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parameter-varying model

with shifted-affine scheduling dependence
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Abstract

The paper considers exact identification of linear parameter-varying (LPV) systems from the
behavioral perspective. In the case of linear time-invariant (LTI) systems, the notion of the most
powerful unfalsified model (MPUM), i.e., the least complex exact model for a given data trajectory,
is well established. The MPUM, however, has not been generalized for LPV systems. In order to
do this, we define the notions of model complexity for LPV systems with shifted-affine scheduling
dependence. The MPUM leads to identifiability conditions and a method for exact LPV system
identification. The method is based on lifting the LPV system to a higher dimensional space and
LTI embedding in the lifted space. It is made rigorous by proving a formal connection between the
parameters of the LTI embedding and the original LPV system.

Index Terms

Most powerful unfalsified model, behavioral approach, linear parameter-varying, system identi-
fication.

I. INTRODUCTION

The most powerful unfalsified model (MPUM) of a vector time series, i.e., the least complex exact
model in a given class of systems for data consisting of vector time series, laid a clear and rational
foundation for system identification [1]. The problem of finding the MPUM is a generalization of
the partial realization problem [2], when the data is a general trajectory of the system rather than
the impulse response. The MPUM was defined originally for the class of linear time-invariant (LTI)
systems and data being an infinite time series. Later on, it was used to generalize and give a system
theoretic interpretation of the Berlekamp-Massey algorithm [3] and was modified for the case of finite
time series [4, Section IV] and time series with missing values [5, 6]. To the best of our knowledge
it has not been defined and used for other classes of systems beyond LTI, the main issue being the
generalization of the notion of model complexity.

The problem of finding the MPUM is an exact (deterministic) identification problem. The algorithms
proposed in [1] inspired the development of the N4SID subspace identification methods [7]. In
particular, the fact that a state sequence of a state-space realization of an unknown system can be
obtained from a trajectory of the system was proposed in [1] as a method for computing the MPUM.

In this paper, we generalize the notion of the MPUM for the class of linear parameter-varying
(LPV) systems, i.e., linear systems whose behavior is defined by a linear relation that depends on
a signal, called the scheduling signal [8]. The LPV model class is a generalization of the LTI one
and can be viewed as an intermediate step towards general non-linear systems [9]. The scheduling
variable is often assumed measurable.
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In this paper, the laws describing the LPV system are assumed to have a representation with an
affine dependence on the scheduling variable (see (DE) and (AFF)). We call this subclass shifted-affine
LPV (SALPV). A simple example of a physical system with a time-varying parameter that is described
by an SALPV model is presented in Example 1. It has been shown that the SALPV model class has
a minimal state-space realization with affine dependence [10], which makes it directly applicable
for control design as it has been also demonstrated in [11]. Furthermore, recent developments in
direct data-driven LPV controller synthesis are based on the SALPV model class and are successfully
applied in practice [12].

Example 1. Consider the mass-spring-damper with a varying spring constant, shown in Figure 1. Let
y be the position of the mass and u a force applied to the mass. Furthermore, let m be the mass,
d the damping coefficient, and k the spring constant, which is also the scheduling variable. The
continuous-time dynamics of the mass-spring-damper system is described by

mÿ(t)+dẏ(t)+ k(t)y(t) = u(t),

Discretization with the Euler method, i.e.,

ẋ(t)≈ x(t +Ts)− x(t)
Ts

,

where Ts is the sampling time, gives us a shifted-affine LPV system

y(t)+
(

dTs

m
−2
)

y(t−1)+
(

1− dTs

m
+

T 2
s

m
p(t−2)

)
y(t−2) =

T 2
s

m
u(t−2).

m

d k(t)

Fig. 1. A mass-spring-damper system with a varying spring after discretization leads to an SALPV system.

Our objective is to define the MPUM for the class of SALPV systems and find methods for its
computation. To this end, we transform the SALPV identification problem to a problem that is to LTI
system identification, by a lifting transformation: a Kronecker product of the manifest variable and
the scheduling variable. The connection between the SALPV and the lifted LTI system is established
via the kernel representations of the original and lifted systems.

We use the behavioral approach, i.e., we view dynamical systems as sets of trajectories [13–15].
Although per se the behavioral approach is applicable to nonlinear as well as linear systems and
to time-varying as well as time-invariant systems, there have been only a few attempts to develop
behavioral systems theory for nonlinear and/or time-varying systems, e.g., LPV systems [8, 16],
external representations of nonlinear systems [17], and convex conical behaviors [18]. Next, we
briefly review the behavioral setting for LPV systems.

