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Compressed Ultrasound Signal Reconstruction using
a Low-rank and Joint-sparse Representation Model

Miaomiao Zhang, Ivan Markovsky, Colas Schretter, Jan D’hooge∗

Abstract—With the introduction of very dense sensor arrays
in ultrasound imaging, data transfer rate and data storage can
become a bottle neck in ultrasound system design. To reduce the
amount of sampled channel data, we propose a new approach
based on the low-rank and joint-sparse model that allows to
exploit the correlations between different ultrasound channels
and transmissions. With this method, the minimum number of
measurements at each channel can be lower than the sparsity in
compressive sensing theory. The accuracy of the reconstruction
is less dependent on the sparse basis. An optimization algorithm,
based on the simultaneous direction method of multipliers, is
proposed to efficiently solve the resulting optimization problem.
Results on different datasets with different experimental settings
show that the proposed method is better adapted to the ultra-
sound signals and can recover the image with fewer samples
(e.g. 10% of the samples) than existing CS-based methods, while
maintaining adequate image quality.

Index Terms—compressive sensing, matrix completion, low-
rank and joint-sparse model, ultrasound imaging

I. INTRODUCTION

UTRASOUND (US) echography is one of the most used
diagnostic imaging techniques as it is real-time, safe,

low-cost and portable. Conventional ultrasound imaging is
usually performed by scanning a medium using sequential
focused beams, each firing allowing the reconstruction of
one line of the final image, i.e. Single-Line-Transmission
(SLT) imaging. A high-resolution image requires sufficient
numbers of transmissions as well as a sampling rate that
is significantly higher than the Nyquist rate of the signal
[1]. Consequently, with such high sampling rate, and taking
into account the number of transmissions and the number of
transducer elements, the amount of sampled data can become
enormous, which restricts the data storage and transportation
in most of the commercial systems today. In this context, the
recently introduced compressive sensing (CS) theory provides
a promising way of reducing the amount of data. The CS
theory shows that if a 1D signal of length M is sparse or
has a sparse representation in a known basis with sparsity k,
then it can be recovered from Ms = O(k log M) incoherent
samples [2]–[4].

Based on the CS theory, a number of strategies have
been proposed to reduce the volume of US data [5]–[22].
Most of the proposed methods can be roughly grouped into
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two categories. The first allows for reducing the number of
transmits by sparsely sampling the spatial domain and is useful
for improving the frame rate [5]–[9]. Even when the number
of transmissions is reduced, the amount of sampled data is
still very large due to the high temporal sampling frequency.
This motivates the second group of methods for reducing the
sampling rate [10]–[22]. However, since the CS theory is per-
formed on 1D signal (including the vectorized representation
of 2D or multi-dimensional signal), the minimum number of
required samples (i.e. Ms = O(k log M)) per line has to
be respected. The above studies mainly look into the use
of different sparse bases or measurement matrix in order to
reduce the number of samples Ms and improve the accuracy
of the reconstructed signal.

In US imaging, signals coming from individual sensor array
elements are highly correlated particularly for elements that
are physically nearby. Similarly, the signals from subsequent
ultrasound transmit events (i.e. close in space and time) are
highly correlated. To improve the performance of CS for
multiple signals, new reconstruction algorithms were designed
based on the assumption that all the 1D signals are jointly
sparse in a known basis, which was referred to as distributed
compressive sensing (DCS) [23]. To further reduce the number
of samples, Basarab et al. [20] and Zhang et al. [24] applied
the DCS framework to US imaging under the assumption that
all the signals to reconstruct have the same sparse support
in the 1D Fourier domain. This hypothesis is reasonable,
since the radio frequency (RF) signals are bandlimited by the
impulse response of the transducer. However, the DCS is an
extension of CS, implying that the reconstruction accuracy of
the DCS algorithm still depends on the choice of the sparse
basis and the measurement matrix. Moreover, the number of
measurements per signal cannot be lower than the sparsity k.

To further exploit the correlations in the spatio-temporal
RF dataset, Jin et al. proposed to use a low-rank matrix
completion (MC) method (i.e. ALOHA, annihilating filtered-
based low-rank Hankel matrix approach) to reduce the number
of transmissions in US signals [25]. Unlike CS, the MC theory
directly performs the reconstruction on a matrix. It states that
a full matrix, which is low rank, can be recovered exactly from
a small number of randomly selected entries from the matrix
when some conditions are met [26]. As such, MC provides a
new way of reducing data size and has been applied to several
fields, such as magnetic resonance imaging [27], radar imaging
[28], fast magnetic resonance spectroscopy [29], multi-modal
recognition [30] and others. However, because of the size of
the pre-beamformed RF data, directly applying the MC theory
on the pre-beamformed RF data matrix is time and memory
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consuming.
In order to further reducing the sampling rate, we propose to

use a low-rank and joint-sparse model to represent the US sig-
nal, which can overcome the sparsity limit of CS and simplify
the MC model. This model has been used in hyperspectral
imaging [31], [32], and multi-modal recognition [33]. The
optimization problem in [31]–[33] was built to recover the
original signal matrix. In this manuscript, to further reduce
the sampling rate and improve the reconstruction accuracy,
we reformulated the optimization problem to reconstruct the
Fourier coefficients instead of the original signal matrix. Thus,
the problem is much simplified because of the bandpass
characteristic (i.e. joint-sparse in 1D Fourier domain) of the
US signal. An algorithm based on simultaneous direction
method of multipliers (SDMM) [34]–[36] is also proposed to
solve the associate optimization problem.

