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Abstract— The paper considers the class of discrete-time,
single-input, single-output, nonlinear dynamical systems de-
scribed by a polynomial difference equation. This class, call
polynomial time-invariant, is a proper generalization of the
linear time-invariant model class. The identification data is
assumed to be generated in the errors-in-variables setting,
where the input and the output noise is zero mean, white,
and the noise variances is known up to a scaling factor. The
identification problem has two sub-problems

1) structure selection: find the monomials appearing in the
difference equation representation of the system, and

2) parameter estimation: estimate the coefficients of the
equation.

The main result shows that the parameter estimation by
minimization of the 2-norm of the equation error leads to un-
structured low-rank approximation of an extended data matrix.
The resulting method is computationally robust and efficient
due to the use of the singular value decomposition. However,
it requires knowledge of the model structure and even when
the correct model structure is used, it leads to biased results.
For the structure selection, the use 1-norm regularization is
proposed. For the bias removal an adjustment of the ordinary
least squares estimator is proposed. The resulting adjusted low-
rank approximation methods defines an unbiased estimator for
the model parameters of the polynomial time-invariant model.

I. INTRODUCTION

Nonlinear system identification is currently an active re-

search topic in signal processing and control. The aim is to

increase the model accuracy for applications where linear

models are not adequate. Although the linear time-invariant

assumption is dropped, alternative assumptions about the

model are still needed. These assumptions are commonly

phrased as different types of nonlinear model classes, which

strike different points on the accuracy vs complexity trade-

off curve. Four main classes of nonlinear models, listed in

decreasing level of generality, are:

• Volterra series [1],

• Nonlinear state space [2],

• Nonlinear Auto Regressive Exogenous (NARX) [3],

• Block-oriented [4].

The Volterra series represent the output of the system as a

sum of convolutions of what are called the system kernels’

with the input. This representation is an universal approxima-

tion of a nonlinear system’s dynamics as the number of terms

in the sum grows [1]. The challenge in system identification

with this class of systems is the explosion of the system
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parameters (the kernel functions). A possible solution is to

use regularization and therefore prior knowledge about the

kernels.

The NARX model class represents the system through

a nonlinear difference equation. The difference equation

can be specified by expansion in a basis, neural network,

etc. Using expansion in a basis and truncating the infinite

series to a finite one, turns the model identification problem

into a parameter estimation problem—find the expansion

coefficients from the data. As with the Volterra series, the

problem of estimating the parameters is ill-posed, so that

prior knowledge about the model is needed.

The block-oriented models represent the system as a

connection of linear time-invariant dynamic and nonlinear

static subsystems. Depending on the topology of the con-

nection network and the types of blocks being used, there

are different types of block-oriented models (Hammerstein,

Wiener, Wiener-Hammerstein, . . . ). The problem of structure

selection for a block-oriented model is to discover from data

the topology of the network and the type of models in the

nodes. Even with given structure, however, the problem of

estimating the model parameters may be challenging.

In this paper we consider the NARX model class with a

difference equation defined by a polynomial with constant

coefficients. We call this class of models polynomial time-

invariant in analogy with the classical linear time-invariant

model class. The model structure selection problem is the

problem of choosing the monomials that appear in the

difference equation representation of the model. We ad-

dress the structure selection problem by adding a sparsity

inducing 1-norm regularizer in the cost function. The 1-

norm regularizer imposes the prior knowledge of a small

number of monomials, which is often physically meaningful.

The number of monomials in the model structure is also

a measure for the complexity of the model, so that the

regularized cost function reflects the accuracy vs complexity

trade-off. Other regularizers (used in a Bayesian setting)

impose smoothness on the estimated function of coefficients

which is more difficult to quantify and may be harder to

justify from a physical point of view.

