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Abstract

An identification problem with no a priori separation of the variables into inputs and outputs and representa-

tion invariant approximation criterion is considered. The model class consists of linear time-invariant systems of

bounded complexity and the approximation criterion is the minimum of a weighted 2-norm distance between the

given time series and a time series that is consistent with the model. The problem is equivalent to and is solved as

a mosaic-Hankel structured low-rank approximation problem. Software implementing the approach is developed

and tested on benchmark problems. Additional nonstandard features of the software are specification of exact and

missing variables and identification from multiple experiments.
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1 Introduction

One of the main criticisms to the behavioral approach in system theory and control [24, 17] is that it is not supported

by numerical algorithms and software. Despite its conceptual and theoretic advantages, the behavioral approach has

produced only a few engineering tools; most notably the identification methods of [19] and [10]. Compared to the

abundance of algorithms and software in the classical setting, this scarcity of tools accounts to a large extent for the

slow acceptance of the behavioral approach by engineers.

This paper presents a flexible method for system identification in the behavioral setting, which is an outgrow of

the method in [10]. The method is implemented in a publicly available software package which is fast, easy to use,

and has the following nonstandard features.

1. Representation free problem formulation

Classical identification problems are invariably defined in terms of representations of the system—transfer func-

tion, input/state/output, convolution kernel, etc. A problem can be equivalently posed in frequency domain as

well as time domain, using input/state/output, convolution, or any other representation. Different representa-

tions have different advantages, so that all of them should be considered as options in solving the problem. The

model representation should be viewed as an implementation detail of the particular solution method. A prob-

lem formulation that is representation free is defined in terms of the desired system behavior—set of trajectories

of the system.

Related to the use of a representation invariant problem formulation, is the assumption in classical system

identification problems that an input/output partitioning of the variables is given and fixed. The choice of inputs

and outputs is not unique [25, Section VIII]. Different input/output partitions, generically, lead to the same

optimal model’s behavior [11]. In nongeneric cases, however, the optimal model is not compatible with a

specified input/output partition. If such a partition is chosen, the identification problem is ill-posed. In practice,

even a well-posed problem with fixed input/output partition can be ill-conditioned. Using the representation free

setting and thus leaving the choice of the input-output partition to the identification method has the potential

advantage of leading to methods that are more general conceptually (the input/output partition is identified

together with the model), easier to analyze theoretically (solution always exists), and are computationally more

robust (ill-conditioning is avoided).

1



2. Multiple experiments

Another nonstandard feature of the method presented in the paper is the use data of multiple measurement

experiments. In static estimation problems, a measurement experiment yields a q-dimensional observation

vector, so that the only way to increase the amount of data is to repeat the experiment. In dynamic problems, an

experiment yields a q-dimensional vector time series. More data can be collected in this case also by increasing

the length of the time series (number of samples in time). Our framework unifies the two approaches of data

collection—repeated experiments and longer experiment. The former approach is of interest, for example, in

the case of autonomous dynamical systems, where asymptotic analysis in time is not applicable.

The problem of using data of multiple experiments for identification of a single model is often addressed by

heuristic methods. The rigorous method of [20] is based on concatenation of the separate time series into one

time series, adding transient responses at the times of transition from one trajectory to another. This reduces

the problem of identification from N time series to the problem of identification from a single time series

and estimation of N transient responses—both being classical problems. This approach is implemented in all

methods available in the System Identification Toolbox of Matlab [5].

The method presented in this paper uses a different approach. The time series parameterize separate block-

Hankel matrices, with fixed row dimension but possibly different column dimensions. The block-Hankel ma-

trices are appended to each other, forming a 1×N block matrix with block-Hankel elements. Such a matrix

is called a mosaic block-Hankel matrix. The identification problem of using data from multiple experiments is

then equivalent to low-rank approximation of the mosaic block-Hankel matrix. Our approach is a natural gen-

eralization of the classical approach for solving static estimation problems where the blocks are the individual

observations and the mosaic block-Hankel matrix is the unstructured q×N matrix of the stacked next to each

other observations.

3. Exact and missing data

Due to malfunctioning of measurement devices, communication channels, or storing devices, the available data

may have missing measurements at some time instances. When the missing data span over ℓ or more sequential

time instances, where ℓ is the lag of the system, the problem reduces to the problem of identification from two

independent time series. Also for problems with a given input/output partitioning, missing output variables can

be estimated by existing methods. More general patterns of missing data, e.g., non sequential missing variables

and missing variables in arbitrary combination of variables, require new methods. The approach used in the

paper, treats missing data by minimizing a weighted approximation criterion with zero weights associated to

the missing values.

The opposite of a missing data value is an exact data value. An example of how exact data occur in practice is

data collection experiment for a system starting “at rest”, i.e., zero initial conditions. This prior knowledge can

be used in the identification problem by imposing equality constraints, setting the approximation of the exact

values to the given data values. The approach of imposing exact values used in this paper, is by minimizing a

weighted approximation criterion with infinite weights associated to the exact values. Thus, exact and missing

values are treated uniformly as extreme cases of noise corrupted observations when the noise has zero and

infinite variance, respectively.

4. Software implementation in a literature programming style

Scientific publications rarely include full implementation details of the methods described. A software imple-

mentation of the method (when available as open source) necessarily contains the full details about the method

and is therefore the ultimate source of information. Even well documented code, however, may be difficult

to read and may not correspond to a description in related scientific publication. The literature programming

style [2] is a possible solution to this issue. A literate program includes the source code as an integral part of

the document describing it. A literate program is designed to be read by a human being rather than a computer.

An extended version of this paper is a literate program for the described software package. The code is split into

chunks and the chunks are presented in a logical sequence, which happens to be different from the sequence in

which the chunks appear in the computer executable programs. The code chunks provide the implementation

details for the algorithmic steps and, vice verse, the presentation in the paper serves as documentation of the
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code. The particular literate programming tool used in this paper is noweb [18]. The computer executable code

as well as the human readable text are automatically extracted from the literate program by noweb, so that the

code and the paper coexist in common source files.