The remainder of the paper is organized as follows. First, we
formulate our problem as a convex optimization problem based
on low-rank and joint-sparse model and proposed a SDMM-
based algorithm to efficiently solve it in Section II. In Section
IV, simulated and experimental results are provided to validate
and evaluate the performance of the proposed approach. The
discussion is provided in Section V, while the conclusions are
drawn in Section VI.

II. METHODOLOGY

The motivation to formulate a low-rank and joint-sparse
model comes from the observation that the pre-beamformed
US signals from different transducer elements are joint-sparse
in the Fourier domain and also correlated between trans-
missions. Both properties imply that they show a low lank
structure when represented as a matrix.

A. Low-rank and joint-sparse model of the US signals

Let us rearrange all the received pre-beamformed RF data
in a 2D matrix X ∈ RM×N , where M is the number of
samples along depth and N is the total number of RF signals
(i.e. the number of transmissions multiply by the number of
active elements for each transmission). For each channel, n =
1, 2, ..., N , we denote xn as a vector signal of M samples.
It is shown in [10], [14], [20] that the RF signal is sparse
and also joint-sparse in the Fourier domain with a sparsity
of k (k � M ), which means that each sample xn(m) can be
modeled as a weighted sum of complex sinusoids at k discrete
frequencies fi, 1 ≤ i ≤ k, i.e.

xn(m) =

k∑
i=1

di,n e
j2π fim =

k∑
i=1

di,ny
m
i , 0 ≤ m < M (1)

where for any i we define yi = ej2π fi . In conventional
CS-based methods, those frequencies fi and sparsity k are
unknown. But, in fact, because of the bandpass characteristic
of the US transducer, most of the energy of the Fourier
spectrum is concentrated in ±[fc/2, 3fc/2] (i.e. the bandwidth
of the transducer is 1), where fc is the center frequency
of the RF signal. Therefore, under such assumption, those
frequencies fi are known and k = M(2fc/fs), where fs is the

sampling frequency of the RF signal. Applying such relation
to all the columns of X, we can then express the 2D RF data
X in a matrix form as:

X = YD (2)

with

Y =


1 1 · · · 1
y1 y2 · · · yk
...

...
...

...
yM−1

1 yM−1
2 · · · yM−1

k


M× k

(3)

and

D =


d1,1 d1,2 · · · d1,N

d2,1 d2,2 · · · d2,N

...
...

...
...

dk,1 dk,2 · · · dk,N


k×N

(4)

where Y is a partial 1D Fourier matrix with frequencies fi and
D is the Fourier coefficient matrix of X corresponding to Y.
Since the maximum bandwidth of the RF signals is 1, some
rows of D maybe zeros (i.e. the real bandwidth of the acquired
RF signal is smaller than 1). The above factorization form in
(2) also implies a low-rank structure of X with:

rank(X) ≤ k, when k < N (5)

where rank(X) = k if and only if D is full-rank (i.e. the k
rows of D are independent). In practice, thanks to the strong
correlation between US signals, we have rank(X) < k (An
example is given to show this relation in Appendix). Thus, X
has a low-rank and joint-sparse structure when we have enough
number of US channel signals, i.e. N > rank(X). Fortunately,
in the field of US, the above condition is generally satisfied
with N � rank(X), implying that the low-rank and joint-
sparse property can be applied in US signal reconstruction.

B. Signal reconstruction model

Assuming that the data is contaminated by random noise,
the measurements B can be modeled as :

B = PΩ(X) + Ne (6)

where Ω is a set of locations where the signal xn(m) is
observed, i.e. xn(m) known if (m,n) ∈ Ω. PΩ(X) represents
the corresponding values of X in the locations of Ω, i.e.
PΩ(X) = PΩ · X, where PΩ is a matrix with 1 in the
locations Ω and 0 elsewhere. Ne is the additive noise term.
In these settings, the reconstruction problem thus amounts to
obtain X from (6), under the constraint that X is low-rank
and joint-sparse. This problem could be reformulated as an
unconstrained optimization problem as in [37], [38]:

X̂ = arg min
X
||X||∗ + α ||YtX||2,1 +

1

2µ
||B− PΩ(X)||2F (7)

where ||X||∗ =
∑
i σi is the sum of the singular values (i.e.

the nuclear norm) that aims at imposing the low-rank property
of X. This assumption has been extensively used in Matrix
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Completion, see [26], [40], [41]; Yt is the adjoint operator of
Y with the relation YtX = D. In our case, Yt and Y are the
Fourier and Inverse Fourier matrix with effective frequencies
fi; ||D||2,1 =

