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Abstract

The notion of the most powerful unfalsified model plays a key role in system identification. Since its intro-

duction in the mid 80’s, many methods have been developed for its numerical computation. All currently existing

methods, however, assume that the given data is a complete trajectory of the system. Motivated by the practi-

cal issues of data corruption due to failing sensors, transmission lines, or storage devices, we study the problem

of computing the most powerful unfalsified model from data with missing values. We do not make assumptions

about the nature or pattern of the missing values apart from the basic one that they are a part of a trajectory of

a linear time-invariant system. The identification problem with missing data is equivalent to a Hankel structured

low-rank matrix completion problem. The method proposed constructs rank deficient complete submatrices of the

incomplete Hankel matrix. Under specified conditions the kernels of the submatrices form a nonminimal kernel

representation of the data generating system. The final step of the algorithm is reduction of the nonminimal kernel

representation to a minimal one. Apart from its practical relevance in identification, missing data is a useful con-

cept in systems and control. Classic problems, such as simulation, filtering, and tracking control can be viewed as

missing data estimation problems for a given system. The corresponding identification problems with missing data

are “data-driven” equivalents of the classical simulation, filtering, and tracking control problems.

Keywords: most powerful unfalsified model, exact system identification, subspace methods, missing data, low-

rank matrix completion.

1 Introduction

1.1 Context and aim of the paper

The behavioral approach to systems and control was developed from "a need to put a clear and rational foundation

under the problem of obtaining models from time series" [27, page 561]. One of the key ideas that came out from the

original work [27, 28, 29] of Jan Willems is the notion of the "most powerful unfalsified model", or MPUM for short.

The MPUM is "unfalsified" in the sense that it is an exact model for the given data and "most powerful" in the sense

that it is the least complicated exact model. Thus, the MPUM is an optimal exact model for the data.

A candidate model B̂ for the data wd is unfalsified if wd is a trajectory of B̂. In the behavioral setting this fact is

conveniently written as wd ∈ B̂. (By definition the model is the set of all valid trajectories.) Restricting to the class of

linear time-invariant models and assuming that the number of the input variables is a priori fixed, the complexity of

the model can be quantified by its order or by its lag. Let Lm be the set of linear time-invariant systems with at most

m inputs. The MPUM for the data wd in the model class Lm is defined as

Bmpum(wd) := arg min
B̂∈Lm

lag(B̂)

︸ ︷︷ ︸
most powerful

subject to wd ∈ B̂︸ ︷︷ ︸
unfalsified model

. (MPUM)
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Apart from defining the notion of the MPUM, in [28], Jan Willems developed algorithms that implement the

mapping wd 7→ Bmpum(wd). These algorithms motivated the development of the subspace identification methods.

The so-called "deterministic subspace identification" problem, see [24, Chapter 2] and [18, Chapter 7], is the problem

of computing a state space representation of an exact model from data. Unlike the methods of [28], the subspace

identification methods assume a priori given upper bound of the lag or the order of the model. If this bound is over

specified, a nonminimal representation of Bmpum(wd) is computed. Subsequently, it is reduced to a minimal one.

Thus instead of optimizing over the model complexity, the subspace methods use model reduction in order to find the

MPUM.

The class of the subspace methods was generalized to approximate identification in the ARMAX [24, 25] and

errors-in-variables [3] settings, identification in closed-loop [2], identification of dissipative and lossless systems [6,

20], and other constrained identification problems. The subspace methods are practically successful and are still

developed theoretically, generalized to new problems, and improvement computationally.

In this paper, we consider the exact (deterministic) identification problem in the case of data with missing values.

Apart from the preliminary results [13] by the author, currently there are no subspace methods that address this

problem. We do not make assumptions about the nature or pattern of the missing values apart from the basic one that

they are a part of a valid trajectory of a linear time-invariant system with a given number of inputs and bounded lag.

The missing elements can be both inputs and outputs of the system under some given input/output partitioning of the

variables and they can appear in any pattern in time: periodically, randomly, or in blocks of consecutive time samples.

1.2 Literature review and contribution

Most of the currently existing literature on identification with missing data addresses special cases, such as specific

patterns of occurrence of the missing data, or uses heuristics for estimation of the missing data, such as interpolation

methods, followed by classical identification from the completed data. Three important special cases and three state-

of-the-art methods that solve the general problem are reviewed next.

