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Identifiability in the Behavioral Setting
Ivan Markovsky and Florian Dörfler

Abstract—The behavioral approach to system identification
starts from a given time series without a priori separation of the
variables into inputs and outputs. The available identifiability
conditions however require persistency of excitation of an input
component of the time series which implicitly assumes that an
input/output partitioning of the variables is given. In addition,
a standard identifiability assumption is that the true data
generating system is controllable. The conditions of controllability
and persistency of excitation are sufficient but not necessary.

Motivated by the need to infer linear-time invariant models
from rank deficient Hankel matrices and to use such matrices as
data-driven predictors in signal processing and control, we derive
necessary and sufficient identifiability conditions that do not
require a priori given input/output partitioning of the variables
nor controllability of the true system. The prior knowledge
needed for identifiability is the number of inputs, lag, and order
of the true system. The results are based on a modification of
the notion of a most powerful unfalsified model for finite data
and a novel algorithm for its computation.

The results in the paper are derived assuming exact data, how-
ever, low-rank approximation allows their application in the case
of noisy data. We compare empirically low-rank approximation
of the Hankel, Page, and trajectory matrices in the errors-in-
variables setting. Although the Page and trajectory matrices are
unstructured, the parameter estimates obtained from them are
less accurate than the one obtained from the Hankel matrix.

Index Terms—Behavioral system theory, System identification,
Most powerful unfalsified model, Hankel matrix.

EDICS: SSP-IDEN, SSP-PARE, SSP-SYSM

I. INTRODUCTION

A well known result in system identification is:
(FL) If a signal w is a trajectory of a linear time-
invariant system with m inputs, order n, and lag `,
then the rank of a Hankel matrix constructed of w
with L≥ ` block rows is upper bounded by mL+n.
Equality holds under the assumptions of controlla-
bility of the system and persistency of excitation of
an input component of w of order n+L [1].

We refer to the result of [1] as the fundamental lemma. Its
importance is due to the fact that it provides identifiability
conditions: under the assumptions of controllability and per-
sistency of excitation of the input of order n+ `+1, the data
generating system can be inferred back from the data w.

Implicit in the assumptions of the fundamental lemma is
an a priori known input/output partitioning of the variables
w = (u,y) and knowledge of the system’s lag ` and order n.
Moreover, controllability is required, which is an overly re-
strictive assumption as it excludes for example the class of

I. Markovsky is with the Department ELEC, Vrije Universiteit Brussel,
1050 Brussels, Belgium (e-mail: imarkovs@vub.be).

F. Dörfler is with the Automatic Control Laboratory (IfA), ETH-Zürich,
8092 Zürich, Switzerland (e-mail: dorfler@ethz.ch).

autonomous systems. Finally, the result is originally derived
for the case of a single given time series. The fundamental
lemma is generalized separately for multiple time series [2],
the Page matrix, and uncontrollable systems [3]. The general-
izations, however, still assume a given input/output partitioning
and persistency of excitation of an input component of w.

Apart from giving identifiability conditions, the fundamental
lemma has important practical applications. The implication
of the fundamental lemma that the image of a Hankel matrix
constructed from the data coincides with the set of all finite
trajectories of the system was effectively used in subspace-type
algorithms [4]. This work led to new method for data-driven
simulation and control [5], [6], [7], [8], [9], [10] as well as
new identification methods [4], [11], [12].

An outstanding open problem for the application of the
fundamental lemma in practice is dealing with approximation
due to noisy data, disturbances, and model uncertainty. Indeed,
the result of [1] is for exact data and nontrivial modifications
are needed for its application in case of noisy data. One
approach for dealing with noise is using structured low-rank
approximation [13], [12]. This leads to statistically optimal
(maximum-likelihood solution) in the errors-in-variables set-
ting [14], however, the resulting optimization problems are
nonconvex. Subspace methods and convex relaxations based
on the nuclear norm heuristic offer suboptimal solutions
that can be used as initial approximation for the nonconvex
optimization methods. Recently, new approaches for dealing
with noise are developed in the context of data-driven control.
In [15], an approximation based on the distributionally robust
theory is proposed and in [16], [17] a solution for a robust
state feedback control based on the S-lemma is presented.

The fundamental lemma provides sufficient but not neces-
sary identifiability conditions. The original motivation for this
work is the converse of FL, which we state as a question.

(CFL) Is a signal w, for which the associated Hankel
matrix with L block rows is rank deficient, a trajec-
tory of a linear time-invariant system with lag `≤ L?
If so, how can this system be inferred from w?

The converse of the fundamental lemma is missing in the
literature despite the fact that it is implicitly used in methods
based on Hankel structured low-rank approximation [18], [12].
The CFL questions led us to:

1) revision of the notion of the most powerful unfalsified
model [19] for finite time series,

2) a novel algorithm for its computation, and
3) new identifiability results.

These are the main contributions of the paper. Although, as in
the original work [1] on the fundamental lemma as well as in
the follow up publications [4], [5], [6], [9], [2], [3], the results
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are derived assuming exact data, we relax and generalize the
assumptions, demonstrating the practical

4) applicability of the theory for the case of noisy data.
We consider the errors-in-variables setting [14] and use as ap-
proximation methods low-rank approximation of the Hankel,
Page, and trajectory matrices.

Outline

Section II defines the notation and collects basic results used
in the paper. The focus is on finite length trajectories. An
important result is formula (B|L, KER), which gives a matrix
representation of the behavior restricted to a finite interval in
terms of the parameters of a kernel representation. This allows
us to use linear algebra (instead of polynomial algebra) as the
main tool for the analysis of linear time-invariant systems.

Section III reviews the integer invariants of a linear time-
invariant system. The integer invariants are used in Lemma 4
to give an explicit formula for the dimension of the behavior
restricted to an interval of any length. This is the core technical
result of the paper on which the other results are based. In
Section III-B, using Corollary 5 of Lemma 4 we define the
notion of model complexity.

Section IV introduces the notion of most powerful unfalsi-
fied model. First, in Section IV-A we recall the definition in the
case of infinite time series: minimization of model complexity
over the set of exact models. Lemma 10 in Section IV-B shows
that in case of finite time series this definition leads to an
autonomous model irrespective of the data. In Section IV-C,
we present a modification of the most powerful unfalsified
model for finite time series. The modification leads to a
constructive procedure (Algorithm 1) for the computation of a
minimal kernel representation of the most powerful unfalsified
model in case of finite time series.

The main results of the paper are in Section V. Theorem 15
gives necessary and sufficient identifiability conditions that
do not require a priori known input/output partitioning and
controllability of the true system. The answers to the questions
in CFL are given in Section VI-A. They are based on the
modified notion of most powerful unfalsified model for finite
time series. Generically, rank deficiency of the Hankel matrix
implies existence of an exact bounded complexity linear time-
invariant model, however, in nongeneric cases this is not true.
Other applications of the theory developed in the paper, dis-
cussed in Sections VI-B–VI-D, are identifiability by filtering
spurious annihilators and using low-rank approximation of the
unstructured Page and trajectory matrices for approximation in
the presence of noise. Section VII shows simulation results of
identification with noisy data in the errors-in-variables setting.
Although the Page and trajectory matrices are unstructured,
the parameter estimates obtained from them are surprisingly
less accurate than the one obtained from the Hankel matrix.

