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Abstract

The identification problem in case of data with missing values is challenging and currently not fully understood. For example, there are
no general nonconservative identifiability results, nor provably correct data efficient methods. In this paper, we consider a special case
of periodically missing output samples, where all but one output sample per period may be missing. The novel idea is to use a lifting
operation that converts the original problem with missing data into an equivalent standard identification problem. The key step is the
inverse transformation from the lifted to the original system, which requires computation of a matrix root. The well-posedness of the
inverse transformation depends on the eigenvalues of the system. Under an assumption on the eigenvalues, which is not verifiable from
the data, and a persistency of excitation-type assumption on the data, the method based on lifting recovers the data-generating system.
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1 Introduction

The standard setup in system identification is that the data
consists of equidistantly sampled input/output variables of
the to-be-identified system. If even a single variable is miss-
ing at one moment of time, the whole dataset can not be used
by standard identification methods. Due to the time-series
nature of the data, unless the missing variable appears in the
first or the last sample, it can not be skipped. It should be
estimated together with the system. This led to the devel-
opment of specialized methods for identification of linear
time-invariant systems from data with missing values, see,
e.g., [9,3,22,8,11,21,18,14]. Alternatively, the data can be
split into two datasets—one before the missing sample and
one after it. The two data sets should be fitted then by one
model. For multiple missing variables, scattered over dif-
ferent moments of time, the data becomes fragmented into
multiple short data sets. The worst distribution of the miss-
ing samples is periodic and the best is lumped missing data
in the beginning or at the end. In the former case, the data is
maximally fragmented into short sub-trajectories, while in
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the latter case the missing samples can be discarded, leav-
ing one maximally long complete trajectory. Efficient meth-
ods that fit simultaneously multiple data sets are proposed
in [17]. Applied to the problem of identification from data
with missing values, however, they are not data efficient be-
cause of unexploited relations among the data sets.

The approach based on simultaneous estimation of the miss-
ing data and identification of the underlying data-generating
system is data efficient, however, it leads to a nonconvex
optimization problem. There are different heuristics in the
literature that can be used for solving it. We mention the
local optimization method based on the variables projec-
tions [18,13], methods using convex relaxations based on
the nuclear norm [5,11], and the subspace method of [14].
Particularly interesting is the subspace method of [14] as it
is noniterative and has theoretical guarantees to recover the
data-generating system in case of exact data satisfying suit-
able assumptions. These assumptions, however, can not be
checked a priori as they are not explicitly given as in the
classical identification problem [23]. A modification of the
method of [14] and a priori verifiable sufficient conditions
on the input for identifiability are derived in [1]. The method
of [14] and its modification in [1], however, are not data ef-
ficient, i.e., there are cases when the system is identifiable
but the methods can not identify it.

In this paper we consider the special case of linear time-
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invariant system identification from exact data with peri-
odically missing output samples and fully specified inputs.
As explained above, the periodic distribution of the missing
values is the worst case in the sense that it leads to a max-
imal fragmentation of the data. Indeed, if P is the period
of the missing values, the longest complete sub-trajectory
of the data trajectory has length P− 1. Note that classi-
cal system identification methods, such as the N4SID and
MOESP methods [19,20], require trajectories with length at
least equal to the lag ` of the system plus one in order to
form a data matrix of sufficient size. Therefore, for P≤ `+1
classical identification methods can not recover the system
using the splitting method. In this setup, the methods of
[14] and [1] can recover the data-generating system when
P = `+1 and the order of the system is larger than the num-
ber of outputs, but not when P < `+ 1. This made us hy-
pothesize that the system is not identifiable when P < `+1.
The present paper rejects the hypothesis, providing a method
that recovers the system for any periodicity P of the missing
output samples as well as any number of outputs. Moreover,
as few as one output sample per period may be given. Thus,
the new method is more data efficient than the one of [14].

Section 2 introduces the lifting operation by its action on a
trajectory. Applied on a system, it results in a system that
preserves linearity and time-invariance. Theorem 1 shows
how the lifting operation changes the complexity of the sys-
tem, which is defined as the triple: number of inputs, lag,
and order. Theorem 2 shows the effect of the lifting oper-
ation on an input/state/output representation of the system.
Based on the results in Section 2, Section 3 presents the pro-
posed identification method for identification with periodi-
cally missing output samples. The key step of the method is
the inverse transformation of the identified lifted system to
the original system. The operation requires computing the
P-th root of a matrix. The main result is stated in Theorem 4,
which gives conditions under which the method recovers
the true data-generating system, i.e., an identifiability result
for identification with periodically missing output samples.
Section 4 empirically validates and illustrates the method.

