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Abstract

The low-rank approximation problem, i.e., the problem of approximating a given ma-
trix with a matrix of lower rank, appears in many applications. In some applications the
given matrix is structured and the approximation is required to have the same structure.
Examples of linear structures are Hankel, Toeplitz, and Sylvester. Currently, there are
only a few results for nonlinearly structured low-rank approximation problems. We
consider the problem of Vandermonde structured low-rank approximation. The high
condition number of the Vandermonde matrix presence in combination with the noise
in the data make the the problem challenging. We propose a numerical method based
on a bias correction procedure and prove consistency of the method under suitable
assumptions. The performance of the method is illustrated on numerical results.
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1. Introduction

The problem considered is approximation of a matrix obtained by a perturbation
of a Vandermonde matrix with another Vandermonde matrix of lower rank. Given a
vector c = (c1, . . . ,cn) ∈ Cn, the matrices we consider are rectangular Vandermonde
matrices without the first row (we removed it since it is not informative), i.e.,

V =V (c) =


c1 · · · cn
c2

1 · · · c2
n

... · · ·
...

cm
1 · · · cm

n

 , (1)

where the (i, j)-th entry of the matrix is the i-th power of the j-th entry of the vector c
(parameter vector of V ). Under the assumption that ci 6= c j for all i 6= j, the matrix V is
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full rank, so that the problem of low-rank approximation is aiming at coalescing two of
the parameters with as small as possible perturbation. The formulation of the problem
is as follows:

Problem 1. Given a matrix of the form V (c0)+V (c̃), where V (c0) is a rank-deficient
Vandermonde matrix and V (c̃) is a Vandermonde Gaussian error matrix, we want to
estimate the vector c0.

The Vandermonde structure is nonlinear, so the considered problem is a nonlinearly
structured low-rank approximation problem.

While structured low-rank approximation problems are popular and widely studied
in the literature in the case of linear (or affine) structures (see e.g. [18, 3]), there are no
general efficient methods for solving the nonlinearly structured low-rank approxima-
tion problems.

The algorithm proposed in the paper computes a suboptimal solution for Problem 1
into two steps: first we compute an adjusted least squares estimator [12, 2] X̂ , which
corrects the classical (biased) least squares solution of the system of equations AX =
B, where the matrices A ∈ Cm×(n−1) and B ∈ Cm×1 come from the partition of the
matrix V as V = (A,B) and X ∈ C(n−1)×1. However, this approach does not preserve
the Vandermonde structure of the data matrix, hence we need then to estimate the
parameters ĉ ∈Cn starting from the estimated values Â, B̂, X̂ computed via the adjusted
least squares approach, i.e., we need to compute the sought Vandermonde matrix.

Applications. Problems of fitting conic sections to data [8, 16, 9] have been posed and
solved as a nonlinearly structured low-rank approximation problems with polynomial
structure. The problem considered in this paper — Vandermonde structured low-rank
approximation — is motivated from an application in computer algebra — finding an
approximate common factor for a set of given polynomials.

Let r1 ∈Cn be the set of roots of a polynomial p1(z) and r2 ∈Cm be the set of roots
of p2(z). Assuming that both p1, p2 have simple roots, these polynomials are coprime
if and only if the entries of r1 and r2 are pairwise different. Conversely, the presence
of one (or more) common entry in r1 and r2 means that the polynomials p1, p2 have a
non-trivial common factor.

Therefore, Problem 1 can be seen as a computation of distance to common divis-
ibility for the polynomials p1, p2 (the problem is known in the literature also as ap-
proximate greatest common divisor or approximate common factor computation). The
importance of the problem is due to its applications in the fields of system and control
theory and identification [7, 4].

However, the usual definition of the distance to common divisibility problem con-
siders a distance measure based on the coefficients of polynomials. This allows
to restate the problem as a Sylvester matrix low-rank approximation problem, see
[6, 10, 14, 15, 17, 18, 19, 5].

