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Nonlinearly structured low-rank approximation

Ivan Markovsky and Konstantin Usevich

Abstract

Polynomially structured low-rank approximation problems occur in

• algebraic curve fitting, e.g., conic section fitting,

• subspace clustering (generalized principal component analysis), and

• nonlinear and parameter-varying system identification.

The maximum likelihood estimation principle applied to these nonlinear models

leads to nonconvex optimization problems and yields inconsistent estimators in

the errors-in-variables (measurement errors) setting. We propose a computationally

cheap and statistically consistent estimator based on a bias correction procedure,

called adjusted least-squares estimation. The method is successfully used for conic

section fitting and was recently generalized to algebraic curve fitting. The contribu-

tion of this book’s chapter is the application of the polynomially structured low-rank

approximation problem and, in particular, the adjusted least-squares method to sub-

space clustering, nonlinear and parameter-varying system identification. The clas-

sical in system identification input-output notion of a dynamical model is replaced

by the behavioral definition of a model as a set, represented by implicit nonlinear

difference equations.
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1.1 Introduction

Data modeling, missing data estimation, and dimensionality reduction problems are

closely related to the problem of approximating a given matrix by another matrix

of reduced rank. Apart from the approximation criterion and the desired rank, the

low-rank approximation problem involves additional constraints that represent prior

knowledge about the to-be-estimated "true" data generating system. Common ex-

amples are non-negativity and structure (e.g., Hankel, Toeplitz, and Sylvester) of

the approximation matrix.

The reduced rank of the approximation matrix corresponds to the reduction of

dimensionality as well as to the reduction of the model complexity in data model-

ing. In linear time-invariant system identification, for example, the rank of the data

matrix is related to the order of the model. By the Eckart-Young-Mirsky theorem

[Eckart and Young(1936)], unstructured optimal in spectral and Frobenius norm re-

duced rank approximation is obtained from the truncated singular value decompo-

sition of the matrix. With a few exceptions, this result has not been generalized to

structured approximation problems and weighted approximation criteria. For struc-

tured weighted approximation problems convex relaxations as well as local opti-

mization methods have been developed, see [Markovsky(2012)].

In this book’s chapter, we consider the low-rank approximation problem with the

constraint that the rank deficient matrix is polynomially structured. Formally, the

polynomially structured low-rank approximation problem is defined as follows.

Given a data matrix D, an approximation criterion ‖D− D̂‖, a polynomial

mapping Φ : D̂ 7→ D̂ext, and an upper bound on the rank r,

minimize over D̂ ‖D− D̂‖

subject to rank
(
Φ(D̂)

)
≤ r.

(PSLRA)

The polynomially structured low-rank approximation problem (PSLRA) has ap-

plications in

• curve fitting [Markovsky(2012), Chapter 6],

• manifold learning [Ma and Fu(2011), Zhang and Zha(2005)],

• subspace clustering [Vidal et al.(2005)], and

• nonlinear system identification [Vandersteen(1997), Vajk and Hetthéssy(2003)].

The simplest special case of nonlinear curve fitting is conic section fitting, which

leads to low-rank approximation with quadratic structure constraint, see Sections

1.2.1 and 1.3. More involved is the application to subspace clustering, which is low-

rank approximation with Veronese structure of the approximation and an additional

(factorizability) condition on the kernel.

As an optimization problem, (PSLRA) is nonconvex. Contrary to affine struc-

tured low-rank approximation problems (see [Markovsky(2008), Markovsky(2014)]

for an overview of recent results on this problem), (PSLRA) does not allow the
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approximation matrix D̂ to be eliminated analytically via the variable projections

method [Golub and Pereyra(2003)]. Therefore, the number of optimization vari-

ables is of the order of magnitude of the number of data points. This makes the

use of local optimization methods infeasible for medium to large scale polynomi-

ally structured low-rank approximation problems.

Closely related to low-rank approximation is the principal component analy-

sis method [Jolliffe(2002), Jackson(2003)]. Principal component analysis gives a

stochastic interpretation of the deterministic low-rank approximation. Vice verse,

low-rank approximation is a deterministic optimization problem resulting from the

principal component analysis method. Nonlinearly structured low-rank approxima-

tion problems are considered in the principal component analysis context under the

names of principal curves [Hastie and Stuetzle(1989)] and kernel principal com-

ponent analysis [Schölkopf et al.(1999)], [Bishop(2006), Chapter 12]. The kernel

principal component analysis method is unstructured low-rank approximation of the

matrix Φ(D), i.e., it does not impose the polynomial structure of the approximating

matrix.