A parameter-varying system B is a dynamical system, whose variables are partitioned into a
scheduling variable ρ and a manifest variable w. Let Πw [

ρ
w ] := w be the projection on the manifest

variable and Πρ [
ρ
w ] := ρ be the projection on the scheduling variable. The manifest behavior ΠwB

for a fixed, but not necessarily constant scheduling signal ρ is denoted by Bρ . If Bρ is linear for
all ρ ∈ ΠρB, the system B is called LPV. For a given ρ , the projected behavior Bρ is linear
time-varying (LTV). We will refer to Bρ as the “behavior along ρ”. We consider discrete-time LPV
systems with unrestricted scheduling variable, i.e., ΠρB = (Rnρ )T. The time-axis T is the one-sided
infinite [1,∞) or a finite [1,T ] interval.
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The main contributions of the paper are:
1) a novel characterization of the finite-horizon behaviour Bρ |T of an general LPV system B in

terms of a kernel representation (Section II-A),
2) definition and computational method for the MPUM in the SALPV model class (Section II-B),

and
3) identifiability condition for SALPV systems that is verifiable from the data and the complexity

of the data-generating system (Theorem 6).
Compared to previous work on realization theory for LPV systems, mostly work on state-space
realization exists, such as [8] based on a shift-and-cut operation requiring symbolic solution of a
set of algebraic relations, [10] that provides simple realization schemes for special cases, and [19], a
realization theory for systems that have state-space representations with affine dependence was worked
out using impulse response (Markov) coefficients. In this paper, we estimate a kernel representation of
the system from data. Although, not all systems with state-space representation of affine dependence
have such a representation, computing the MPUM opens up the door for deriving subspace methods
with reduced memory needs which could resolve the current computational bottlenecks of LPV
subspace identification approaches.

Section II introduces the kernel representation ker R(ρ,σ) of Bρ , where σ is the shift operator

(σ w)(t) := w(t +1),

and the SALPV model class. Section III defines the notion of complexity, presents the method for
computing the MPUM, and provides identifiability conditions for SALPV systems.

II. SCHEDULING DEPENDENT KERNEL REPRESENTATION

First, we present the kernel representation of a general LPV system. Then, we introduce the class
of LPV systems with shifted-affine scheduling dependence.

A. General case

Consider a finite-dimensional LPV system B with nρ scheduling variables and q manifest variables.
Then, there is a natural number ` and functions

Ri : (Rnρ )N×T→ Rg×q, for i = 0,1, . . . , `, (PAR)

such that for any scheduling signal ρ ∈ (Rnρ )N, the manifest behavior Bρ admits a representation by
a difference equation

R0(ρ, t)w(t)+R1(ρ, t)w(t +1)+ · · ·+R`(ρ, t)w(t + `)︸ ︷︷ ︸
=:
(

R(ρ,σ)w
)
(t)

= 0, for all t ∈ T. (DE)

The manifest behavior Bρ of B is therefore given as the kernel of the difference operator R(ρ,σ):

Bρ = ker R(ρ,σ) :=
{

w | (DE) holds
}
. (KER)

Vice versa, for any set of parameters (PAR), the kernel representation (KER) defines an LPV system

B =
{
(ρ,w) | ρ ∈ (Rnρ )N and w ∈Bρ

}
.

Next, we consider a finite horizon T := {1, . . . ,T } and denote by w|T the restriction of w ∈ (Rq)N

to T, i.e.,
w|T :=

(
w(1), . . . ,w(T )

)
.

For t ∈ T, (DE) is equivalent to the matrix equation

MT (R,ρ)w = 0, (MT )

where MT (R,ρ) ∈ Rg(T−`)×qT is the g(T − `)×qT banded matrix
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MT (R,ρ) :=


R0(ρ,1) R1(ρ,1) · · · R`(ρ,1)

R0(ρ,2) R1(ρ,2) · · · R`(ρ,2)
. . .

. . .
. . .

R0(ρ,T − `) R1(ρ,T − `) · · · R`(ρ,T − `)

 .
In the LTI case, MT (R,ρ) additionally has a block-Toeplitz structure and is called the multiplication

matrix as it represents polynomial multiplication [4, Section II.B]. This leads us to the characterization
of the finite horizon behavior

Bρ |T := {w|T | w ∈Bρ }

as the kernel of MT (R,ρ)
Bρ |T = ker MT (R,ρ). ((R,ρ) 7→Bρ |T )

Formula ((R,ρ) 7→Bρ |T ) is a generalization to the LPV case of formula (B|L, KER) in [4], which
gives an explicit matrix characterization of the finite horizon behavior of LTI systems. As in the
LTI case, ((R,ρ) 7→Bρ |T ) is directly amenable to matrix computations. Indeed, given (PAR) and
ρ ∈ (Rnρ )T , MT (R,ρ) can be evaluated. Consequently, a basis for Bρ |T can be computed by standard
numerical linear algebra methods [20]. The availability of Bρ |T , in turn, opens the path of solving
analysis, noise filtering, and control problems, using the methods presented in [21].