Problem 1, on the other hand, uses as a distance measure the distance between the
roots of the polynomials. This formulation leads to a Vandermonde structured low-rank
approximation problem. Note that the polynomials roots are uniquely defined while the
coefficients are not (indeed, if we multiply the polynomials by a nonzero constant, we
change the coefficients of the polynomials but not their roots).
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Main contribution. In the paper we propose a suboptimal approach for the solution
of Problem 1. In the first part we construct a corrected least squares estimator for
the solution of the system of equations AX = B, where the matrix A collects the first
n− 1 columns of V while B is the last column of V . The proposed estimator builds
an exact solution X̂ of the system of equations ÂX = B̂, where Â, B̂ are corrections of
the matrices A,B necessary to remove the common least squares bias. However, the
corrected matrix (Â, B̂) does not have the Vandermonde structure, hence a further step
is needed in order to estimate the perturbed parameter vector ĉ (i.e., the Vandermonde
matrix V (ĉ)) starting from the corrected solution of the system of equations.

Notation

We denote by D∗ the Hermitian adjoint of the matrix D and with D+ the pseudo-
inverse of the D. E(·) denotes the expected value of the corresponding random variable,
random vector or random matrix.

In what follows, the “exact data” V (c0) is a Vandermonde matrix generated by a
vector c0 ∈ Cn whose entries are on the unit circle and such that the last two entries
coincide, i.e., c0(n−1) = c0(n). The “noisy data” V (c̃) is another Vandermonde matrix
generated by a vector c̃ ∈ Cn of the form

c̃ j = ũ j + iṽ j, for all j = 1, . . . ,n, (2)

where ũ j, ṽ j, j = 1, . . . ,n are independent identically distributed (i.i.d.), zero mean,
Gaussian with standard deviation σ .

Remark 1. The normalization assumption on the “exact data” may seem restrictive,
but it is necessary to avoid the vanishing/blow up of the entries of the Vandermonde
matrix whenever large values of m are considered (see, e.g., Figure 1 about the con-
sistency of the estimator). Although the constraint |c j| = 1 for all j is needed, the
estimation method does not impose it. This can be done in an extra step of projection
on the unit circle.

2. Construction of adjusted least squares estimator

In this section, we deal with a numerical solution of the system of equations AX =
B. The classical least squares method is biased due to the noise in A [1, 13]. A classical
way to approach the problem is the Total Least Squares solution, which yields (under
standard assumptions) a maximum likelihood estimator [11].

The proposed approach is based on the solutions of deconvolution equations [12, 2]
which guarantee that the corresponding estimators are unbiased. We analyze both the
cases in which the value of σ (i.e., the standard deviation of the normal perturbation on
the true data) is known and unknown. In particular, we describe in details how to build
the proposed estimator in the case when σ is known, and we explain how to estimate
σ in the case when it is unknown.

3



2.1. Known σ2

We assume here σ is known, and we want to construct a solution to the system of
equations ÂX = B̂, where the matrices Â, B̂ are corrections of the matrices A,B coming
from a partition of the columns of V = (A,B) in (1). The score function for the starting
system of equations A0X = B0 is

S(A0,B0;X) = (A∗0A0)X−A∗0B0 (3)

associated with the classical least squares estimator. The idea of bias removal leads to
the solution of the following problem: given the matrices A0,B0, compute a solution to
a deconvolution equation of the form

E(SC(A,B;X)|A0,B0) = S(A,B;X). (4)

Looking at the function in (3), a solution of the equation (4) is given by the solutions
of the following two deconvolution equations

E( f (A,B)|A0,B0) = A∗0B0,

E(g(A)|A0) = A∗0A0.
(5)

The next theorem suggests how to get the sought solution.

Theorem 1. We define the two covariance matrices

VÃB̃ = E(Ã−E(Ã))∗(B̃−E(B̃)) = E(Ã∗B̃)−E(Ã∗)E(B̃),
VÃ = E(Ã−E(Ã))∗(Ã−E(Ã)) = E(Ã∗Ã)−E(Ã∗)E(Ã).

The solution of the equations in (5) is given by

f (A,B) = (A−E(Ã))∗(B−E(B̃))−VÃB̃,

g(A) = (A−E(Ã))∗(A−E(Ã))−VÃ.

