposed in (Markovsky, 2016).

Another approach for sum-of-exponentials modeling is based
on reformulation of the problem as a Hankel structured low-
rank approximation problem (Markovsky, 2008; Markovsky,

2012). The methods are based on local optimization (Marquardt,
1963; Nocedal and Wright, 1999; Golub and Pereyra, 2003)
and allow efficient computation (linear computational complex-
ity in the number of samples). These methods have been re-
cently generalized to multiple time series (Markovsky and Pin-
telon, 2015) and missing data (Markovsky and Usevich, 2013).

The contribution of this paper is in reformulation of the sum-
of-exponentials modeling problem as a structured data function
problem. The resulting solution methods are also based on local
optimization and allow solution of problems with multiple time
series and missing data. In addition, the structured data fusion
approach to sum-of-exponentials modeling problem allows a
solution of a related problem of common dynamics modeling
(Papy et al., 2006), see Section 4.4.

2. SUM-OF-EXPONENTIALS MODELING USING
TENSORLAB

2.1 Introduction of Tensorlab

Tensorlab is a MATLAB toolbox offering algorithms for ten-
sor decompositions, complex least-squares optimization, global
minimization and more (Sorber et al., 2014). Note that ten-
sors are higher-order generalizations of vectors and matrices,
denoted in this paper by calligraphic letters. Structured data
fusion is recently proposed as a framework within Tensorlab
for rapid prototyping of (coupled) decompositions of (whether
dense, incomplete or sparse) tensors with constraints on the
factor matrices (Sorber, 2014; Sorber et al., 2013). Structured
data fusion is implemented in Tensorlab by using a domain
specific language, enabling the user to choose from various
factor structures and from three different tensor decomposi-
tions: the canonical polyadic decomposition, the block term
decomposition (De Lathauwer, 2008) or the low-multilinear
rank approximation.

In this paper, tensor decompositions are being used for solving
the vector and matrix problems in equation (4). Indeed, the data
sets need not necessarily be higher-order. Instead of finding

(structured) factor matrices U (1), U (2) and U (3) to decompose a

tensor T , we search factor matrices U (1) and U (2) to factorize a

matrix T into U (1)U (2)⊤. Likewise, we can search for a matrix
U and vector c (both generally known as ‘factors’) to write a
known vector t as t =Uc. Of course, multiple solutions exist for
the latter two factorizations. Uniqueness only appears through
additional constraints on the factors, unlike for tensor decom-
positions realizing uniqueness under mild conditions (De Lath-
auwer, 2011; Domanov and De Lathauwer, 2013a; Domanov
and De Lathauwer, 2013b; Kruskal, 1977). These constraints
can be enforced using structured data fusion of which the use-
fulness becomes apparent from the generalizations proposed in
Section 4.

2.2 Structured data fusion

Constraints/structures on the factor matrices are typically
(non)linear dependencies on some underlying variables z.
These underlying variables can be scalars, vectors or matrices.
They are transformed to factors through smooth mappings,
i.e., the partial derivatives with respect to the elements of the
underlying variables and their complex conjugates should exist
and be continuous up to all orders (continuous Wirtinger deriva-
tives). Next, the factors are assigned to each dataset through a



chosen decomposition. Tensorlab implements a following least-
squares optimization:

min
z

f =
D

∑
d=1

ωd f (d)

with f (d) =
1

2

∣∣∣
∣∣∣M (d) (X (z))−T

(d)

︸ ︷︷ ︸
F (d)

∣∣∣
∣∣∣
2

W (d)
, (7)

where ‖A ‖W := ‖W ∗A ‖ with ∗ the Hadamard (element-
wise) product. In (7), z is the set of underlying variables,
X is the collection of the mappings (with the factors as the

images), T (d) is the dth dataset, and M (d) is the model of

the decomposition corresponding to each dataset T (d). For
example, regarding the canonical polyadic decomposition, we
have the following model:

MCPD(U
(1), . . . ,U (N)) :=

R

∑
r=1

u
(1)
r ⊗ ·· · ⊗ u

(N)
r . (8)

Without constraints, the matrices U (i) belong to X (z). Missing
elements from an incomplete tensor are associated with a
zero in the corresponding position in the weighting tensor

W (d), then known as the observation tensor. Details about the
algorithms used and their implementation are given in the next
section.

