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Abstract

The most powerful unfalsified model (MPUM), i.e., the least complex exact model for the given data, is well established for linear time-
invariant (LTI) systems. It has not been generalized for linear parameter-varying (LPV) systems. In order to do this, we define the notions
of complexity for LPV systems with shifted-affine scheduling dependence. The MPUM leads to identifiability conditions and a method for
exact LPV system identification. The method is based on lifting the LPV system to a higher dimensional space and LTI embedding in the
lifted space. It is made rigorous by proving a formal connection between the parameters of the LTI embedding and the original LPV system.

1 Introduction

The most powerful unfalsified model (MPUM) of a vector
time series, i.e., the least complex exact model in a given
class of systems for data consisting of vector time series,
laid a clear and rational foundation for system identifica-
tion [20]. The problem of finding the MPUM is a general-
ization of the partial realization problem, when the data is a
general trajectory of the system rather than the impulse re-
sponse. The MPUM was defined originally for the class of
linear time-invariant (LTI) systems and data being an infi-
nite time series. Later on, it was used to generalize and give
a system theoretic interpretation of the Berlekamp-Massey
algorithm and was modified for the case of finite time series
[6, Section IV] and time series with missing values [4,1]. It
has not been defined and used for other classes of systems
beyond LTI, the main issue being the generalization of the
notion of model complexity.

The problem of finding the MPUM is an exact (determinis-
tic) identification problem. The algorithms proposed in [20]
inspired the development of the N4SID subspace identifica-
tion methods [14]. In particular, the fact that a state sequence
of a state-space realization of an unknown system can be ob-
tained from a trajectory of the system was proposed in [20]
as a method for computing the MPUM.
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In this communique, we generalize the notion of the MPUM
for the class of linear parameter-varying (LPV) systems, i.e.,
linear systems whose behavior is defined by a linear relation
that depends on a signal, called the scheduling signal [11].
The LPV model class is a generalization of the LTI one
and can be viewed as an intermediate step towards general
non-linear systems [18]. The scheduling variable is often
assumed measurable.

In this work, the laws describing the LPV system are as-
sumed to have a representation with an affine dependence on
the scheduling variable (see (2) and (5)). We call this sub-
class shifted-affine LPV (SALPV). It has been shown that the
SALPV model class has a minimal state-space realization
with affine dependence [12], which makes it directly applica-
ble for control design as it has been also demonstrated in [3].
Furthermore, recent developments in direct data-driven LPV
controller synthesis are based on the SALPV model class
and are successfully applied in practice [17].

Our objective is to define the MPUM for the class of SALPV
systems and find methods for its computation. To this end,
we transform the SALPV identification problem to a prob-
lem that is similar to LTI system identification, by a lifting
transformation: a Kronecker product of the manifest vari-
able and the scheduling variable. The connection between
the SALPV and the lifted LTI system is established via the
kernel representations of the original and lifted systems.

We use the behavioral approach, i.e., we view dynamical
systems as sets of trajectories [21,7]. Although per se the
behavioral approach is applicable to nonlinear as well as
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linear systems and to time-varying as well as time-invariant
systems, there have been only a few attempts to develop
behavioral systems theory for nonlinear and/or time-varying
systems, e.g., LPV systems [13,11], external representations
of nonlinear systems [8], and convex conical behaviors [9].
Next, we review the behavioral setting for LPV systems.

A parameter-varying system B is a dynamical system,
whose variables are partitioned into a scheduling variable ρ

and a manifest variable w. Let Πw [
ρ
w ] := w be the projection

on the manifest variable and Πρ [
ρ
w ] := ρ be the projection

on the scheduling variable. The manifest behavior ΠwB
for a fixed, but not necessarily constant scheduling sig-
nal ρ is denoted by Bρ . If Bρ is linear for all ρ ∈ ΠρB,
the system B is called LPV. For a given ρ , the projected
behavior Bρ is linear time-varying (LTV). We will refer
to Bρ as the “behavior along ρ”. We consider discrete-time
LPV systems with unrestricted scheduling variable, i.e.,
ΠρB = (Rnρ )T. The time-axis T is the one-sided infinite
[1,∞) or a finite [1,T ] interval.