Proof. The function f (A,B) can be expanded as

f (A,B) = A∗B−E(Ã∗)B−A∗E(B̃)+E(Ã∗)E(B̃)−VAB.

By computing the expected value of each term in the sum we get

E(A∗B|A0,B0) = A∗0B0 +E(Ã∗)B0 +A∗0E(B̃)+E(Ã∗B̃),
E(A|A0,B0) = A0 +E(Ã),
E(B|A0,B0) = B0 +E(B̃).

(6)

Similar computations hold true for the function g(A) by replacing B with A in (6). The
claim follows by replacing and summing up the correct terms.

Finally we get the estimator as

X̂ = g(A)+ f (A,B). (7)

Once we have found the expression of the adjusted least squares estimator, we
switch to the computational issue: how to build the matrices g(A) and f (A,B).
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Computation of covariance matrices. We show in the following how to build all the
matrices E(A),E(B),VAB,VA necessary to build the estimator X̂ in (7). Given σ , the en-
tries of the matrices VÃB̃ and VÃ (defined in Theorem 1) are polynomials in the param-
eters c̃ j because of the Vandermonde structure (1) of the matrices A,B. The expected
value of a polynomial is split into the expected value of monomials; in particular a
monomial of the form c̄p

k cq
l has expected value 1

E((ũk− iṽk)
p(ũl + iṽl)

q) =
p

∑
j=0

q

∑
t=0

c̃ j
kc̃t

l(−i)p− jiq−tE(ũ j
kũt

l)E(ṽ
p− j
k ṽq−t

l ) =

σ
p+q

p

∑
j=0

q

∑
t=0

c̃ j
kc̃t

l(−i)p− jiq−tE(γ j
k γ

t
l )E(γ

p− j
k γ

q−t
l ),

(8)

where γi are i.i.d. random variables coming from a normal distribution with zero mean
and unit variance. Their expected values are

µ0 = E(γ0
1 ) = 1

µn = E(γn
1 ) =

{
0 if n odd
(2k−1)!! if n even, n = 2k

(9)

Replacing (9) in (8) we get the following expressions:

E(c̄p
k cq

l ) =

{
σ p+q

∑
p
j=0 ∑

q
t=0 c̃ j

kc̃t
l(−i)p− jiq−t µ j+t µp+q− j−t if k = l

σ p+q
∑

p
j=0 ∑

q
t=0 c̃ j

kc̃t
l(−i)p− jiq−t µ jµt µp− jµq−t if k 6= l

(10)

Hence the covariance matrices VAB,VA are obtained as the sum of terms of the form
(10). As we see from (10), each term depends on σ , the powers p,q and the indices
k, l. By setting p = 0 in (10) we automatically find the expression for E(cq

l ), i.e., the
expected values of the entries of a Vandermonde matrix: these values are exactly the
entries of the matrices E(A),E(B).

Remark 2. When q is odd, we have E(cq
l ) = 0; this is because of the symmetry of the

centered Gaussian distribution.

2.2. Unknown σ2

We saw in the previous section how to build the estimator for given σ ; therefore, in
the case σ is unknown, we focus only on the estimation of σ . Once σ is estimated, we
plug-in the estimate to the solution (7).

The penalty function we consider is

Q(A0,B0;X) = ‖A0X−B0‖2
F , (11)

1The following formula refers to Gaussian noise; each kind of error distribution has its own formula
depending on the expression of the moments.
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where ‖·‖F denotes the Frobenius norm induced by the inner product 〈A,B〉= tr(A∗B).
As in the previous case, we look for a correction on the penalty function Qc which
removes the bias, i.e.,

E(Qc(A,B;X)|A0,B0) = Q(A0,B0;X). (12)

Observe that the function (11) can be rewritten as

Q(A0,B0;X) = tr((A0X−B0)
∗(A0X−B0) =

tr(X∗A∗0A0X)− tr(X∗A∗0B0)− tr(B∗0A0X)+ tr(B∗0B0).
(13)

Similar computations to the ones in Section 2 allow to replace the matrices A∗0A0,A∗0B0
with the functions f ,g from Theorem 1. The matrix B∗0B0 is replaced by the function

h(B) : = (B− E(B̃))∗(B−E(B̃))−VB̃,

VB̃ = E(B̃∗B̃)−E(B̃∗)E(B̃).