Once the model structure is selected, the model parameters

are re-estimated using the adjusted least-squares method of

[5], [6]. This method corrects for the bias of the ordinary

least squares estimator and tends to produce more accurate

estimates even for small sample sizes. The adjusted least

squares method is derived in the errors-in-variables setting,

i.e., both the input and the output are observed with additive

noise. We assume that the noise is zero mean white and



uncorrelated between the input and the output. Also we

assume that the input-output noise variance ratio is know

up to a scaling factor. (The scaling factor is estimated by the

method.) Under these assumptions, the adjusted least-squares

method is consistent.

We show numerical examples that confirm the improved

performance of the adjusted least-squares method in compar-

ison with the ordinary least squares method for small sample

size estimation problem.

II. THE MODEL CLASS: POLYNOMIAL TIME-INVARIANT

MODELS

Denote by (Rq)Z the set of functions (sequences) from

the set of integers Z to the set of q-dimensional real vectors

R
q. The behavior (set of trajectories) B of a discrete-time

dynamical system with q external variables is a subset of

(Rq)Z. In practice, we specify B by an equation, e.g., a

higher order difference equation

B := {w | R
(
w,σw, . . . ,σ ℓw

)
= 0}, (1)

where σ is the backwards shift operator

(σw)(t) := w(t + 1)

and R is a multivariable polynomial. The representation (1)

of the system B is refered to as the kernel representation.

In the paper, we study a special case of (1) when q = 2

and

R(w,σw, . . . ,σ ℓw) = f (x)− y

with

w = vec(u,y) :=

[
u

y

]

and

x := vec(w,σw, . . . ,σ ℓ−1w,σ ℓu).

I.e., the model class considered is defined by the nonlinear

difference equation

σ ℓy = f (x). (2)

In (2), the variable u can be chosen freely and the variable

y is determined by u and the initial conditions

wini :=
(
w(−ℓ+ 1), . . . ,w(0)

)
.

In this sense, u is an input, y is an output, and (2) is an

input/output representation of the model. The vector x(t) ∈
R

nx , where

nx := 2ℓ+ 1

contains the variables at ℓ past samples (the state of the

system) and the input at the current moment of time.

The function f is a nx variate polynomial

f (x) = θ1 x
n11
1 · · ·x

n1nx
nx︸ ︷︷ ︸

φ1(x)

+ · · ·+θnθ
x

nnθ 1

1 · · ·x
nnθ nx
nx︸ ︷︷ ︸

φnθ
(x)

=
[
θ1 · · · θnθ

]



φ1(x)
...

φnθ
(x)


= θ⊤φ(x).

The model structure (i.e., the vector of monomials φ ) is

specified by the nθ ×nx matrix N=
[
ni j

]
of their degrees ni j.

A particular model is specified by the model structured and

the model parameter vector θ . With a given model structure,

the model

B(θ ) := {w = [ u
y ] | (2) holds }, (3)

depends on the parameter vector θ only. For the input/output

model (2), the function R is

R(w,σw, . . . ,σ ℓw) =
[
θ⊤ −1

][φ(x)
σ ℓy

]

= θ⊤
extφext(xext) = R(xext)

with

xext :=

[
x

σ ℓy

]

and the degrees matrix specifying R, Next =
[
N 0
0 1

]
.

The special structure of (2), allows us to compute the

response of the model to a given input and initial condition

wini by recursive evaluation of (2) forward in time.

The model class defined by (3) is called polynomial time-

invariant and is denoted by P . Informally, we associate the

complexity of a model B(θ ) ∈ P as the pair of integers:

lag ℓ and number of nonzero coefficients θi in the parameter

vector θ . Similarly, the complexity of the model class,

defined by φ , is the pair of integers: lag ℓ and number of

monomials, i.e., nφ = dim(φ).

In what follows we will consider model structures consist-

ing of all monomials with a bound nmax on the degree. The

corresponding model class is denoted by Pℓ,nmax
. The num-

ber of monomials in a difference equation representation of a

model from Pℓ,nmax
is equal to the number of combinations

of nx − 1 objects out of nx +nmax − 1, i.e.,

nφ =

(
nx +nmax − 1

nx − 1

)
=

(nx +nmax − 1)!

(nx − 1)!nmax!
.

The complexity of the mode class Pℓ,nmax
is nφ .