We adopt the errors-in-variables stochastic model, i.e., the given data is obtained

from true data that satisfies a true data generating model plus additive noise, see

[Cheng and Schneeweiss(1998)]. The noise is assumed to be zero mean, indepen-

dent, Gaussian identically distributed with a covariance matrix that is known up to

a scaling factor. The solution of the polynomially structured low-rank approxima-

tion problem (PSLRA) is a maximum likelihood estimator in the errors-in-variable

setting. It is well known, see, e.g., [Kukush and Zwanzig(1996)], that the maximum

likelihood estimator is inconsistent in nonlinear errors-invariables estimation prob-

lems.

The method proposed in this book’s chapter is a generalization of the adjusted

least squares method of [Kukush et al.(2004), Markovsky et al.(2004)] developed

for ellipsoid fitting. The adjustment procedure is motivated from the idea of cor-

recting for the bias of the unstructured low-rank approximation method. The bias

correction is explicitly given in terms of the noise variance and a procedure for

the estimation of the noise variance is proposed. A generalization of the adjusted

least squares method to algebraic curve fitting is described in [Markovsky(2012),

Chapter 6]. In this contribution, we show that polynomially structured low-rank ap-

proximation problems appear naturally in subspace clustering and nonlinear system

identification, so that the adjusted least squares algorithm is a promising estimation

method also in these application areas.

1.1.1 Outline

In Section 1.2, we start with an overview of the application of polynomially struc-

tured low-rank approximation to conic section fitting, subspace clustering, and non-

linear system identification. The data is assumed exact and in the original problem

is reduced to rank deficiency of a polynomially structured matrix depending on the
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data. The left kernel of the rank deficient matrix contains the parameters of the exact

fitting model. Section 1.3 deals with the conic section fitting problem in the pres-

ence of noise. Two popular methods in computer vision—algebraic and geometric

conic section fitting—are related to structured low-rank approximation. Section 1.4

generalizes the results of Section 1.3 to higher order curves. The algebraic and ge-

ometric fitting methods, however, are inconsistent in the errors-in-variables setting.

This motivates the development of the bias correction procedure in Section 1.5. Sec-

tion 1.7 outlines current and future work.

1.2 Applications

1.2.1 Conic section fitting

A conic section is a set of points defined by a second order algebraic equation:

B(S,u,v) = {d ∈ R
2 | d⊤Sd+u⊤d + v = 0}.

The symmetric matrix S, the vector u, and the scalar v are parameters of the conic

section. At least one of them is assumed to be nonzero, so that the trivial case

B(0,0,0) = R
2 is excluded. The class of conic sections include lines, union of

two lines, hyperbolas, parabolas, and ellipses.

The conic section fitting problem is informally defined as follows:

Given a set of points

D = {d1, . . . ,dN } ⊂ R
2,

find a conic section B̂=B(S,u,v), such that data D is "well" approximated

by the fitting curve B̂.

The approximation criterion is specified by a distance measure dist(D ,B̂)—the

smaller the distance, the better the fit. Two different distance measures—the so

called algebraic and geometric distance measures—and the corresponding approxi-

mation problems—algebraic and geometric conic section fitting problems—are con-

sidered in Section 1.3.

Next, we consider the exact conic section fitting problem:

Find B̂ = B(S,u,v), such that data D is fitted exactly by the curve B̂, i.e.,

D ⊂ B̂. (ExactFit)

By definition, the points di = (ai,bi), i = 1, . . . ,N lie on a (nontrivial) conic section

if there is a symmetric matrix S, a vector u, and a scalar v, at least one of them
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nonzero, such that

d⊤
i Sdi +u⊤di + v = 0, for i = 1, . . . ,N.

Equivalently, with S = [ s11 s12
s12 s22

] and u = [u1
u2
], the exact fitting condition (ExactFit) is

that there is a nonzero vector

θ :=
[
s11 s12 u1 s22 u2 v

]
,

such that

[
s11 s12 u1 s22 u2 v

]
︸ ︷︷ ︸

θ




a2
1 · · · a2

N

2a1b1 · · · 2aNbN

a1 · · · aN

b2
1 · · · b2

N

b1 · · · bN

1 · · · 1




︸ ︷︷ ︸
Φ(D)

= 0. (∗)

Since the matrix Φ(D) constructed from the data has six rows and a left kernel of

dimension at least one (θ 6= 0), the exact fitting condition (ExactFit) is furthermore

equivalent to the condition that Φ(D) is rank deficient:

rank(Φ(D))≤ 5.

