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Abstract. System identification is a fast growing research area that encompasses

a broad range of problems and solution methods. It is desirable to have a unifying

setting and a few common principles that are sufficient to understand the currently

existing identification methods. The behavioral approach to system and control,

put forward in the mid 80’s, is such a unifying setting. Till recently, however,

the behavioral approach lacked supporting numerical solution methods. In the

last 10 yeas, the structured low-rank approximation setting was used to fulfill

this gap. In this paper, we summarize recent progress on methods for system

identification in the behavioral setting and pose some open problems. First, we

show that errors-in-variables and output error system identification problems are

equivalent to Hankel structured low-rank approximation. Then, we outline three

generic solution approaches: 1) methods based on local optimization, 2) methods

based on convex relaxations, and 3) subspace methods. A specific example of a

subspace identification method—data-driven impulse response computation—is

presented in full details. In order to achieve the desired unification, the classical

ARMAX identification problem should also be formulated as a structured low-

rank approximation problem. This is an outstanding open problem.
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1 Introduction

System identification aims at deriving a dynamical model B̂ (i.e., a mathematical de-

scription) from observed data D of a to-be-modeled physical plant. The data is typically

obtained by sampling and quantization in time-domain from one or more independent

measurement experiments. Each measurement point is a real-valued vector of the ob-

served variables from the system and the model postulates a relation among the vari-

ables.

Prior knowledge and/or assumptions about the plant are incorporated in the iden-

tification problem by restricting the model to belong to a set of models M , called the

model class. Therefore, a system identification problem is a mapping:

data

D

system

identification

−−−−−−−−−→
model

B̂ ∈ M
(ID)

The mapping (ID) is defined implicitly as a solution to an optimization problem, i.e.,

the model B̂ minimizes (among all feasible models) a specified cost function. Different

identification problems correspond to different choices of a model class and the cost

function.

Two contradictory objectives in system identification are:

1. “simple” model,

2. “good” fit of the data by the model.

Typically the model class is used to impose a hard bound on the model complexity and

the cost function is used to measure the model-data misfit (lack of fit). It is possible,

however, to minimize the model complexity subject to a hard bound on the misfit or,

more generally, consider the bi-objective minimization of the complexity and the misfit.

In exact identification [10, Ch. 7], the model complexity is minimized subject to the

constraint that the model fits the data exactly (zero misfit). If such a model exists in the

model class, it is called the most powerful unfalsified model (of D in M ) [13]. Exact

identification is a theoretical tool which is a generalization of the realization problem in

system theory and appears in approximate and stochastic identification problems [7].

The data collected in a real-life experiment is “inexact” due to disturbances (unob-

served variables), measurement noises, discretization, and quantization errors. Methods

for computing the most powerful unfalsified model, however, lead through simple mod-

ifications to a class of practical identification methods known as subspace methods.

In this paper, we consider the model class of linear time-invariant systems of bounded

complexity Lm,ℓ — number of input variables at most m and lag at most ℓ. In the behav-

ioral setting [14], no a priori separation of the variables into inputs and outputs is made,

however any model allows a nonunique input/output partition. Although the choice of

the input variables is in general not unique, the number of inputs is a model invariant,

i.e., it does not depend on the partitioning.

In Section 2, we define the model class Lm,ℓ and the approximation criterion, which

specify the identification problem (ID). The misfit has the geometric interpretation of

the Euclidean distance between the data and the model. In the stochastic setting, misfit

minimization corresponds to errors-invariables system identification [12], i.e., (ID) is

a maximum-likelihood estimator in the errors-invariables setting. Section 3 related the

identification problem (ID) to the weighted Hankel structured low-rank approximation.

Three generic classes of solution methods are outlined: local optimization based meth-

ods, convex relaxation based methods, and subspace methods. As a specific example

of a subspace method, in Appendix A, we present a data-driven algorithm for impulse

response estimation. Section 4 draws conclusions and states some open problems. One

of them is integration of the classical ARMAX setting in the behavioral setting.



2 Problem formulation

A dynamical system B is a set of trajectories. In discrete-time, a trajectory is a q-

variable time-series w : Z → R
q. The class of finite dimensional linear time-invariant

systems with at most m inputs is denoted by Lm. This class admits a representation

B = B(R) := {w | R0w+R1σw+ · · ·+Rℓσ
ℓw = 0}, (DE)

where σ is the shift operator (σw)(t) = w(t + 1). The smallest number ℓ, for which

there is ℓth order representation B = B(R) is called the lag of the system. The pair

(m, ℓ) specify the model complexity. The model class of bounded complexity is denoted

by Lm,ℓ.