3. SOLUTION METHOD

3.1 Algorithms for structured data fusion

We only discuss the nonlinear least squares algorithm, which
makes use of first-order derivative information but is able to
achieve up to second-order convergence by approximating the
second-order derivatives. With z we denote a vector collecting
the underlying variables. By approximating the residual tensors

F (d) from (7) with a linear model

mF (d)

k (p) := F
(d)(zk)+ J

(d)
k ·

c
p,

where J
(d)
k := ∂F

(d)/∂
c
z⊤,

one obtains a second-order model of the following form:

m
f
k (p) := f (zk)+

c
p⊤ ·

∂ f

∂
c
z
(zk)+

1

2

c
p∗ ·Bk ·

c
p. (9)

Eq. (9) is a second-order complex Taylor series expansion of
f from (7) around zk, and it is minimized to obtain the steps
p to the next iterate zk+1. The critical work is to calculate the
complex gradient ∂ f/∂

c
z and the matrix Bk which is a positive

semidefinite approximation of the complex Hessian described

by ∂ 2 f/(∂
c
z∂

c
z⊤). In the complex gradient, both the cogradient

∂ f/∂ z and conjugate cogradient ∂ f/∂ z are stacked. They are
conjugates of each other as f is real. Typically, one only uses
the conjugate cogradient.

We further subdivide these components to separate the decom-

position models M (d) from the structure imposed by X . The
mappings X are assumed to be analytical functions, i.e., they
are not dependent on the conjugate of z. For non-analytic map-
pings X , we direct the reader to (Sorber et al., 2012; Sorber
et al., 2013). The chain rule on the conjugated cogradient can
be applied to isolate the derivatives regarding the mappings
(Sorber et al., 2012):

∂ f

∂ z
=

D

∑
d=1

wd

((
∂ vec(X )

∂ vec(z)⊤

)∗

·
∂ f (d)

∂ vec(X )

)
. (10)

The left-hand factor is related to the mapping and the right-hand
factor is related to the decompositions applied. Both can be
calculated analytically beforehand, independent of each other.

For the Hessian’s approximation, one can write

Bk =

(
D

∑
d=1

wd

(
∂ vec(X )

∂ vec(z)⊤

)∗

· J
(d)
k

∗
J
(d)
k

)
·

∂ vec(X )

∂ vec(z)⊤
, (11)

with the Jacobian

J
(d)
k =

(
∂ vec(F )(d)/∂ vec(X )⊤

)

and

J
(d)
k

∗
J
(d)
k

called the (Jacobian’s) Gramian. Note that this Gramian can be

computed very efficiently because of the highly-structured J
(d)
k ;

hence, we omit the dot in between.

The first-order information of the mappings can be defined be-
forehand by deriving two matrix-vector products analytically:(

∂ vec(X )

∂ vec(z)⊤

)∗

· l

and
∂ vec(X )

∂ vec(z)⊤
· r.

The latter can be used for equation (11) while the former can
be used for both the equations (10) and (11).

3.2 Implementation details

In this section, we elaborate on the implementation for the tech-
nique described in Section 3. To use custom mappings X (z) in
Tensorlab, only an evaluation method and the two previously
described matrix-vector products have to be provided. We dis-
cuss the latter for the mappings used in this paper.

The first transformation used is a Vandermonde mapping

Vd(z) : z,d →V, with (V )i j = z
d j

i .

For general vectors z ∈ C
Z,d ∈ R

D and given vectors l ∈
CZD,r ∈ CZ we have the following matrix-vector products
while supposing 1 ≤ i ≤ Z and 1 ≤ j ≤ D:

((
∂ vec(Vd(z))

∂ vec(z)⊤

)∗

· l

)

i

=
D

∑
j=1

l
i+ jZ̃

(
d jz

d j−1

i

)
,

(
∂ vec(Vd(z))

∂ vec(z)⊤
· r

)

i+ jZ̃

= rid jz
d j−1

i ,

with Z̃ = Z − 1. The returned vectors are of sizes Z and ZD,
respectively. In this paper, we have d = [1,2, . . . ,T ].

Another transformation used (in Section 4.4 for common dy-
namics) is the Hadamard product between a constant matrix and
a matrix containing variables: HA(Z) : Z,A→A⊙Z. For general
matrices Z ∈ CI×J ,A ∈ CI×J and given vectors l ∈ CIJ ,r ∈ CIJ

we have:
∂ vec(HA(Z))

∗

∂ vec(z)⊤
· l = vec(A⊙ l),

∂ vec(HA(Z))

∂ vec(z)⊤
· r = vec(A⊙ r).