II. PRELIMINARIES

The goals of this section are to give the necessary back-
ground for the technical results in the rest of the paper and
to set the notation. We focus on the case of finite length,
i.e., the restriction of the behavior to a finite interval. In

Section II-A, we define the Hankel matrix as obtained by
consecutive application of the shift and cut operators on the
time series. Section II-B introduces the notions of a shift-
invariant subspace and linear time-invariant system and defines
the kernel, input/output, and input/state/output representations.
Again, we focus on the finite length case. An important result
of this section is the matrix characterization (B|L, KER) of
the restricted behavior in terms of a kernel representation.

A. Hankel matrices

We use interchangeably the terms time series, sequence, and
(discrete-time) trajectory. The set of finite length q-variate, T -
samples long, real-valued time series w =

(
w(1), . . . ,w(T )

)
,

where w(t)∈Rq is denoted by (Rq)T . The set of infinite length
q-variate, real-valued time series w =

(
w(1),w(2), . . .

)
, where

w(t) ∈ Rq is denoted by (Rq)N.
Selection of a part of a time series, defined over a sub-

interval of the time interval, is called restriction. The corre-
sponding operator is called the cut. For a time series w∈ (Rq)T

or w ∈ (Rq)N and an integer L, 1≤ L≤ T , we define the cut
operator

w|L :=
(
w(1), . . . ,w(L)

)
.

Applied on a set of time series W ⊂ (Rq)T or W ⊂ (Rq)N,
the cut operator acts on all time series in the set, i.e.,

W |L := {w|L | w ∈W }.

The derivative operator plays a key role for continuous-time
dynamical systems. Its discrete-time equivalent is the unit shift
operator σ : (Rq)N 7→ (Rq)N defined by (σw)(t) := w(t +1).
Applied on a set of time series W ⊂ (Rq)N, σ acts on all
elements of W , i.e., σW := {σw | w∈W }. For a finite length
time series w ∈ (Rq)T and an integer 0≤ τ ≤ T −1,

σ
τ w :=

(
w(τ +1), . . . ,w(T )

)
,

so that σ can be applied to w ∈ (Rq)T at most T − 1 times.
The resulting time series put next to each other form the two
dimensional array of numbers shown in Table I. Question

TABLE I
CONSECUTIVE APPLICATION OF THE SHIFT OPERATOR ON A FINITE TIME

SERIES RESULTS IN A HANKEL MATRIX WITH MISSING VALUES.

w σw · · · σT−1w
w(1) w(2) · · · w(T )

w(2)
... . .

.
?

... w(T ) . .
. ...

w(T ) ? · · · ?

marks indicate unspecified elements due to the finiteness of
the time series.

Restriction of w,σw, . . . ,σT−Lw to the interval [1,L], for
some 1 ≤ L ≤ T , is equivalent to consecutive application of
the shift and cut operators. The shift-and-cut operator is used
in [20] for state construction. Here we use it for defining the
Hankel matrix of depth L

HL(w) :=
[
w|L (σw)|L · · · (σT−Lw)|L

]
∈ RqL×(T−L+1),

which is a fully defined upper-left block in Table I.
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Although HL(w) is defined for all integers L ∈ [1,T ], we
will require that HL(w) has at least as many columns as rows.
This limits the range of values for L to [1,Lmax], where

Lmax :=
⌊

T +1
q+1

⌋
(Lmax)

is the largest integer smaller than or equal to (T +1)/(q+1).
In the case of an infinite sequence w, HL(w) is the one-side

infinite Hankel matrix

HL(w) =
[
w|L (σw)|L (σ2w)|L · · ·

]
∈ RqL×∞.

We define also the two-side infinite Hankel matrix

H (w) =
[
w σw σ2w · · ·

]
∈ R∞×∞.

The Page matrix [21] PL(w) of w with L block rows is
obtained from the Hankel matrix HL(w) by column selection:

PL(w) :=
[
w|L (σLw)|L · · · (σ(T ′−1)Lw)|L

]
∈ RqL×T ′

=

w1 wL+1 · · · w(T ′−1)L+1
...

...
...

wL w2L · · · wT ′L

 ,
(PL(w))

where T ′ := bT/Lc. Like the Hankel matrix HL(w), the Page
matrix PL(w) also consists of L-samples long trajectories,
however, unlike the Hankel matrix, the Page matrix has no
repeated elements on the anti-diagonals.

The operator PL constructing the Page matrix is called
the lifting operator. It is used for identification of linear
periodically time-varying systems [22] as well as an alternative
to the Hankel matrix HL(w) for data-driven control [15],
approximate realization of linear time-invariant systems [21],
and time series analysis [23].

A generalization of the Hankel matrix for a set

W := {w1, . . . ,wN }, wi ∈ (Rq)Ti

of N time series is the mosaic-Hankel matrix [24], [25], [2]

HL(W ) :=
[
HL(w1) · · · HL(wN)

]
∈ RqL×∑

N
i=1(Ti−L).

(HL(W ))
The range of values for L is [1,Lmax], where Lmax is defined
as in (Lmax) with T := max{T1, . . . ,TN }. Blocks HL(wi) in
(HL(W )) for which Ti < L are missing.

A special case of the mosaic-Hankel matrix when all time
series wi have length T1 = · · · = TN = L, i.e., wi ∈ (Rq)L for
all i ∈ {1, . . . ,N }, is the trajectory matrix

T (W ) :=

w1
1 w2

1 · · · wN
1

...
...

...
w1

L w2
L · · · wN

L

 ∈ RqL×N . (T (W ))

The trajectory matrix is used for dictionary learning [26]. The
Page matrix PL(w) is a special trajectory matrix obtained by
taking wi = (σ (i−1)Lw)|L, for i ∈ {1, . . . ,T ′ }.

B. Shift-invariant subspaces and linear time-invariant systems

In the behavioral setting, dynamical systems are sets of
trajectories. The trajectories of a discrete-time system are time
series, so that a discrete-time system B is a subset of (Rq)N.
The system B ⊂ (Rq)N is linear if B is a subspace and time-
invariant if B is shift-invariant.

Definition 1 (Shift-invariant spaces). The set W ⊂ (Rq)N is
shift-invariant if for any w ∈ W and τ ∈ N, σ τ w ∈ W . The
set W ⊂ (Rq)T is shift-invariant if for any w ∈ W and τ ∈
{0,1, . . . ,T −1}, there is v ∈W , such that σ τ w = v|T−τ .

The set of linear time-invariant systems with q variables
is denoted by L q. A finite-dimensional linear time-invariant
system B admits a kernel representation

B = ker R(σ) := {w | R(σ)w = 0}, (KER)

where the operator R(σ) is defined by the polynomial matrix

R(z) = R0 +R1z+ · · ·+R`z`

=

R1(z)
...

Rg(z)

=

R1
0 +R1

1z+ · · ·+R1
`1

z`1

...
Rg

0 +Rg
1z+ · · ·+Rg

`g
z`g

 ∈ Rg×q[z]. (R)

(KER) is called minimal if the number of equations g is as
small as possible over all kernel representations of B. As
shown in Proposition 3, in a minimal kernel representation
g = p—the number of outputs of B—and ` := deg R is also
minimized over all kernel representations of B.

Definition 2 (Annihilator). An operator r(σ), r(z) ∈ R1×q[z],
such that r(σ)B = 0 is called an annihilator of B.