The approach for solving the identification problem, used in the paper, is weighted structured low-rank approx-

imation [6]. Rank deficient mosaic-Hankel matrices are in a one-to-one correspondence with trajectories of linear

time-invariant systems of bounded complexity. Therefore, data approximation by a linear time-invariant system of

bounded complexity is a mosaic-Hankel low-rank approximation problem. The behavioral approach and the low-rank

approximation setting are two sides of the same coin: they use representation free problem formulations, where the

fundamental object of interest is a relation among variables rather than a map. The system theoretic notion of a lin-

ear time-invariant model of bounded complexity corresponds to the linear algebra notion of a rank deficient Hankel

matrix. The linear algebra setting provides algorithms and software for addressing problems in the system theoretic

setting.

Element-wise weights allow approximation with an emphasis on some variables and/or some time instances. Zero

and infinite weights are allowed. A zero weight ignores the corresponding data point in the approximation and an

infinite weight forces the approximation of the corresponding data point to be equal to the given one. This allows us

to take into account missing and exact data.

Once the identification problem is cast as a mosaic-Hankel structured low-rank approximation problem, it is solved

by the efficient methods of [22]. A practical implementation of the methods in C++, using optimization algorithms

from the GNU scientific library [1], is available [8]. The identification function presented in this paper is a wrapper

function to the structured low-rank approximation solver of [8]. The software is available from:

http://homepages.vub.ac.be/~imarkovs/slra/software.html

The paper is organized as follows: Section 2 sets the notation and states the considered identification problem.

Section 3 presents the solution approach and gives details about the implementation of the software. Specific identifi-

cation problems—L2-optimal model reduction, identification from data consisting of multiple trajectories of different

lengths, and identification with missing data—are presented in Sections 5–7, respectively. In Section 8, the perfor-

mance of the identification package is tested on real-life and simulated data from the database for system identification

DAISY.

2 Problem formulation

2.1 Model class: linear time-invariant systems of bounded complexity

A discrete-time dynamical system B is a collection of trajectories — q-variables time-series w : Z→ R
q. The class

of finite dimensional linear time-invariant systems with q variables and at most m inputs is denoted by L
q
m . A linear

time-invariant system B ∈ L
q
m admits a representation by constant coefficients difference equation

B = B(R) := {w | R0w+R1σw+ · · ·+Rℓσ
ℓw = 0}, (DE)

where σ is the shift operator

(σw)(t) = w(t +1).

Note 1 (Kernel representation). In the literature on the behavioral approach to systems and control, (DE) is called a

kernel representation, because it can be written more compactly as the kernel

ker
(
R(σ)

)
:= {w | R(σ)w = 0}

of the operator R(σ), where

R(z) := R0w+R1z+ · · ·+Rℓz
ℓ

is a polynomial matrix.
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The minimal natural number ℓ, for which there exists an ℓth order difference equation representation for B is

an important invariant of the system, called the lag. The number of inputs and the lag specify the complexity of

the system in the sense that the dimension of the restriction of B to the interval [1,T ], where T ≥ ℓ, is bounded by

Tm+ ℓ(q−m). The subset of L
q
m with lag at most ℓ is denoted by L

q
m,ℓ.

No a priori separation of the variables w1, . . . ,wq into inputs and output is made. However, the variables can

always be partitioned into inputs u (free variables) and outputs y (dependent variables). A convenient way to represent

an input/output partitioning is w = Π [u
y ], where Π is a q×q permutation matrix.

An input/output representation

B(P,Q,Π) = {w = Π(u,y) | Q(σ)u = P(σ)y},

of the system B(R) is obtained by partitioning the polynomial matrix RΠ as

RΠ =

m p[
Q −P

]
, with P nonsingular.

In addition, the system can be represented in the input/state/output form

B = B(A,B,C,D,Π) := {w = Π(u,y) | there is x, such that σx = Ax+Bu, y =Cx+Du}. (I/S/O)

If the permutation matrix Π is the identity matrix, then w = (u,y), i.e., the first m variables of w are inputs and the

remaining p variables are outputs. In this case, Π is skipped in (I/S/O), i.e., B(A,B,C,D) = B(A,B,C,D, I).
The number of inputs m, the number of outputs p= q−m, and the minimal state dimension n of an input/state/output

representation of B are invariant of the representation and in particular of the input/output partitioning. The order n

of a state-space representation of a linear time-invariant system B = B(R) with lag ℓ and p outputs is n≤ ℓp. In the

case when the block Pℓ ∈ R
p×p of Rℓ =

[
Qℓ −Pℓ

]
is nonsingular, n = ℓp and w = (u,y) is a possible input/output

partition, i.e., Π can be chosen equal to I. This simplifying assumption is made in the rest of the paper. The class of

systems with q variables and inputs, order, and lag bounded by, respectively m, n, and ℓ is denoted by L
q,n
m,ℓ .

2.2 Approximation criterion: distance between data and model

The misfit (lack of fit) between the data wd and the model B is measured by the orthogonal distance from wd to B

M(wd,B) := min
ŵ1,...,ŵN∈B

√
N

∑
k=1

‖wk
d − ŵk‖2

2. (M)

Intuitively, the misfit shows how much the model B fails to “explain” the data wd.

Missing elements are marked by the symbol NaN and are excluded from the approximation criterion, i.e.,

NaN− ŵi(t) = 0, for all ŵi(t) ∈ R.

The optimal approximate modeling problem considered aims to find a system B̂ in the model class L
q
m,ℓ that best

fits the data according to the misfit criterion.

Given a set of time series

wd = {w1
d, . . . ,w

N
d }, where wk

d =
(
wk

d(1), . . . ,w
k
d(Tk)

)
, wk

d(t) ∈R
q,

and a complexity specification (m, ℓ), find the system

B̂ := arg min
B∈L

q
m,ℓ

M(wd,B). (SYSID)

Special cases of (SYSID) are static data modeling (ℓ = 0) and output-only or autonomous system identification

(m= 0). The solution approach, described next, leads to an algorithm that covers these special cases. In addition,
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1. elements of the given time series wd can be specified as “missing” by passing the symbol NaN for their value;

2. elements of the given time series wd can be specified as “exact”, in which case they appear unmodified in the

approximation ŵ;

3. the approximation ŵ can be constrained to be a trajectory of the model B, generated under a priori fixed initial

conditions wini, see [7], i.e., [
wini

ŵ

]
∈ B.