The matrix characterization ((R,ρ) 7→ Bρ |T ) of Bρ |T is applicable for general LPV systems,
requiring only the kernel parameters (PAR) of the system and the scheduling signal ρ .

B. Shifted-affine scheduling dependence

Next, we consider two special cases: 1) LTI systems and 2) SALPV systems. In the LTI case,
the parameters (PAR) are constant in time. Then, (KER) becomes the classical kernel representation
defined by a polynomial matrix

R(z) := R0 +R1z+ · · ·+R`z`

and MT (R,ρ) is the polynomial multiplication matrix for R(z). In the SALPV case, considered later
in the paper, the parameters (PAR) are

Ri(ρ, t) = R0
i +R1

i ρ1(t + i)+ · · ·+Rnρ

i ρnρ
(t + i), for i = 0,1, . . . , `, (AFF)

where the dependence of w(t + i) on the scheduling signal is limited to ρ(t + i), i.e., the time
dependence of the scheduling signal shifts along with the manifest variable. The class of SALPV
systems with nρ scheduling variables and q manifest variables is denoted by Pnρ ,q. When the
dimensions nρ and q are understood from the context, they will be skipped from the notation Pnρ ,q.

For an SALPV system B ∈Pnρ ,q, with ρext :=
[ 1

ρ

]
,

Ri
(
ρ(t + i)

)
=
[
R0

i R1
i · · · Rnρ

i

]︸ ︷︷ ︸
R′i

(
ρext(t + i)⊗ Iq

)
, for i = 0,1, . . . , `, (AFF’)

where ⊗ is the Kronecker product. We define the matrix

R′ :=
[
R′0 R′1 · · · R′`

]
, (R′)

which completely characterizes (KER) in the case of shifted-affine scheduling dependence.
The shifted-affine scheduling dependence makes the data-driven analysis, identification, and control

problems tractable and is considered in details later. It is important also because it can be generalized
to nonlinear dependence of R on ρ .
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III. EXACT IDENTIFICATION OF SALPV SYSTEMS

A. SALPV model complexity

In the behavioral setting, the complexity of a system B characterizes the “size” of the set B, i.e.,
the larger the set, the more complex the system is. This intuitive idea is formalized for the case of
LTI systems by the triple [4]

ccc(B) :=
(
mmm(B), `̀̀(B),nnn(B)

)
, (ccc(B))

where mmm(B) is the number of inputs of B, `̀̀(B) is the lag of B, and nnn(B) is the order of B.1 The
rationale for defining the complexity of B via (ccc(B)) is the formula

dim B|T = mmm(B)T +nnn(B), for T ≥ `̀̀(B),

showing that the dimension of the finite horizon behavior for “large enough” horizon is completely
determined by ccc(B).

As in the LTI case, for an LPV system B, the functions mmm(B), `̀̀(B) and nnn(B) are also well
defined [8]. For a general LPV system, the complexity is determined by the triple

(
mmm(B), `̀̀(B),nnn(B)

)
as well as the complexity of the functions in (PAR). The simplest nontrivial case of (PAR) is affine,
i.e., the SALPV class. Affine functions (PAR) have complexity that depends on the dimension nρ of
the scheduling variable only. Thus, the complexity of B ∈Pnρ ,q is solely determined by the triple(
mmm(B), `̀̀(B),nnn(B)

)
. We define the complexity of an SALPV system by (ccc(B)) and the subclass of

SALPV systems Pnρ ,q with complexity bounded by (m, `,n) as

P
nρ ,q
m,`,n := {B ∈Pnρ ,q | ccc(B)≤ (m, `,n)}.

B. MPUM in the class of SALPV systems

The MPUM for given data in a specified model class is the least complex system in the model
class that fits the data exactly. The MPUM depends on the model class as well as the notion of
complexity. Since we use one notion of model complexity only, it will not be stated explicitly. For
given data (ρd,wd), we denote by MPUM(wd) the MPUM (of wd) in the LTI model class L q and
by MPUM(ρd,wd) the MPUM (of (ρd,wd)) in the SALPV model class Pnρ ,q.