The rows R1, . . . ,Rg of R are annihilators of B = ker R(σ).
Moreover, the rows of R form a basis for all annihilators of B.

The multiplication matrix of

r = r0 + r1z+ · · ·+ r`z` ∈ R1×q[z]

with L > ` := deg r block columns is the (L− `)×qL matrix

ML(r) :=


r0 r1 · · · r`

r0 r1 · · · r`
. . .

. . .
. . .

r0 r1 · · · r`

 .
For L ≤ `, we define ML(r) to be a 0× qL empty matrix,
rankML(r) = 0, and ker ML(r) = RqL.

Consider the polynomial operator R(σ) in a kernel repre-
sentation (KER). We have the following characterization of the
restricted behavior of the system B = ker R(σ) to the interval
[1,L] in terms of (KER)

B|L = ker

ML(R1)
...

ML(Rg)

=: ker ML(R). (B|L, KER)

For a permutation matrix Π∈Rq×q and an integer 0<m< q
define via [

u
y

]
:= Π

−1w (w 7→ (u,y))
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a partitioning of the variables w(t) ∈ Rq into u(t) ∈ Rm and
y(t) ∈Rq−m. Let Πu be the projection of w on the u variable,
i.e., Πuw := u. Acting on a set, Πu projects all elements in the
set, which results in a new set. The partitioning (w 7→ (u,y))
is an input/output partitioning of B if ΠuB = (Rm)N, i.e., u
is a free variable.

Let B = ker R(σ) be a minimal kernel representation of B.
The partitioning (w 7→ (u,y)) is an input/output partitioning of
B if and only if with

[
Q −P

]
:= RΠ−1, with P∈Rp×p non-

singular [27]. The resulting input/outut representation is

Bi/o(P,Q,Π) = {Π [u
y ] | Q(σ)u = P(σ)y}. (I/O)

A finite dimensional linear time-invariant system B admits
an input/state/output representation

B = Bss(A,B,C,D,Π) := {Π [u
y ] | there is x ∈ (Rn)N,

such that σx = Ax+Bu, y =Cx+Du}, (I/S/O)

where Π ∈ Rq×q is a permutation and
[

A B
C D

]
∈ R(n+p)×(n+m).

(I/S/O) is called minimal if n := dim A is as small as possible
over all input/state/output representations of B. Associated to
B = Bss(A,B,C,D,Π), is the autonomous sub-behavior

Bss(A,C) := {y | there is x ∈ (Rn)N,

such that σx = Ax, y =Cx}.

III. INTEGER INVARIANTS AND MODEL COMPLEXITY

The concept of integer invariants is a key one in the
theory of linear time-invariant systems. The integer invariants
are used in Lemma 4 to characterize the dimension of the
restricted behavior over an interval of any length. A related
result, stated as Corollary 5, gives the dimension of the
restriction of the behavior over intervals of length larger than
the lag. Based on Corollary 5, in Section III-B we define the
model complexity as the triple: (number of inputs, lag, order).

A. Integer invariants

For a linear time-invariant system B we define the following
integers, called invariants of B:
• input cardinality m(B) := number of inputs in (I/O),
• output cardinality p(B) := number of outputs in (I/O),
• order n(B) := minimal number of states in (I/S/O),
• lag l(B) := minimal degree of R in (KER), and
• structure indices

(
`̀̀1(B), . . . , `̀̀p(B)

)
, `̀̀i(B) := deg Ri in

a minimal kernel representation (KER) of B. Without
loss of generality, we assume `̀̀1(B) ≤ ·· · ≤ `̀̀p(B) and
define `̀̀0(B) := 0, `̀̀p+1(B) := ∞ for any B.

In order to be well defined, the invariants of B should not
depend on the choice of the representation. This non-obvious
fact is proven in [27].

Proposition 3 (Wellposedness of the invariants [27]). Let
B = ker R(σ) be a minimal kernel representation and B =
Bss(A,B,C,D,Π) be a minimal input/state/output representa-
tion of a linear time-invariant system B. Then, m(B), p(B),
n(B), l(B), and

(
`̀̀1(B), . . . , `̀̀p(B)

)
are invariant of the

representations. Moreover,

• p(B) = rowdim C = rowdim R,
• m(B) = coldim B = q− rowdim R,
• l(B) = max{ `̀̀1(B), . . . , `̀̀p(B)}, and
• n(B) = `̀̀1(B)+ · · ·+ `̀̀p(B).

Note that

(`̀̀0(B), `̀̀1(B)]∪·· ·∪ (`̀̀p(B), `̀̀p+1(B))

define a partitioning of N, so that for any L ∈ N, there is
k(L) ∈ {0,1, . . . , p}, such that L ∈ (`̀̀k(L)(B), `̀̀k(L)+1(B)].

The following core technical lemma shows that B|L is a
piecewise linear function of L with kinks at the structure
indices. Initially, B|L increases at the rate of q. At each kink
point the rate of increase drops by 1. For L>`, the rate reaches
the constant m(B) = q−p(B).

Lemma 4 (Dimension of B|L). Let B be a linear time-
invariant system. Then,

dim B|L =
(
q−k(L)

)
L+ `̀̀1(B)+ · · ·+ `̀̀k(L)(B). (dim B|L)

Proof. Consider a minimal kernel representation B =
ker R(σ). From (B|L, KER), we have that

dim B|L = qL− rankML(R).

Since ML(R) is full row rank, we can find its rank from the
row dimension

rankML(R) = rowdim ML(R)

=
k(L)

∑
i=1

(L− `i) = Lk(L)−
k(L)

∑
i=1

`i. (∗)

For L < `1, k(L) = 0, ML(R) is an empty matrix, and
rankML(R) = 0. Then, in (∗), ∑

0
i=1 `i = 0.

Lemma 4 shows that after an irregular increase of the
dimension of B|L in the interval [1, `], in the final stage
L ∈ [`,∞), B|L increases linearly at a rate m(B).

Corollary 5. For L≥ l(B), dim B|L is an affine function of L
with slope determined by m(B) and offset n(B),

dim B|L = m(B)L+n(B), for all L≥ l(B). (dim B|′L)

In the special case of an autonomous system, after an
increase of the dimension of B|L in the interval [1, `], B|L
becomes constant and is equal to the order of B. The fact that
B|L = n(B), for an linear time-invariant autonomous system
and L≥ l(B) is well known from realization theory.

B. Model complexity

Linear systems are subspaces. The system’s complexity is
related to its dimension—the higher dimensional the subspace,
the more complex the corresponding system. For a linear
time-invariant system B with m(B) > 0 inputs, however,
dim B = ∞, despite the fact that B admits representations
(e.g., (KER) and (I/S/O)) with finite dimensional parameter
vectors. Therefore, we characterize the complexity of B by
the increase of the dimension of B|L as L grows. As shown in
Lemma 4, this increase is fully characterized by the structure
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indices
(
`̀̀1(B), . . . , `̀̀p(B)

)
. By Corollary 5 however, for

L > `, the increase of B|L depends only on m(B) and n(B).

Definition 6 (Model complexity). The complexity c(B) of a
linear time-invariant system B is the triplet

c(B) :=
(
m(B), l(B),n(B)

)
.

Complexities are compared by the lexicographic ordering:
a model with more inputs is more complex than a
model with fewer inputs irrespective of their lags
and orders.