III. IDENTIFICATION WITH KNOWN STRUCTURE

The considered identification problem is defined as fol-

lows. Given data

w =
(
w(1), . . . ,w(T )

)

generated in the errors-in-variables setup

w = w̄+ w̃, where w̄ ∈ B(θ̄ ) and w̃ ∼ N(0, s̄2I) (4)

find an estimate θ̂ of the true parameter vector θ̄ . Here, w̄ is

a trajectory (the true data) of B(θ̄ ) (the true system) and w̃

is a zero mean white Gaussian measurement noise with vari-

ance s̄2. The true noise variance s̄2 is unknown. It is assumed

that the true model B(θ̄ ) is in the model class of bounded

complexity polynomial time-invariant models Pℓ,nθ
.



A. Maximum-likelihood estimator

The maximum-likelihood estimator for the parameter θ̄ in

the errors-in-variables model (4) is defined by the optimiza-

tion problem

minimize over θ and ŵ ‖w− ŵ‖

subject to ŵ ∈ B̂ ∈ Pℓ,nθ

(5)

As shown in [7], (5) is equivalent to a polynomially struc-

tured low-rank approximation problem

minimize over ŵ ‖w− ŵ‖

subject to rank
(
Φ(ŵ)

)
≤ nφ − 1,

where

Φ(ŵ) :=
[
φext

(
x̂ext(ℓ+ 1)

)
· · · φext

(
x̂ext(T )

)]
.

B. Suboptimal method based on low-rank approximation

Since the model (2) is linear in the parameters, the

parameter vector θ satisfies the system of linear equations
[
θ⊤ −1

]
︸ ︷︷ ︸

θext

Φ(w) = 0. (6)

In case of exact data w = w̄, θ̄ext :=
[
θ̄⊤ −1

]
is in the left

kernel of the extended data matrix Φ(w). Moreover, provided

that the left kernel of Φ(w) is one dimensional, the true

system’s parameter vector θ̄ can be computed from a nonzero

vector θ̂ext in the left kernel of Φ(w) by suitable scaling. The

condition that Φ(w) has one dimensional left kernel, i.e.,

rank
(
Φ(w)

)
= nx (7)

is the nonlinear equivalent of the persistency of excitation

assumption in linear system identification [8]. The normal-

ization needed to determine the parameter vector θ̄ from an

extended parameter vector θ̂ext in the left kernel is

θ̂ :=−
θ̂ext(1 : nx)

θ̂ext(nx + 1)
. (8)

Here we use the Matlab notation x(1 : n) to extract the

sub-vector of the first n elements of a vector x.

Note 1 (Link to total least squares). The normalization (8)

is used in solution of total least squares problem [9].

With noisy data, a heuristic identification method is pro-

posed in this paper by computation of an approximate left

kernel, e.g., by minimization of the residual error

minimize over θext ‖θ⊤
extΦ(w)‖

subject to ‖θext‖= 1.
(9)

Problem (9) is equivalent to minimization of the Rayleigh

quotient

minimize over θext
θ⊤

extΦ(w)Φ⊤(w)θext

θ⊤
extθext

. (10)

It is well known that a global minimum of the Rayleigh

quotient is given by the smallest eigenvalue of the matrix

Φ(w)Φ⊤(w) and a corresponding minimum point θ̂ext is an

eigenvector related to the smallest eigenvalue. Equivalently,

the solution of (9) can be found by the singular value

decomposition.

Lemma 2. Let

Φ(w) :=UΣV⊤

=
[
u1 · · · unθ

unθ+1

]
diag(σ1, . . . ,σnθ

,σnθ+1)V
⊤ (11)

be the (reduced) singular value decomposition of the ex-

tended data matrix Φ(w), defined in (6). Then, problem (9)

has a unique solution θ̂ext = unθ+1 if and only if σnθ
6=σnθ+1.

Proof: Substituting (11) in (10) and defining

z :=U⊤θext,

we obtain an equivalent problem

minimize over z
∑

nθ+1
i=1 σ2

i z2
i

∑
nθ+1
i=1 z2

i

. (12)

A minimum of (12) is achieved at

z =
[
0 · · · 0 1

]⊤
.