The novel idea at the core of the proposed method is to use
a lifting operation which subsamples the data at a rate P,
then concatenates the P input/output samples over one pe-
riod into a single sample. Provided that the data-generating
system is linear time-invariant and the data is exact, the lifted
data is also a trajectory of a linear time-invariant system,
called the lifted system. Selecting the given elements from
the outputs of the lifted system results in a complete trajec-
tory from which the lifted system’s dynamics can be identi-
fied by standard system identification methods. The inverse
transformation from the lifted system to the original system
is well-posed provided that the eigenvalues of the original
system (i.e., the eigenvalues of the A matrix in a minimal
state-space representation) are in the sector

CP := {λ ∈ C | −π/P < ∠λ < π/P} (CP)

where ∠λ is the angle of λ and the lifted system has no

real negative or zero eigenvalues [2]. The condition on the
eigenvalues of the original system is not verifiable from the
data and restricts the applicability of the method.

2 Methodology: the lifting operation

We use the behavioral approach, where a dynamical sys-
tem B is defined as a set of trajectories. Thus, w∈B means
that w is a trajectory of the system B. The restriction of the
trajectory w and the system B to the finite interval [1,T ] is
denoted by w|T and B|T , respectively. The class of linear
time-invariant systems with q variables is denoted by L q

and the class of linear time-invariant systems with bounded
complexity is denoted by L q

m,`,n, where m, `, n are upper
bounds of the number of inputs, lag, and order, respectively.
A B ∈L q

m,`,n admits an input/state/output representation

B = Bss(A,B,C,D,Π) := {Π [u
y ] | there is x ∈ (Rn)N,

such that σx = Ax+Bu, y =Cx+Du}, (I/S/O)

where σ is the shift operator, defined by (σw)(t) :=w(t+1),
and Π∈Rq×q is a permutation matrix. The number of inputs,
lag, and order of a system B are denoted by m(B) , l(B),
and n(B), respectively.

The Hankel matrix with L block rows, constructed from the
trajectory w =

(
w(1), . . . ,w(T )

)
∈ (Rq)T , is

HL(w) :=


w(1) w(2) · · · w(T −L+1)

w(2) w(3) · · · w(T −L+2)
...

...
...

w(L) w(L+1) · · · w(T )

 .

For a trajectory w ∈B|T and a natural number P ≤ T , we
define the lifted trajectory w′ ∈ (RqP)T ′ as

w′ =
(
w′(1),w′(2), . . . ,w′(T ′)

)
=




w(1)
...

w(P)

 ,


w(P+1)
...

w(2P)

 , . . . ,


w
(
(T ′−1)P+1

)
...

w(T ′P)




︸ ︷︷ ︸
liftP(w)

,

where T ′ := bT/Pc is the largest integer smaller than or
equal to T/P. The lifting operator liftP is used for identifi-
cation of periodically time-varying systems [16]. In this pa-
per, we use it for identification from data with periodically
missing output samples. The matrix liftP(w) coincides with
the Page matrix of w with depth P [4].
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Acting on a system B, the lifting operator creates a system

B′ = liftP(B) := { liftP(w) | w ∈B }.

The following theorem asserts that if B is linear time-
invariant, liftP(B) is also linear time-invariant. The theorem
also characterizes the complexity of liftP(B) in terms of the
complexity of B.

Theorem 1 (Complexity of liftP(B)) Let B ∈L q
m,`,n and

P ∈ N. Then, liftP(B) ∈L Pq
m′,`′,n, where

m′ = mP, `′ = d`/Pe, and n′ = n

(d`/Pe is the smallest integer larger than or equal to `/P).

PROOF. By construction B|LP = B′|L for any L,P ∈ N.
Using this fact and the formula (see [15, Corollary 5])

dim B|t = m(B)t +n(B), for all t ≥ l(B)

applied to B ∈L q
m,`,n, we have

dim B|LP = dim B′|L = mPL+n, for PL≥ `. (∗)

Using [15, Corollary 5] applied to B′ ∈L qP
m′,`′,n′ , we have

dim B′|L = m′L+n′, for L≥ `′. (∗∗)

The complexity of B′ follows by comparison of (∗) and (∗∗).