∑k
i=1

∣∣∣∣di∣∣∣∣
2

(i.e. the `2,1 norm) that is used to
explore the joint sparsity property of D and di denotes the i-th
row of D [39]; ||·||F is the Frobenius norm. The parameters
α and µ give the trade-off among the nuclear norm term
||X||∗, the `2,1 norm term ||YtX||2,1 and the data consistency
term ||B− PΩ(X)||2F . Fundamentally, we are looking for a 2D
matrix with minimum rank and joint-sparsity subject to the
acquired data. Thanks to the relation between X and D in (2)
and the fact that Y is a known full rank matrix, minimizing the
nuclear norm of X is the same as D. Thus the above problem
(7) could be reformulated as:

D̂ = arg min
D
||D||∗ + α ||D||2,1 +

1

2µ
||B− PΩ(YD)||2F (8)

The objective function in (8) aims at estimating D instead of
X directly from the acquired samples. It is worth to notice that
D is a k × N matrix with k �M , which means the number
of variables to be estimated in D is M

k times less than X and
the problem (7) is much simplified. To solve the optimization
problem in (8), we proposed hereafter an algorithm based
on the simultaneous direction method of multipliers (SDMM)
[34]–[36].

C. Optimization and implementation details
In this section, we adapted the SDMM optimization frame-

work (see Section II in [36] for more details) to solve the
problem in (8). First, we reformulate (8) as the following
constrained minimization problem:

arg min
W1,W2,W3,D

g1(W1) + g2(W2) + g3(W3) (9)

with 

g1(W1) = ||W1||∗
g2(W2) = α ||W2||2,1
g3(W3) = 1

2µ ||B− PΩ(W3)||2F
W1 = D
W2 = D
W3 = YD

Using the above parametrization, the SDMM iteratively
solves the above optimization problem as follows:

Step 1: aims at updating D by:

Ds+1 = arg min
D

1

2γ

∣∣∣∣∣∣
∣∣∣∣∣∣
bs1

bs2
bs3

+

 I
I
Y

D−

Ws
1

Ws
2

Ws
3

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(10)

where b1, b2 and b3 are Lagrangian parameters that have the
same dimensions as W1, W2 and W3, respectively. (·)s means
the updated value of (·) from the s-th iteration. γ > 0 is a
penalty parameter. (10) is a classical l2 norm minimization
problem and can be efficiently solved by setting it to zero.
Then the final solution of D is:

Ds+1 =
(Ws

1 − bs1) + (Ws
2 − bs2) + Yt(Ws

3 − bs3)

3
(11)

Step 2: consists in solving wi using:

Ws+1
1

Ws+1
2

Ws+1
3

 = arg min
w1,w2,w3

 1

2γ

∣∣∣∣∣∣
∣∣∣∣∣∣
bs1

bs2
bs3

+

 I
I
Y

Ds+1

−

W1

W2

W3

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

+

3∑
i=1

gi(Wi)

 (12)

Due to the separate structure of (12), it can be solved
by minimizing the three subproblems that correspond to the
update of W1, W2 and W3, respectively.

Step 2.1: updating W1:

Ws+1
1 = arg min

W1

||W1||∗ +
1

2γ

∣∣∣∣bs1 + Ds+1 −W1

∣∣∣∣2
F

= arg min
W1

γ ||W1||∗ +
1

2

∣∣∣∣bs1 + Ds+1 −W1

∣∣∣∣2
F

(13)

This is the well-known Matrix Completion problem whose
solution is given by shrinking the singular values of bs1 +Ds+1

[40], [42]:

Ws+1
1 = US(Σ, γ)VT (14)

where UΣVT is the Singular Value Decomposition (SVD) of
bs1 + Ds+1, S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero
otherwise.

Step 2.2: updating W2:

Ws+1
2 = arg min

W2

α ||W2||2,1 +
1

2γ

∣∣∣∣bs2 + Ds+1 −W2

∣∣∣∣2
F

= arg min
W2

αγ ||W2||2,1 +
1

2

∣∣∣∣bs2 + Ds+1 −W2

∣∣∣∣2
F

(15)

Due to the separate structure of `2,1 norm, this problem
could be solved by minimizing each row of W2 separately
[43]. Let P = bs2 + Ds+1, pi and Wi,s+1

2 be the i-th row of
matrices P and Ws+1

2 , respectively. The closed form solution
for each row of Ws+1

2 is given as follows:

Wi,s+1
2 =

(
1− αγ

||pi||2

)
+

pi (16)

where (v)+ is a vector with entries receiving values
max(vi, 0).