Special cases

The following special identification problems with missing data were considered in the literature:

• partial realization problem,

• missing input and output values in a single block, and

• missing values in the output only.

The partial realization problem is an exact identification problem from data consisting of the first few samples

of the impulse response. This problem can be posed and solved as an extension of the given samples of the impulse

response, i.e., estimation of the missing output values, after the given ones. Kalman derived an analytical solution [7,

8] for this problem. This solution, however, does not generalize to other patterns of missing data.

Another special identification problem with missing data considered in the literature [21] is the problem when

missing are wd(t),wd(t + 1), . . . ,wd(t + lag(B)). In this case, the identification problem with missing data is equiv-

alent to identification from two independent data sets: w1
d =

(
wd(1), . . . ,wd(t − 1)

)
and w2

d =
(
wd(t + lag(B) +

1), . . . ,wd(T )
)
, where T is the number of samples of wd. This result also does not generalize to other patterns of

missing values.

The special case when the missing data is restricted to the output variables only can be handled by the classical

prediction error identification methods [22, 10]. The predictor is used to estimate the missing output values from the

inputs, the current guess of the model and the initial conditions.

Optimization-based methods

The general identification problem with missing data can be approached by choosing a representation of the model

and optimizing the complexity over the model parameters and the missing values, subject to the constraint that the

completed data is a trajectory of the system. This leads to a nonconvex optimization problem. Three classes of

methods that use this approach are:
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• modification of the classical prediction error methods,

• methods developed in the structure low-rank approximation setting [16, 14, 15], and

• convex relaxation methods based on the nuclear norm heuristic.

All these methods are designed for estimation from noisy as well as missing data.

The approach using the prediction error methods for missing data estimation in the outputs was recently gener-

alized in [26] to missing values of both inputs and outputs. Standard nonlinear local optimization methods are used.

These methods require initial values for the optimization variables (model parameters and missing values) and the

results depend on their closeness to a "good" locally optimal solution. Similar in spirit but different in implementation

details [23, 17, 12] are the methods developed in the structure low-rank approximation setting.

An approach that gained popularity lately due to its success in compressive sensing is relaxation of the problem

to a convex one by using the nuclear norm in lieu of the rank [4]. In [9], system identification with missing data

is handled by 1) completion of the missing data using the nuclear norm heuristic (this step requires solution of a

convex optimization problem), and 2) identification of a model parameter from the completed sequence using classical

subspace identification methods. In the context of identification from noisy data, the optimization problem on step

1 involves a trade-off between the model complexity and the model accuracy. This trade-off is set by a user defined

hyper-parameter. In the context of the exact identification problem considered in this paper, there is no trade-off

parameter, see Section 5.1.

Contribution and organization of the paper

Our main contribution is a subspace type method for exact identification of a linear time-invariant system from data

with missing values. Compared with the method based on the nuclear norm heuristic, the subspace method uses only

linear algebra operations such as kernel computation and solution of linear systems of equations, which makes it

computationally more efficient.

Another contribution of the paper is using the missing data estimation methods for solving systems and control

related problems, besides model identification. More specifically, we solve simulation and output tracking control

problems by Algorithms 1 and 2, presented in Section 4. These examples show that missing data estimation is a

unifying tool for systems and control related problems.

The paper is organized as follows. In Section 2 we define the notation being used. Section 3 defines formally the

problems considered:

1. verification when a sequence wd with missing data is a trajectory of a given linear time-invariant system B, and

2. methods for computing Bmpum(wd) from a sequence wd with missing values.

The solution to these problems are presented in Sections 4 and 5, respectively. The methods proposed are illustrated

on examples and their advantages and disadvantages are compared. Conclusions and directions for future work are

given in Section 6.

2 Preliminaries

Missing data values are denoted by the symbol NaN (“not a number”). The extended set of real numbers Re is the

union of the set of the real numbers R and the symbol NaN:

Re := R∪NaN.

The data for the considered problem is a q-variate sequence

wd =
(
wd(1), . . . ,wd(T )

)
, where wd(t) ∈ R

q
e.

The sequence wd is parameterized by the T q×1 vector

vec(wd) := col
(
wd(1), . . . ,wd(T )

)
.
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The subvector of a vector a with indexes in I is denoted by aI . Similarly, for a matrix A, AI is the submatrix

formed by the rows with indexes in the set I , and AI ,J is the submatrix of A with elements ai j, such that i ∈ I ,

j ∈ J . The set of integers from i to j is denoted by i: j. The set of the indexes of the missing elements of the data

vector vec(wd) is denoted by Im and the set of the indexes on the given elements by Ig.