For infinite data wd ∈ (Rq)T,

MPUM(wd) = span{σ
twd | t ∈ N}, (MPUM)

i.e., MPUM(wd) is the span of wd and all its shifts. The construction (MPUM) can be viewed as an
LTI embedding of the data wd. More generally, given a set of infinite trajectories B ⊂ (Rq)T, its LTI
embedding is defined as

LTI(B) := span{σ
tw | t ∈ N and w ∈B }.

LTI(B) is the smallest LTI system that includes B.
LTI embedding (MPUM) is a procedure for construction of the MPUM in the class of LTI systems.

It can not be used in the SALPV case. One difficulty is that Bρd , for which there is data wd, is not
time-invariant. Another one is that there is no given data for other scheduling sequences. For a
general LPV system, these difficulties make the problem of computing the MPUM ill-posed. For
SALPV systems, however, MPUM(ρd,wd) is well-defined and therefore it can be constructed. Next,
we present an algorithm for doing this.

1In the LTI case, the number of inputs mmm(B), lag `̀̀(B), and order nnn(B) are properties of the system B and are invariant
of its representations [22].
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C. The lifting operation

The key idea of finding MPUM(ρd,wd) is lifting the data. For signals ρ ∈ (Rnρ )T and w ∈ (Rq)T,
define the Kronecker product ρ⊗w, point-wise in time:

(ρ⊗w)(t) := ρ(t)⊗w(t) ∈ Rnρ q, for t ∈ T

and the “lifting” of (ρ,w) ∈ (Rnρ+q)T as

Lift(ρ,w) :=
[

1
ρ

]
⊗w ∈ (R(1+nρ )q)T. (Lift)

The word “lifting” in the name of Lift(ρ,w) refers to the fact that it increases the dimension: the
lifted signal Lift(ρ,w) has dimension q′ := (1+nρ)q.

Applied on an LPV system B, the “Lift” operation acts on all signals in B, producing another
system:

Lift(B) :=
{

Lift(ρ,w) | [ ρ
w ] ∈B

}
.

The lifting and LTI embedding are used in the next section for the construction of MPUM(ρd,wd),
see Fig. 2 for the relationship between B, Lift(B), and the LTI embedding of Lift(B). Similar signal
lifting, without formal characterization of the lifted behavior, has been considered extensively in the
LPV subspace literature, see for example [10, 23, 24].

Fig. 2. The LTI embedding of the SALPV system B ∈Pnρ ,q ⊂ (Rnρ+q)T is applied on the lifted system Lift(B) ⊂
(R(nρ+1)q)T.

D. MPUM(ρd,wd) computational method

The method for computing MPUM(ρd,wd) is:
1) construct the lifted signal w′ := Lift(ρ,w),
2) find the LTI embedding B′ := MPUM(w′), and
3) recover B := MPUM(ρd,wd) from B′.

Step 3 relies on the bijective relation

R′(z) = R′0 +R′1z+ · · ·+R′`z
`, with R′i =

[
R0

i R1
i · · · Rnρ

i

]
, for i = 0,1, . . . , ` (R↔ R′)

between a kernel representation Bρ = ker R(ρ,σ) of an SALPV system B and a kernel representation
ker R′(σ) of the LTI embedding of the lifted system Lift(B).

Lemma 2. Consider an SALPV system B ∈P
nρ ,q
(m,`,n) with a kernel representation Bρ = ker R(ρ,σ)

and define R′ via (R↔ R′). Then, LTI
(
Lift(B)

)
= ker R′(σ).

Proof. Substituting (AFF’) in (DE) and defining

w′d := Lift(ρd,wd), (w′d)

we obtain the linear constant-coefficients-based difference equation

R′0w′d(t)+R′1w′d(t +1)+ · · ·+R′`w
′
d(t + `) = 0, for all t ∈ T, (DE’)
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which defines an LTI system B′ := ker R′(σ). By construction, for any (ρd,wd)∈B, the lifted signal
w′d ∈B′, so that Lift(B)⊆ ker R′(σ). Moreover, B′ is the smallest LTI system containing Lift(B),
so that B′ = LTI

(
Lift(B)

)
.

Step 3 of the method for computing MPUM(ρd,wd), is thus the conversion (R↔ R′) of the kernel
parameter R′ defining B′ to the parameter (PAR) defining a kernel representation (KER) of the
MPUM. Although, Lift(B) and B′ are not equal, they share the same kernel parameter (R′), so that
B can be inferred from B′, which in turn can be inferred from the lifted data by the LTI embedding
procedure.