(Note that problem (SYSID) identifies the model without prior knowledge about the initial conditions, under

which the data wd is generated, i.e., wini is a free variable.)

2.3 Stochastic interpretation

The system identification problem considered in the paper is defined as a deterministic approximation problem. As

shown in [6, Section 3.1], however, it yields the maximum likelihood estimator in the errors-in-variables setting [21].

Proposition 2 ([6, Proposition 6]). Assume that the data wd is generated in the errors-in-variables setting

wd = w̄+ w̃,

where the true data w̄ is a trajectory of a true model B̄ ∈ L
q
m,ℓ and the measurement noise w̃ is zero mean normally

distributed with covariance matrix that is a multiple of the identity. Then the solution B̂∗ of (SYSID) is a maximum

likelihood estimator for the true model B̄.

In [15, 3], it is proven that under additional mild assumptions the estimator B̂∗ is consistent and the estimated

parameters have asymptotically normal joint distribution. Therefore, asymptotic confidence regions can be obtained

as a byproduct of the optimization algorithm (see [8, Section 5.1]). The statistical setting justifies the choice of the

deterministic approximation criterion and provides a testbed for the method: the method works “well” (consistency)

and is optimal (asymptotic efficiency) under specified conditions.

Note 3 (Exact and missing data correspond to noisy data with, respectively, zero and infinite noise variance). In

the classical regression model, an input-output partitioning of the variables is a priori given and the input variables

(regressors) are assumed to be noise free. Classical regression is a special case of the errors-in-variables model when

the input noise variance is zero. The opposite of a noise free variable is a missing variable, or equivalently a variable

with infinite variance in the errors-in-variables setting.

3 Solution approach

For a given set of trajectories wd and a natural number ℓ, the mosaic-block-Hankel matrix (a 1×N block matrix with

block-Hankel blocks) is defined as

Hℓ+1(wd) :=
[
Hℓ+1(w

1
d) · · · Hℓ+1(w

N
d )
]
, where Hℓ+1(w

k
d) :=




wk
d(1) wk

d(2) · · · wk
d(T − ℓ)

wk
d(2) wk

d(3) · · · wk
d(T − ℓ+1)

...
...

...
wk

d(ℓ+1) wk
d(ℓ+2) · · · wk

d(T )


 .

The solution method is based on the following equivalence
(
wd(1), . . . ,wd(Tk − ℓ)

)
∈ B ∈ L

q,n
m,ℓ , for k = 1, . . . ,N ⇐⇒ rank

(
Hℓ+1(wd)

)
≤ (ℓ+1)m+n,

i.e., the time series wd, possibly except for the last ℓ samples, are exact trajectories of a linear time-invariant model B

with complexity bounded by (m,n) if and only if the mosaic-block-Hankel matrix Hℓ+1(wd) has rank bounded by

r = (ℓ+1)m+n.

Therefore, the identification problem (SYSID) is equivalent to the structured low-rank approximation problem

minimize over ŵ ‖wd − ŵ‖2
ℓ2

subject to rank
(
Hℓ+1(ŵ)

)
≤ r. (SLRA)
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Note 4. Under the assumption that Pℓ is full rank, the whole trajectories w1
d, . . . ,w

N
d are in the behavior of the model.

Problem (SLRA) is a classic problem that can be solved in different ways. The approach used in the paper is

based on the kernel representation of the rank constraint

rank
(
Hℓ+1(ŵ)

)
≤ r ⇐⇒ RHℓ+1(ŵ) = 0 and R⊤R = I(ℓ+1)q−r. (KER)

The matrix R in the right-hand-side of (KER) is related to the parameters R0,R1, . . . ,Rℓ of the difference equation

representation (DE) of the exact model for ŵ as follows:

R =
[
R0 R1 · · · Rℓ

]
, where Ri ∈ R

p×q.

Algorithms and software for mosaic-Hankel low-rank approximation are developed in [9, 22]. The software of [8]

is used. The software presented in this paper is just an interface to the structured low-rank approximation solver for the

purpose of linear time-invariant system identification, see Figure 1. On its own, the structured low-rank approximation

solver computes a parameter R̂ of the difference equation representation of the optimal approximating system B̂.

The system identification function converts the parameter R̂ to the parameters (Â, B̂,Ĉ,D̂) of an input/state/output

representation of B̂ in order to facilitate the usage of the model by other analysis and synthesis tools. In addition,

a system Bini ∈ L
q
m,ℓ, specified by parameters (Aini,Bini,Cini,Dini) can be used as an initial approximation for the

optimization algorithm. The parameters (Aini,Bini,Cini,Dini) are converted to the parameter Rini, used by the structured

low-rank approximation solver. Details about these conversions are given in Appendix B. Although the identification

function has as external interface the (I/S/O) representation of the model, the internal computations are done via the

parameter R of the difference equation representation.

wd p

(Aini,Bini,Cini,Dini) Rini

structured low-rank

approximation

slra
p̂ ŵ

R̂ (Â, B̂,Ĉ,D̂)

w2p

ss2r

p2w

r2ss

ident

Figure 1: Implementation of the system identification function ident.

The function ident solves the approximate identification problem (SYSID), and misfit computes the misfit

M(wd,B). They implement the following mappings (the input/output parameters are defined in Appendix A):

ident: (wd,m, ℓ) 7→ (Â, B̂,Ĉ,D̂), where (Â, B̂,Ĉ,D̂) define a (locally) optimal solution of (SYSID)

〈ident function definition〉≡
function [sysh, info, wh, xini] = ident(w, m, ell, opt)

misfit:
(
wd,(A,B,C,D)

)
7→ (M, ŵ), where M is the misfit between B(A,B,C,D) and wd, and ŵ is the optimal

approximation of wd within B(A,B,C,D) (the smoothed trajectory).