The main contributions of this short communique are: i) a
novel characterization of the finite-horizon behaviour Bρ |T
of an general LPV system B in terms of a kernel represen-
tation (Section 2.1), ii) definition and computational method
for the MPUM in the SALPV model class (Section 2.2), and
iii) identifiability condition for SALPV systems that is verifi-
able from the data and the complexity of the data-generating
system (Theorem 2). Compared to previous work on real-
ization theory for LPV systems, mostly work on state-space
realization exists, such as [11] based on a shift-and-cut op-
eration requiring symbolic solution of a set of algebraic re-
lations, [12] that provides simple realization schemes for
special cases, and [10], a realization theory for systems that
have state-space representations with affine dependence was
worked out using impulse response (Markov) coefficients.
In this paper, we estimate a kernel representation of the sys-
tem from data. Although, not all systems with state-space
representation of affine dependence have such a representa-
tion, computing the MPUM opens up the door for deriving
subspace methods with reduced memory needs which could
resolve the current computational bottlenecks of LPV sub-
space identification approaches.

2 Scheduling dependent kernel representation

First, we present the kernel representation of a general LPV
system. Then, we introduce the class of LPV systems with
shifted-affine scheduling dependence.

2.1 General case

Consider a finite-dimensional LPV system B with nρ

scheduling variables and q manifest variables. Then, there
is a natural number ` and functions

Ri : (Rnρ )N×T→ Rg×q, for i = 0,1, . . . , `, (1)

such that for any scheduling signal ρ ∈ (Rnρ )N, the manifest
behavior Bρ admits a representation

R0(ρ, t)w(t)+R1(ρ, t)w(t +1)+ · · ·+R`(ρ, t)w(t + `)︸ ︷︷ ︸
=:
(

R(ρ,σ)w
)
(t)

= 0,

(2)
where (σ w)(t) := w(t + 1), is the unit shift operator. The
manifest behavior Bρ of B is therefore given as the kernel
of the difference operator R(ρ,σ):

Bρ = ker R(ρ,σ) :=
{

w | (2) holds
}
. (3)

Vice versa, for any set of parameters (1), the kernel repre-
sentation (3) defines an LPV system

B =
{
(ρ,w) | ρ ∈ (Rnρ )N and w ∈Bρ

}
.

Next, we consider a finite horizon T := {1, . . . ,T } and de-
note by w|T the restriction of w ∈ (Rq)N to T, i.e.,

w|T :=
(
w(1), . . . ,w(T )

)
.

For t ∈ T, (2) is equivalent to the equation MT (R,ρ)w = 0,
where MT (R,ρ) ∈ Rg(T−`)×qT is the polynomial multipli-
cation, defined in Figure 1. In the LTI case, MT (R,ρ) ad-
ditionally has a block-Toeplitz structure and is called the
multiplication matrix as it represents polynomial multipli-
cation [6, Section II.B]. This leads us to the characterization
of the finite horizon behavior Bρ |T := {w|T | w ∈Bρ } as
the kernel of MT (R,ρ)

Bρ |T = ker MT (R,ρ). (4)

Formula (4) is a generalization to the LPV case of formula
(B|L, KER) in [6], which gives an explicit matrix charac-
terization of the finite horizon behavior of LTI systems. As
in the LTI case, (4) is directly amenable to matrix computa-
tions. Indeed, given (1) and ρ ∈ (Rnρ )T , MT (R,ρ) can be
evaluated. Consequently, a basis for Bρ |T can be computed
by standard numerical linear algebra methods. The avail-
ability of Bρ |T , in turn, opens the path of solving analy-
sis, noise filtering, and control problems, using the methods
presented in [5].

The matrix characterization (4) of Bρ |T is applicable for
general LPV systems, requiring only the kernel parameters
(1) of the system and the scheduling signal ρ .

2.2 Shifted-affine scheduling dependence

Next, we consider two special cases: 1) LTI systems and
2) SALPV systems. In the LTI case, the parameters (1) are
constant in time. Then, (3) becomes the classical kernel rep-
resentation defined by a polynomial matrix R(z) := R0 +
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Fig. 1. Definition of the multiplication matrix.