The class of bounded complexity linear time-invariant sys-
tem L q,n

m,` is defined as

L q,n
m,` := {B ∈L q | c(B)≤ (m, `,n)}.

In addition to systems with order n, lag `, and m inputs, L q,n
m,`

includes all lower complexity systems—systems with fewer
than m inputs, and/or lag smaller than `, and/or order smaller
than n. When we need to specify precisely the complexity of
a system we use the notation

∂L q,n
m,` := {B ∈L q | c(B) = (m, `,n)}.

Note 7 (Missing letters in L q,n
m,` / ∂L q,n

m,` ). Missing letters n,
`, or m in the notation L q,n

m,` mean that there are no bounds
imposed on the corresponding system’s invariants—order, lag,
and input cardinality, respectively. "•" can be used as a place
holder for unrestricted quantities. For example, L q

m,` is the set
of linear time-invariant systems with at most m inputs and lag
upper bounded by `, while L q

•,` is the set of systems with an
upper bound on the lag but no bound on the number of inputs.

Note that the order n(B) of a system B ∈L q must satisfy
the implicit constraints

l(B)≤ n(B)≤ p(B)l(B).

Therefore, L q,n
m,` ⊆L q

m,`, i.e., the model class L q,n
m,` specifies a

more refined structure than L q
m,`.

Similarly, missing letters in the notation ∂L q,n
m,` imply that

the corresponding invariants are not restricted.

IV. THE MOST POWERFUL UNFALSIFIED MODEL

The "clear and rational foundation under the problem of
obtaining models from time series", developed by Jan C.
Willems in [28], culminates in the notion of the most pow-
erful unfalsified model. The definition of the most powerful
unfalsified model BMPUM(Wd) for the data Wd in the model
class L q, recalled in Section IV-A, is based on the notion of
model complexity defined in Section III-B. The complexity
(m, `,n) is minimized in the lexicographic order over the
constraint that the model is exact. In [28] infinite length data
is considered.

In the case of finite length data, in Section IV-B we
show that independent of the data Wd, BMPUM(Wd) is a
trivial autonomous system (Lemma 10). This critical issue
is overlooked in the literature. In order to avoid the trivial
solution a bound on the model complexity should be imposed.

Section IV-C presents a modification of the most powerful
unfalsified model for finite data and an algorithm for comput-
ing a minimal kernel representation for it. As a side result, we
show that if two systems have behaviors that coincide over
an interval of length L, where L is larger than the lags of the
systems, then the systems coincide.

A. Infinite length case

Definition 8 (Most powerful unfalsified model, infinite
length data). The most powerful unfalsified model B =
BMPUM,M (Wd) for the data Wd⊂ (Rq)N in the model class M
is defined by the following properties:

1) B is in the model class, i.e., B ∈M ,
2) B is unfalsified, i.e., Wd ⊆B, and
3) B is most powerful, i.e., any other model B′ for which

properties 1 and 2 hold is no more powerful than B, i.e.,

c(B)≤ c(B′). (B ⊆B′)

Definition 8 leads to the multi-objective optimization

min
Wd⊆B∈M

c(B). (OPT)

In this paper, the model classes considered are L q, L q,n
m,` ,

and ∂L q,n
m,` . The complexity can be upper bounded or fixed

by the hyper-parameters m, `, n. If the model class is the
unrestricted L q (i.e., hyper-parameters are not specified), we
use the notation BMPUM, i.e., L q is skipped. The dataset Wd
may consist of a single trajectory wd ∈ (Rq)N or of multiple
trajectories,

Wd = {w1
d, . . . ,w

N
d }, wi

d ∈ (Rq)N.

The most powerful unfalsified model in L q always exists
and is unique. Indeed,

BMPUM(Wd) = image{Wd∪σWd∪σ
2Wd∪·· ·}.

(BMPUM(Wd))
An insightful way of expressing (BMPUM(Wd)) is by the image
of the Hankel matrix constructed from the data. For a data set
consisting of a single trajectory Wd = {wd }, wd ∈ (Rq)N,

BMPUM(wd) = image H (wd).

For multiple trajectories Wd = {w1
d, . . . ,w

N
d }, BMPUM(wd) is

given by the image of the mosaic-Hankel matrix:

BMPUM(Wd) = image
[
H (w1

d) · · · H (wN
d )
]︸ ︷︷ ︸

H (Wd)

.

All subsequent results in the paper (for finite as well as infinite
data) hold true for multiple trajectories by using mosaic-
Hankel matrices in place of Hankel matrices.

Although, by definition BMPUM imposes a priori no bound
on the complexity, depending on the data Wd, the actual model
BMPUM(Wd) may have bounded complexity.

Lemma 9 (Complexity of BMPUM(Wd)). Given a set of time
series Wd ⊂ (Rq)N, let ` be the smallest natural number, such
that there are m and n satisfying the equations

dim image HL(Wd) = mL+n, for all L ∈ {`,`+1, . . .}. (∗)
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Then, BMPUM(Wd) ∈ ∂L q,n
m,` .

Proof. By definition, BMPUM(Wd) = image H (Wd). Since

BMPUM(Wd)|L = image HL(Wd),

by (∗) and (dim B|L), we have that BMPUM(Wd)∈ ∂L q,n
m,` .

Contrary to BMPUM(Wd), which always exists, the most
powerful unfalsified model BMPUM,L q,n

m,`
(Wd) in a model class

of bounded complexity L q,n
m,` may not exist.

B. Finite length case

In the finite length case without complexity specification,
Definition 8 leads to an autonomous model.

Lemma 10. For finite length data, BMPUM(Wd) is au-
tonomous, i.e., m

(
BMPUM(Wd)

)
= 0.

Proof. By the lexicographic ordering of the complexity, any
autonomous system is less complex than any system with
inputs. Therefore, for the proof it suffices to show that there
exists an exact autonomous model. Consider first a single
finite trajectory wd ∈ (Rq)T . The claim is that there is an
autonomous linear time-invariant system B that fits wd exactly.
Let B = Bss(A,C) be a minimal state space representation
of the model. Then, wd ∈B|T if and only if the system of
equations wd = Oxini, where O is the extended observability
matrix O := col(C,CA, . . . ,CAT−1), has a solution xini ∈Rn(B).
There is a solution xini, for any wd ∈ (Rq)T when O is full
row rank. This can be guaranteed by choosing the order n
sufficiently large. For example, take n = qT and

C =
[
Iq 0 · · · 0

]
, A =

0 Iq 0 0
...
. . .

. . . 0
0 ··· 0 Iq
0 0 ··· 0

 .
Then, O = IqT and the solution is wd = xini.

In case of a finite number of finite length trajectories
{w1

d, . . . ,w
N
d }, the argument above can be applied repeatedly

for each trajectory wi
d, resulting in an exact autonomous model

Bi = Bss(Ai,Ci). Define then B as

B = Bss
(

diag(A1, . . . ,AN),
[
C1 · · · CN

])
,

which is an exact autonomous model for Wd.

Lemma 10 shows that without a suitable bound on the
complexity, in the finite length case, the most powerful un-
falsified model always leads to a trivial model. This fact is
observed in [29], where as a possible solution it is proposed
to fix the number of inputs, i.e., (in our notation) the model
BMPUM,∂L q

m
(Wd) is considered. Next, we modify the definition

of the most powerful unfalsified model for the finite data case
in order to avoid the trivial model when prior knowledge about
the number of inputs, lag, or order is not given.