We are interested in sequences that are trajectories of discrete-time linear time-invariant dynamical systems. A

linear time-invariant dynamical system B with q variables is a set that can be represented as the kernel of a polynomial

operator,

B = ker
(
R(σ)

)
:= {w | R(σ)w = 0}, (KER)

where

R(z) = R0 +R1z+ · · ·+Rℓz
ℓ

is a polynomial matrix with q columns and σ is the backwards shift operator

(σw)(t) := w(t +1).

The minimal natural number ℓ, for which there exists an ℓth order difference equation representation for B is an

invariant of the system, called the lag.

Assuming that the linear time-invariant system B is controllable, it admits an image representation

B = image
(
M(σ)

)
:= {w | there is v, such that w = M(σ)v}, (IM)

where

M(z) = M0 +M1z+ · · ·+Mℓz
ℓ

is a polynomial matrix with q rows.

The variables can always be partitioned element-wise into inputs u and outputs y. The number of inputs m and

the number of outputs p = q−m are representation invariant. With some loss of generality, we assume that the first m

elements of w are inputs and the remaining elements are outputs, i.e., w = [u
y ]. Then, the linear time-invariant system

B admits the classical input/state/output representation

B = Bi/s/o(A,B,C,D) :=
{

w =

[
u

y

]
| there is x, such that σx = Ax+Bu and y =Cx+Du

}
. (I/S/O)

The set of finite T -sampled long trajectories of B is denoted by BT . The statement "wd is a finite T -samples long

trajectory of the system B" is concisely written as wd ∈ BT . If wd contains missing values, the assertion wd ∈ BT

means that the missing values wd,Im
can be completed, so that the completed sequence, say ŵ, is a finite T -samples

long trajectory of B. The completion ŵIm
should exist but need not be unique.

3 Problem formulation

In this section, we define formally the problems solved in the paper. Section 3.1 poses the problem of verifying when

a given sequence with missing values is a trajectory of a given model. Solving this problem requires completion

of the missing values, which is a task of high practical as well as theoretical interest. After posing the missing

values completion problem with a given model, we define in Section 3.2 the more difficult problem of completing

a given sequence without knowledge of the data generating model, apart from the prior knowledge that it is linear

time-invariant and has bounded lag. This is the problem of exact identification from data with missing values.

3.1 Completing of a sequence with a given model

Problem 1 (Missing values estimation with a given model). Given a linear time-invariant system B ∈ Lm and a

sequence wd ∈ (Rq
e)

T with with missing values wd,Im
= NaN and given values wd,Ig

, check if wd ∈ BT , i.e., find a

complete sequence ŵ ∈ (Rq)T that agrees with the given data ŵIg
= wd,Ig

and is a trajectory of the system B, or

assert that no such sequence exists.

Well known special cases of Problem 1 are:
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• simulation—given input and initial conditions, find the corresponding output, and

• output matching control—given initial conditions and output, find an input that generates the specified output.

Initial conditions can be specified in a representation free manner by a prefix trajectory, i.e., an initial part of wd that

is at least lag(B) samples long. Following a tradition in the subspace identification literature, we refer to the prefix

trajectory as the "past" and to the remaining part of the trajectory as the "future". In the simulation problem, missing

is the future output. In the output matching control, missing is the future input.

In order to distinguish Problem 1 from the identification problem, defined next, we refer to Problem 1 as the

"estimation problem".

3.2 Exact identification from trajectory with missing values

Problem 2 (Exact system identification from trajectory with missing values). Given a sequence wd ∈ (Rq
e)

T and a

model class Lm,

minimize over B̂ ∈ Lm and ŵ ∈ (Rq)T lag(B̂) subject to ŵIg
= wd,Ig

and ŵ ∈ B̂T . (P)

Without missing values, (P) coincides with the definition (MPUM) of Bmpum(wd). With missing values, the test

ŵ ∈ B̂ requires completion of the missing values (Problem 1). If a completion exists for a given model B̂, then this

model is feasible. The aim of Problem 2 is to find the least complicated feasible model. This is a generalization of the

notion of the MPUM for data with missing values.