In what follows we assume that the system B admits an
input/output partitioning

w = [u
y ] , where u(t) ∈ Rm and y(t) ∈ Rp,

with p := q−m. Equivalently, in the input/state/output rep-
resentation (I/S/O) we assume Π = I (and skip it from the
notation). The following result shows a particular input/s-
tate/output representation of the lifted system liftP(B) that
manifest a link to the parameters of an input/state/output
representation of B.

Theorem 2 (State-space representation of liftP(B)) Let
B = Bss(A,B,C,D) and P ∈N. Then, the lifted system has
a state-space representation

liftP(B) = Bss(A′,B′,C′,D′), with

A′ = AP, B′ =
[
AP−1B · · · AB B

]
,

C′ =


C

CA
...

CAP−1

 , D′ =


D

CB D
...

. . .
. . .

CAP−1B · · · CB D

 . (SS)

Moreover, if Bss(A,B,C,D) is minimal, then Bss(A′,B′,C′,D′)
is also minimal.

PROOF. For any trajectory w′=
[

u′
y′

]
∈B′ of the lifted sys-

tem and for any t ∈N, we have that w′(t)∈Bss(A,B,C,D)|P.
Therefore,

x
(
tP+1)

)
= APx

(
(t−1)P+1

)
+
[
AP−1B · · · AB B

]
u′(t)

and

y′(t) =


C

CA
...

CAP−1

x
(
(t−1)P+1

)
+


D

CB D
...

. . .
. . .

CAP−2B · · · CB D

u′(t).

The result follows by comparing the above equations and

σPx = A′x + B′u′

y′ = C′x + D′u′.

If Bss(A,B,C,D) is minimal, dim(A) = n(B) and by Theo-
rem 1, n(B′) = n(B). The minimality of Bss(A′,B′,C′,D′)
follows from dim(A′) = dim(A) = n(B′).

3 Identification with periodically missing outputs

In this section, we consider the problem of identification
from data with periodically missing output samples. Let
B ∈ L q

m,`,n be the data-generating system and wd ∈B|Td

be the data trajectory with missing output samples with pe-
riod P. As explained in the introduction, the problem is
challenging when P ≤ l(B) + 1. Moreover, for the case
P < l(B)+1 there are no alternative methods that solve this
problem. Next, we show how the problem can be solved us-
ing the lifting operation and a back transformation derived
from (SS). Since the method converts the problem of identi-
fication with missing data to an identification with complete
data, any method can be used for the latter. The method
proposed for the missing data estimation problem is prov-
ably correct under given conditions and can deal with the
situation of l(B) = 1 as well as up to P−1 missing output
samples per period.
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For simplicity assume that only one sample is given per
period and it is the first one. Let w′d := liftP(wd) and let w′′d
be the trajectory obtained from w′d by removing the missing
elements. It follows from Theorems 1 and 2 that w′′d is a
trajectory of a system B′′ ∈ L mP+p

mP,`′′,n for some `′′ with a
state-space representation

B′′ = Bss(A′′,B′′,C′′,D′′)

:= Bss

(
AP,

[
AP−1B · · · AB B

]
, C,

[
D 0 · · · 0

])
.

Under the generalized persistency of excitation [15]

rank H`′′+1(w
′′
d) = mP(`′′+1)+n(B), (GPE)

the system B′′ can be recovered back from w′′d by computing
the most powerful unfalsified model Bmpum(w′′d).

Remark 3 (Upper bound on the lag of B′′) An upper
bound `′′≤P` can be used in (GPE) as well as in the follow-
ing results: Theorems 4 and 6 and (Tmin). Moreover, under
certain assumptions [10], it can be guaranteed that `′′ = `.

A representation of Bmpum(w′′d) can be computed in practice
using standard identification methods. This leads to the fol-
lowing procedure for system identification from data with
periodically missing output samples:

(1) find Bmpum(w′′d) := Bss(A′′,B′′,C′′,D′′),
(2) compute the P-th matrix root Â of A′′,
(3) let B̂ be the last block-element of B′′, Ĉ = C′′, and D̂

the first block-element of D′′.

The identified model B̂ is then given by B̂ :=Bss(Â, B̂,Ĉ, D̂).