C. Modification and algorithm

From the results in Section IV-B it seems that an upper
bound on the complexity of the model should be a priori given
in order to avoid the trivial model in the finite time case. In
fact, prior knowledge about the complexity of the model need

not be given by the hyper parameters (m, `,n) because there
is a universal upper bound on the lag in case of finite data

Wd = {w1
d, . . . ,w

N
d }, wi

d ∈ (Rq)Ti . (Wd)

In order to see this, let T := max{T1, . . . ,TN }, define

Lmax :=
⌊

T+1
q+1

⌋
and recall Definition 2 of an annihilator. Based on the finite
data Wd, only annihilators of degree up to Lmax− 1 can be
determined from Wd. Indeed, an annihilator of degree L−1 is
computed from the left kernel of the Hankel matrix HL(Wd),
however, for L > Lmax the left kernel of HL(Wd) is trivial
due to the fact that HL(Wd) has more rows than columns.
Therefore, we redefine the notion of most powerful unfalsified
model in the finite length case by incorporating the bound
Lmax−1 on the lag in the definition of BMPUM.

Definition 11 (Most powerful unfalsified model, finite
length data). The most powerful unfalsified model B =
BMPUM,M (Wd) for the data (Wd) in the model class M is
defined by the following properties:

1) B is in the model class and has lag l(B)< Lmax, i.e.,

B ∈M ∩L q
•,Lmax−1,

2) B is unfalsified, i.e.,

wi
d ∈B|Ti , for all i ∈ {1, . . . ,N}, (Wd ⊂B)

3) B is most powerful, i.e., any other model B′ for which
properties 1 and 2 hold is no more powerful than B,
i.e., (B ⊆B′).

Next, we present an algorithm for computing BMPUM(Wd).
The algorithm constructs sequentially the annihilators of de-
grees 0,1, . . . ,Lmax−1 from the left kernels of

H1(Wd) ,
H2(Wd)

, . . . ,

HLmax(Wd)

.

As a result, the algorithm delivers a minimal kernel represen-
tation (KER) of BMPUM(Wd). By stopping prematurely when
annihilators of degree up to `max < Lmax−1 are computed, the
resulting set of annihilators define BMPUM,L q

•,`max
(Wd). This

allows us to easily include a given bound `max on the lag.
The proposed computational method is given in Algo-

rithm 1. Step 4 computes the difference ∆r between the
predicted rank Lm+∑

p
i=0 `i, based on the currently computed

annihilators, and the actual rank of the Hankel matrix HL(Wd).
If ∆r > 0, then there are potential new annihilators in the left
kernel of HL(Wd). Step 6 computes a basis Rnew for the sub-
space spanned by the potential new annihilators. Steps 7 and 8
construct the potential new annihilators R1

new(z), . . . ,R
∆r
new(z)

from Rnew. For a potential new annihilator Ri
new(z) to be

an actual annihilator and therefore be part of the kernel
representation of BMPUM(Wd), its degree must be L− 1 (or
else, it should have been detected on a previous step of the
algorithm). Therefore, if degree Ri

new(z) = L− 1, Steps 11
and 12 adapt the model including Ri

new(z) as an annihilator.
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Algorithm 1 Computation of a minimal kernel representation
of the most powerful unfalsified model BMPUM(Wd).
Input: Data (Wd).

1: Let

m := q, p := 0, R(0)(z) := [], `0 = 0.

{start with the trivial model BMPUM(Wd) = (Rq)N}
2: Let T := max{T1, . . . ,TN } and define (Lmax).
3: for L = 1 : Lmax do
4: Let

∆r := Lm+
p

∑
i=0

`i− rankHL(Wd).

{∆r = predicted rank minus actual rank}
5: if ∆r > 0 then
6: Find Rnew, such that

ker
[

ML(R(L−1))
Rnew

]
= leftker HL(Wd).

{Rnew contains potential new annihilators}
7: Let

Rnew =:
[
Rnew,0 Rnew,1 · · · Rnew,L−1

]
.

8: Let

Rnew(z) := Rnew,0 +Rnew,1z1 + · · ·+Rnew,L−1zL−1

=:

[
R1

new(z)
...

R∆r
new(z)

]
.

{potential new annihilators}
9: for i = 1 : ∆r do

10: if Ri
new,L−1 6= 0 {i.e., degree Ri

new(z) = L−1} then
11: Let

m := m−1, p := p+1, `p := L−1.

{add a new annihilator to the model}
12: Let

R(L)(z) :=
[

R(L−1)(z)
Ri

new(z)

]
.

{update the kernel representation with Ri
new(z)}

13: end if
14: end for
15: end if
16: end for
Output: Minimal kernel representation

BMPUM(Wd) = ker R(σ).

The following lemma is a simple but important consequence
of Algorithm 1. In particular, its Corollary 13 is used in the
proof of the identifiability result Theorem 15 in Section V.

Lemma 12 (The map B|`+1 7→B is well defined). The linear
time-invariant system B ∈L q,n

m,` is completely specified by its
restriction B|`+1 to the interval [1, `+1], i.e., there is a unique
extension of B|`+1 ⊂ (Rq)`+1 to B ∈L q,n

m,` .

Proof. The proof is constructive. 1) Compute a basis (Wd)
with T1 = · · · = TN = `+ 1 for B|`+1, i.e., (Wd) such that
spanWd = B|`+1 and N = dim B|`+1 = m(` + 1) + n. 2)
For (Wd), computed on step 1, Algorithm 1 produces a kernel
representation of B. This kernel representation can be used
then to reconstruct B.

Corollary 13 (B|`+1 = B′|`+1 ⇐⇒ B = B′). If two linear
time-invariant systems B,B′ ∈L q have the same behaviors
over the interval [1,L], where L≥max{ l(B), l(B′)}+1, then
they coincide.

V. IDENTIFIABILITY

Let the data (Wd) be generated by a system B̄ ∈M , i.e.,

wi
d ∈ B̄|Ti , for all i ∈ {1, . . . ,N }. (Wd ⊂ B̄)

We refer to B̄ as the true data generating system and pose
the questions:

1) Can we recover B̄ from Wd?
2) If so, how can we obtain B̄?

Question 1 is called an identifiability question. Question 2 is
an exact identification problem. Identifiability ensures well-
posedness of the exact identification problem Wd 7→ B̄.

The identification principle is the Occam’s razor—
minimization of the complexity over all exact models in a
predefined model class M , see (OPT). Using the Occam’s
razor principle with the prior information that the true model
is linear time-invariant, the identifiability question becomes
the question of guaranteeing that the most powerful unfalsified
model of Wd in L q coincides with B̄. The following theorems
gives conditions on Wd, under which BMPUM(Wd) = B̄, so
that B̄ is identifiable from Wd in L q.

Theorem 14. Let the data (Wd) be generated by a system
B̄ ∈ ∂L q,n

m,` , i.e., (Wd ⊂ B̄). Then, B̄ is identifiable from Wd,
i.e., BMPUM(Wd) = B̄, if

` < Lmax :=
⌊

T+1
q+1

⌋
and p

(
BMPUM(Wd)

)
= q−m. (ID1)

Proof. The condition ` < Lmax is necessary. Otherwise, there
is an annihilator of B̄ with lag larger than or equal to Lmax
that can not be detected from the data. Under the assumption
` < Lmax, all annihilators of B̄ are detected by Algorithm 1,
i.e., they are among the annihilators of BMPUM(Wd). However,
BMPUM(Wd) may include additional annihilators that are not
annihilators of B̄. This possibility is ruled out by the condition
p
(
BMPUM(Wd)

)
= p = q−m. Then, the annihilators of B̄ and

BMPUM(Wd) coincide and therefore B̄ = BMPUM(Wd).