Step 2.3: updating W3:

Ws+1
3 = arg min

W3

1

2µ
||B− PΩ(W3)||2F

+
1

2γ

∣∣∣∣bs3 + YDs+1 −W3

∣∣∣∣2
F

(17)

This equation could be easily solved by setting the first-
order derivative equal to zero. Furthermore, Ws+1

3 could be
expressed as a summation of two sub-matrices PΩ(Ws+1

3 ) and
PΩ̃(Ws+1

3 ), where PΩ̃(Ws+1
3 ) represents the corresponding
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values of Ws+1
3 out of the locations of Ω. The final solution

of Ws+1
3 is given below:

Ws+1
3 = PΩ(Ws+1

3 ) + PΩ̃(Ws+1
3 ) (18)

with{
PΩ(Ws+1

3 ) = (γPΩ(B) + µPΩ(bs3 + YDs+1))/(γ + µ)
PΩ̃(Ws+1

3 ) = PΩ̃(bs3 + YDs+1)
(19)

Step 3: Finally, the Lagrange parameters are updated as:

bs+1
1

bs+1
2

bs+1
3

 =

bs1
bs2
bs3

+

 I
I
Y

Ds+1 −

Ws+1
1

Ws+1
2

Ws+1
3

 (20)

To conclude, the proposed SDMM-based numerical scheme
for solving (8) is summarized in Algorithm 1.

Algorithm 1 Proposed algorithm for solving (8)
Input: B,Y,PΩ, γ, α, µ
Initialization: bsi ,W

s
i , i = 1, 2, 3

while not converged do
Ds+1 ← bsi ,W

s
i ⇔ update Ds+1 using (11)

Ws+1
1 ← bs1,D

s+1 ⇔ update Ws+1
1 using (14)

Ws+1
2 ← bs2,D

s+1 ⇔ update Ws+1
2 using (16)

Ws+1
3 ← bs3,D

s+1 ⇔ update Ws+1
3 using (18)

bs+1
i ← bsi ,D

s+1,Ws+1
i ⇔ update bs+1

i using (20)
end while
Output: D

III. EXPERIMENTS

The performance of the proposed low-rank and joint-sparse
method is evaluated on conventional SLT images. First, we test
our algorithm on linear images to confirm that the proposed
low-rank and joint-sparse model is well adapted to US RF sig-
nals and to contrast its performance to two CS-based methods
introduced in Section III-A. Then, the proposed method is
also evaluated on SLT sectorial images of the heart in vivo
and compared with the conventional CS method for both RF
and In-phase and Quadrature (IQ) datasets. All the signals
are uniformly randomly sampled with different sampling rates
(SR).

A. CS-based methods for comparison

The CS theory allows the reconstruction of a signal v ∈ RM

from a small number of measurements b ∈ Rc, c < M with
the following relation:

b = ΦΨ v + e = Av + e (21)

where A = ΦΨ, is a c × M full rank matrix, Φ is a c ×
M sampling matrix, Ψ is a M × M sparse basis, v is the
corresponding coefficients and e represents a noise term with
bounded energy ||e||2 ≤ ε. The reconstruction problem aims
at recovering v from b. Once v is estimated, the signal can be
computed by Ψ v.

1) Conventional CS method: When v is sparse, the above
reconstruction can be performed by solving the following
minimization problem [44]:

v̂ = arg min ||v||1 subject to ||b−Av||2 ≤ ε (22)

In each case of the testing datasets, the conventional CS
reconstruction was performed on each RF signal individually.
To be consistent with the proposed method, we used a standard
DFT (Discrete Fourier Transform) matrix as the sparse basis
Ψ. The reconstruction problem (22) was solved through the `1
minimization using the spectral projected-gradient algorithm
SPGL1 [45] with ε = 1e−12.

2) Method proposed by Schretter et al. : Instead of using
a standard basis Ψ and assuming v is sparse, Schretter et
al. proposed to model the final B-mode image as being
composed of a linear combination of independent overlapping
imaging elements [46]. Therefore, the raw RF measurements
of one transmission can be decomposed into a small set of
system point spread functions (PSFs). Thus Ψ is a collection
of all PSFs in one transmission (please refer to [46] for
detailed description) and the signal Ψ v to reconstruct is a
vectorized representation of all the received raw signals for
one transmission. The corresponding coefficient v could be
obtained by solving the following approximation problem:

v̂ = arg min ||b−Av||2 (23)

For SLT linear images, since each transmission has the same
setting, those PSFs used to form Ψ are the same for all the
transmissions. In this paper, we did the same as in [46] to
compute PSFs using the ultrasound simulation package Field
II [47]. The reconstruction problem (23) was solved by least
squares regression (minimum l2-norm residuals) with solution:

v̂ = [ATA]−1AT b (24)

B. Reconstruction protocol

For all the tests, each reconstructed image was obtained
from the following protocol.

i) Original raw RF signals of 1 image were acquired using
SLT transmission scheme at different directions and
rearranged as a matrix X;

ii) Those signals were down-sampled at positions PΩ (or Φ
in CS-based methods) to get the measurements B;

iii) Then B was processed either using the proposed method
or the compared methods in Section III-A to reconstruct
the full signal matrix X̂;

iv) The original RF signals X and the estimated X̂ were
then beamformed using Delay-and-Sum (DAS) and the
corresponding envelope images were derived through a
Hilbert transform;

v) The normalized envelope image was gamma-compressed
using gamma = 0.3 as in [48] and finally converted into
an 8-bit grayscale B-mode image.
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C. Evaluation metrics

To quantify the reconstruction error, the normalized root-
mean-square error (NRMSE) of the beamformed RF image
was calculated as in [5],

NRMSE =

√
1

MbNf

∑Mb

b=1

∑Nf

f=1(I ′(b, f)− I(b, f))2

maxb,f |I(b, f)|
(25)

where I(b, f) and I ′(b, f) denote the beamformed RF image
from the original dataset and recovered dataset using the
proposed method or the method of Schretter et al. Mb and Nf
are the numbers of samples along depth and lateral directions
of the image.