If an exact conic section fit of data D is nonunique (see Figure 1.1 for an exam-

ple with four data points), the left kernel of Φ(D) has dimension higher than one.

Moreover, all exact conic section fits of data D are parameterized by the vectors in

the left kernel of Φ(D).

−2 −1 0 1 2
−2

−1

0

1

2

a

b

Fig. 1.1 Example of a nonunique solution: there are infinitely many conic sections fitting the four

data points (circles) exactly. Two of them are shown in the figure.
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Summary:

• The exact conic section fitting problem is a rank test problem for a matrix Φ(D)
that depends quadratically on the data D .

• All exact models

B(θ) := B

([
s11 s12

s12 s22

]
,

[
u1

u2

]
,v

)
(B(θ))

are obtained from the left kernel of Φ(D) via (∗).

• The approximate conic section fitting problem is a quadratically structured low-

rank approximation problem. The full rank matrix Φ(D) is approximated by a

matrix Φ(D̂) with the same structure and rank at most five. The conic section ap-

proximation of the data is the exact model for D̂ . This problem is further treated

in Section 1.3.

1.2.2 Subspace clustering

In the conic section fitting problem, the set of candidate models (the model class) is

the set of conic sections. In this section, the data

D = {d1, . . . ,dN } ⊂ R
q,

is fitted by a model B ⊂ R
q that is the union of n-subspaces B1, . . . ,Bn with

bounded dimensions

dim(B1)≤ r1, . . . ,dim(Bn)≤ rn.

The union of subspaces model admits a representation

B(R1, . . . ,Rn) = {d ∈ R
q | (R1d) · · ·(Rnd) = 0},

where R1 ∈R
(q−r1)×q, . . . , Rn ∈R

(q−rn)×q are parameters of the model. At least one

of the Ri’s is assumed to be nonzero in order to avoid the trivial model B(0, . . . ,0) =
R

q. Note that in the case q = 2 and n = 2, with r1 = r2 = 1, the union of two lines

model B(R1,R2) is a special conic section B(S,u,v), with

S = (R1)⊤R2 +(R2)⊤R1, u = 0, and v = 0.

Fitting a set of points D in R
q by a union of lines model B(R1, . . . ,Rn) is a type

of a clustering problem. Indeed, the data D is clustered into the r subspaces:

Bi = B(Ri) = {d ∈ R
q | Rid = 0} for i = 1, . . . ,n.

The problem of fitting the model B(R1, . . . ,Rn) to the data D is the subspace cluster-

ing of [Vidal et al.(2005)], also called the generalized principal component analysis

problem.
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Next, we consider a simplified version of the subspace clustering problem when

q = 2 and r = 2 and the data is fitted exactly.

Given a data set D , find B̂ =B(R1,R2), such that D is fitted exactly by B̂,

i.e., (ExactFit) holds.

The data points di ∈ R
2, i = 1, . . . ,N lie on a union of two lines if and only if there

are vectors R1 and R2, at least one of which is nonzero, such that

(R1di)(R
2di) = 0, for i = 1, . . . ,N.

This condition can be written in a matrix form as

[
R1

1R2
1 R1

1R2
2 +R1

2R2
1 R1

2R2
2

]
︸ ︷︷ ︸

θ




a2
1 · · · a2

N

a1b1 · · · aNbN

b2
1 · · · b2

N




︸ ︷︷ ︸
Φ(D)

= 0. (∗∗)

We showed that if (ExactFit) holds,

rank(Φ(D))≤ 2.

In subspace clustering, the rank constraint is only a necessary condition for exact

data fitting. In addition, a basis vector θ of the left kernel of Φ(D) should have the

structure
θ1 = 1

θ2 = α +β
θ3 = αβ ,

(∗∗∗)

for some α and β . This is a polynomial factorization condition that makes possible

to map the estimated parameter θ to the the model parameters R1,R2 by solving the

equations:

θ1 = R1
1R2

1

θ2 = R1
1R2

2 +R1
2R2

1

θ3 = R1
2R2

2.

(FACTORIZE)

Applied on the data in the example of Figure 1.1, the kernel computation of the

matrix Φ(D), followed by the solution of (FACTORIZE) yields the exact fit shown

in Figure 1.2. Note that the obtained model B(R1,R2) is a particular conic section

fitting exactly the data.

Summary:

• A necessary condition for exact subspace clustering is rank deficiency of a matrix

Φ(D) that depends quadratically on the data D with an additional factorizability

condition.