The initial approximation for z and C is obtained by Kung’s
algorithm (Kung, 1978)) and a mask matrix M is used to enforce
zero pattern of C in case of common poles estimation.



4. GENERALIZATIONS OF THE
SUM-OF-EXPONENTIALS MODELING PROBLEM

In Section 4.1 we generalize problem (6) to the multi-channel
problem. Multiple trajectories are introduced in Section 4.2.
Tensorlab can be used to incorporate missing data, as discussed
in Section 4.3. Finally, Section 4.4 discusses the presence of
common dynamics, which has a strong connection to blind
signal separation (De Lathauwer, 2011).

4.1 Multi-channel modeling

In the multi-channel sum-of-exponential modeling problem, the
given data y is a p-dimensional vector time series. Each output
measurement yi is a trajectory of the same model B(z), so that,
in general, the exponents z1, . . . ,zn are common to all channels.
Eq. (4) gives us a structured matrix factorization which can be
seen as a structured data fusion problem:

[y1 · · · yp] =VT (z) [c1 · · · cp]︸ ︷︷ ︸
C

. (12)

4.2 Modeling using multiple trajectories

If the data consists of N time series

yi =
(
yi(1), . . . ,yi(Ti)

)

generated from the same model B(z), the modeling problem is
to approximate all time series in a least-squares sense:

minimize
N

∑
i=1

dist2(yi,B(z)) over z ∈ C
n. (13)

Note that modeling using multiple trajectories is different from
the multi-channel modeling because the lengths T1, . . . ,TN of
the time series may be different. In addition, it is possible
to consider multi-channel modeling with multiple trajectories.
Problem (13) is solved in Tensorlab using a coupled factoriza-
tion with common parameters z:

yi =VT (z)c
i, for i = 1, . . . ,N.

4.3 Missing data

Missing data values y(t), for t ∈ Im are handled by excluding
them from the calculation of the distance measure, i.e., (5) is
calculated only with respect to the given data. In Tensorlab
missing values are specified by setting the corresponding ele-
ments to NaN. The initial approximation is computed by

(1) replacing the missing data with the average of the given
data, and

(2) applying Kung’s method on the complete data sequence.
Another approach for computing initial approximation is
to use the nuclear norm heuristic (Fazel, 2002).

4.4 Common dynamics modeling

The common dynamics estimation problem in multi-channel
signal processing (Papy et al., 2006) is aiming to decompose
the dynamics of the channels into “common dynamics”, i.e.,
joint exponents, and “individual dynamics”, i.e., exponents that
appear in a specific channel only. A zero-pattern structure on
the matrix C from (12) is imposed. To illustrate we have

C =




C0,1 · · · C0,p

C1,1

. . .
Cp,p


 , (14)

with all missing values being zeros. Let n0 := rowdim(C0,1)
and ni := rowdim(Ci,1). The first n0 exponents are common to
all channels, the next n1 exponents are used in the first channel
only, and so on. Such a constraint can be easily imposed in
Tensorlab by a Hadamard product of a fully parameterized
matrix variable and a mask matrix, i.e., a matrix with ones at the
position of the nonzero elements in (14) and zeros elsewhere.
The implementation is discussed in Section 3.2.

5. NUMERICAL RESULTS

In this section we compare the structured data fusion method
for sum-of-exponentials modeling (implemented in the function
sem_tensorlab) with a system identification method (im-
plemented in the function ident) based on a formulation of
the problem as a structured low-rank approximation problem,
see (Markovsky, 2013; Markovsky and Usevich, 2014). The
data is generated by a second order system with poles 0.5±0.5i,
refered to as the true system B̄. Zero mean, white noise with
variance s2 is added to a true output signal ȳ ∈ B̄,

y = ȳ+ ỹ, where ỹ ∼ N(0,s2).

The noise variance s2 is chosen so that the signal-to-noise ratio
is equal to 0.25.

We repeat the identification experiment multiple times with
different noise realizations and report the mean estimation

errors for the compared methods. The obtained models B̂i in
the ith repetition are compared with respect to the following
criteria:

• distance from the data

dist(y,B̂i);

• parameter error

‖θ̄ − θ̂ i‖,

where θ̄ is the normalized true model’s B̄ =B(z̄) param-
eter vector

θ̄ =
[
θ̄0 θ̄1 · · · θ̄n−1

]

(z− z̄1) · · · (z− z̄n) =

θ̄0 + θ̄1z+ · · ·+ θ̄n−1zn−1 + zn

and θ̂ i are defined similarly for the identified models B̂i;
• execution time.