The image quality was also assessed from the image contrast
at different regions of the image. The contrast was mea-
sured from the B-mode images using the following classical
contrast-to-noise-ratio (CNR):

CNR = 20 log10

|µt − µb|√
(σ2
t + σ2

b )/2
(26)

where µt and µb (σ2
t and σ2

b ) are the means (variances) of the
gray levels in the target and background region, respectively.

D. Linear imaging setup

For comparison purposes, the same simulated and exper-
imental settings were used as Schretter et al. in [46]. The
parameters of acquisitions are shown in Table I. A numerical
phantom, which contains five high-scattering point sources,
five higher scattering regions and five regions without scat-
terers (See Fig. 2), was used to simulate the ground-truth
channels data in Field II [47]. The in vitro experiment data
was acquired using a Prosonic L14-5W/60 linear probe on a
CIRS 054GS general purpose phantom.

TABLE I
LINEAR IMAGE EXPERIMENTAL SETTINGS

Parameters Simulation Acquisition
Center frequency (fc) 3.5 MHz 7 MHz
Sampling frequency (fs) 25 MHz 40 MHz
Focal depth 60 mm 30 mm
Number of probe elements 192 128
Elements width 0.44 mm 0.46 mm
Elements height 5 mm 4 mm
Elements kerf 0.05 mm 0.012 mm
Number of active elements in transmission 64 32
Number of active elements in reception 64 32
Number of transmissions 100 97
Apodization in reception Hanning Hanning

E. Sectorial imaging setup

The in vivo cardiac data was collected from a healthy
volunteer and the experiment was performed using a fully
programmable ultrasound system (HD-PULSE [49]) equipped
with a commercially available Samsung phased array probe
P2-5AC (64 elements, center frequency of 3.5 MHz, band-
width of 60%). All signals were sampled at 25MHz. The focal
depth of the SLT transmissions was set at 50 mm and steering
angles from −35◦ to 35◦ in 1◦ steps were made, resulting in

71 transmissions. No apodization was used in transmission or
reception. All the backscattered RF data was acquired first,
then it was demodulated with a sampling frequency of 3.57
MHz to get the corresponding IQ data, i.e. down sample factor
is 7.

IV. RESULTS

For all the experiments below, the proposed algo-
rithm stopped when the convergence criterion η =∣∣∣∣Ds − Ds−1

∣∣∣∣ / ∣∣∣∣Ds−1
∣∣∣∣ < 5 × 1e−4 was satisfied, the

initial values of (bsi ,W
s
i , i = 1, 2, 3) are zeros and the

other parameters γ, α, µ were obtained through cross val-
idation. This resulted in these parameters to be set to
{γ, α, µ} = {10, 0.1, 1e−6} for the linear simulated images
and {γ, α, µ} = {1, 0.1, 1e−6} for the linear experimental
images. Then for sectorial images, {γ, α, µ} = {1, 0.01, 1e−6}
and {γ, α, µ} = {1, 1, 1e−6} are used for both RF and IQ
datasets, respectively. The procedure of cross-validation and
the influence of these parameters on the results are further
investigated in Section IV-A2. The bandwidth of all the US
datasets was assumed to be 1 to determine the first dimension
of D, i.e. the estimated sparsity k of the RF signal in Fourier
basis. Those quantitative results (i.e. NRMSE and CNR) are
the mean values of five experiments.

A. Linear images

Fig. 1. Normalized root-mean-square error (NRMSE) for the proposed
method, the CS method and the method of Schretter et al. with different
sampling rates.

1) Simulation results: Figure 1 plots the NRMSE of the
beamformed RF images with different sampling rates (SR) for
the simulated phantom (see Figure 2). Firstly, it can be seen
that the proposed method outperforms the other two methods
for all sampling rates. In particular, it can be observed that
even with 10% of samples, the proposed approach can almost
totally recover the whole image with an error less than 1%
while the conventional CS method has an error of about 4%.
It is worth to note that, for this dataset, the sparsity of the
signal k is about M 2fc

fs
= 28%M , where M is the number of

time samples of the full signal, i.e. the sparsity is about 28%
of the signal length. This explains the phenomenon that the
NRMSE of conventional CS method increased significantly
for sampling rates of 10% and 20%. In other words, the
sampling rate cannot be lower than 28% for CS method,
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Fig. 2. Reference B-mode image of simulated phantom and the images reconstructed using the three approaches with different sampling rate. The red dash
line in the reference image represents the line used in Fig.3.