• All exact union of subspaces models are obtained from the left kernel of Φ(D)
by solving a system of nonlinear equations. In the special case of union of two
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Fig. 1.2 Example of subspace clustering: fitting the data (circles) by a union of two lines.

lines, the matrix Φ(D) is given in (∗∗), the factorization condition is (∗∗∗), and

the system of equations in (FACTORIZE).

• The approximate subspace clustering problem is a quadratically structured low-

rank approximation problem with a factorizability constraint. Currently, there are

no specialized methods developed for solving this problem. The approach used

instead is to solve the structured low-rank approximation problem without the

factorizability constraint and then solve the factorization problem approximately.

1.2.3 Nonlinear system identification

The conic section and subspace clustering applications, reviewed in the previous

sections, have the following main features:

1. multivariable data: the relation among several observed variables d1, . . . ,dq is

modeled, and

2. nonlinear model: the modeled relation among the observed variables is nonlinear.

In nonlinear system identification, an additional feature is:

3. dynamical model: the data w is a time series1

w =
(
w(1), . . . ,w(T )

)
, where w(t) ∈ R

q

and the modeled relation involves the variables at different moments of time.

Let σ be the backwards shift operator

1 We use the notation d for data in problems involving static models and w for data in problems

involving dynamical models.
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(σw)(t) = w(t +1).

A finite-dimensional nonlinear multivariable dynamical model B is defined by a

relation R among the variables of w and a finite number ℓ of their shifts σw, . . . ,σ ℓw,

i.e.,

B(R) = {w | R(w,σw, . . . ,σ ℓw) = 0}. (KER)

We refer to (KER) as a kernel representation of the system B = B(R).
Following the behavioral setting in systems and control (see, e.g., the three-part

paper [Willems(1987)] and the book [Polderman and Willems(1998)]), in (KER)

we make no separation of the variables into inputs and outputs. This contrasts with

the classical definition [Sontag(1990)] of a (nonlinear) dynamical system is a signal

processor, accepting one variable u as an input and producing another variable as an

output y:

u
system
−−−→ y.

In discrete-time, the relation between u and y can be defined by a difference equation

y = f (u,σu, . . . ,σ ℓu,σy, . . . ,σ ℓy). (I/O DE)

The corresponding dynamical system is

B = {w | (I/O DE) holds}. (I/O)

(I/O DE) is refered to as an input-output representation of the system.

An input-output representation (I/O) of a dynamical system B is a special case

of a kernel representation (KER) (take w = (u,y) and R = y− f (u,y)). However, not

every kernel representation can be representation in an input-output form, i.e., the

kernel representation is more general. The importance of this fact is evident already

in the static case: conic section and union of two linear models, have no input-output

representations a = f (b) or b = f (a) because they are not which are not graphs of

functions.

Example 1 (First order SISO model with quadratic nonlinearity). A first order,

quadratic, single input single output dynamical system has q = 2 variables, e.g.,

w1 = u is an input and w2 = y is an output. Such a system has a kernel representa-

tion

R(u,y,σu,σy) = ∑
i+ j+k+l=2

Ri jklu
iy j(σu)k(σy)l. (SISO KER)

Defining

• the vector of model parameters

θ =
[

R2000 R1100 R1010 R1001 R0200 R0110 R0101 R0020 R0011 R0002

]

and

• the corresponding vector of monomials in u, y, σu and σy
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φ(w) = col
(
u2,uy,uσu,uσy,y2,yσu,yσy,(σu)2,σuσy,(σy)2

)
,

we see that the kernel representation is linear in the parameters

R(u,y,σu,σy) = θ⊤φ(w).

Example 2 (Wiener-Hammerstein model). A Wiener-Hammerstein model is a block-

oriented nonlinear system, where a static nonlinearity fu is followed by a linear

time-invariant system and another static nonlinearity fy

u
fu
−→ u′

LTI
−−→ y′

fy
−→ y.

Assuming that the function fy is invertible, the Wiener-Hammerstein model can be

rewritten as a kernel representation

R(σ) f (w) = 0,

where

f =
[

fu

f−1
y

]
and R(σ) f (w) = R0 f (w)+R1 f (σw)+ · · ·+Rℓ f (σ ℓw) = 0.

Therefore, the Wiener-Hammerstein model becomes a special case of the nonlinear

kernel representation (KER).

Consider, first, the exact nonlinear system identification problem:

Given a time-series w, find a model B̂ = B(R) that fits the data exactly,

i.e., w ∈ B̂.