〈misfit function definition〉≡
function [M, wh, xini] = misfit(w, sysh, opt)

4 Identification without input/output partitioning

In this section, we show a simulation example that illustrates the independence of the representation free problem

formulation (SYSID) of an a priori given input output partitioning of the variables. Noisy data (ud,yd) is generated

from a single-input single-output second order system

〈permutation of the variables〉≡
ell = 2; m = 1; p = 1; q = m + p; n = ell * p; T = 30; s = 0.1;

sys0 = drss(n, p, m); u0 = rand(T, 1); y0 = lsim(sys0, u0);

w0 = [u0 y0]; w = w0 + s * randn(T, q);
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and the identification method ident is applied, first on the data wd = (ud,yd):

〈permutation of the variables〉+≡
opt.solver = ’m’;

[sysh1, info1] = ident(w, m, ell, opt);

and, second on the data w′
d = (yd,ud) with permuted variables:

〈permutation of the variables〉+≡
[sysh2, info2] = ident(fliplr(w), m, ell, opt);

The achieved misfit M(wd,B̂) = info1.M and M(w′
d,B̂

′) = info2.M in the two cases is equal and the identified

models B̂ = sys1 and B̂′ = sys2 are closely related. (If B1 is invertible B2 is equal to the inverse of B1.)

Although, identification from data with permuted variables leads to equivalent optimization problems, the be-

havior of optimization methods in these problems may differ significantly. This is illustrated on the plots of Figures

2 and 3. Figure 2 shows the convergence of the parameters R (identification using wd) and R′ (identification using

w′
d) in the course of the optimization algorithm. Figure 3 shows the approximation errors Mk := M(wd,B̂k) and

M′
k := M(w′

d,B̂
′
k) as a function of the iteration step k.
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Figure 2: Convergence of the model parameters R and R′ in the course of the optimization method.
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Figure 3: Misfits Mk := M(wd,B̂k) and M′
k := M(w′

d,B̂
′
k) as a function of the iteration step k.
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5 L2-optimal model reduction

In this section, the ident function is used for solution of a (finite horizon) L2-optimal model reduction problem [6,

Section 3.3]. Consider a discrete-time linear time-invariant system B with an input/output partition w = (u,y) and

let H(t) ∈ R
p×m be the tth sample of the impulse response of B. The finite horizon-T L2 norm of B (w.r.t. the given

input/output partition w = (u,y)) is defined as

‖B‖2,T := ‖H‖2,T :=

√
T

∑
t=0

‖H(t)‖2
F,

where ‖ · ‖F is the Frobenius norm.

Problem 5 (L2-optimal model reduction problem [6]). Given a linear time-invariant system Bd ∈ L
q
m,ℓ and a com-

plexity specification ℓred < ℓ, find an optimal approximation of Bd with bounded complexity (m, ℓred)

B̂
∗ := argmin

B̂

‖Bd − B̂‖2,T subject to B̂ ∈ L
q
m,ℓred

.

The link between L2-optimal model reduction and system identification is due to equivalence of an impulse re-

sponse of B and a set of responses of a related autonomous system Baut.

Proposition 6. The shifted impulse response

σH =
(
H(1),H(2), . . .

)

of B = B(A,B,C,D) is equal to the matrix
[
y1 · · · ym

]
of responses y1, . . . ,ym of the autonomous system Baut =

B(A,C) to initial conditions b1, . . . ,bm, where B =
[
b1 · · · bm

]
.

Proposition 6 and the fact that H(0) is equal to the feed through parameter D of the input/state/output represen-

tation B(A,B,C,D) imply that the L2-optimal model reduction problem is equivalent to an L2-optimal identification

problem for an autonomous linear time-invariant system from the set of m responses h1, . . . ,hm.

A input/state/output representation of the reduced order model is obtained from the identified autonomous sys-

tem B(Â,Ĉ), initial conditions Xini =
[
x̂ini,1 · · · x̂ini,m

]
, and H(0) as follows:

B
(
Â,Xini,Ĉ,H(0)

)
.

A benchmark model reduction problem

As a test example, consider a mechanical system consisting of N point masses connected in a chain by ideal springs

and ideal dampers. The first and the last masses are also connected to walls. Friction force, proportional to the

speed, acts on all masses. The parameters of the system are the masses m1, . . . ,mN , the spring and damper coefficients

k0,k1, . . . ,kN and d0,d1, . . . ,dN , the length δ of the springs, and the friction coefficient f , which are all nonnegative

numbers. Setting the coefficients of the most left and most right springs and dampers to zero has the effect of detaching

the chain of masses from the left and right walls.

Denoting by pi the position of the ith point mass with respect to the left wall, the system dynamics is described

by the system of differential equations

m1 p̈1 =−(k0 + k1)p1 + k1 p2 − (d0 +d1 + f )ṗ1 +d1 ṗ2 +(k0 − k1)δ ,

m2 p̈2 = k1 p1 − (k1 + k2)p2 + k2 p3 +d1 ṗ1 − (d1 +d2 + f )ṗ2 +d2 ṗ3 +(k1 − k2)δ ,

...

mi p̈i = ki−1 pi−1 − (ki−1 + ki)pi + ki pi+1 +di−1 ṗi−1 − (di−1 +di + f )ṗi +di ṗi+1 +(ki−1 − ki)δ ,

...

mN p̈N = kN−1 pN−1 − (kN−1 + kN)pN + kN−1 ṗN−1 − (dN−1 +dN + f )ṗN +(kN−1 + kNN)δ .

(SYS)

The positions y of the masses with indexes in the set Y are observed and external forces u are applied to the masses

with indexes in the set U . An input/state/output representation of the resulting model is given in Appendix C.
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Numerical results

The input data for the model reduction methods is the first T +1 samples of the impulse response H of the full order

system and the lag of the reduced order model. The value of T is selected so that, after T steps, the impulse response

has converged sufficiently close to zero. The L2-optimal model reduction problem is solved by the ident function

and the function arl2 from the RARL2 package [12].