The method developed in the paper is not based on solving the nonconvex optimization problem (P). Instead, it

derives a nonminimal kernel representation from the data with missing values and reduces it to a minimal one. The

derivation of the nonminimal representation is done by finding completely specified submatrices of the incomplete

Hankel matrix of the data and computing their kernels.

We refer to Problem 2 as the "identification problem".

Note 3 (Multiple trajectories). Problems 1 and 2 can be extended straightforwardly to data consisting of multiple

trajectories with missing data.

4 Missing values completion with a given model

After defining the estimation and identification problems, we proceed to describe methods for their solution. In this

section, we consider the estimation problem—missing values completion with a given model. Two algorithms are

proposed: Subsection 4.1 presents an algorithm using an image representation of the model, and Subsection 4.1

presents an algorithm using an input/state/output representation. Both algorithms complete the sequence or prove that

the sequence can not be completed by solving or establishing inconsistency of a system of linear equations. Finally,

subsection 4.3 shows how the algorithms solve as special cases the simulation and output tracking control problems.

4.1 Using image representation

First, we give a solution of Problem 1 in terms of an image representation of the system. Computationally, the solution

is checking solvability of a linear system of equations with a low-triangular banded block-Toeplitz coefficients matrix

TT (M) :=




M0

M1

. . .
...

. . . M0

Mℓ M1

. . .
...

Mℓ




.
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Proposition 4. Let B be a controllable linear time-invariant system with an image representation B= image
(
M(σ)

)
.

The sequence wd ∈ (Rq
e)T with missing values wd,Im

= NaN and given values wd,Ig
is a trajectory of B if and only if

the system of linear equations

wd,Ig
= TIg

(M)v (v)

has a solution v̂, in which case a completion of the missing values is given by

ŵIm
= TIm

(M)v̂. (ŵ)

Proof. Since BT = image
(
TT (M)

)
, ŵ is a trajectory of B. Moreover, by (v), ŵ interpolates the given data wd,Ig

.

Therefore, ŵ solves Problem 1.

The solution method presented in Proposition 4 is summarized in Algorithm 1.

Algorithm 1 Missing values completion with a model specified by an image representation.

Input: Polynomial matrix M(z) defining an image representation B = image
(
M(σ)

)
of the system and a sequence

wd ∈ (Rq
e)

T .

1: if (v) has solution then

2: wd ∈ BT , with a certificate (ŵ).

3: else

4: wd 6∈ BT , with a certificate wd,Ig
/∈ BIg

.

5: end if

4.2 Using input/state/output representation

In the general case of a possibly uncontrollable system B, we solve Problem 1 by using an input/state/output rep-

resentation B(A,B,C,D) of B. The solution is again a solvability test of a system of linear equations, where the

coefficients matrix

PT :=

[
0 I

OT (A,C) TT (H)

]

is block structured with blocks the extended observability matrix

OT :=




C

CA
...

CAT−1




and a low-triangular block-Toeplitz matrix TT (H), constructed from the Markov parameters

H0 := D and Ht :=CAt−1B, for t ≥ 1.

Proposition 5. Let B be a controllable linear time-invariant system with an input/state/otuput representation B =
B(A,B,C,D). The sequence wd ∈ (Rq

e)T with missing values wd,Im
= NaN and given values wd,Ig

is a trajectory of

B if and only if the system of linear equations

wd,Ig
= PIg

(M)v′ (v′)

has a solution v̂′, in which case a completion of the missing values is given by

ŵIm
= PIm

v̂′. (ŵ′)

Proof. For the finite T -samples long trajectory w of B, we have

w =

[
u

y

]
=

[
0 I

OT (A,C) TT (H)

]

︸ ︷︷ ︸
PT

[
xini

u

]

︸ ︷︷ ︸
v′

= PT v′.

Therefore, BT = image(PT ) and ŵ′ is a trajectory of B. Since, by (v′), ŵ′ interpolates the given data wd,Ig
, ŵ is a

solution of Problem 1.
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The solution method presented in Proposition 5 is summarized in Algorithm 2.

Algorithm 2 Missing values completion with a model specified by an input/state/output representation.

Input: Matrices A,B,C,D defining an input/state/output representation B = B(A,B,C,D) of the system and a se-

quence wd ∈ (Rq
e)

T .

1: if (v′) has solution then

2: wd ∈ BT , with a certificate (ŵ′).

3: else

4: wd 6∈ BT , with a certificate wd,Ig
/∈ BIg

.