while the proposed method can almost perfectly recover the
whole signal with only 10% samples. Moreover, compared
to the Nyquist frequency 4fc = 14 MHz, the sampling
frequency of the proposed method is about 0.1fs = 2.5 MHz,
which significantly reduce the amount of sampled channel
data. Additionally, the NRMSE decreases as the sampling
rate increases for the proposed method and conventional CS

method while it is sampling rate invariant for the method of
Schretter et al. This behavior can be explained by the fact
that the method used by Schretter et al. is a least square
problem (as shown in Eq.(24)). When the least-square problem
is well posed, increasing the number of measurements does
not significantly improve the image quality. In other words,
the proposed approach is more adapted to US signals. Figure
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Fig. 3. Zoomed-in comparisons of the red dash line in the reference image and the recovered images from the three methods using 20% of data samples.

2 displays the corresponding images reconstructed from the
proposed method, the conventional CS method and Schretter et
al. for different sampling rates. Visually, strong artifacts appear
for the images reconstructed by the conventional CS method
with 10% and 20% samples. All the other reconstructed
images are quite similar and close to the reference image.
The 1% difference in NRMSE for the proposed method and
the method of Schretter et al. cannot be seen. Therefore, we
show in Figure 3 the difference of part of the red dash line
in the reference image and the images reconstructed by the
three approaches with 20% of samples. As can be seen, the
proposed approach can recover the signal more accurately,
while the CS method and the method of Schretter et al. have
larger differences in terms of amplitudes and phase. This is
consistent with the observations in Figure 1.

2) Sensitivity of the parameters: It is obvious that the input
parameters (i.e. γ, α, µ) of Algorithm 1 and the tolerance
of convergence criterion η have impact on the quality of
reconstruction. Given a certain convergence tolerance (e.g. η <
5× 1e−4 in this paper), these parameters (γ, α, µ) are obtained
through a cross-validation process: First α and µ are fixed and
γ is optimized to find the smallest reconstruction error (i.e.
NRMSE), where α is set to 0 to find the best γ to minimizing
the low-rank term of D, µ = 1e−6 to ensure the small error
caused by the data consistency term. Then using this optimal
value of γ and µ = 1e−6, α is optimized to find the smallest

reconstruction error. Finally, using the optimal values of γ
and α, µ is optimized to find the smallest reconstruction error.
Figure 4 shows the influence of these parameters γ, α and µ
on the reconstruction results (i.e. NRMSE) using the simulated
dataset. It can be observed that the three parameters have a
similar effect on reconstruction quality for different sampling
rates implying that a single sampling rate can be investigated
to understand their impact. In particular, the best results are
obtained for γ ∈ [0.1, 10] and within this range, the choice
of γ has little impact on the reconstruction quality. This can
be explained by the fact that γ is an auxiliary parameter used
in the SDMM framework, it mainly affects the convergence
speed of the proposed algorithm. The bigger the value of γ,
the faster the convergence. However, since γ is also used in
the three sub-optimization problems of Step 2, it influences
the reconstruction results implying that when taken too large
it negatively affects the reconstruction quality. The other two
parameters α and µ provide the compromise among the three
terms of (8). The best results are obtained for α ≤ 10 and
µ ≤ 1e−5, corresponding to a small weight of the `21 norm
term and an important weight of the data consistency term.
Since the joint-sparsity property of D has been used in (1) to
select the effective frequencies of each dn, the weight of the
`21 term is actually proportional to the difference between the
real bandwidth of the signal and 1. If the real bandwidth is 1,
only minimizing the low-rank property of the data is enough
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Fig. 4. The impact of γ, α and µ on the performance of proposed method in Figure 2.

and α = 0. Otherwise, there is a weight of the `21 norm
term, i.e. α > 0. Because of the small difference between
the real bandwidth and 1, α is small and cannot be bigger
than a certain value (e.g. 10 in this experiment). The data
consistency term only has influence on the sampled positions
of the reconstructed signal which, in the best case, exactly
match the observed samples. As such, beyond a certain value
of µ (i.e. 1e−5 in this experiment), the choice of µ has almost
no impact on the results. Based on this sensitivity analysis,
these parameters were set to {γ, α, µ} = {10, 0.1, 1e−6} for
the remainder of the liner image study.

Fig. 5. The impact of the stop criterion η on the performance of proposed
method in Figure 2.

Once the input parameters are fixed, the final optimization
result is only influenced by the stop criterion of the algorithm.
Figure 5 shows the impact of the stopping condition on the
performance of the proposed algorithm. Obviously, a more
strict stopping condition needs more iterations and results in a
better result (i.e. small NRMSE). It also can be seen that when
the convergence tolerance η is smaller than 5× 1e−3, there is
a little further gain in reconstruction quality while the number
of iterations is significantly increased. In this paper, a strict
stopping condition tolerance of 5× 1e−4 was therefore used to
guarantee the optimized result for all experiments. However,
if both the reconstruction error and the reconstruction time

(i.e. the number of iterations) are considered, a tolerance of
η < 5× 1e−3 seems to be a good trade-off.