Note 7 (Using H vs B as input data). The arl2 function accepts as an input either an input/state/output representation

of the model or impulse response coefficients of the system. The latter option is used in the simulation examples.

Note 8 (Initial approximation). The optimization based methods ident and arl2 are initialized with the suboptimal

approximation computed by Kung’s method [4], implemented in the function fc2ss of the RARL2 package.

The approximate model B̂ is evaluated by computing the finite horizon-T relative L2 approximation error

e =
‖B− B̂‖2,T

‖B‖2,T
.

Example 9. In an example with model parameters

N = 10, f = 0.1, δ = 1, U = 1, Y = 5, ℓ = 3,
[
m1 m2 . . . mN−1 mN

]
=
[
10 9 · · · 2 1

]
,

[
k0 k1 . . . kN−1 kN

]
=
[
0.5 9 · · · 1 0.1

]
,

[
d0 d1 . . . dN−1 dN

]
= 0.2

[
0 9 · · · 1 1

]
,

the obtained results are:

’method’ ’kung’ ’arl2’ ’ident’

’e’ [0.4380] [0.4263] [0.4263]

’t’ [0.1035] [2.3251] [0.0579]

The high-order and reduced order systems’ impulse and frequency responses are shown in Figure 4. The arl2 and

ident functions compute the same approximation, however, the computation time required by the ident function

is much smaller. This is due to the efficient implementation of the structured low-rank approximation solver.
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Figure 4: Comparison of the high order and reduced order models in example 9.

Example 10. In the setup of Example 9, detaching the system from the right wall (kN = dN = 0) gives qualitatively

similar results:
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Figure 5: Comparison of the high order and reduced order models in example 10.

’method’ ’kung’ ’arl2’ ’ident’

’e’ [0.8368] [0.5950] [0.5950]

’t’ [0.0804] [3.2495] [0.0789]

The impulse and frequency responses are shown in Figure 5, right.

Example 11. In the setup of Example 9, detaching the system from both right and left walls (kN = dN = k0 = d0 = 0)

introduced a free motion, i.e., an unstable mode. This gives qualitatively different result in the approximations (see

Figure 6):

’method’ ’kung’ ’arl2’ ’ident’

’e’ [0.6830] [0.2244] [0.0337]

’t’ [0.0561] [1.9533] [0.0564]

The reason for the poor approximation of arl2 is that this method imposes stability of the approximation.
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Figure 6: Comparison of the high order and reduced order models in example 10.

6 Identification from multiple trajectories of different experiments

In this section, the multiple experiments data feature of the identification method is tested. An alternative method

to ident, used for comparison, is the function pem from the System Identification Toolbox of Matlab. The data is

generated in the output-error setup and the methods are called with the corresponding options:
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• opt.exct = 1:m for ident and

• ’dist’, ’none’ for pem.

The true system is randomly generated with drss and the true data consists of random trajectories of the true

system. The input is normally distributed with zero mean and identity covariance matrix. The data used for identi-

fication is a noise corrupted version of the true trajectory, where the output noise is zero mean white Gaussian. The

simulation parameters are: number of inputs, specified by the variable m; number of outputs, specified by the variable

p; lag of the system, specified by the variable ell; number of time series, specified by the variable N; number of

samples of the time series, specified by the variable T; and a noise standard deviation, specified by the variable NL.

The identified models by the ident and pem functions are compared with respect to their relative output error

e =
N

∑
i=1

‖yi − ŷi‖2
2

‖yi‖2
2

Example 12. In an example with parameters

〈Multiple experiments example 1〉≡
ex = ’mult-traj-ex1’; ell = 3; p = 1; m = 1; T = [500 1000];

K = 5; NL = linspace(0, 0.1, K); test_mult_traj

the results obtained

’nl’ [ 0] [0.0250] [0.0500] [0.0750] [0.1000]

’e ident’ [5.5929e-32] [0.1137] [0.3360] [0.5445] [0.6760]

’e pem’ [3.4563e-32] [0.1137] [0.3360] [0.5445] [0.6760]

show that the ident and pem methods achieve the same approximation error. (Difference of less than 10−4 in the

relative approximation errors can be attributed to exiting the optimization with the default convergence tolerance of

10−5.) Although, in this example ident and pem are functionally equivalent (compute the same answer), ident is

on the average 28 times faster than pem.

Example 13. In the case of N = 50 data sets of short (T = 20) trajectories

〈Multiple experiments example 2〉≡
ex = ’mult-traj-ex2’; ell = 2; p = 1; m = 1; T = 20 * ones(1, 50);

K = 5; NL = linspace(0, 0.1, K); test_mult_traj

’nl’ [ 0] [0.0250] [0.0500] [0.0750] [0.1000]

’e ident’ [2.1716e-32] [0.0015] [0.0057] [0.0130] [0.0225]

’e pem’ [1.9819e-32] [0.0015] [0.0057] [0.0127] [0.0225]

the obtained results are again identical. In this case the ident function is on the average 59 times faster than pem.

Note that the theoretical computational complexity of the structured low-rank approximation method, used by ident,

scales linearly in N, see [22]. Empirical results suggest that the algorithms used in the implementation of the pem

function scale worse with the number of time series.

7 System identification with missing data

This section shows examples of identification problems with missing data. The data w is a noisy T samples long

random trajectory of a single-input single-output linear time-invariant system B̄ = B(R̄) with lag ℓ = 2. Input,

output, or both samples are missing at moments of time t ∈ Tm. The true model parameters are

R̄0 =
[
0.3 0.7

]
, R̄1 =

[
1 −1.4

]
, R̄2 =

[
0 1

]
. (∗)

The approximation accuracy is measured by the angle

e = ∠(R̄, R̂) = cos−1

(
R̄⊤R̂

‖R̄‖‖R̂‖

)
,
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between the true R̄ and estimated R̂ parameter vectors.