It is unique if and only if σnθ
6= σnθ+1. The corresponding

minimum point of (9) is

θ̂ext =Uz = unθ+1.

The method for identification of polynomial time-invariant

systems, based on solution of problem (9), is performing

unstructured low-rank approximation of Φ(w), [10].

C. Bias corrected low-rank approximation

The low-rank approximation method yields an inconsistent

estimator in the errors-in-variables setup. A bias correction

method, called adjusted least squares method, is proposed in

[10, Chapter 7].

The estimate θ̂ obtained by the low-rank approximation

method (9) is biased in the errors-invariables setting (4), i.e.,

E(θ̂ ) 6= θ . We derive a bias correction, which depends on

the noise variance s2. The noise variance, however, can also

be estimated from the data. Simulation results show that the

resulting bias corrected model B(θ̂c) achieves better fit also

for small sample sizes.

Define the matrices

Ψ := Φ(w)Φ⊤(w) and Ψ := Φ(w)Φ
⊤
(w).

The low-rank approximation method computes the extended

parameter estimate θ̂ext as an eigenvector related to the

smallest eigenvalue of Ψ. We construct an adjusted matrix

Ψc, such that the expected value of Ψc equals the true

value Ψ
E(Ψc) = Ψ. (13)

This property ensures that the adjusted estimate θ̂c, obtained

from an eigenvector related to the smallest eigenvalue of Ψc,

is a consistent estimator in the errors-in-variables setting, i.e.,

the estimator θ̂c converges to the true parameter value θ as

the sample size T goes to infinity.



The key tool to achieve bias correction is the sequence of

the Hermite polynomials, defined by the recursion

h0(x) = 1, h1(x) = x, and

hk(x) = xhk−1(x)− (k− 2)hk−2(x), for k = 2,3, . . . (14)

The Hermite polynomials have the deconvolution property

E
(
hk(x+ x̃)

)
= xk, where x̃ ∼ N(0,1). (15)

Let dt be the tth column of Dext. We have,

Ψ =
T

∑
t=1

φ(dt)φ
⊤(dt) =

T

∑
t=1

[
φi(dt)φ j(dt)

]nθ ,nθ

i, j=1
.

The (i, j)th element of Ψ is

ψi j =
T

∑
t=1

d
di1+d j1

1t · · · d
din+d jn

nt =
T

∑
t=1

n

∏
k=1

(dkt + d̃kt)
din+d jn .

Assuming that d̃kt are independent, zero mean, normally

distributed and using the deconvolution property (15) of the

Hermite polynomials, we have that

ψc,i j :=
T

∑
t=1

n

∏
k=1

hdik+d jk
(dkt)

has the unbiasedness property (13), i.e.,

E(ψc,i j) =
T

∑
t=1

n

∏
k=1

d
dik+d jk

kt =: ψ i j.

The elements ψc,i j of the corrected matrix are even poly-

nomials of s of degree less than or equal to

dψ =

⌈
nd+ 1

2

⌉
,

where ⌈·⌉ denotes rounding to the nearest bigger integer.

It is possible to construct the 1× (dψ + 1) vector of the

coefficients of ψc,i j as a polynomial of s2. Note that the

product of Hermite polynomials is a convolution of their

coefficients [10, Chapter 6].

The corrected matrix

Ψc(s
2) = Ψc + s2Ψc,1 + · · ·+ s2dψ Ψc,dψ

is then obtained by computing its elements in the lower

triangular part.

The rows of the parameter θ̂c form a basis for the p-

dimensional (approximate) null space of Ψc(s
2)

ΘΨc(σ
2) = 0.

Computing simultaneously s and θ is a polynomial eigen-

value problem: the noise variance estimate is the minimum

eigenvalue and the parameter estimate is a corresponding

eigenvector.

IV. STRUCTURE SELECTION

The method for structure selection proposed is based on

sparse approximation within a larger model class, e.g., all

monomials φ with bounded total degree.