Doing so, a solution to (12) is given by the following penalty function

Qc = tr(X∗g(A)X)− tr(X∗ f (A,B))− tr( f (A,B)∗X)+ tr(h(B)). (14)

However, we observe that the function in (14) depends on two variables: X and σ . But
we saw in Section 2 that the estimator of X actually depends on σ , so we can write

inf
X ,σ2

Qc(X ,σ2) = inf
σ2

inf
X

Qc(X ,σ2) = inf
σ2

Qc(X̂σ2 ,σ2), (15)

where X̂σ2 = X̂ |σ2 denotes the value of the estimator X̂ for given value of σ2; moreover
it is reasonable to consider only the values of σ2 for which the matrix g(A) is positive
semidefinite, as it happens for the matrix A∗0A0. Finally, the estimation of σ ends up
with the solution of the (univariate) optimization problem

σ̂
2 = inf

σ2 such that
g(A) positive semidefinite

Qc(X̂σ2 ,σ2). (16)

2.3. About the estimator
We describe here some properties of the proposed estimator X̂ . First of all, we have

to mention that both the error of the estimator and the estimate of σ̂ depend on the
dimension m of the matrix V (c) (1) (for n fixed), as well as on the noise distribution.
Indeed we expect that bigger values of m (more information on the data) correspond to
better approximations in terms of solution (if X0 is the solution of A0X0 = B0, the error
on the estimator is measured via the relative distance ‖X̂ −X0‖2/‖X0‖2). But we see
in Figure 1 what happens if we run a numerical experiment with n = 4 parameters and
increasing values of m (σ = 10−1 is known). The error decreases only up to a certain
value of m2, while we would like the value of X̂ to approach the exact solution of the

2In Figure 1 we are not able to further increase m because the function in (9) blows up in the machine
arithmetic.
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Figure 1: Relative distance between the estimator X̂ and the true value X0 for increasing values of m: error
averaged over 50 different perturbation on the same data.

system A0X = B0 as m→ ∞. The observed result is actually due to the choice of the
Gaussian noise on the data. It happens that the Gaussian noise makes the Vandermonde
signal vanishing under the perturbation, and this is because the moments of order 2k
of Gaussian random variables grow with k faster than the exponent of k; therefore,
the solution associated to the Vandermonde system of equations can vanish under the
considered perturbation.

Remark 3. If the Gaussian distribution of the noise is replaced by a symmetrical dis-
tribution with compact support, the results for the error of the estimator X̂ would be
different with respect to the ones shown in Figure 1. This is because the error moments
of order 2k would grow not faster than the exponent of k in this case. However, we
believe that the noise with compact support (e.g., uniformly distributed noise) is not
realistic in an application setting, hence the choice of the Gaussian noise.

From the previous experiment we observe that, up to a certain point, the increasing
of the value of m actually leads to an improvement in the quality of the estimator. How-
ever, the numerical values suggest that such improvement is not so relevant, therefore,
a wide range of values of m should lead to numerical results which are very close.

3. Estimation of the parameters

The algorithm described in Section 2 only computes X̂ (and estimates σ if this
is unknown); however the corrected matrices Â, B̂ do not preserve the Vandermonde
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structure (1) of (Â, B̂), hence we need to refine the computed solution in order to get
a perturbed parameter vector ĉ generating a rank-deficient Vandermonde matrix. The
goal of this section is to estimate the sought Vandermonde matrix V (ĉ), ĉ ∈Cn starting
from the computed solution Â, B̂, X̂ . We explain in the following the proposed algo-
rithm.