An alternative method for solving the identification problem considered in this section is proposed in [14]. This

method uses a frequency domain approach [16]. A Matlab implementation of the algorithm (called below sysid)

was kindly provided by the authors and is used below for verification of the results obtained with ident.

The simulation parameters in the experiments are the number of samples T; the set of missing values Tm, specified

by a variable Tm; and a noise standard deviation interval, specified by a vector NL. The reported results show the error e

for the compared methods and for the different noise levels specified in NL. Three experiments are done for different

distribution of the missing values: sequential, periodic, and random. Both input and output values are missing. A NaN

value in the table of results indicates that the corresponding method fails in (or does not apply to) this case.

Example 14 (Sequential missing data samples). In an example with sequential missing data,

〈Missing data example 1〉≡
ex = ’missing-data-ex1’;

T = 100; K = 5; NL = linspace(0, 0.01, K); Tm = [30:70]; test_missing_data

the ident and sysid functions achieve comparable accuracy

’nl’ [ 0] [0.0025] [0.0050] [0.0075] [0.0100]

’ident’ [2e-08] [0.0012] [0.0078] [0.0017] [0.0067]

’sysid’ [ 0] [0.0012] [0.0078] [0.0014] [0.0065]

The ident function is 9 time faster than sysid.

Example 15 (Periodic missing data samples). Similar results are obtained in the case of periodic missing data for

small noise levels

〈Missing data example 2〉≡
ex = ’missing-data-ex2’;

T = 100; K = 5; NL = linspace(0, 0.01, K); Tm = [30:3:70]; test_missing_data

’nl’ [ 0] [0.0025] [0.0050] [0.0075] [0.0100]

’ident’ [4e-07] [0.0014] [0.0058] [0.0077] [0.0068]

’sysid’ [ 0] [0.0014] [0.0073] [0.0082] [0.0077]

In this example, the ident function is 5 time faster than sysid.

Example 16 (Randomly distributed missing data samples). Finally, results for a simulation example with T = 1000

data points from which 600 are randomly missing are shown:

〈Missing data example 3〉≡
ex = ’missing-data-ex3’;

T = 1000; K = 5; NL = linspace(0, 0.01, K); Tm = sort(randperm(T, 600));

test_missing_data

’nl’ [ 0] [0.0025] [0.0050] [0.0075] [0.0100]

’ident’ [9e-05] [0.0029] [0.0087] [0.0028] [0.0123]

’sysid’ [ NaN] [ NaN] [ NaN] [ NaN] [ NaN]

Discussion of the system identification results with missing data: The problems solved by the ident and sysid

functions are equivalent. In the stochastic setting of Section 2.3, they are errors-in-variables identification problems

with missing data. Examples 14 and 15 numerically confirm that the results computed by the two methods coincide

for small noise levels and a small number of missing values. Since the problems are nonconvex, however, for high

noise levels the methods may converge to different locally optimal solutions.

In addition, there is an important algorithmic differences between ident and sysid, which explains the results

of Example 16. In ident, the initial conditions are eliminated analytically at the level of the misfit computation (see

Section 3). In sysid, the initial conditions are included in the parameter vector of the nonlinear least squares problem

(see [14]). This results in a larger optimization problem, solved by sysid than the one solved by ident. Since in

sysid a transient response is added for every missing data point, the number of initial conditions to-be-estimated

is growing with the increase of number of missing data points. In contrast, the dimension of the nonlinear least
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squares problem solved by ident is fixed. The difference in performance between ident and sysid due to the

different way of dealing with the initial conditions becomes pronounced in problems with more missing values. This

is illustrated in Example 16, where the problem is no longer solvable by sysid. Detailed statistical and numerical

analysis of the identification methods in the case of missing data will be presented elsewhere.

8 Performance on real-life data

In this section, the performance of the ident function is tested on benchmark problems from the data base for system

identification DAISY [13]. The data come from a number of applications in process industry, electrical, mechanical,

and environmental engineering. A validation criterion is chosen that measures the predictive power of the model: how

accurate the model can fit a part of the data that is not used for identification. Values for the identification methods’

parameters that correspond to this validation criterion are chosen and fixed for all data sets. Although “better” results

may be obtained by preprocessing of the data and tuning “hyper parameters” (model structure and identification

criterion) this is not done. Our tests reflect the view that the identification process should be as automatic as possible,

i.e., it should be done with as little human interaction as possible. The methods are applied on all data sets choosing

only the model class (specified by a bound on the model complexity).

The considered data sets are listed in Table 1. References and details about the nature and origin of the data is

given in [13]. The data is preprocessed by centering it. The model’s lag ℓ is chosen manually for each data set from the

complexity–accuracy trade-off curve (misfit as a function of the lag). For comparison, also the automatically selected

lags ℓ′ by the pem function are shown in the table. (In the first two data sets, automatic order section by pem is not

possible due to a small number of samples.)

# Data set name T m p ℓ ℓ′

1 Data of a simulation of the western basin of Lake Erie 57 5 2 1 —

2 Data of ethane-ethylene distillation column 90 5 3 1 —

3 Heating system 801 1 1 2 1

4 Data from an industrial dryer (Cambridge Control Ltd) 867 3 3 1 2

5 Data of a laboratory setup acting like a hair dryer 1000 1 1 5 1

6 Data of the ball-and-beam setup in SISTA 1000 1 1 2 3

7 Wing flutter data 1024 1 1 5 2

8 Data from a flexible robot arm 1024 1 1 4 6

9 Data of a glass furnace (Philips) 1247 3 6 1 4

10 Heat flow density through a two layer wall 1680 2 1 2 1

11 Simulation data of a pH neutralization process 2001 2 1 6 2

12 Data of a CD-player arm 2048 2 2 1 1

13 Data from a test setup of an industrial winding process 2500 5 2 2 1

14 Liquid-saturated steam heat exchanger 4000 1 1 2 3

15 Data from an industrial evaporator 6305 3 3 1 1

16 Continuous stirred tank reactor 7500 1 2 1 2

17 Model of a steam generator at Abbott Power Plant 9600 4 4 1 1

Table 1: Examples from DAISY. T —number of data points, m—number of inputs, p—number of outputs, ℓ—lag of

the identified model.