3) Experimental results: Figure 6 presents the B-mode
images reconstructed by the three approaches for different
sampling rates. As can be seen, with 10% of samples, strong
artifacts appear for conventional CS method and the method of
Schretter et al. fails, while the proposed approach can recover
the image accurately. The method of Schretter et al. fails
because of the insufficient number of samples, which results in
a non-invertible Gram matrix [ATA] in Eq.(24). This aspect
could be improved by using a dictionary with less number
of PSFs or swapping the left Moore-Penrose pseudoinverse
for a right-sided one. Visually, the other successfully recon-
structed images look very similar to the reference image as
in simulation. The quality of the reconstructed images was
then quantitatively evaluated by CNR. The hyperechoic and
background region used in the CNR calculation are marked
with red and yellow rectangular boxes in Figure 6. The CNRs
of the three methods for different sampling rates are shown in
Table II. The proposed method and the method of Schretter
et al. yield very similar results with the reference image (i.e.
less than 0.1 dB difference), while the CS method produces
a much lower CNR with 10% and 20% samples. This can be
explained by the fact that the number of samples is less than
the sparsity k.

TABLE II
CNR ASSESSMENT FOR LINEAR SCAN EXPERIMENTAL DATA

Methods Reference CNR Sampling Rate
10% 20% 30% 40%

Proposed
7.11

7.02 7.03 7.08 7.09
CS 5.54 6.51 6.93 6.96

Schretter et al. - 7.17 7.13 7.05

B. Sectorial images

A direct comparison with the method of Schretter et al. was
not performed as the dictionary used in this method is not
suited for this scan geometry. For conventional CS method, it
has been shown that strong artifacts would appear when the
number of samples is lower than the sparsity k. In addition,
the sparsity k in Fourier basis is almost the same as the
full number of samples M for IQ dataset. Therefore, in this
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Fig. 6. Original B-mode image and the images reconstructed using the three approaches with different sampling rates. The red and yellow block in the
reference image represent the regions used to compute CNR.

section, only the proposed method was evaluated for both RF
and IQ datasets.

1) Application on RF data: The reconstructed images are
shown in Figure 7 for different sampling rates. Two different
regions of target and background for computing CNR are
highlighted by the red and yellow boxes as T1, T2 and B1,
B2. Table III gives the corresponding CNR assessment. It
is obvious to see that strong artifacts appear for the recon-
structed image with a sampling rate of 5%, corresponding
to a reduction in CNR of about 2.5 dB. However, when
the sampling rate increases, the artifacts disappear and the
CNR improves, resulting in images visually very similar to
the reference image. Unlike results obtained in the liner scan,
there is an obvious degradation of CNR (i.e. 0.73 dB) for the
cardiac image reconstructed from 10% of samples. This could
be explained by many aspects, such as the higher measurement
noise of the acquisition system, the motion-related artifacts of
the in vivo heart and the sectorial transmission scheme. All
these aspects lead to a poorer low-rank property of the original
data matrix. Nevertheless, both the visual impression and the
CNR results show the ability of our method to recover the
image from fewer samples (i.e. 20% here) while maintaining
almost the same image quality.

TABLE III
CNR ASSESSMENT OF THE PROPOSED METHOD FOR CARDIAC

RF DATA

Regions Reference CNR Sampling Rate
5% 10% 20% 30% 40%

T1 & B1 9.83 7.13 9.10 9.80 9.82 9.83
T2 & B2 9.07 6.63 8.3 9.11 9.17 9.15

2) Application on IQ data: Figure 8 displays the images
reconstructed from the IQ dataset using the proposed method
with different sampling rates. The corresponding CNRs were
also measured and shown in Table IV. Compared to the RF
dataset results, the reference CNR changed a little bit (around
0.3 dB), which may be caused by the low-pass filter that we
used during the IQ demodulation process. As shown in table
IV, the CNR increases with the sampling rate. If we assume
that a difference in CNR between the reconstructed image and
the reference image of around 0.1 dB means no degradation
in image quality, the proposed method can reconstruct the
original image with 70% of the IQ samples. Taking into
account the down sample factor (i.e. 7) in IQ demodulation
and a sampling rate of 70% on the IQ data, the final amount
of data is about 10% of the original acquired signals, which
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Fig. 7. Original in vivo cardiac image and the images reconstructed by the proposed method with different sampling rates. The red and yellow block in the
reference image represent the regions used to compute CNR.

gains a better data compression rate than RF data. This could
be explained by the fact that only half of the Fourier spectrum
is used in IQ dataset, leading to a better low-rank property
of the data matrix. In addition, it is worth to notice that the
sampling frequency of the IQ data is almost the same as the
center frequency (3.5 MHz). As a result, the estimation of D
in (8) does not simplify the problem, because D is the same
size as X in (7) for IQ data.