MT (R,ρ) :=


R0(ρ,1) R1(ρ,1) · · · R`(ρ,1)

R0(ρ,2) R1(ρ,2) · · · R`(ρ,2)
. . .

. . .
. . .

R0(ρ,T − `) R1(ρ,T − `) · · · R`(ρ,T − `)

 ∈ Rg(T−`)×qT .

R1z+ · · ·+R`z` and MT (R,ρ) is the polynomial multipli-
cation matrix for R(z). In the SALPV case, considered later
in the communique, the parameters (1) are

Ri(ρ, t) = R0
i + R1

i ρ1(t + i) + · · · + Rnρ

i ρnρ
(t + i), (5)

for i = 0,1, . . . , `, where the dependence of w(t + i) on the
scheduling signal is limited to ρ(t + i), i.e., the time depen-
dence of the scheduling signal shifts along with the mani-
fest variable. The class of SALPV systems with nρ schedul-
ing variables and q manifest variables is denoted by Pnρ ,q.
When the dimensions nρ and q are understood from the con-
text, they will be skipped from the notation Pnρ ,q.

For an SALPV system B ∈Pnρ ,q, with ρext :=
[ 1

ρ

]
,

Ri
(
ρ(t + i)

)
=
[
R0

i R1
i · · · Rnρ

i

]
︸ ︷︷ ︸

R′i

(
ρext(t + i) ⊗ Iq

)
, (6)

where ⊗ is the Kronecker product. We define the matrix
R′ :=

[
R′0 R′1 · · · R′`

]
, which completely characterizes (3)

in the case of shifted-affine scheduling dependence.

3 Exact identification of SALPV systems

3.1 SALPV model complexity

In the behavioral setting, the complexity of a system B
characterizes the “size” of the set B, i.e., the larger the
set, the more complex the system is. This intuitive idea is
formalized for the case of LTI systems by the triple [6]

c(B) :=
(
m(B), l(B),n(B)

)
, (7)

where m(B) is the number of inputs of B, l(B) is the
lag of B, and n(B) is the order of B. 1 The rationale for
defining the complexity of B via (7) is the formula

dim B|T = m(B)T +n(B), for T ≥ l(B),

showing that the dimension of the finite horizon behavior for
“large enough” horizon is completely determined by c(B).

1 In the LTI case, the number of inputs m(B), lag l(B), and
order n(B) are properties of the system B and are invariant of
its representations [19].

As in the LTI case, for an LPV system B, the functions
m(B), l(B) and n(B) are also well defined [11]. For a gen-
eral LPV system, the complexity is determined by the triple(
m(B), l(B),n(B)

)
as well as the complexity of the func-

tions in (1). The simplest nontrivial case of (1) is affine, i.e.,
the SALPV class. Affine functions (1) have complexity that
depends on the dimension nρ of the scheduling variable only.
Thus, the complexity of B ∈Pnρ ,q is solely determined
by the triple

(
m(B), l(B),n(B)

)
. We define the complex-

ity of an SALPV system by (7) and the subclass of SALPV
systems Pnρ ,q with complexity bounded by (m, `,n) as

P
nρ ,q
m,`,n := {B ∈Pnρ ,q | c(B)≤ (m, `,n)}.

3.2 MPUM in the class of SALPV systems

The MPUM for given data in a specified model class is the
least complex system in the model class that fits the data
exactly. The MPUM depends on the model class as well as
the notion of complexity. For given data (ρd,wd), we denote
by mpum(wd) the MPUM (of wd) in the LTI model class
L q and by mpum(ρd,wd) the MPUM (of (ρd,wd)) in the
SALPV model class Pnρ ,q.

For infinite data wd ∈ (Rq)T,

mpum(wd) = span{σ
twd | t ∈ N}, (8)

i.e., mpum(wd) is the span of wd and all its shifts. The
construction (8) can be viewed as an LTI embedding of the
data wd. More generally, given a set of infinite trajectories
B ⊂ (Rq)T, its LTI embedding is defined as

LTI(B) := span{σ
tw | t ∈ N and w ∈B }.