The model variables w can be partitioned into inputs u and outputs y, i.e., there is a

permutation matrix Π , such that w = Π [u
y ]. The system can then be represented in the

classical form

B = B(A,B,C,D,Π) := {w = Π [ u
y ] | there is x,

such that σx = Ax+Bu, y =Cx+Du}. (I/S/O)

We will assume that Π can be chosen equal to I and the block Pℓ ∈ R
p×p of Rℓ =[

Qℓ −Pℓ
]

in a difference equation representation is nonsingular.

Let the identification data D be an observed trajectory

wd =
(
wd(1), . . . ,wd(T )

)
, wd(t) ∈ R

q

of the to-be-identified system. The approximation criterion, called data-model misfit, is

defined as follows:

M(D ,B) := min
ŵ∈B

‖wd − ŵ‖2, (M)

where ŵ is the optimal approximation of wd by B. Note that ŵ is the projection of wd

on B.

The identification problem considered is misfit minimization over all system B̂ in

the model class Lm,ℓ:

minimize over B ∈ Lm,ℓ M(wd,B). (SYSID)

Generalizations of problem (SYSID) (see [8]) are weighted 2-norm approximation cri-

teria, specification of exact and missing variables, and data consisting on multiple tra-

jectories.

3 Hankel low-rank approximation

In what follows, we will use the block-Hankel matrix

Hℓ+1(w) :=




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · · w(T − ℓ+1)
...

...
...

w(ℓ+1) w(ℓ+2) · · · w(T)


 .

The fundamental link between the system identification problem (SYSID) and struc-

tured low-rank approximation is the following equivalence

w ∈ B ∈ Lm,ℓ ⇐⇒ rank
(
Hℓ+1(w)

)
≤ (ℓ+1)m+pℓ. (∗)

In words, w is an (exact) trajectory of the linear time-invariant system B if and only if

the Hankel structured matrix Hℓ+1(wd) is rank deficient. Note that the complexity of

the model B (number of inputs m and lag ℓ) is directly related to the rank constraint of

the Hankel matrix.

Using (∗), we can rewrite the identification problem (SYSID) as an equivalent Han-

kel low-rank approximation problem

minimize over ŵ ‖w− ŵ‖2

subject to rank
(
Hℓ+1(ŵ)

)
≤ (ℓ+1)m+pℓ.

(SLRA)

The main issue in system identification is that Problem (SLRA) is nonconvex. There-

fore, various heuristics, reviewed later, are used for its solution.

3.1 Alternating projections approach

One approach for dealing with the rank constraint in (SLRA) is to use the kernel repre-

sentation

rank
(
Hℓ+1(ŵ)

)
≤ r ⇐⇒ RHℓ+1(ŵ) = 0

and R ∈ R
p×(ℓ+1)q is full row rank. (KER)

Using (KER), (SLRA) becomes a classical parameter optimization problem,

minimize over ŵ and R ‖wd − ŵ‖2

subject to RHℓ+1(ŵ) = 0 and R is f.r.r.
(SLRAR)

(SLRAR) is furthermore equivalent to

minimize over f.r.r. R ∈ R
(m−r)×m M(R), (OUTER)

where

M(R) :=min
ŵ

‖wd − ŵ‖2

subject to RHℓ+1(ŵ) = 0.
(INNER)

Note that (INNER) is a classical linear least squares problem.

The approach for solving (SLRAR) by minimizing (OUTER) is closely related to the

variable projection method in numerical linear algebra [4]. In [4], however, an explicit

function b̂ = A(θ)x, where x is unconstrained, is considered, while in the context of

the structured low-rank approximation problem, an implicit relation RHℓ+1(ŵ) = 0 is

considered, where the variable R is constrained to have full row rank. This fact requires



new type of algorithms where the nonlinear least squares problem is an optimization

problem on a Grassmann manifold, see [1, 2].

In (OUTER), the cost function M is minimized over the set of full row rank ma-

trices R. Indeed, M depends only on the space spanned by the rows of R. In order to

find a minimum of M, the search space in (OUTER) can be replaced by the matrices

satisfying the constraint

RR⊤ = Ip.

A software package for Hankel structured low-rank approximation is presented

in [9]. The Levenberg-Marquardt algorithm [11] implemented the GNU Scientific Li-

brary [3], are used for the solution of the nonlinear least squares problem. This package

is used in [8] for system identification.

3.2 Alternating projections approach

The second approach is based on the image representation of the rank constraint

rank
(
Hℓ+1(ŵ)

)
≤ r ⇐⇒ Hℓ+1(ŵ) = PL where

P ∈ R
•×r and L ∈ R

r×• (KER)

and a representation of a structured matrix by an linear equality constraint

Π(PL)−PL = 0,

where Π is a projection of a matrix to the nearest one with Hankel structure.