1. First of all, we stack the matrices Â, B̂ in a matrix Ĉ = (Â, B̂). Consider then
the matrix D̂ = Ĉ∗Ĉ: by construction the matrix D̂ satisfies the deconvolution
equation

E(D̂|C0) =C∗0C0. (17)

2. We exploit the structure of the matrix D̂ and equation (17) to estimate the modu-
lus r̂ j = |ĉ j| for all j of each complex number. If we denote as d̂i j the entries of
D̂, using equation (17), we need to solve the equation

d̂ j j =
n

∑
k=1

r̂2(k−1)
j . (18)

This is because, if C is a Vandermonde matrix generated by a vector c ∈ Cn, the
i-th diagonal entry of the square matrix C∗C is a (univariate) polynomial in ci. It
holds that, if d̂ j j > 1, the equation has a unique real solution (we are looking for
a modulus, i.e., a positive real number); if d̂ j j < 1 we set the corresponding r̂ j
equal to zero.

3. We set r̂ j∗ = max j r̂ j. Assuming r j∗ > 0, we choose ĉ j∗ = r j∗ (this is a real
number while ĉ j∗ should be a complex number; this choice is only temporary
though). We notice then that, if C is a Vandermonde matrix generated by a vec-
tor c ∈ Cn, the entry indexed by i, j with i 6= j (which are the entries out of the
diagonal) is a polynomial in the two variables ci,c j. By adopting the polar repre-
sentation for complex numbers, we can write the estimators of sought parameters
as ĉ j = exp

(
iφ̂
)
r̂ j, j 6= j∗, where r̂ j comes from the solution computed at step 2,

while 0≤ φ̂ < 2π is a solution of the equation

d̂ j∗ j =
n

∑
k=1

(r̂ j∗ r̂ j)
k−1 exp

(
iφ̂ j(k−1)

)
. (19)

Observe that the solution of this last equation is not unique.
4. As last step, we rotate all the current estimates of the parameters by an angle θ :

we set ĉ j = r̂ j exp
(
iφ̂ j
)

exp
(
iθ̂
)
, where θ̂ is chosen as a scalar between 0 and 2π

which solves the optimization problem

min
θ̂

‖Â(ĉ(θ̂))X̂− B̂(ĉ(θ̂))‖2,

where (Â(ĉ(θ̂)), B̂(ĉ(θ̂))) = V (ĉ(θ̂)) and X̂ is the estimator computed through
the algorithm in Section 2.

5. Once we get a solution, we need to observe that the possible multiple solutions
of equation (19) can lead to a set of parameters whose real and imaginary parts
have different signs and/or are swapped. As last refinement we compare the
computed solution with the starting parameters c in order to possibly swap the
real and imaginary parts or changing some signs.
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Remark 4. We note that it is not easy to recover exactly some complex numbers α ,
β from a polynomial value p(α,β ). While the estimation of the modulus is an easier
problem, the estimation of the phase is more complicated also in the noise-free case (we
actually did not run the algorithm at all if the starting matrix is rank-deficient). This
is due to the sampling of the interval (0,2π), or in general to the several numerical
approximations due to the machine arithmetic.

4. Numerical experiments

In this section, we report results of numerical experiments that verify the properties
and illustrate the performance of the proposed estimation method. We do experiments
in both the cases when the value of σ is known and unknown. The setup of the experi-
ments is as follows:

1. we generate n− 1 (random) complex roots c1, . . . ,cn−1 on the unit circle and
then we repeat one of them (assume it is the last); the vector (c1, . . . ,cn−1,cn−1)
generates a rank-deficient Vandermonde matrix;

2. we perturb the starting Vandermonde matrix by adding a second Vandermonde
matrix generated by a random complex vector whose entries are i.i.d. white
Gaussian coming from a distribution of the form N(0,σ2);

3. we show the estimation results averaged over different perturbations (of increas-
ing noise levels) on the starting parameters.

The standard deviation of the noise distribution varies in the interval (0,0.3); the con-
sidered estimation error is the norm of the difference between the computed parameters
ĉ and the starting true parameters c0: ‖c0− ĉ‖. We run each time several experiments
with different perturbations and the same noise levels on the parameters c0, and we
consider the average error (the number of experiments is different and it depends on
the computational time needed by the algorithm). Moreover we plot also the (averaged)
smallest singular value of the Vandermonde matrix associated with the computed solu-
tion.