For a finite time series a nonunique exact fitting model always exists. Of interest

is, however, to find the "simplest" in some sense exact model. This leads us to the

notion of complexity of a nonlinear system B̂ = B(R).

Definition 1 (Polynomial dynamical model’s complexity). The complexity of the

model B̂ = B(R) is the integer triple (m, ℓ,d) ∈ N
3

1. m — number of inputs (independent variables),

2. ℓ — maximum lag, and

3. d — degree of R.

Example 1 defines a class of models with complexity bounded by (1,1,2). Then,

the exact system identification problem becomes a parameter estimation problem:

θ
[
φ
(
x(1)

)
· · · φ

(
x(T − ℓ)

)]
︸ ︷︷ ︸

Φ(w)

= 0,

where

x(t) := col
(
w(t),w(t +1), . . . ,w(t + ℓ)

)
.
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Summary:

• Exact nonlinear system identification is equivalent to a rank test for a matrix

Φ(w) that depends polynomially on the data w. The matrix Φ(w) has in addi-

tion Hankel structure due to the repeated elements w(t + 1), . . . ,w(t + ℓ) in the

columns φ(x(t)) and φ(x(t +1)) of Φ(w).
• The model parameters are obtained from the left kernel of Φ(D).
• The approximate nonlinear system identification problem is a polynomially

structured low-rank approximation problem.

1.3 Conic section fitting in the errors-in-variables setting

The conic section fitting problem is extensively studied in the computer vi-

sion literature, see, e.g., [Bookstein(1979), Gander et al.(1994), Kanatani(1994),

Fitzgibbon et al.(1999)]. The so called "algebraic fitting" methods minimize the

equation error and lead to unstructured low-rank approximation. The "geometric

fitting" methods minimize the sum of squares of the orthogonal distances from the

data points to the fitting curve. These methods lead to polynomially structured low-

rank approximation.

As estimators in the errors-in-variables setting, both the algebraic and geometric

fitting methods are biased. In [Kukush et al.(2004), Markovsky et al.(2004)], a bias

correction procedure called adjusted least squares method is proposed. The adjusted

least squares method is cheap to compute and gives good fits in the geometric sense.

Apart from estimation error, in computer vision, important are the properties of

invariance to translation, rotation, and scaling, and the boundedness of the fitting

curve (e.g., ellipsoidal fit rather than hyperbolic or parabolic). The invariance prop-

erties of the adjusted least squares method are studied in [Shklyar et al.(2007)].

1.3.1 Problem formulation

Given a set of points

D = {d1, . . . ,dN } ⊂ R
2,

the conic section fitting problem aims to find a conic section B, which fits the

data D as well as possible in the sense of minimizing a specified distance measure

dist(D ,B) between the data D and the model B. A natural choice of the fitting

criterion is the sum of squares

dist(D ,B) =

√
N

∑
i=1

dist2(di,B)

of the orthogonal distances
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dist(di,B) :=
√

min
d̂i∈B

‖di − d̂i‖2 (dist)

from the data points di to the curve B.

Let P2 be the set of conic sections. (dist) leads to the following problem

minimize over B̂ ∈ P2 dist
(
D ,B̂

)
. (CSF)

Using the representation B(θ) of a conic section (see (B(θ)) on page 6), we obtain

the following parameter optimization problem

minimize over θ 6= 0 dist
(
D ,B(θ)

)
.

1.3.2 Equivalence to low-rank approximation

In Section 1.2.1, we showed that exact conic section fitting is equivalent to rank

deficiency of a structured matrix Φ(D).

Proposition 1. The data D is fitted exactly by a conic section B ∈ P2 if and only

if the "extended data matrix"

Φ(D) :=
[
φ(d1) · · · φ(dN)

]
, where φ([a

b ]) =:
[
a2 ab a b2 b 1

]⊤

has rank less than or equal to 5, i.e.,

D ⊂ B ∈ P2 ⇐⇒ rank
(
Φ(D)

)
≤ 5.

Let

D :=
[
d1 · · · dN

]
and D̂ :=

[
d̂1 · · · d̂N

]

be the data matrix and the approximating matrices, respectively. By Proposition 1,

the conic section fitting problem is a quadratically structured low-rank approxima-

tion problem

minimize over D̂ ∈ R
2×N ‖D− D̂‖F subject to rank

(
Φ(D̂)

)
≤ 5.