We assume that the true model structure φ̄ is included in φ ,

i.e., the monomials in φ̄ are a subset of the monomials in φ .

The parameter vector of a less complex model, represented

within a larger model class is a sparse vector. Only the coef-

ficients corresponding to the monomials that are part of the

model’s representation are nonzero. In practice, many real-

life systems have sparse representations. Therefore, sparsity

enforcing prior has a wide range of applications.

Sparsity can be enforced by an ℓ1-norm regularizer:

minimize over θ
∥∥[θ⊤ −1

]
Φ(w)

∥∥
2︸ ︷︷ ︸

fitting error

+ γ ‖θ‖1︸ ︷︷ ︸
regularizer

. (16)

Problem (16) is LS-SVM [11] problem. It is convex and can

be solved globally and efficiently by existing methods. We

use the CVX package [12].

The regularization parameter γ is selected, so that the

computed parameter vector θ̂ has a specified sparsity, i.e.,

the number of nonzero elements in θ̂ is equal to a specified

number nx.

V. IDENTIFICATION EXPERIMENTS

In order to validate the methods presented in the paper,

we perform Monte Carlo experiments with data simulated in

the errors-in-variables setting (4).

A. Simulation setup

The true model

B̄ = {w = [u
y ] | σ2y+ a1σy+ a0y

= cαy3 + b0u+ b1σu+ b2σ2 } (17)

is polynomial time-invariant with

f (x) = θ1u(t)+θ2u(t + 1)+θ3u(t + 2)+

θ4y(t)+θ5y3(t)+θ6y(t + 1). (18)

It belongs to the class P2,3, i.e., ℓ= 2 and nmax = 3.

The degrees matrix N is

u(t) y(t) u(t + 1) y(t + 1) u(t + 2)
φ1 1 0 0 0 0

φ2 0 1 0 0 0

φ3 0 0 1 0 0

φ4 0 0 0 1 0

φ5 0 0 0 0 1

φ6 0 3 0 0 0

The true parameter vector is

θ̄ =
[
−0.5 0.25 −1 −0.25 0.3 0.1

]⊤

The true input signal ū is zero mean white Gaussian.



B. Parameter estimation with simulated data

The relative parameter estimation error

e :=
‖θ̄ − θ̂‖

‖θ̄‖
,

is computed and averaged over K = 100 Monte Carlo exper-

iments. It is plotted as a function of the noise level (noise

standard deviation s) in Figure 1. The result shows that

both the low-rank approximation and bias corrected low-rank

approximation methods recover the exact model from noise

free data and identify more accurate models than the best

linear approximation in case of noisy data, but for noise level

above 0.05, the model identified by the bias corrected low-

rank approximation method is more accurate than the model

identified by the low-rank approximation method. This is

an empirical validation of the main result of the paper: the

accuracy of the low-rank approximation method is improved

by the bias correction procedure.
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Fig. 1. The plot of the estimation error e as a function of the noise
variance shows that both the low-rank approximation and bias corrected
low-rank approximation methods recover the exact model from noise free
data and identify more accurate models than the best linear approximation
in case of noisy data. The main result of the paper is illustrated empirically
but the improve accuracy of the low-rank approximation method by the bias
correction: indeed for noise level above 0.05, the model identified by the
bias corrected low-rank approximation method is more accurate than the
model identified by the low-rank approximation method.

VI. CONCLUSIONS

The main result of the paper is establishing a link between

identification of polynomial time-invariant systems and low-

rank approximation. This result makes possible to use es-

timating methods, developed in the low-rank approximation

setting, for nonlinear system identification. More specifically,

we address the structure selection problem (determining the

monomials that appear in a difference equation representa-

tion of the system) by ℓ1-norm regularization and apply a

bias correction procedure for the parameter estimation step.

The resulting identification method is computationally cheap

due to the use of convex optimization only. Comparison of

the new method with existing state-of-the-art methods on

nonlinear identification benchmark problems and real-data is

a topic of future research.
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