5: end if

Note 6 (Computational cost). Solving (v) and (v′) by Gaussian elimination (LU factorization) without exploiting the

structure of the matrices TT (M) and PT requires O(T 2) operations.

Note 7 (Approximate solution). If wd 6∈ BT , (v) and (v′) have no solution. Computing an approximate solution, using

the least-squares criterion, leads to a "smoothed sequence" ŵ, which simultaneously approximates the given data and

completes the missing values.

Note 8 (Online filtering with missing data). Finding a recursive online algorithm for solving (v) and (v′) approximately

in the least-squares sense would be a generalization of the classical Kalman filter for missing data estimation.

4.3 Examples

As stated in the introduction and in Section 5, special cases of missing data estimation with a given model are the

classical simulation and output tracking control problems. In this section, we apply Algorithm 2 on these problems

and give an interpretation of the steps of the algorithm.

Simulation as missing data estimation

The classical simulation problem is defined as follows.

Problem 9 (Simulation). Given a system B, a "past" trajectory wp (specifying the initial condition), and a "future"

input uf, find the corresponding future output yf, i.e., find yf, such that the trajectory wd = wp ∧ (uf,yf) obtained by

concatenation of the past trajectory wp and the future trajectory wf = (uf,yf) is a valid trajectory of B.

In the model based simulation problem, the given data is a trajectory wd of the system B, with missing value yf.

Therefore, in the case of a linear time-invariant system B, we can use Algorithm 2 to solve the problem.

With missing value yf, equation (v′) simplifies to the following formula for estimation of the initial state xini from

the past trajectory wp and the model parameters

Oℓ(A,C)xini = yp −Tℓ(H)up. (xini)

By the assumption that wp specifies the initial condition and by assuming, in addition, that the state space representa-

tion B(A,B,C,D) is minimal, the system of equations (xini) has a unique solution.

Then the data completion equation (ŵ′) reduces to the formula for the calculation of the output from the given

input uf and the initial condition xini obtained from (v′)

yf = Oℓ+1:T (A,C)xini +Tℓ+1:T (H)

[
up

uf

]
.

Therefore, in the case of missing data yf (Problem 9), Algorithm 2 reduces to the classical method for simulation of a

state space model:

1. estimate the initial condition, and

2. simulate the output from the estimated initial condition and the given input.
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Tracking control as missing data estimation

Consider now the output tracking control problem defined as follows.

Problem 10 (Tracking control). Given a system B, a "past" trajectory wp (specifying the initial condition), and a

"future" output yf, find a future input uf, such that wd = wp ∧ (uf,yf) is a trajectory of B, or assert that such an input

does not exist.

Viewed as a missing data problem, in Problem 10 we are given a trajectory wd of the system B, with missing

value uf. As in the previous example, we solve the problem by Algorithms 2 and relate equations (v′) and (ŵ′) to steps

in the classical solution methods.

With missing value uf, equation (v′) decouples into two independent equations:

1. initial state estimate (xini), and

2. output feasibility condition

yf − (Oℓ+1:T (A,C)xini +Tℓ+1:T,1:ℓ(H)up) = Tℓ+1:T,ℓ+1:T (H)uf. (uf)

While (xini) by assumption has a solution, equation (uf) may not have a solution, depending on the given system,

initial condition and desired output trajectory. If (uf) is solvable, the control signal uf is given by (v′).

In the context of the output tracking control, it is relevant to relax the exact tracking condition to an approximate

one, e.g., optimal tracking in the ℓ2-norm sense. The ℓ2-optimal tracking control is computed by solving (uf) approxi-

mately in the least squares sense. In this case, it is well known that the Riccati recursion is an efficient way to solve the

problem. Finding similar efficient recursive solution for the general Problem 1 and in particular for the computations

in Algorithm 2 is an open problem.

5 Exact system identification from trajectory with missing values

In this section, two solution approaches are presented for Problem 2—exact system identification from trajectory with

missing values. The first one is based on the nuclear norm heuristic and requires convex optimization. The second

one is based on ideas from system theory and subspace identification and uses only linear algebra operations, such as

computation of a null space of a matrix and reduction of a nonminimal representation to a minimal one.