Estimation of σ2 We check first how the estimate of σ2 performs in the case σ

is unknown. In this paragraph we focus on the estimation of σ only, by solving the
univariate optimization problem (15), while we deal with the parameters estimation
later. This problem is associated with the estimator built in Section 2. The following
experiment is built following the setup described in Section 4, but we compare the true
value of σ (the one we used to generate the data) with the estimated one. Despite we
observed that the estimator is consistent (up to a certain value of m), we consider a
smaller matrix since the experiment would be time consuming otherwise; as it emerges
from Figure 1 the numerical values corresponding to bigger values of m would be more
accurate but not so far.
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Figure 2: Estimation of σ : result averaged over 10 different perturbation on the data associated with normal
distributions with the same standard deviation.

The size of the considered Vandermonde matrix is m = 25, so it is a medium value
in between the values of m which make the estimator consistent. We did not consider
bigger values of m since the experiment is time consuming: each time we run an ex-
periment with known σ , for all σ ∈ (0,0.3), by using the available data and then we
solve the optimization problem (16).

We observe that, for small values of σ (approximately the first half of the plot),
the estimated values are very close to the exact ones. The estimates become worse for
higher values of σ , but the difference from the exact values is not so high.

Parameters estimation Once we know the value σ2 (it can be known or esti-
mated through the solution of (15)) we can run some experiments in order to test the
algorithm for estimation of the parameters (as described in Section 3). In the exper-
iments we fix the number of parameters n and we run the estimation algorithm for
different values of σ (in the interval (0,0.3)).

We plot in the following the error on the parameters (‖ĉ− c‖2) and the (relative)
distance to singularity for the computed matrices (we remember they are Vandermonde
matrices without the first row). This is because we want to understand how close the
matrix V (ĉ) is to the rank-deficiency. The following figures show the results for 4
parameters with m = 5 (Figure 3).

We see how the error slightly increases with σ . The value of m is small in order
to avoid slow computations with big matrices (observe we ran 500 experiments for
each σ ). If we look at the second plot, i.e., the relative distance to singularity, we see
that such numerical values are closer to 1 than 0. This is because, in the estimated
parameters, there are no two overlapping roots but only two close roots; moreover
Vandermonde-like matrices are known to be ill conditioned, indeed the condition num-
bers of the (relatively small) involved matrices are quite big.

We wonder what happens if we increase the value of m. We saw in Figure 1 that the
error on the estimator X decreases (up to a certain point), so it makes sense to inves-
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Figure 3: Vandermonde low-rank approximation for 4 complex parameters. Error on the generating pa-
rameters (top) and relative distance to singularity of the Vandermonde matrix (bottom) averaged over 500
different perturbations.

tigate what happens for the estimated parameters. We show in Figure 4 what happens
for two different values of m (the two matrices are generated from the same parameter
vector but the dimensions are different). We see that bigger values of m correspond to
bigger errors on the estimated parameters and bigger distances to singularity. More-
over we needed to lower the considered value of σ since the distance to singularity of
the computed Vandermonde matrix blows up if σ is too high. Concluding, increasing
the value of m improves the value of the estimator X̂ on one hand, but it leads to worse
values for the parameters estimation problem, as well for the distance to singularity. A
trade-off between the two errors would be the right balance.

Remark 5. The estimation of the parameter works in a similar way even without the
normalization assumption on the “exact data”, as described in the paragraph Notation
in Section 1. This may be useful in the application desscribed in Section 1. However, we
need to pay attention to the value of m since, in this case, we could lose the consistency
of the estimator because the possible vanishing/blow up of the entries of the matrix can
cause misleading numerical results.

5. Conclusion

We started from a rank-deficient Vandermonde matrix and, after the addition of
some noise, we proposed a method for its recovery. This is based on the unbiased
solution of a system of equations, followed by the estimation of the sought structured
matrix. However, the problem is not so easy to deal with: if, on one hand, one can
investigate different computational techniques for both the solution of the system of
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Figure 4: Vandermonde low-rank approximation for 4 complex parameters and two different values of m.
Error on the generating parameters (top) and relative distance to singularity of the Vandermonde matrix
(bottom) averaged over 500 different perturbation.

equations and the parameters estimation, on the other hand, the high condition numbers
of Vandermonde matrices make hard the exact recovery of the parameters, even for
small errors on the data.
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