Note 3 (Discrepancy between Lift(B) and B′). Not every trajectory w′ ∈B′ is a trajectory of Lift(B),
cf., Fig. 2. The discrepancy between Lift(B) and B′ is due to the structure of (Lift). More specifically,

Lift(B) = B′∩Bstr,

where Bstr := {Lift(ρ,w) | ρ ∈ (Rnρ )T and w ∈ (Rq)T }.
Note 4 (Complexity of the LTI embedding). The complexity of the LTI embedding B′ is

ccc(B′) =
(

mmm(B)+nρq︸ ︷︷ ︸
m′

, `̀̀(B),nnn(B)
)
. (ccc-LTI)

Intuitively, the LTI embedding relaxes the nρq variables ρ⊗w of Lift(B) by treating them as inputs
(free variables). This is equivalent to removing the constraint w′ ∈Bstr.

For a known dimension nρ of the scheduling variable ρd, there is a one-to-one map between the
complexity of an SALPV system and the complexity of its LTI embedding.

Note 5. In case of finite data, define the Hankel matrix

HL(wd) :=
[
wd|L (σwd)|L · · · (σTd−Lwd)|L

]
.

Then, assuming that the lag ` of the MPUM is a priori given, a kernel representation of B′ can be
computed from the left null space of the Hankel matrix H`+1(w′d). When the lag ` is unknown, it
can be found from wd by a rank test as in the LTI case [4, Section IV].

The relation (R↔ R′) between the parameters of an SALPV system B and the LTI embedding of
Lift(B) is the reason why subspace approaches using explicitly or implicitly lifting, such as the Ho-
Kalman algorithm of [10], early LPV subspace methods in [23], and recent state-of-the-art subspace
approaches [24, 25] work. The developed theory in this paper (combined with [19]) shows that such
methods implicitly assume the shifted affine dependence on the scheduling variable and via lifting
they embed the behavior of the LPV system in an LTI system, for which application of LTI realization
theory leads to a representation. By using the result of that representation, it is possible to perform
a reformulation to obtain a representation of the LPV system with static affine dependence on the
scheduling variable. Hence, our results show the core reasons why the extension of LTI subspace
algorithm is possible to LPV systems and generalizes the implicit concepts of these papers towards
a general theory of LPV behaviors and subspace identification methods.

E. Identifiability condition

For any (ρd,wd) ∈ (Rnρ )Td× (Rq)Td , the system MPUM(ρd,wd) exists and is unique. In the iden-
tifiability problem, considered in this section, it is assumed that the data (ρd,wd) is generated by a
bounded complexity LPV system B ∈P

nρ ,q
m,`,n, i.e., (ρd,wd) ∈B|Td . The problem is to find B back

from the data (ρd,wd). The following result gives conditions under which this is possible. Moreover,
under the specified condition, the data generating system coincides with the MPUM, so that using
the algorithm for the computation of MPUM(ρd,wd), presented in Section III-D, the result becomes
constructive.
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Theorem 6. Consider an SALPV system B ∈P
nρ ,q
m,`,n and let (ρd,wd) ∈B|Td be a trajectory of B.

Under the generalized persistency of excitation condition

rankH`+1
(
Lift(ρd,wd

)
=
(
(nρ +1)q− ppp(B)

)(
`+1

)
+nnn(B), (GPE)

B is identifiable from the data (ρd,wd), i.e.,

MPUM(ρd,wd) = B.

Proof. By [4, Theorem 17], under the generalized persistency of excitation condition (GPE), the LTI
embedding of the lifted data-generated system B is identifiable, i.e.,

MPUM
(
Lift(ρd,wd)

)
= LTI

(
Lift(B)

)
.

Then, by Lemma 2, if
MPUM

(
Lift(ρd,wd)

)
= ker R′(σ)

and R is defined via (R↔ R′), we have that

ker R(ρ,σ) = Bρ , for all ρ ∈ (Rnρ )T.

IV. CONCLUSIONS

We generalized the notion of the MPUM from LTI to LPV systems with shifted-affine scheduling
dependence. The MPUM led us to an identifiability condition that is verifiable from the data and the
complexity of the true system. The result is constructive and leads to a method for exact identification
that yields a kernel representation of the MPUM. Using the results from approximate identification
of SALPV systems as well as efficient solution methods exploiting the Kronecker-Hankel structure
specific for the SALPV model class is a topic of current research and will be reported elsewhere.
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