In addition, in case of missing data estimation, the

• missing data estimation error ‖ȳ|Tm
− ŷi|Tm

‖2

criterion is used.

In what follows we present results obtained for the following
experiments:

• Single-channel modeling, see Table 1.
• Multi-channel modeling, see Table 2.
• Multiple trajectories, see Table 3.
• Missing data, see Tables 4 and 5.
• Common dynamics, see Table 6.
• Fixed exponents, see Table 7.



In the single-channel, multi-channel, and multiple trajectories
problems the results obtained by the ident and tensorlab
methods coincide (up to the convergence tolerance of the op-
timization solvers). This is the desired empirical confirmation
that the two methods solve the sample problem. Note, however,
that due to the nonconvexity of the problem it is not guaranteed
that the different local optimization solvers will converge to the
same locally optimal solution. This, however, is the case in our
simulation examples.

The computation time for the identmethod is smaller than the
one for the tensorlab. The reason for this is the ident is
based on the structured low-rank approximation package which
is implemented in C while Tensor lab is entirely written in
MATLAB and version 2.0, used in this empirical study, is not
optimized for structured data fusion.

The discrepancy in the results obtained with ident and
tensorlab in the common dynamics and fixed exponents
simulations is due to the fact that the prior information of com-
mon dynamics and fixed exponents, which enters as constraints
in the optimization problem is not taken into account by the

ident method. Thus, the fitting error dist(y,B̂) obtained by

ident is smaller but the parameter error ‖θ̄ − θ̂‖ is smaller
for the tensorlab method. Of course, we are ultimately of

interest in the error ‖θ̄ − θ̂‖ of estimating the true parameter
value. Therefore, the simulation results confirm the value of
using relevant prior knowledge.

Table 1. Single-channel modeling

h2ss ident tensorlab

dist(y,B̂) 0.1593 0.15882 0.15882

‖θ̄ − θ̂‖ 0.067918 0.081972 0.081972

time, sec 0.021258 0.00703 0.39417

Table 2. Multi-channel modeling

h2ss ident tensorlab

dist(y,B̂) 0.24562 0.24398 0.24398

‖θ̄ − θ̂‖ 0.032581 0.082582 0.082643

time, sec 0.18418 0.073227 0.34834

Table 3. Multiple trajectories

h2ss ident tensorlab

dist(y,B̂) 0.5537 0.53823 0.53823

‖θ̄ − θ̂‖ 0.05024 0.010513 0.010685

time, sec 0.16975 0.072516 3.6245

Table 4. Missing data with a failing sensor.

h2ss ident tensorlab

dist(y,B̂) 0.48181 0.43176 0.4295

‖ȳTm
− ŷTm

‖2 0.54959 2.6637 2.8703

‖θ̄ − θ̂‖ 0.068502 0.0046522 0.0051387

time, sec 0.23586 5.5531 129.04

Table 5. Missing data with every 3rd sample miss-
ing.

h2ss ident tensorlab

dist(y,B̂) 0.1544 0.11186 0.086098

‖ȳTm
− ŷTm

‖2 0.186 0.14223 0.28437

‖θ̄ − θ̂‖ 0.30408 0.13358 0.26602

time, sec 0.22507 0.096979 7.5459

Table 6. Common dynamics

h2ss ident tensorlab

dist(y,B̂) 0.010412 0.010411 0.01167

‖θ̄ − θ̂‖ 0.0071362 0.0071068 0.0051559

time, sec 0.24239 0.081743 0.42571

Table 7. Fixed exponents

h2ss ident tensorlab

dist(y,B̂) 0.0070297 0.0068503 0.0070182

‖θ̄ − θ̂‖ 2.2719 0.53264 0.0041439

time, sec 0.084715 0.036707 0.18954

6. CONCLUSIONS

In this paper, we considered the basic sum-of-exponentials
modeling problem and its generalizations to multi-channel
modeling, multiple time series, missing data, modeling with
known exponents, common dynamics identification, and fixed
poles. All these problems were solved by the structured data
fusion functionality of the Tensor toolbox. The solution ap-
proach using structured data fusion is based on local optimiza-
tion methods and requires user specified initial approximation.
Simulation results comparing the Tensor toolbox with the vari-
able projections method for structured low-rank approximation
approach show equivalent results in terms of accuracy. The cur-
rent implementation of the structured data fusion in the Tensor
toolbox is simple to generalize to new problems but is slower
than the alternative methods.
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