In order to check the identifiability conditions (ID1) of The-
orem 14, one has to know the lag ` and the number of inputs m
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of the true system B̄. The conditions (ID1) are sufficient. The
following theorem gives a necessary and sufficient condition
that requires prior knowledge of the complexity (m, `,n) of B̄.

Theorem 15. Let the data (Wd) be generated by a system
B̄ ∈ ∂L q,n

m,` , i.e., (Wd ⊂ B̄). Then, B̄ is identifiable from Wd,
i.e., BMPUM(Wd) = B̄ if and only if

rankH`+1(Wd) = m(`+1)+n. (ID2)

Proof. Since the data is exact, BMPUM(Wd) ⊆ B̄, so that, in
particular, BMPUM(Wd)|`+1 ⊆ B̄|`+1. By the rank condition,
we have that BMPUM(Wd)|`+1 = m(`+ 1)+ n. On the other
hand, B̄|`+1 = m(`+ 1) + n. Therefore, BMPUM(Wd)|`+1 =
B̄|`+1. Then, by Corollary 13, BMPUM(Wd) = B̄.

Theorems 14 and 15 apply to uncontrollable as well as
controllable systems and do not require a priori known in-
put/output partitioning of the variables nor controllability.
The rank condition (ID2) can be viewed as a generalized
persistency of excitation condition for the data Wd.

Note 16 (Comparison with the fundamental lemma). The
fundamental lemma gives alternative identifiability conditions:

1) B̄ is controllable,
2) B̄ admits an input/output partitioning w = [u

y ],
3) ud is persistently exciting of order `+n+1, i.e.,

rankH`+n+1(ud) = m(`+n+1). (PE)

Condition 3 is similar to (ID2): it is a rank condition for a
Hankel matrix that requires knowledge of the true model’s
complexity (m, `,n). The additional assumptions 1 and 2,
however, impose a loss of generality. Although there is always
a subset of m variables that are inputs, in general, not all
subsets of m variables are inputs of B̄, so that the choice
of the input/output partition cannot be made without loss of
generality. Finally, uncontrollable systems are excluded from
consideration. In particular, the fundamental lemma does not
include autonomous systems. In contrast, in the case of an
autonomous system, Theorem 15 yields the well known (from
realization theory) identifiability condition rankH`+1(wd) = n.

A noteworthy generalization of the new identifiability re-
sults over the fundamental lemma is that they apply to multiple
time series. The corresponding generalization of the data
structure is from a Hankel matrix to a mosaic-Hankel matrix.
Using data from multiple time series has underappreciated
potential for system. For example, as illustrated in Section VII,
the following corollary has relevance for approximation in the
errors-in-variables setting.

Corollary 17. Let the data (Wd) be generated by a system B̄ ∈
∂L q,n

m,` , i.e., (Wd ⊂ B̄) and let Ti = `+1 for all i∈ {1, . . . ,N }.
Then, B̄ is identifiable from Wd if and only if

rankT (Wd) = m(`+1)+n.

(The trajectory matrix T (Wd) is defined in (T (W )).)

Note 18. A generalization of the fundamental lemma for
multiple time series, involving a mosaic-Hankel matrix, is
presented in [2]. The persistency of excitation assumption

in [2], however, does not allow for a result similar to Corol-
lary 17 involving the trajectory matrix T (Wd). An analogous
corollary holds for the Page matrix. In [30], an analog to
Corollary 17 involving the Page matrix (PL(w)) is presented
under more stringent persistency of excitation assumptions.

Finally, the following corollary stating that the image of
the Hankel matrix HL(wd) coincides with the true system’s
behavior B̄|L (i.e., it spans all L-samples long trajectories of
B̄). The result is used for data-driven simulation and control.

Corollary 19. Let the data (Wd) be generated by a system
B̄ ∈ ∂L q,n

m,` , i.e., (Wd ⊂ B̄). Then, image HL(W ) = B̄L, for
L > ` if and only if rankHL(Wd) = mL+n.

Trivial modifications of Corollary 19 allow us to use Page
and trajectory matrices in place of the mosaic-Hankel matrix.

VI. APPLICATIONS

A. An answer to the questions in CFL
In this section, we come back to the questions CFL posed

in the introduction. The signal wd is an exact trajectory of
a linear time-invariant system with lag ` ≤ L if and only
if the most powerful unfalsified model BMPUM,L q

•,L−1
(wd) is

nontrivial. Rank deficiency of HL(w) is a necessary condition
for existence of a nontrivial model, however, as shown in
the following example it is not sufficient. The issue is that
a potential annihilator obtained from the left kernel of the
Hankel matrix HL(w) may not have the required degree L−1.
Example 20. An example of wd for which the Hankel matrix
HL(wd) is rank deficient but there is no exact model with lag
` < L is wd = (0, . . . ,0,1) ∈ RT . For all L, rankHL(wd) = 1.
In particular, H2(wd) is rank deficient. However, there is no
linear time-invariant system with lag `= 1 that fits wd. Indeed
the left kernel of H2(wd) is spanned by the vector

[
1 0

]
,

which gives rise to a polynomial operator r(σ) = 1. This
operator is of degree 0 instead of 1, so that it does not define
an linear time-invariant system with lag 1. This nongeneric
situation is detected in Algorithm 1 by the condition on step 5.
For the data in the example, Algorithm 1 returns the trivial
model BMPUM(wd) =RN. Note, however, that if exactness of
the signal wd is checked by restricting to the interval [1,T−L],
the rank deficiency of HL(w) is equivalent to existence of a
nontrivial model with lag ` < L.

Algorithm 1 gives a constructive procedure for computing
the exact model for wd with lag ` < L, provided that it exists.

B. Spurious annihilators
Algorithm 1 detects the annihilators of degree up to `max :=

Lmax−1. Assume as in the identifiability problem that the data
is generated by a linear time-invariant system B̄ = ker R(σ)∈
∂L q,n

m,` . Then, the identified model B̂ :=BMPUM(Wd) contains
the annihilators R1, . . . ,Rg of B̄ of degree up to `max. De-
pending on the data Wd, however, B̂ may contain additional
annihilators of degree up to `max that are not annihilators of B̄.
We call these annihilators spurious.

Definition 21 (Spurious annihilators). Let the data (Wd) be
generated by a system B̄ ∈ ∂L q,n

m,` , i.e., (Wd ⊂ B̄), R̄ be the
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set of annihilators of B̄, and R̂ be the set of annihilators of
BMPUM(Wd). The elements of the set difference R̂ \ R̄ are
spurious annihilators of BMPUM(Wd) (with respect to B̄).

Existence of spurious annihilators prevents identifiabil-
ity. Indeed, by definition, BMPUM(Wd) = B̄ if and only if
BMPUM(Wd) has no spurious annihilators. Consequently, all
identifiability results can be understood as giving conditions
ensuring that the model B̂ does not include spurious annihi-
lators. A prototypical example of a spurious annihilator is an
annihilator for a set of input variables. In the fundamental
lemma such annihilators are avoided by the persistency of
excitation assumption (PE) for the inputs. Indeed, persistency
of excitation of ud of order L implies that there are no
annihilators of order L− 1. The fundamental lemma uses a
separation of the annihilators into spurious and non-spurious
based on degree: any annihilator of degree larger than an a
priori known threshold degree `max is spurious.