The data wd = (ud,yd) in all examples is split into identification and validation parts. The first 70% of the data,

denoted widt, are used for identification, and the remaining 30% of the data, denoted wval, are used for validation. A

model B̂ is identified from widt by an identification method and is validated on wval by the validation criterion defined

next. The model class is linear time-invariant systems with a bound ℓ on the lag.

The validation criterion is the “simulation fit” computed by the function compare of the System Identification

Toolbox. This choice is motivated by the fact that in this case the results obtained by the ident function can be

validated, using the pem function. Correspondingly, the ident and pem functions are applied setting options for

output error identification:
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• opt.exct = 1:m for ident and

• ’dist’, ’none’ for pem.

For a given time series wd = (ud,yd) and a model B, the approximation ŷ of y in B is defined as follows:

ŷ
(
(ud,yd),B

)
:= min

ŷ
‖yd − ŷ‖ subject to col(ud, ŷ) ∈ B.

(The optimization is carried over the initial conditions that generate ŷ from the given input ud.) With this notation, the

fit of wd by B is defined as

F(wd,B) := 100
max

(
0,1−‖yd − ŷ(wd,B)‖

)

‖yd −∑
T
t=1 yd(t)/T‖

.

The fitting criterion F(wval,B̂) is compared for the models produced by ident and pem. The results are shown

in Figure 7. In terms of accuracy, the ident and pem function show comparable performance. The differences

in the results can be attributed to the nonconvexity of the optimization problem and the usage of different initial

approximations (unstructured low-rank approximation for the ident function and a subspace identification method

for the pem function). In terms of execution time, except for example 17, the ident function is faster than pem. It

should be noted that in example 17, the accuracy achieved by ident is significantly higher on both identification and

validation data than the one achieved by pem.

9 Conclusions

The paper presented a method for system identification in the behavioral setting, with the following salient features:

1. representation free problem formulation,

2. identification from multiple experiments,

3. specification of exact variables,

4. missing values in arbitrary variables and moments of time,

5. implementation in a literature programming style.

Application of the method for L2 optimal model reduction, identification from multiple data sets of different length,

identification from data with missing values, and benchmark problems from the DAISY dataset was considered and

illustrated on numerical examples. The developed software package was compared with state-of-the-art system iden-

tification packages, with respect to accuracy and computational efficiency. Despite of its generality and flexibility, the

developed software is functionally equivalent to and computationally faster than existing alternatives.
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Figure 7: Results on all data sets by splitting of the data into first 70% for identification and remaining 30% for

validation.
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A Input/output parameters of ident and misfit

• w is the given set of time series wd — a real Matlab array of dimension T × q×N, where T is the number

of samples, q is the number of variables, and N is the number of time series. In case of multiple experiments

of different duration, w should be specified as a cell array with N cells, each one of which is a Ti × q matrix

containing the ith time series, i.e.,

w(t, :, k) =
(
wk(t)

)⊤
or w{k}(t, :) =

(
wk(t)

)⊤
.

• (m, ell) is the complexity specification (input dimension and lag).

• opt is a optional argument specifying exact variables, exact initial conditions, and options for the optimization

solver, used by the ident function. The options are passed to the functions ident and misfit as fields of

a structure.

– ’exct’ (default value []) — q-dimensional vector or N-dimensional cell array with q-dimensional

vector elements, specifying the indices of the exact variables.

– ’wini’ — specifies exact initial conditions. If wini = 0, exact zero initial conditions are specified,

i.e., col(0, ŵk) ∈ B̂, More generally, wini= wini is an ℓ samples long trajectory (specified by an ℓ×q×N

array or a N-dimensional cell array of ℓ×q matrices), defining initial conditions for the time series ŵ, i.e.,

col(wk
ini, ŵ

k) ∈ B̂.

– ’sys0’— initial approximation: an input/state/output representation of a system, given as an ss object,

with m inputs, p := q− m outputs, and order n := ℓp. Default value is computed by the slra function,

using unstructured low-rank approximation.

– Arguments allowing the user to specify different optimization algorithms (’solver’ and ’method’),

control the displayed information (’disp’), and change the convergence criteria are described in the

structured low-rank approximation user’s manual [8].

• sysh is an input/state/output representation of the identified or validated system B̂, given by an ss object.

• info is a structure, containing exit information from the structured low-rank approximation solver: info.M

is the misfit M(wd,B̂), info.time is the execution time, and info.iter is the number of iterations.

• M is the misfit M(wd,B̂).

• wh is the optimal approximating time series.

• xini is a matrix whose columns are the initial condition, under which ŵk, k = 1, . . . ,N are obtained.

B Implementation

B.1 Main functions

Figure 1 visualizes the data processing done when the ident function is called. A number of auxiliary functions,

explained and defined next, are used. The main one is the structured low-rank approximation solver slra, which

computes a locally optimal solution of (SLRA). Technically, slra is a mex-file calling a C++ solver. For our

purposes the slra function is a black box with inputs the structure parameter vector p, the structure specification S ,

upper bound for the rank r, and (optionally) an initial value of the kernel parameter Rini; and outputs the structure

parameter vector p̂ of a locally optimal approximation, and the corresponding kernel parameter R̂.

The computation done in the ident function is

1. transformation of the user defined data wd, m, ℓ, exact variables, and (optionally) initial model into input param-

eters for the slra function; and

17



2. transformation of the slra function’s solution (p̂, R̂) into state-space representation of the optimal approximate

model B̂ = B(Â, B̂,Ĉ,D̂), optimal approximation ŵ of the data wd, and corresponding initial conditions xini.

Obtaining a input/state/output representation of the identified model is possible in two different ways: 1) using the R̂

parameter and 2) using the trajectory ŵ. The first option is a realization problem (see Sections B.2) and the second one

is a deterministic identification problem [23]. Both transformations are classic problems, for which solutions exists.