5.1 Hankel structured matrix completion using the nuclear norm heuristic

Link to rank deficient Hankel matrices

Both the nuclear norm minimization method and the subspace method are based on a connection between trajectories

w of linear time-invariant systems with bounded complexity and rank deficient Hankel matrices

HL(w) :=




w(1) w(2) · · · w(T −L+1)
w(2) w(3) · · · w(T −L+2)
w(3) w(4) · · · w(T −L+3)
...

...
...

w(L) w(L+1) · · · w(T )



.

Lemma 11 ([14]). Let p and ℓ be, respectively, the number of outputs and the lag of a linear time-invariant system

B. Then, for L ≥ ℓ+1,

w ∈ B ⇐⇒ rank
(
HL(w)

)
≤ mL+pℓ. (∗)

Using (∗), we rewrite Problem 2 as the following Hankel structured low-rank matrix completion problem:

minimize over ŵ rank
(
HL(ŵ)

)
subject to ŵIg

= wd,Ig
. (HMC)

8



Due to the rank constraint, (HMC) is a nonconvex problem. A convex relaxation approach [4, 9] is to replace the rank

by the nuclear norm ‖ · ‖∗ (sum of the singular values):

minimize over ŵ ∈ (Rq)T
∥∥HL(ŵ)

∥∥
∗

subject to ŵIg
= wd,Ig

. (NN)

Problem (NN) is a semidefinite programming problem

minimize over ŵ, U , and V trace(U)+ trace(V )

subject to

[
U HL(ŵ)

⊤

HL(ŵ) V

]
� 0 and ŵIg

= wd,Ig

and can be solved globally and efficiently by existing methods [1]. Using general purpose semidefinite programming

solvers, however, the computational cost is cubic in the length T of the sequence. Efficient solvers that exploit the

Hankel structure as well as efficient first order optimization methods are currently being developed, see, e.g., [11].

Example: completing the sequence of the Fibonacci numbers

Consider the sequence of the first 8 Fibonacci numbers with missing 3rd and 6th element:

wd = (1,1,NaN,3,5,NaN,13,21) . (wd)

The complete sequence w̄ is a trajectory of an autonomous linear time-invariant system with lag ℓ= 2

B̄ = ker
(
R̄(σ)

)
, where R̄(z) = 1+ z− z2.

Therefore, the Hankel matrix HL(w̄) has rank at most 2. The nuclear norm minimization problem (NN) for the

example is

minimize over ŵ(3) and ŵ(6)

∥∥∥∥∥∥∥∥




1 1 ŵ(3) 3 5

1 ŵ(3) 3 5 ŵ(6)
ŵ(3) 3 5 ŵ(6) 13

3 5 ŵ(6) 13 21




∥∥∥∥∥∥∥∥
∗

.

We solve it with CVX [5]:

cvx_begin sdp;

variables wh3 wh6;

minimize(norm_nuc([ 1 1 wh3 3 5 ;

1 wh3 3 5 wh6 ;

wh3 3 5 wh6 13 ;

3 5 wh6 13 21 ]));

cvx_end

The default solver SDPT3 obtains in 10 iterations the solution ŵ(3) = 2 and ŵ(6) = 8.

Example: lightly damped mechanical system

As a realistic engineering example, consider the lightly damped mechanical system with poles

z1,2 = 0.8889± i0.4402, z3,4 = 0.4500± i0.8801, z5,6 = 0.6368± i0.7673.

The identification data wd is a T = 200 samples long trajectory, of which 86 samples are missing in a periodic pattern,

see Figure 1. Using SDPT3 to solve the nuclear norm minimization problem (NN) for this data takes 96 seconds on a

laptop with 2.60GHz Intel i7 processor and 8G RAM. The solution is correct up to the default convergence tolerance

of the optimization method.
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Figure 1: The data wd for the identification of the lightly damped mechanical system. The red crosses denote the

location of the missing samples.

5.2 Subspace method for identification with missing data

The method presented in this section is related to the class of the subspace identification methods [24]. The procedure

is based on linear algebra operations and does not require nonlinear optimization. First, we illustrate the method on

examples and then we present the general algorithm.

Example: autonomous system

Consider again the example of completing the sequence of the Fibonacci numbers (wd). We select the the following

complete submatrices

H1 =




1 3

1 5

3 13


 and H2 =




1 5

3 13

5 21




of the incomplete Hankel matrix

H4(wd) =




1 1 NaN 3 5

1 NaN 3 5 NaN

NaN 3 5 NaN 13

3 5 NaN 13 21


 .