TABLE IV
CNR ASSESSMENT OF THE PROPOSED METHOD FOR CARDIAC

IQ DATA

Regions Reference CNR Sampling Rate
30% 40% 50% 60% 70%

T1 & B1 9.52 8.88 9.30 9.43 9.54 9.58
T2 & B2 9.49 8.40 8.79 8.81 9.27 9.34

Overall Sampling Rate 4.3% 5.7% 7.1% 8.6% 10%

V. DISCUSSION

A. Performance of the proposed approach

In this study, we proposed to use a low-rank and joint-sparse
model to represent US signals and an efficient optimization
algorithm to further reduce the sampling rate. Unlike existing
strategies, the proposed method allows exploring the corre-
lations between different channels and transmissions and the
performance of the algorithm is less dependent on the sparse
basis. In addition, the proposed approach simultaneously re-
constructs the whole data matrix instead of reconstructing the
data channel by channel. The results obtained from different
datasets revealed that the proposed approach can reduce the
sampling rate by 80-90% while keeping adequate image qual-
ity.

Compared to the strong artifacts of CS method and the
failure of Schretter et al. in Figure 6 at 10% of sampling
rate, the proposed approach achieves almost the same image
quality as the reference image with a reduction of CNR less
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Fig. 8. Original in vivo cardiac image and the images reconstructed by the proposed method with different sampling rate on IQ data. The red and yellow
block in the reference image represent the regions used to compute CNR.

Fig. 9. Original B-mode image and the image reconstructed using the proposed approach with 5% and 2.5% of samples. The red and yellow block in the
reference image represent the regions used to compute CNR.

than 0.1 dB. Therefore, it is interesting to investigate how the
proposed approach performs in extreme cases, i.e. the image
quality of the proposed approach with even fewer samples.
Figure 9 displays the reference B-mode image and the images
reconstructed from the proposed approach using 5% and 2.5%
of data samples, respectively. As can be seen, the proposed
approach can preserve the main structure of the image even
with 2.5% of samples, such as the hyperechoic cyst. However,
strong artifacts appear and the image quality is deteriorated.
The CNR of the corresponding images are 7.11 dB, 6.67 dB

and 3.15 dB, respectively.

B. Reconstruction time

As can be seen from Figure 5, for a given data, the number
of iterations is much related to the tolerance of the stopping
criterion, i.e. a smaller tolerance requires more iterations
to converge. For a given stopping condition (i.e. 5e−4 in
this paper), the computation time for the proposed SDMM-
based algorithm is proportional to the total data size of the
original signals and inversely proportional to the sampling
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rate. With the same sampling rate, the bigger the original data
size, the more variables need to be recovered and the SVD
decomposition in Step 2.1 of the optimization algorithm takes
more time in each iteration. For example, with the in vivo RF
dataset in Figure 7 (matrix size 4838 × 4544) and 40% of
samples, it takes about 3 hours to recover the whole dataset
in Matlab 2017a (The Mathworks, Inc. Natick, MA, USA)
on LENOVO Ideapad 700 (Intel CORE i7-6700 HQ CPU @
2.60 GHz , 16 GB RAM) while it takes about 30 minutes
for the IQ dataset (matrix size 692× 4544). The computation
time could also be reduced by avoiding SVD decompositions
like [29]. Similarly, with the same data size, it can also
be observed from Figure 5 that the number of iterations is
inversely proportional to the sampling rate, i.e. the smaller the
sampling rate, the more variables need to be recovered and
the algorithm needs more iterations to converge. In addition,
the current implementation solves exactly the intermediate
optimization problems at each iteration. It could also be sped
up with partial updates where the cost function is reduced at
each iteration, but not minimized. The computational time can
be further reduced by using graphics processing unit (GPU).

VI. CONCLUSION

This paper introduces a new strategy to modeling and reduc-
ing the sampling rate based on the low-rank and joint-sparse
structure between the US signals from different channels
and transmissions. A SDMM-based optimization algorithm
is thus proposed to efficiently solve the resulting problem.
Simulations, phantom experiments and in vivo experiments
were performed to validate and evaluate the proposed method.
The results demonstrate that the proposed approach is capable
of reconstructing the whole image from a sparse set of samples
(e.g. 10% of samples) while keeping adequate image quality.
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APPENDIX

To better illustrate the low-rank and joint-sparse property of
the ultrasound rawdata, we take the simulated data of Figure
2 in the paper as an example. For this dataset, the size of X is
1948×6400, i.e. M is 1948 (the number of time samples along
depth for each channel) and N is 6400 (the total number of
received channels for one image). Under the assumption that
the band width of the transmitter is 1, then k = 2 ∗ f0/fs ≈
546. Figure 10 shows the amplitudes of each column of D.
For samples around the center, the amplitudes are zero. This
corresponds to rows of zeros in the D matrix and justifies the
use of the joint-sparsity prior ||D||2,1 in problem (8). Figure

11 shows the singular values of D. From this figure, we can
see that the rank(D) is around 400. Thus we have the relation
rank(X) < k < N and we use the nuclear norm term ||D||∗
in (8).

Fig. 10. Amplitudes of each column of D.

Fig. 11. Singular values of D.
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