LTI(B) is the smallest LTI system that includes B.

LTI embedding (8) is a procedure for construction of the
MPUM in the class of LTI systems. It can not be used in
the SALPV case. One difficulty is that Bρd , for which there
is data wd, is not time-invariant. Another one is that there is
no given data for other scheduling sequences. For a general
LPV system, these difficulties make the problem of com-
puting the MPUM ill-posed. For SALPV systems, however,
mpum(ρd,wd) is well-defined and therefore it can be con-
structed. Next, we present an algorithm for doing this.
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3.3 The lifting operation

The key idea of finding mpum(ρd,wd) is lifting the data.
For signals ρ ∈ (Rnρ )T and w∈ (Rq)T, define the Kronecker
product ρ⊗w, point-wise in time:

(ρ⊗w)(t) := ρ(t)⊗w(t) ∈ Rnρ q, for t ∈ T

and the “lifting” of (ρ,w) ∈ (Rnρ+q)T as

liftP(ρ,w) :=
[ 1

ρ

]
⊗w ∈ (R(1+nρ )q)T. (9)

The word “lifting” in the name of liftP(ρ,w) refers to the fact
that it increases the dimension: the lifted signal liftP(ρ,w)
has dimension q′ := (1+nρ)q.

Applied on an LPV system B, the “liftP” operation acts on
all signals in B, producing another system:

liftP(B) :=
{

liftP(ρ,w) | [ ρ
w ] ∈B

}
.

The lifting and LTI embedding are used in the next section
for the construction of mpum(ρd,wd), see Fig. 2 for the re-
lationship between B, liftP(B), and the LTI embedding of
liftP(B). Similar signal lifting, without formal characteriza-
tion of the lifted behavior, has been considered extensively
in the LPV subspace literature, see for example [12,16,15].

Fig. 2. The LTI embedding of B ∈Pnρ ,q ⊂ (Rnρ+q)T is applied
on the lifted system liftP(B)⊂ (R(nρ+1)q)T.

3.4 mpum(ρd,wd) computational method

The method for computing mpum(ρd,wd) is: 1) construct
the lifted signal w′ := liftP(ρ,w), 2) find the LTI embed-
ding B′ := mpum(w′), and 3) recover B := mpum(ρd,wd)
from B′. Step 3 relies on the bijective relation

R′(z) = R′0 +R′1z+ · · ·+R′`z
`, with

R′i =
[
R0

i R1
i · · · Rnρ

i

]
, for i = 0,1, . . . , ` (10)

between a kernel representation Bρ = ker R(ρ,σ) of an
SALPV system B and a kernel representation ker R′(σ) of
the LTI embedding of the lifted system liftP(B).

Lemma 1 Consider an SALPV system B ∈P
nρ ,q
(m,`,n) with a

kernel representation Bρ = ker R(ρ,σ) and define R′ via
(10). Then, LTI

(
liftP(B)

)
= ker R′(σ).

PROOF. Substituting (6) in (2) and defining w′d :=
liftP(ρd,wd), we obtain the linear constant-coefficients-
based difference equation

R′0w′d(t)+R′1w′d(t +1)+ · · ·+R′`w
′
d(t + `) = 0, (11)

which defines an LTI system B′ := ker R′(σ). By construc-
tion, for any (ρd,wd) ∈B, the lifted signal w′d ∈B′, so that
liftP(B)⊆ ker R′(σ). Moreover, B′ is the smallest LTI sys-
tem containing liftP(B), so that B′ = LTI

(
liftP(B)

)
. 2

Step 3 of the method for computing mpum(ρd,wd), is thus
the conversion (10) of the kernel parameter R′ defining B′

to the parameter (1) defining a kernel representation (3) of
the MPUM. Although, liftP(B) and B′ are not equal, they
share the same kernel parameter R′, so that B can be inferred
from B′, which in turn can be inferred from the lifted data
by the LTI embedding procedure.

Note 1 (Discrepancy between liftP(B) and B′) Not ev-
ery trajectory w′ ∈B′ is a trajectory of liftP(B), cf., Fig. 2.
The discrepancy between liftP(B) and B′ is due to the
structure of (9). More specifically, liftP(B) = B′ ∩Bstr,
where Bstr := { liftP(ρ,w) | ρ ∈ (Rnρ )T and w ∈ (Rq)T }.