Since rank
(
H4(w̄)

)
= 2, H1 and H2 have nontrivial left null spaces. We have,

[
1 2 −1

]
H1 = 0 and

[
1 −2 1

]
H2 = 0.

With the convention 0×NaN= 0, we extend the vectors in the left null spaces of H1 and H2 to vectors in the left null

space of H4(wd) by adding zeros at the location of the missing values

[
1 2 0 −1

1 0 −2 1

]

︸ ︷︷ ︸
R̃

H4(wd) = 0. (∗∗)

This shows that, the polynomial matrix

R̃(z) =

[
1

1

]
z0 +

[
2

0

]
z1 +

[
0

−2

]
z2 +

[
−1

1

]
z3

10



obtained from (∗∗) defines a kernel representation of Bmpum(wd). Indeed the greatest common divisor of the first and

second elements of R(z) is a minimal kernel representation of the data generating system B̄:

R̂(z) := GCD(1+2z− z3,1−2z2 + z3) = 1+ z− z2 = R̄(z).

After the model is identified, the completion of wd is an estimation problem that can be solved by Algorithms 1 or 2.

Example: open system

Consider the sequence with missing values

wd =

([
1

0

]
,

[
NaN

1

]
,

[
2

1

]
,

[
NaN

3

]
,

[
3

2

]
,

[
NaN

5

]
,

[
4

10

]
,

[
NaN

14

]
,

[
5

9

])

that is generated by a linear time invariant system

B̄ = {w |
[
1 1

]
︸ ︷︷ ︸

R̄0

w(t)+
[
0 −1

]
︸ ︷︷ ︸

R̄1

w(t +1) = 0}

with m= 1 input and lag ℓ= 1. The unknown complete sequence is

w̄ =

([
1

0

]
,

[
0

1

]
,

[
2

1

]
,

[
−1

3

]
,

[
3

2

]
,

[
5

5

]
,

[
4

10

]
,

[
−5

14

]
,

[
5

9

])
∈ B̄T

Our task is to find B̄ from the data wd.

First, we revise the classical approach of finding B̄ from a complete trajectory w̄. The parameter vector

R̄ =
[
R̄0 R̄1

]
=

[
1 1 0 −1

]

of a kernel representation ker
(
R̄(σ)

)
satisfies the equation

R̄H2(w̄) = 0.

Provided that the left null space of H2(w̄) is one dimensional (persistency of excitation assumption [30], satisfied by

w̄), the kernel parameter R̄ can be found up to a scaling factor from w̄ by computing a basis for the left null space of

H2(w̄). The Hankel matrix H2(wd) of the given data

H2(wd) =




1 NaN 2 NaN 3 NaN 4 NaN

0 1 1 3 2 5 10 14

NaN 2 NaN 3 NaN 4 NaN 5

1 1 3 2 5 10 14 9


 ,

however, has unspecified entries in every column, so that its left kernel can not be computed. Therefore, the classical

method is not applicable.

The idea behind the method for exact identification with missing data is to consider the extended Hankel matrix

H3(wd) =




1 NaN 2 NaN 3 NaN 4

0 1 1 3 2 5 10

NaN 2 NaN 3 NaN 4 NaN

1 1 3 2 5 10 14

2 NaN 3 NaN 4 NaN 5

1 3 2 5 10 14 9




and select the two submatrices of H3(wd)

H̃1 =




1 2 3 4

0 1 2 10

NaN NaN NaN NaN

1 3 5 14

2 3 4 5

1 2 10 9




and H̃2 =




NaN NaN NaN

1 3 5

2 3 4

1 2 10

NaN NaN NaN

3 5 14



,
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that have missing values in the same rows. The matrices H1 and H2, obtained from H̃1 and H̃2, respectively, by

removing the rows of missing values have nontrivial left null spaces

[
−1 −1 1 0 0

]
︸ ︷︷ ︸

R̃1




1 2 3 4

0 1 2 10

1 3 5 14

2 3 4 5

1 2 10 9



= 0 and

[
0 −1 −1 1

]
︸ ︷︷ ︸

R̃2




1 3 5

2 3 4

1 2 10

3 5 14


= 0.

Inserting zeros in the R1 and R2 at the location of the missing values, we obtain vectors R̃1 and R̃2 in the left null

spaces of H̃1 and H̃2

[
−1 −1 0 1 0 0

]
︸ ︷︷ ︸

R̃1

H̃1 = 0 and
[
0 0 −1 −1 0 1

]
︸ ︷︷ ︸

R̃2

H̃2 = 0.