3.3 Nuclear norm heuristic

The nuclear norm heuristic replaces the rank constraint in (SLRA) with a constraint

‖Hℓ+1(ŵ)‖∗ ≤ γ on the nuclear norm ‖ · ‖∗ of Hℓ+1(ŵ). The nuclear norm is a convex

function of ŵ, so that the relaxed problem is a convex optimization problem. The pa-

rameter γ is selected in [6] by bisection aiming at achievement of the desired rank of

the approximation Hℓ+1(ŵ). Other authors [5], however, select a value of γ that does

not necessarily lead to rank deficient structured matrix. In this case, the nuclear norm

minimization is used as a data preprocessing step. The obtained ŵ from the nuclear

norm minimization is then fed as an input to a subspace method, which does the actual

rank reduction.

3.4 Subspace methods

The subspace methods for approximate system identification originate from correspond-

ing methods for exact system identification, by replacing exact operations such as rank

revealing factorization and solution of a system of linear equations by approximate

methods — unstructured low-rank approximation (achieved via the singular value de-

composition) and approximation solution of a system of linear equations in the least

squares sense. Since two or more steps of the algorithm are adapted in this way, the

result heuristic methods can be called multi-stage methods. They are suboptimal, how-

ever, they are fast and effective methods for approximate system identification. A de-

tailed specific example of a subspace method is shown in Appendix A.

4 Conclusions and future perspectives

In this paper, we described a unifying setting for system identification as a biobjective

optimization problem. The identified model is defined in the behavioral sense as a set

of trajectories. The two objectives are 1) minimization of the fitting error and 2) min-

imization of the model complexity. As a specific example of a fitting error, we gave

the misfit, i.e., the projection of the data on the model. This error criterion corresponds

to the class of the errors-in-variables problems in the system identification literature.

Another error criterion is the latency, which corresponds to the class of the ARMAX

identification problems.

The main computation tool in the behavioral setting is Hankel structured low-rank

approximation. The link to low-rank approximation follows from the fact that a time

series is a trajectory of a linear time invariant system if and only if a Hankel struc-

tured matrix composed of the data is rank deficient. Once the identification problem

is re-formulated as a structured low-rank approximation problem, it can be solved by

various methods. The methods however are classified into three groups: local optimiza-

tion based methods, convex relaxations, and subspace methods. In general, the subspace

methods are faster but less efficient than the optimization based methods.

The class of methods based on convex relaxations are currently actively developed.

The main challenges in this area of research are finding theoretical bounds for the dis-

tance to global optimality and development of efficient computational methods.

Another research challenge is formulation of the latency minimization (ARMAX

system identification) as a structured low-rank approximation and solution of the re-

sulting problem by existing methods for low-rank approximation.
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A Subspace method for impulse response estimation

Let B be a linear time-invariant system of order n with lag ℓ and let w = (u,y) be an

input-output partitioning of the variables. In [15], it is shown that, under the following

conditions,

– the data wd is exact, i.e., wd ∈ B,

– B is controllable,

– ud is persistently exciting, i.e., Hn+ℓ+1(ud) is full rank,

the Hankel matrix Ht(wd) with t block-rows, composed from wd, spans the space B|[1,t]
of all t-samples long trajectories of the system B, i.e.,

image
(
Ht(wd)

)
= B|[1,t].

This implies that there exists a matrix G, such that

Ht(yd)G = H,

where H is the vector of the first t samples of the impulse response of B. The problem

of computing the impulse response H from the data wd reduces to the one of finding a

particular G.

Define Up, Uf, Yp, Yf as follows

Hℓ+t(ud) =:

[
Up

Uf

]
, Hℓ+t(yd) =:

[
Yp

Yf

]
,

where

rowdim(Up) = rowdim(Yp) = ℓ

and

rowdim(Uf) = rowdim(Yf) = t.

Then if wd = (ud,yd) is a trajectory of a controllable linear time-invariant system B

of order n and lag ℓ and if ud is persistently exciting of order t + ℓ+ n, the system of

equations



Up

Uf

Yp


G =




0mℓ×m[
Im

0m(t−1)×m

]

0pℓ×m


 , (∗)

is solvable for G ∈ R
•×m, and for any particular solution G, the matrix YfG contains the

first t samples of the impulse response of B, i.e.,

YfG = H.

This gives Algorithm 1 for the computation of H.

Algorithm 1 Block computation of the impulse response from data.

Input: ud, yd, ℓ, and t.

1: Solve the system of equations (∗) and let G be the computed solution.

2: Compute H = YfG.

Output: H.

Algorithm 1 computes the first t samples of the impulse response; however, the per-

sistency of excitation condition imposes a limitation on how big t can be. This limitation

can be avoided by a modification of the algorithm. L consecutive samples, where L is a

user specified parameter that is small enough to allow the application of Algorithm 1,

are computed iteratively. Then, provided the system is stable, by monitoring the decay

of H in the course of the computations, gives a way to determine how many samples

are needed to capture the transient behavior of the system.