Note 2 (Complexity of the LTI embedding) The com-
plexity of the LTI embedding B′ is

c(B′) =
(

m(B)+nρ q︸ ︷︷ ︸
m′

, l(B),n(B)
)
. (12)

Intuitively, the LTI embedding relaxes the nρ q variables
ρ⊗w of liftP(B) by treating them as inputs (free variables).
This is equivalent to removing the constraint w′ ∈Bstr.

For a known dimension nρ of the scheduling variable ρd,
there is a one-to-one map between the complexity of an
SALPV system and the complexity of its LTI embedding.

Note 3 In case of finite data, define the Hankel matrix

HL(wd) :=
[
wd|L (σwd)|L · · · (σTd−Lwd)|L

]
.

Then, assuming that the lag ` of the MPUM is a priori given,
a kernel representation of B′ can be computed from the left
null space of the Hankel matrix H`+1(w′d). When the lag `
is unknown, it can be found from wd by a rank test as in the
LTI case [6, Section IV].

The relation (10) between the parameters of an SALPV sys-
tem B and the LTI embedding of liftP(B) is the reason why
subspace approaches using explicitly or implicitly lifting,
such as the Ho-Kalman algorithm of [12], early LPV sub-
space methods in [16], and recent state-of-the-art subspace
approaches [15,2] work. The developed theory in this pa-
per (combined with [10]) shows that such methods implic-
itly assume the shifted affine dependence on the scheduling
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variable and via lifting they embed the behavior of the LPV
system in an LTI system, for which application of LTI real-
ization theory leads to a representation. By using the result
of that representation, it is possible to perform a reformula-
tion to obtain a representation of the LPV system with static
affine dependence on the scheduling variable. Hence, our
results show the core reasons why the extension of LTI sub-
space algorithm is possible to LPV systems and generalizes
the implicit concepts of these papers towards a general the-
ory of LPV behaviors and subspace identification methods.

3.5 Identifiability condition

For any (ρd,wd)∈ (Rnρ )Td×(Rq)Td , the system mpum(ρd,wd)
exists and is unique. In the identifiability problem, consid-
ered in this section, it is assumed that the data (ρd,wd) is gen-
erated by a bounded complexity LPV system B ∈P

nρ ,q
m,`,n,

i.e., (ρd,wd) ∈B|Td . The problem is to find B back from
the data (ρd,wd). The following result gives conditions un-
der which this is possible. Moreover, under the specified
condition, the data generating system coincides with the
MPUM, so that using the algorithm for the computation of
mpum(ρd,wd), presented in Section 3.4, the result becomes
constructive.

Theorem 2 Consider an SALPV system B ∈P
nρ ,q
m,`,n and let

(ρd,wd)∈B|Td be a trajectory of B. Under the generalized
persistency of excitation condition

rank H`+1
(
liftP(ρd,wd

)
=(

(nρ +1)q−p(B)
)(
`+1

)
+n(B), (13)

B is identifiable from (ρd,wd), i.e., mpum(ρd,wd) = B.

PROOF. By [6, Theorem 17], under the generalized per-
sistency of excitation condition (13), the LTI embedding
of the lifted data-generated system B is identifiable, i.e.,
mpum

(
liftP(ρd,wd)

)
= LTI

(
liftP(B)

)
. Then, by Lemma 1,

if mpum
(
liftP(ρd,wd)

)
= ker R′(σ) and R is defined via (10),

we have that ker R(ρ,σ) = Bρ , for all ρ ∈ (Rnρ )T. 2

4 Conclusions

We generalized the notion of the MPUM from LTI to LPV
systems with shifted-affine scheduling dependence. The
MPUM led us to an identifiability condition that is verifiable
from the data and the complexity of the true system. The
result is constructive and leads to a method for exact iden-
tification that yields a kernel representation of the MPUM.
Using the results from approximate identification of SALPV
systems as well as efficient solution methods exploiting the
Kronecker-Hankel structure is a topic of current research.
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