By construction
[

R̃1

R̃2

]
H3(w̄) = 0, so that, the polynomial matrix

R̃(z) =

[
R̃1(z)

R̃2(z)

]
=

[ [
−1 −1

]
z0 +

[
0 1

]
z1 +

[
0 0

]
z2

[
0 0

]
z0 +

[
−1 −1

]
z1 +

[
0 1

]
z2

]

is a (nonminimal) null space representation of B̂. In the example, R̃2(z) = zR̃1(z), so that a minimal null space

representation is

R̂(z) =
[
1 1

]
+
[
0 −1

]
z = R̄(z).

In general the reduction R̃(z) 7→ R̂(z) of the identified nonminimal representation R̃(z) to a minimal one R̂(z) requires

computation, see [19]. Once the model is identified, filling in the missing data can be done by Algorithms 1 and 2.

The computed complete sequence ŵ coincides with the true complete sequence w̄.

The subspace algorithm

The generalization of the procedure used in the examples is summarized in Algorithm 3.

Algorithm 3 Subspace algorithm for linear time-varying system identification with missing data.

Input: A sequence wd ∈ (Rq
e)

T and natural numbers m.

1: Select real valued submatrices

H i ∈R
mi×ni , with mi ≥ ni −1,

of the Hankel matrix HT (wext), where wext = (wd,NaN, . . . ,NaN︸ ︷︷ ︸
T

).

2: Compute bases Ri for the left null spaces of H i, i.e., full row rank matrices Ri ∈R
gi×mi of maximum row dimension

gi, such that RiH i = 0.

3: Extend Ri ∈ R
gi×mi to R̃i ∈ R

gi×Tq by inserting zero columns at the location of the rows removed from HT (wext)
in the selection of H i.

4: Compute a minimal kernel representation of R̂ of R̃1, . . . , R̃K , where K be the number of complete submatrices.

5: Convert R̂(z) to an input/state/otuput representation and apply Algorithm 2 to compute the complete sequence ŵ.

Output: R̂(z) and ŵ.

Algorithm 3 is implemented in Matlab at the code is available from:

http://homepages.vub.ac.be/~imarkovs/software/mpum-md.tar

Solving the identification problem with the lightly damped mechanical system (second example in Section 5.1) from

the data in Figure 1, the exact system is recovered up to numerical precision errors, in 0.27 seconds, using the same

laptop as in the other simulation example. This result demonstrates the lower computation cost of Algorithm 3 in

comparison with the nuclear norm minimization method.
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6 Conclusions and discussion

In this paper we have generalized the notion of the most powerful unfalsified model in the model class of linear time-

invariant systems to time series with missing values. Another interpretation of the topic of the paper is interpolation

and extrapolation of a vector sequence by a linear time-invariant system of smallest complexity.

First, we formulated and solved the simpler problem of completing a given time series with missing values when

the data generating system is given. This problem is reminiscent to the state estimation problem in the classical

linear system theory, and is called "estimation problem". The solution methods check solvability of a system of

linear equations with structured coefficients matrix. Finding efficient O(T ), where T is the length of the time series,

numerical methods is a topic of future research. This problem is also related to the generalization of the classical

Kalman filter to estimation of missing data (see Note 8).

The methods proposed in the paper for the solution of the identification problem are based on an equivalent

formulation of the problem as matrix completion with the constraint that the complete matrix is Hankel structured and

low-rank. The first method is based on the nuclear norm heuristic and involves solution of a semidefinite programming

problem. The second method is a subspace-type method and requires only standard linear algebra computations.

The two equivalent formulations of

1. exact linear time-invariant system identification from data with missing values,

2. low-rank Hankel matrix completion,

allow us to establish links between methods for matrix completion (nuclear norm heuristic) and methods in system

theory and system identification (realization and subspace algorithms). On the one hand, the system theoretic view

brings deeper understanding of the structure of rank deficient Hankel matrices as well as engineering applications of

the more general matrix completion problem and solution methods. On the other hand, the matrix completion view of

the estimation and system identification problems with missing values brings a new framework of posing and solving

system theoretic problems. This framework makes possible to use new methods (most notably the convex relaxation

methods based on the nuclear norm heuristic) for solving these problems.
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