Problem (CSF) defines what is called in the computer vision literature a geomet-

ric fitting methods. Geometric fitting is intuitively appealing, however, it leads to

hard nonconvex optimization problems. In addition, geometric fitting methods are

biased in the errors-in-variables setup, see Section 1.5.

1.3.3 Algebraic fitting method

The algebraic method for conic section fitting is defined by the optimization problem
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minimize over θ 6= 0

√
N

∑
i=1

‖d⊤
i S(θ)di +u⊤(θ)di + v(θ)‖2

2.

It has no simple geometrical interpretation, however, it has the advantage of being

readily commutable, as shown in the next proposition.

Proposition 2. Algebraic fitting is equivalent to unstructured low-rank approxima-

tion of the extended data matrix Φ(D).

The algebraic fitting method coincides with the kernel principal component anal-

ysis with the feature map φ . Both the geometric and the algebraic fitting methods,

however, yield inconsistent estimators. In addition, the geometric fitting method is

a hard nonconvex optimization problem. These deficiencies of the methods are cor-

rected by the bias correction procedure, described in Section 1.5, which is computa-

tionally cheap and yields a consistent estimator under certain specified assumptions.

1.4 From conic sections to algebraic curves

In Section 1.3, we have seen that conic section fitting in the geometric sense leads

to a quadratically structured low-rank approximation problem and in the algebraic

sense to unstructured low-rank approximation. This section generalizes these re-

sults to algebraic algebraic hypersurfaces (one row) or algebraic varieties (several

rows) [Cox et al.(2004)]. The corresponding computational problem is polynomi-

ally structured low-rank approximation.

Consider a static nonlinear model

B = ker(R) := {d ∈ R
q | R(d) = 0}

defined by a multivariable polynomial

RΘ (d) =
qext

∑
k=1

Θkφk(d) =Θφ(d), (RΘ )

where Θ is an p×qext parameter matrix and

φ(d) :=
[
φ1(d) · · · φqext(d)

]⊤

is a vector of a priori chosen monomials φk(d).
2

In what follows, we assume that the monomials are ordered in φ(d) in decreasing

degree according to the lexicographic ordering (with alphabet the indexes of d). For

example, a full parameterization of a second order curve (d = 2) in two variables

(q = 2) is

2 The choice of the monomials is related to the model class selection in system identification.
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qext = 6 and φ⊤(x,y) = [ φ1 φ2 φ3 φ4 φ5 φ6 ]
= [ x2 xy x y2 y 1 ]

In general,

φk(d) = d
dk1
1· · · · d

dkq
q· , for k = 1, . . . ,qext, (φk)

where

• d1·, . . . ,dq· ∈ R are the elements of d ∈ R
q, and

• dki ∈ Z+, is the degree of the ith element of d in the kth monomial φk.

The matrix formed from the degrees dki

D=
[
dki

]
∈ R

qext×q

uniquely defines the vector of monomials φ . The matrix of degrees D depends only

on the number of variables q and the degree d. For example, with q = 2 and d= 2,

D⊤ =

[
2 1 1 0 0 0

0 1 0 2 1 0

]
.

Minimality of the kernel representation is equivalent to the condition that the pa-

rameter Θ is full row rank. The nonuniqueness of RΘ corresponds to a nonunique-

ness of Θ . The parameters Θ and QΘ , where Q is a nonsingular matrix, define the

same model. Therefore, without loss of generality, we can assume that the represen-

tation is minimal and normalize it, so that

ΘΘ⊤ = Ip.

Note that a p×qext full row rank matrix Θ defines via (RΘ ) a polynomial matrix

RΘ , which in turn defines a kernel representation of an algebraic hyperserface BΘ

of dimension m and degree d (the model). This model class is denoted by P
q
m,d.

Thus, Θ defines a function

BΘ : Rp×qext → P
q
m,d.

Vice verse, a model B in P
q
m,d corresponds to a (nonunique) p×qext full row rank

matrix Θ , such that B = BΘ . For a given q, there are mappings

d→ qext and m→ p,

defined by

qext :=

(
q+d

d

)
=

(q+d)!

d!q!

and p= q−m, respectively.

Proposition 3 (Algebraic fit ⇐⇒ unstructured low-rank approximation). The

algebraic fitting problem for the model class of affine varieties with bounded com-

plexity P
q
m,d
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minimize over Θ ∈ R
p×qext

√√√√
N

∑
j=1

∥∥RΘ (d j)
∥∥2

F

subject to ΘΘ⊤ = Ip

(AM′
Θ )

is equivalent to the unstructured low-rank approximation problem

minimize over Φ̂ ∈ R
q×p ‖Φd(D)− Φ̂‖F

subject to rank(Φ̂)≤ qext −p.
(LRA)

Proposition 4 (Geometric fit ⇐⇒ polynomial structured low rank approx).