Our main result is the following theorem that gives condi-
tions under which the model identified by the method above
coincides with the true data-generating system.

Theorem 4 (Identifiability conditions) Assuming that

(1) B′′ is identifiable from w′′d , i.e., (GPE) holds,
(2) B′′ has no real negative or zero eigenvalues, and
(3) the eigenvalues of B are in the sector CP (see (CP))

the identified model is exact, i.e., Bss(Â, B̂,Ĉ, D̂) = B.

PROOF. By Assumption 1 and [15, Theorem 17], B′′ is
identifiable, i.e., Bmpum(w′′d) = B′′. By Assumption 2, A′′

has a unique P-th root Â with eigenvalues in CP, see [6,
Theorem 4.8] and [2]. By Assumption 3, Â = A up to a
similarity transformation.

The conclusion Bss(Â, B̂,Ĉ, D̂) = B follows from Theo-
rem 2, i.e., there is a representation Bss(Â, B̂,Ĉ, D̂) of B,

such that the corresponding lifted state-space representa-
tion matches the computed model parameters A′′,B′′,C′′,D′′
from the data w′′d . If Bss(A′′,B′′,C′′,D′′) is minimal, then
Bss(Â, B̂,Ĉ, D̂) is also minimal.

Remark 5 (Minimal number of samples for identifiability)
For Assumption 1 to be satisfied, the number of samples T
should be at least

Tmin := P
(
(mP+1)(`′′+1)+n(B)−1

)
. (Tmin)

The alternative identifiability result stated in the following
theorem is equivalent to the fundamental lemma [23, Lemma
1] for the problem of system identification with periodically
missing output samples. The order of persistency of excita-
tion PE(u) of the signal u ∈ (Rm)T is the maximal L ∈ N,
for which the Hankel matrix HL(u) is full row-rank.

Theorem 6 Assuming that

(1) the data-generating system B is controllable,
(2) PE(u′) = `′′+n(B)+1, and
(3) Assumptions 2 and 3 of Theorem 4 hold,

the identified model is exact, i.e., Bss(Â, B̂,Ĉ, D̂) = B.

PROOF. The result follows by replacing the identifiability
assumption (Assumption 1) in Theorem 4 by the sufficient
identifiability conditions of [23].

4 Numerical examples

This section illustrates the effectiveness of the proposed
method on a numerical example. The results are reproducible
and the code is available as a supplementary material from

https://imarkovs.github.io/mpum-md.tgz

The simulation parameters are: the number of inputs m,
number of outputs p, the order n of the data generating sys-
tem B, the period P of the missing values, and the number
of samples Td:

%% simulation setup
m = 1; p = 1; q = m + p; n = 5; P = 2; Td = P * 100;

The data generating system B is a randomly selected.

%% random stable system
B = drss(n, p, m);

The data wd is generated as a random trajectory of B with
periodically missing outputs, where only one output sample
per period is given:
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%% generate data
ud = rand(Td, m); yd0 = lsim(B, ud);
yd = NaN(size(yd0));
yd(1:P:end, :) = yd0(1:P:end, :);
wd = [ud yd];

The method described in Section 3 and implemented in the
function sysid_pmo is applied on the data wd. The result B̂
is validated by computing the relative H2-error

e := ‖H− Ĥ‖/‖H‖,

where H is the transfer function of B and Ĥ is the transfer
function of B̂.

%% apply the method
Bh = sysid_pmo(wd, m, n, P);
error = norm(B - Bh) / norm(B)

Provided that Assumptions 2 and 3 of Theorem 4 are sat-
isfied (which depends on the random system generated by
drss), a typical result for the relative H2-error e is of the or-
der of 10−10. This empirical fact confirms Theorem 4, i.e.,
that the method recovers the data-generating system. Alter-
native methods, e.g.,

• the method of [12] (implemented in the misdata function
of Matlab’s System Identification Toolbox),
• the structured low-rank approximation method of [18]

(implemented in the ident function of [13]),
• the nuclear norm method [5,11] (implemented using the

CVX package [7]), and
• the subspace method of [14],

fail irrespective of the choice of the simulation parameters
and the system generated by drss.

5 Conclusions

We conjecture that the method proposed in the paper is data
efficient for the problem of periodically missing output sam-
ples. Relaxing the assumptions and investigating the data
efficiency of the method is left for future work.
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