We envisage a range of other identifiability conditions that
filter the spurious annihilators based on other types of prior
knowledge about the true system B̄.

C. Why is persistency of excitation of order L+n needed?
The fundamental lemma ensures that there are no spurious

annihilators by the persistency of excitation assumption. As
stated in [1] however a surprising fact is that persistency
of excitation of order more than `+ 1, namely `+ n+ 1, is
required. Indeed, persistency of excitation of order `+ 1 is
sufficient to ensure that the inputs alone have no annihilators
of order up to `. The need of extra persistency of excitation
did not become elucidated in the follow-up publications [9],
[3], [2], giving alternative proofs and generalizations of the
fundamental lemma. From Theorem 14, it is clear that the
extra persistency of excitation is needed in order to ensure that
the outputs are also sufficiently excited, so that the full Hankel
matrix H`+1(wd) achieves its maximum rank m(`+1)+n.

The following example shows a single-input single-
output controllable system that is not identifiable from data
wd = (ud,yd) with persistently exciting input of order less
than 2n+1.
Example 22. Consider a controllable system B̄ ∈L 2,n

1,n defined
by (I/O) with deg Q = n. Define the input nulling behavior

Bu,0 := {u | Q(σ)u = 0}.

Since Bu ∈L 1,n
0,n , there are persistently exciting signals ud ∈

Bu of order n. For any such input signal ud, there is a
corresponding output yd = 0 of B̄. The resulting trajectory
(ud,0) ∈ B̄, however, does not allow identifiability of B.

Assuming an extra persistency of excitation of order 2n+1
for ud and controllability of B̄, the output yd is guaranteed to
be exited independently of the initial conditions, so that the
rank condition (ID2) holds.

D. Approximation using Page/trajectory matrix
The Page matrix PL(w) is introduced in [21] as an alter-

native to the Hankel matrix HL for system realization. Since
PL(wd) is a submatrix of HL(wd),

image PL(wd)⊆ image HL(wd).

Equality does not hold in general. Assuming that it holds,
a minimal order exact model can be obtained either from
PL(wd) or from HL(wd). The models obtained from PL(wd)
and HL(wd) are identical, however, stronger assumptions are
needed in order to use PL(wd).1 Therefore, from the point of
view of exact realization there is no advantage of using the
Page matrix.

It [21], it is suggested that the Page matrix has advantage
when an approximation is needed in case of noisy data.
Based on empirical evidence, it is reported that approximate
model realization using Kung’s method, i.e., unstructured low-
rank approximation based on truncation of the singular value
decomposition followed by Ho-Kalman realization using the
factors of the low-rank approximation gives better results when
using the Page matrix in place of the Hankel matrix. The
rational for this is that the Page matrix PL(wd) has no repeated
elements and the low-rank approximation D̂ of PL(wd),
based on truncation of the singular value decomposition, is
optimal in the sense of minimizing the Frobenius norm of the
approximation error PL(wd)− D̂. Another argument in favor
of using the Page matrix in case of noisy data is given in [15],
[23]. In [15], it is shown that the Page matrix is a strictly better
distributionally robust predictor of the behavior.

Assuming that wd is an exact trajectory of a linear time-
invariant system B̄ ∈ δL q,n

m,` , both the Page matrix PL(wd),
for L > `+ 1 and the Hankel matrix HL(wd) have shift-
invariant structure apart from the rank deficiency

rankPL(wd)≤ rankHL(wd)≤ Lm+n.

For HL(wd), the shift-invariant structure manifests itself in the
pattern of repeated elements. For PL(wd), however, the shift-
invariant structure is not evident in a pattern of the matrix
elements. The fact that low-rank approximation does not
impose shift-invariance of the approximation renders Kung’s
method using both the Page matrix with L > `+1 as well as
the Hankel matrix heuristics.

The Page matrix can be viewed alternatively as a trajectory
matrix constructed from short segments of a long trajectory.
More generally, using multiple experiments instead of a single
long experiment the appropriate data matrix is the mosaic
Hankel matrix. Using data from multiple experiments has
advantages for identification of unstable and uncontrollable
systems. For example, multiple experiments allow consistent
estimation of an autonomous system [31]. In the special case
of using data Wd consisting of L-samples long trajectories, the
mosaic-Hankel matrix HL(Wd) becomes the trajectory matrix

HL(Wd) = T (Wd) =
[
w1

d · · · wN
d

]
∈ RqL×N ,

i.e., each column of HL(Wd) is a different trajectory. Like
the Page matrix PL(wd), the trajectory matrix T (Wd) has no
repeated elements. In what follows, we treat the Page matrix
and the trajectory matrix together although they use different
data (a single long trajectory vs multiple short trajectories).

1A simple necessary conditions is that the number of columns of HL(wd)
and PL(wd) are greater than dim B̄|L = mL+ n, for L > `. This leads to,
Tmin := (m+1)L+n−1 samples, for the Hankel matrix, and T ′min :=mL2+nL
samples for the Page matrix: more data is needed for using the Page matrix.
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In the special case L = `+ 1, both P`+1(wd) and T (Wd)
loose the shift-invariance structure. This renders unstructured
low-rank approximation of P`+1(wd) and T (Wd) statistically
optimal (maximum likelihood) for model identification from
the corresponding data: multiple short trajectories obtained as
segments from wd or independent experiments Wd.

Consider two noisy data sets: 1) wd ∈ (Rq)T and 2) (Wd)
with T1 = · · ·= TN = `+1 that have the same total number of
samples, i.e., T = N(`+1). Although low-rank approximation
of T (Wd) yields a maximum likelihood estimator using the
data Wd, it is not evident that this estimator has superior per-
formance than low-rank approximation of the Hankel matrix
H`+1(wd). Indeed, avoiding the shift-invariant structure by
using multiple (`+ 1)-long trajectories results in an `-times
reduction in the number of columns, which also affects the
approximation accuracy. Empirical comparison of the three
methods—low-rank approximation using the Hankel, Page,
and trajectory matrices—in the errors-in-variance setting is
presented in the following section.

VII. SIMULATION EXAMPLES WITH NOISY DATA

In this section, we do empirical comparison of ap-
proximate system identification methods based on low-
rank approximation of the Hankel matrix, the Page ma-
trix, and the trajectory matrix. The simulation results are
made reproducible in the sense of [32] by providing
the implementation of the methods and the data gen-
erating scripts. The computational environment used is
MATLAB. The files reproducing the simulation results
are available from: http://homepages.vub.ac.be/~imarkovs/
software/identifiability-code.tar and the code is presented in
a literate programming style[33], [34] here: http://homepages.
vub.ac.be/~imarkovs/software/identifiability-code.pdf.

A. Simulation setup

We use the benchmark example of [35], which is a n =
4th order single-input single-output system B̄ defined by an
input/output representation (I/O) with Equivalently, the system
is defined by a kernel representation (KER) with a parameter

R̄(z) =
[
−Q̄0 P̄0

]︸ ︷︷ ︸
R̄0

+
[
−Q̄1 P̄1

]︸ ︷︷ ︸
R̄1

z+ · · ·+
[
−Q̄4 P̄4

]︸ ︷︷ ︸
R̄4

z4.