The geometric fitting problem for the model class of affine varieties with bounded

complexity P
q
m,d

minimize over B ∈ P
q
m,d dist(D ,B) (AM)

is equivalent to the polynomially structured low-rank approximation problem

minimize over D̂ ∈ R
q×N ‖D− D̂‖F

subject to rank
(
Φd(D̂)

)
≤ qext −p.

(PSLRA)

Corollary 1. The algebraic fitting problem (AM′
Θ ) is a relaxation of the geometric

fitting problem (AM), obtained by removing the structure constraint of the approxi-

mating matrix Φd(D̂).

1.5 Bias correction method for (PSLRA)

Assume that the data D is generated according to the errors-in-variables model

d j = d j + d̃ j, where d j ∈ B ∈ P
q
m,q

and vec
([

d̃1 · · · d̃N

])
∼ N(0,σ 2IqN). (EIV)

Here B is the to-be-estimated true model. The estimate B̂ obtained by the algebraic

fitting method (AM′
Θ ) is biased, i.e., E(B̂) 6= B. In this section, we derive a bias

correction procedure. The correction depends on the noise variance σ 2, however, the

noise variance can be estimated from the data D together with the model parameter

Θ̂ . The resulting bias corrected estimate B̂c is invariant to rigid transformations.

Simulation results show that B̂c has smaller orthogonal distance to the data than

alternative direct methods.

Define the matrices

Ψ := Φd(D)Φ⊤
d (D) and Ψ := Φd(D)Φ⊤

d (D)
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The algebraic fitting method computes the rows of parameter estimate Θ̂ as eigen-

vectors related to the p smallest eigenvalues of Ψ . We construct a “corrected” matrix

Ψc, such that

E(Ψc) =Ψ . (∗)

This property ensures that the corrected estimate Θ̂c, obtained from the eigenvectors

related to the p smallest eigenvalues of Ψc, is a consistent estimator in the errors-in-

variables setting (EIV), i.e., the estimator θ̂ converges to the true parameter value θ
as the sample size N goes to infinity.

The key tool to achieve bias correction is the sequence of the Hermite polynomi-

als, defined by the recursion

h0(x)= 1, h1(x)= x, and hk(x)= xhk−1(x)−(k−2)hk−2(x), for k= 2,3, . . .

(See Table 1.1 for explicit expressions of h2, . . . , h10.) The Hermite polynomials

Table 1.1 Explicit expressions of the Hermite polynomials h2, . . . , h10.

h2(x) = x2 −1

h3(x) = x3 −3x

h4(x) = x4 −6x2 +3

h5(x) = x5 −10x3 +15x

h6(x) = x6 −15x4 +45x2 −15

h7(x) = x7 −21x5 +105x3 −105x

h8(x) = x8 −28x6 +210x4 −420x2 +105

h9(x) = x9 −36x7 +378x5 −1260x3 +945x

h10(x) = x10 −45x8 +630x6 −3150x4 +4725x2 −945

have the deconvolution property

E
(
hk(x+ x̃)

)
= xk, where x̃ ∼ N(0,1). (∗∗)

We have,

Ψ =
N

∑
ℓ=1

φ(dℓ)φ
⊤(dℓ) =

N

∑
ℓ=1

[
φi(dℓ)φ j(dℓ)

]q,q

i, j=1
,

and, from (φk), the (i, j)th element of Ψ is

ψi j =
N

∑
ℓ=1

d
di1+d j1

1ℓ · · · d
diq+d jq

qℓ =
N

∑
ℓ=1

q

∏
k=1

(dkℓ+ d̃kℓ)
diq+d jq .

By the data generating assumption (EIV), d̃kℓ are independent, zero mean, normally

distributed. Then, using the deconvolution property (∗∗) of the Hermite polynomi-

als, we have that

ψc,i j :=
N

∑
ℓ=1

q

∏
k=1

hdik+d jk
(dkℓ) (ψi j)
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has the unbiasedness property (∗), i.e.,

E(ψc,i j) =
N

∑
ℓ=1

q

∏
k=1

d
dik+d jk

kℓ =: ψ i j.

The elements ψc,i j of the corrected matrix are even polynomials of σ of degree

less than or equal to

dψ =

⌈
qd+1

2

⌉
.