The misfit M(wd,B) between the data wd and the model B is the cost function of the approximate identification

problem. Its fast computation is a key element of the optimization method used by the slra function. A convenient

way to access the misfit computation is to call the ident function with the data wd, initial approximation correspond-

ing to the model B, and with specification of zero iterations for the optimization solver. Then the misfit is returned in

the field M of the output parameter info.

B.2 R 7→ input/state/output representation

The transformation from kernel to input/state/output representation is done using the standard observer canonical

form, defined in the following proposition.

Proposition 17 ([11, Section IV.A]). Consider a kernel representation B(R) of a linear time-invariant system and let

R =:
[
Q −P

]
, with

Ri =
[
Qi −Pi

]
, where Qi ∈ R

p×m and Pi ∈ R
p×p.

Assuming that Pℓ is nonsingular, a minimal state-space representation B(A,B,C,D) of the system B(R), i.e.,

B(A,B,C,D) = B(
[
Q P

]
),

is given by

A =




0 · · · 0 −P−1
ℓ P0

Ip −P−1
ℓ P1

. . .

Ip −P−1
ℓ Pℓ−1


 , B =




P−1
ℓ (Q0 −P0P−1

ℓ Qℓ)

P−1
ℓ (Q1 −P1P−1

ℓ Qℓ)
...

P−1
ℓ (Qℓ−1 −Pℓ−1P−1

ℓ Qℓ)


 , C =

[
0 · · · 0 Ip

]
, D = P−1

ℓ Qℓ.

B.3 Estimation of the initial state

Given an input/state/output representation B(A,B,C,D) and a trajectory w = col(u,y) of that system, the correspond-

ing initial state xini is computed from the system of linear equations

y− yforced = OL(A,C)xini, (xini)

where yforced is the output of the system to input u and zero initial conditions and

OL(A,C) := col(C,CA, . . . ,CAL−1)

is the extended observability matrix.

In order to determine uniquely xini from (xini), it is sufficient to choose the parameter L equal to the lag ℓ. For

L > ℓ, existence of solution for (xini) is ca be used as a test for “exactness” of the trajectory
(
w(1), . . . ,w(L)

)
with

respect to the model B(A,B,C,D), i.e., a test for
(
w(1), . . . ,w(L)

)
∈ B(A,B,C,D).

B.4 Input/state/output representation 7→ R

The transformation from input/state/output to kernel representation is done using the following proposition

Proposition 18. Consider an input/state/output representation B(A,B,C,D) of a linear time-invariant system with

order that is a multiple of the number of outputs. We have,

B(A,B,C,D) = B(
[
Q −P

]
),
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where

P :=
(
O

⊥
ℓ+1(A,C)

)⊤
and Q := P




D 0 0 . . . 0

CB D 0
. . .

...
CAB CB D 0 0
...

. . .
. . .

. . . 0

CAℓ−2B · · · CAB CB D



. ((A,B,C,D) 7→ (P,Q))

(For a matrix M, M⊥ is a full column rank matrix of maximal dimension, such that M⊥M = 0.)

Proof. The columns of Oℓ+1(A,C) are free trajectories of the system B(A,B,C,D), so that they are annihilated by

the P parameter

POℓ+1(A,C) = 0.

Moreover, by the assumption that the order is a multiple of the number of outputs, we have that

dim
(

leftker
(
O

⊥
ℓ+1(A,C)

))
= p.

Therefore, the rows of P form a basis for the left kernel of O⊥
ℓ+1(A,C). This proves that

P :=
(
O

⊥
ℓ+1(A,C)

)⊤
.

Consider the sequence of the first ℓ+1 samples of the impulse response of B(A,B,C,D), padded with ℓ zeros:

Y :=
(

0, . . . ,0︸ ︷︷ ︸
ℓ

,D,CB,CAB, . . . ,CAℓ−1B︸ ︷︷ ︸
ℓ

)
,

and the corresponding input sequence

U :=
(

0, . . . ,0︸ ︷︷ ︸
ℓ

, Im,0,0, . . . ,0︸ ︷︷ ︸
ℓ

)
.

Since (U,Y ) is a matrix valued trajectory of the system B(
[
Q −P

]
), we have that

QHℓ+1(U) = PHℓ+1(Y ) =⇒ Q = PHℓ+1(Y )




Ip

. .
.

Ip


 . (∗)

The second equation in ((A,B,C,D) 7→ (P,Q)) follows from (∗).

C Input/state/output representation of the model reduction benchmark

Let p := col(p1, . . . , pN) and define the state vector by

x = col(p,
d

d t
p,xN+1),

where xN+L is a constant, xN+1(t) = xN+1(0), for all t. The order of the state space representation is n = 2N + 1.

Using (SYS), we obtain an input/state/output B(A,B,C,D) representation with parameters

A =




0 IN 0

A21 A22 A23

0 0 0


 ∈ R

(2N+1)×(2N+1), B =




0

EU

0


 , C =

[
E⊤

Y
0 0

]
, D = 0, x2N+1(0) = 1,
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where

A21 =




− k0+k1

m1

k2

m1
k1

m2
− k1+k2

m2

k3

m2

. . .
. . .

. . .
kN−2

mN−2
− kN−2+kN−1

mN−2

kN

mN−2
kN−1

mN
− kN−1+kN

mN




and

A22 =




− d0+d1+ f
m1

d2

m1
d1

m2
− d1+d2+ f

m2

d3

m2

. . .
. . .

. . .
dN−2

mN−2
− dN−2+dN−1+ f

mN−2

dN

mN−2
dN−1

mN
− dN−1+dN+ f

mN



, A23 =




k0−k1

m1
k1−k2

m2

...
kN−2−kN−1

mN−1
kN−1+NkN

mN




δ .

Define the unit vector ei, as the ith column of the n× n identity matrix. Let p be the number of elements of the set

Y and m be the number of elements of the set U . The matrix EU is the n× m matrix with ith column 1/mi · ei and,

similarly, EY is the n×p matrix with ith column ei.

The order of the system B(A,B,C,D) is 2N, i.e., the state space representation is nonminimal. (It has an uncon-

trollable mode xN+1 = const.)
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