The normalization P̄4 = 1 is used in order to make the
parameter vector R̄ :=

[
R̄0 R̄1 R̄2 R̄3 R̄4

]
unique.

Two different data sets are generated in the errors-in-
variables setup:

• a single T -samples long trajectory wd,
• N, (`+1) = 5-samples long trajectories (Wd).

In the case of a single trajectory, wd = w̄+ w̃, where w̄ ∈ B̄|T
is a random trajectory of the system B̄ and w̃ is a zero mean
white Gaussian noise with standard deviation s that is varied
from 0 (exact data) to 0.1. In the case of multiple trajectories,
the noise parameters are identical. The total number of samples
in the data sets is the same, i.e., T = N(`+1).

B. Identification methods

The identification methods compared compute an estimate R̂
of the model parameter R̄ from the approximate left kernel of
a data matrix:
• the Hankel matrix D = H5(wd),
• the Page matrix D = P5(wd), and
• the trajectory matrix D = T (W ).

The approximation of the left kernel is obtained from the
optimal in the Frobenius norm unstructured rank-4 approxi-
mation of D, computed by truncation of the singular value
decomposition of D. The computed parameter estimate R̂ is
normalized by redefining it as R̂ := R̂/R̂10, i.e., making P̂4 = 1.

The methods based on the singular value decomposition of
the Hankel matrix is heuristic. A statistically optimal (maxi-
mum likelihood) estimator in the errors-in-variables setup is
obtained by structured low-rank approximation of the Hankel
matrix H5(wd) [13]. For comparison in the simulation exam-
ple, we include also the results of the maximum likelihood
estimator, computed by the method of [25], [18].

C. Validation criteria

As a validation criterion used is the relative parameter error:

eR̄ := ‖R̄− R̂‖/‖R̄‖, (eR̄)

averaged over N = 500 Monte-Carlo repetitions of the estima-
tion with different noise realizations. In addition, we show the
error of approximation of the data Wd by a given model B:

eWd :=

√√√√ N

∑
i=1

min
ŵi∈B|Ti

‖wi
d− ŵi‖2

2.

D. Results and discussion

Figure 1 shows the parameter error eR̄ and the error of
approximation of the data Wd averaged over N = 500 Monte-
Carlo repetitions. Low-rank approximation of the trajectory
matrix is optimal in terms of the eWd criterion. Indeed, eWd
is the criterion that this method minimizes. With respect to
the parameter error eR̄, however, low-rank approximation of
the Hankel matrix H5(wd) gives better results than low-
rank approximation of the Page matrix and the trajectory
matrix. This apparent contradiction can be explained by the
fact that coldim T (Wd) = coldim P`+1(wd) = 100, while
coldim H5(wd) = 494. Consistency of the estimators cor-
responding to the methods compared imply that the more
columns the data matrix has, the smaller the estimation er-
ror eR̄ is. Figure 2 illustrates this.

The empirical results suggest that although all methods yield
consistent estimators, the one based on low-rank approxima-
tion of the Hankel matrix is more efficeint than the ones based
on the Page and trajectory matrices. This is due to the fact
that although wd and Wd have the same number of samples,
wd is more "informative" for identification of the true system
than Wd and the Hankel matrix exploits this information more
effectively than the Page matrix.

http://homepages.vub.ac.be/~imarkovs/software/identifiability-code.tar
http://homepages.vub.ac.be/~imarkovs/software/identifiability-code.tar
http://homepages.vub.ac.be/~imarkovs/software/identifiability-code.pdf
http://homepages.vub.ac.be/~imarkovs/software/identifiability-code.pdf
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Fig. 1. Low-rank approximation of the trajectory matrix T (Wd) (dashed-
dotted line) is optimal in the data approximation criterion eWd , however, it is
suboptimal with respect to the parameter estimation error eR̄ and yields worse
results than low-rank approximation of the Hankel matrix H5(wd) (dashed
line). The statistically optimal maximum likelihood (ML) estimate (dotted
line) is computed by structured low-rank approximation of H5(wd).

100 1000
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0.015
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Fig. 2. The estimation errors of the methods converge to zero as the total
number of samples goes to infinity (consistency), however, at different rates
(efficiency). The efficiency of the low-rank approximation of the Hankel
matrix H5(wd) (dashed line) is better than the low-rank approximation of
the trajectory matrix T (Wd) (dashed-dotted line). Optimal efficiency has the
maximum likelihood (ML) estimator (dotted line), computed by structured
low-rank approximation of H5(wd).

VIII. CONCLUSIONS AND OUTLOOK

Using formula (B|L, KER), which is a finite dimensional
matrix representation of the restriction of the behavior, we
derived an explicit formula for the dimension of the behavior
restricted to an interval of any length (Lemma 4). This result
is the basis for the other results in the paper—definition of
model complexity, revision of the notion of most powerful
unfalsified model for finite data, and identifiability conditions.

We showed that the classical notion of the most powerful
unfalsified model proposed for infinite time series is inade-
quate in case of finite time series. Irrespective of the data it
results in a trivial autonomous model (Lemma 10). We pro-
posed a natural modification of the most powerful unfalsified
model for the case of finite time series (Definition 11) that
avoids the trivial model without using priori knowledge about
the model’s complexity. This led us to a constructive algorithm
(Algorithm 1) for computation of the most powerful unfalsified
model. The algorithm computes recursively a minimal kernel
representation of the model. The key computational step is
detecting rank deficiency of generalized Hankel matrices with
increasing depths constructed from the data.

Assuming that the data is generated by a linear time-
invariant system of bounded complexity, Theorem 15 gives
a necessary and sufficient condition for the most powerful
unfalsified model to coincide with the data generating system.
This condition does not require a priori known input/output
partitioning and controllability of the true system. It uses only
the prior knowledge about the complexity of the true system.

Some practical implications and directions for future work
suggested by the results in the paper are given next.

• Using low-rank Hankel matrices in system theory requires
a caveat: in nongeneric cases, the tail of the time series
may not be consistent with the model.

• In classical identifiability results such, as the fundamental
lemma, the spurious annihilators are distinguished from
the true system’s annihilators based on a degree separa-
tion. New identifiability conditions can be derived using
more general separation criteria.

• We did not delve into numerical computations issues
related to the implementation of Algorithm 1. This topic
has connections with work on numerical linear algebra
methods for Hankel structured matrices, see for example
[36], [37], [38]. In particular incorporating approximation
in Algorithm 1 is a interesting topic for further work.

• Using a trajectory matrix with `+1 block-rows leads to
an unstructured data matrix, so that in this case approxi-
mation by truncation of the singular value decomposition
yields optimal approximation. This observation allows us
to avoid the nonconvex optimization of the structured
low-rank approximation problem, however, data from
multiple short experiments is less informative than data
from one long experiment with the same total number
of samples. Empirical results show that overall low-rank
approximation of the Hankel matrix gives more accurate
model parameter estimates than low-rank approximation
of the trajectory matrix. This contradicts empirical results
reported in [15], [23] on using the trajectory matrix in
data-driven MPC control so that a further research in this
direction is needed.

• Other applications of the results in the paper that will be
explored elsewhere are interpolation of trajectories and
data-driven errors-in-variables smoothing.
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