The following code constructs a 1× (dψ + 1) vector of the coefficients of ψc,i j as

a polynomial of σ 2. Note that the product of Hermite polynomials in (ψi j) is a

convolution of their coefficients [Markovsky(2012), Chapter 6].

The corrected matrix

Ψc(σ
2) =Ψ c +σ 2Ψc,1 + · · ·+σ 2dψΨc,dψ

is then obtained by computing its elements in the lower triangular part

The rows of the parameter Θ̂ form a basis for the p-dimensional (approximate)

null space of Ψc(σ
2)

ΘΨc(σ
2) = 0.

Computing simultaneously σ and Θ is a polynomial eigenvalue problem: the noise

variance estimate is the minimum eigenvalue and the parameter estimate is a corre-

sponding eigenvector.

1.6 Numerical example

In this section we illustrate the application of the adjusted least squares method on

a problem in nonlinear system identification. Consider the first order single-input

single-output system with second order nonlinearity

B = {w = (u,y) | σy = (u+1)y}.

A kernel representation of the system is

R(w) =
[
1 1 −1

]
︸ ︷︷ ︸

θ




w1(t)w2(t)
w2(t)

w2(t +1)




︸ ︷︷ ︸
φ
(

w(t),w(t+1)
)

= 0.

The data is generated in the errors-in-variables setting w = w+ w̃, where w is a

trajectory of the system B with input

18 I. Markovsky and K. Usevich

u =
1

2
(−1,−1,−1,−1,−1,1,1,1,1,1)

and initial conditions u(0) = 0 and y(0) = 1. The disturbance w̃ is a zero mean white

Gaussian noise. Its standard deviation is varied from zero to a value that corresponds

to the signal-to-noise ratio 13.

In order to estimate the model parameters, we approximate the extended data

matrix

Φ
(
w1

)
=
[
φ
(
w(1),w(2)

)
φ
(
w(2),w(3)

)
· · · φ

(
w(9),w(10)

)]
∈ R

3×9

by a matrix of rank 2. One method for doing this is unstructured low-rank approx-

imation, computed via the singular value decomposition. Another method is the

adjusted least squares method described in the paper. We compare the methods by

Monte Carlo simulation with K = 500 noise realizations. The performance criterion

is the average parameter error

e =
1

K

K

∑
k=1

‖θ − θ̂ k‖2, (e)

where θ̂ k is the estimate in the kth noise realization. The results are shown in Figure

1.3.

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

σ

e

Fig. 1.3 Comparison of unstructured low-rank approximation (solid line) and bias corrected ap-

proximation algorithm (dashed line) in terms of the parameter error (e).
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1.7 Summary

The polynomially structured low-rank approximation problem (PSLRA) studied in

this book’s chapter is a generic problem with many applications in machine lean-

ing, computer vision, and system identification. It is, however, a hard nonconvex

optimization problem, for which there are currently only heuristic methods. A com-

monly used heuristic is to ignore the polynomial matrix structure and solve a corre-

sponding unstructured low-rank approximation problem. This approach is known in

the machine learning literature as the kernel principal component analysis method.

We improved the kernel principal component analysis from a statistical estima-

tion point of view by developing a bias correction procedure, called adjusted least

squares. The main assumption is that the data is generated in the errors-in-variables

setting and the noise is zero mean independent and Gaussian distributed. The noise

variance is estimated from the data. The main computational step is solving a poly-

nomial eigenvalue problem.

Applications of the polynomially structured low-rank approximation problem in

conic section fitting, subspace clustering, and nonlinear system identification were

presented. Other applications in computer vision are:

• camera calibration,

• motion analysis,

• image matching,

• pose estimation, and

• surface reconstruction.

More generally the adjusted least squares method can be applied on any application

where kernel principal component analysis is used, replacing the biased kernel prin-

cipal component analysis by the consistent adjusted least squares algorithm. This

can lead to a significant performance improvement in large sample size and low

signal-to-noise cases.

There are links between the adjusted least squares method, the method of

[Chojnacki et al.(2004), Matei and Meer(2006)] for heteroscedastic errors-in-variables

estimators, and the nonlinear dimension reduction method of [Zhang and Zha(2005)].

Current and future work aims at a formal consistency proof of the adjusted least

squares estimator for general polynomially structured low-rank models with er-

rors in the variables, invariance of the estimator to translation, rotation and scal-

ing, boundedness of the estimated model, and test on benchmark nonlinear system

identification problems.
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