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Abstract

The goal of low-rank matrix completion is to minimize the rank of a matrix while adhering to the
constraint that known (non-missing) elements are fixed in the approximation. Minimizing rank is a
difficult, non-convex, NP-hard problem, often addressed by substituting rank with the nuclear norm
to achieve a convex relaxation. We focus on structured matrices for completion, where in addition
to the constraints described earlier, matrices also adhere to a predefined structure. We propose a
technique that ensures the exact recovery of missing entries by minimizing the nuclear norm of a
matrix where the non-missing entries are first subject to block-column scaling. We provide the proofs
for exact recovery and propose a way for choosing the scaling parameter to ensure exact recovery.
The method is demonstrated in several numerical examples, showing the usefulness of the proposed
technique.

1 Introduction

Low-rank matrix completion aims to reconstruct matrices with missing entries by exploiting an inherent
low-rank structure. In the general case, low-rank matrix completion is an optimization problem with
the objective of minimizing the rank of a matrix subject to constraints. Rank minimization problems
are generally NP-hard and non-convex (see e.g., [Laz16]), so several authors propose to instead solve a
convex relaxation based on the nuclear norm, which has well-grounded theory for the case of unstruc-
tured matrices [XJ12, CT10, CR12]. While there are other approaches to relax the nonconvexity, see
e.g., [CGO22], we focus on the nuclear norm approach since it is pervasive. A natural question emerges
— when does the solution of the convex relaxation coincide with the rank minimization problem? It is
known that the nuclear norm performs well when the missing values are sampled in a random fashion,
where perfect (or exact) recovery is ensured with high probability, see the seminal work [CT10, CR12]
and numerous follow-ups.

In this paper, we consider the case of structured matrix completion. Informally speaking, structured
matrices have dependencies between their elements and we wish to preserve the structure whilst making
the completion. Examples of well-known structured matrices include Hankel, block-Hankel, Toeplitz,
Sylvester and circulant; each of these structures is associated with particular problem domains, and we
offer some examples shortly. The completion of structured matrices can be viewed as a special case of
structured low-rank approximation [Mar08, Mar19]. In the applications we consider, and for structured
matrices generally, missing data often appear in blocks as opposed to being randomly located throughout
the matrix.

Specifically, we consider structured matrix completion based on minimizing the nuclear norm in the
deterministic scenario (structure and missing-data-not-at-random). In this case, the use of the nuclear
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norm breaks down, as shown by several studies [Mar12]. For Hankel matrices, [DP15, UC16] suggest
that an exponential rescaling (dampening) of the problem is possible, but it is difficult to provide good
bounds for such a rescaling. In this paper, we propose a simple block-column scaling of the observed
entries, which guarantees the exact recovery of missing entries. Our contribution in this paper is appli-
cable to any affinely-structured matrix and provides theoretical guarantees for exact recovery as well as
a method to choose the scaling parameter.

There are other methods available to solve some of the example problems described in this paper.
Note however that our work applies to general affine structures (not just Hankel-type); for general struc-
tures parametric model equivalents may not be available. We propose an alternative to estimating pa-
rameters of a parametric model which is not only demonstrably useful for practical application, but also
interesting mathematically, and complements the results in seminal work such as [CP10, CT10, CR12].
Hence our contributions are beyond just a method to solve a problem.

This paper has the following structure. In Section 2 we introduce the matrix completion problem and
provide some examples of matrix structures and typical completions needed. In Section 3 we describe
the means to scale the matrix structure, so that the nuclear norm relaxation achieves the correct recovery
for the scaled matrix structure. Our result on scaling columns to achieve exact recovery of missing values
is also given in Section 3. Before giving the proof of the main result in Section 5, we provide a roadmap
in Section 4. Numerical examples are given in Section 6 before the paper is concluded in Section 7.

2 Affine structured matrix completion

2.1 Structured matrices

An affine matrix structure S(·) is an affine mapping S : FN → FL×K where F is R or C, thus parame-
terizing (an affine) set of structured matrices. An example of such matrices are given below and a formal
construction is offered in Section 4.1.

Example 2.1 (running example, Hankel matrices). The Hankel matrix structure HL : FN → FL×K ,
K = N − L+ 1 that maps a vector p ∈ FN to an L×K matrix with

(HL(p))i,j = pi+j−1,

i.e., the values are constant on the antidiagonals and parameterized by the elements of p (see also (1)).
Note that the notation HL(p) is used for a vector p of any size N ≥ L, and the number of columns

of the matrix depends on the size of the input vector.

2.2 Matrix completion and rank minimization

The goal of low-rank matrix completion is to fill in the missing elements of the matrix S(p) based on
the low-rank assumption. From now on, we write N = n + m, and we assume that the first n values
of p (denoted p1:n) are known and the goal is to recover the last m missing values1, pn+1:n+m (so that
N = n+m).

Formally, the exact structured low-rank matrix completion is formulated as the rank minimization

min
p∈Fm+n

rank{S(p)} subject to p1:n = p0, (RMIN)

where p0 = (p0,1, p0,2, . . . , p0,n) is a given vector of known values. We denote an optimal solution to
(RMIN) as p̂(RMIN).

Example 2.2 (Example 2.1, continued). Our running example stems from time series analysis, where
we would like to fill in the last values of a scalar Hankel matrix. In (1), the grey-shaded elements are

1Missing values in the middle of p can be also treated, see discussion in Section 3.3
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known (fixed) and the remaining values are missing. The Hankel matrix in (1) has size L × K so that
K + L− 1 = n+m.

HL(p)
def
=



p1 p2 · · · · · · · · · pK

p2 p3 · · · . .
.
· · ·

...
... · · · . .

.
. .
.
· · · pn

... . .
.
. .
.

. .
.
· · · pn+1

... . .
.
. .
.

. .
.

. .
. ...

pL · · · pn pn+1 · · · pn+m


. (1)

The Hankel low-rank completion problem is shown to be useful in the context of forecasting [GU18,
BG17, GU23], where p corresponds to a scalar time series. The first n values of the time series p are
known (observed) and we would like to forecast m steps forward.

This approach is motivated by the fact that time series which can be written as a sum of products
of polynomial, exponential, and sinusoidal functions have low-rank Hankel matrices (see e.g., [GU23]).
Such time series constitute an exceptionally rich class able to model complex trends and multiple modu-
lated periodic components (see also [GNZ01]). Here, forming the forecasting problem as Hankel struc-
tured low-rank matrix completion is very attractive because it avoids parameter estimation necessary for
classic model-based statistical forecasting methods [Mar17]. A more general class of problems with
multivariate time series is described in Section 6.4. In practice, an approximation version of (RMIN) is
often considered, when we allow for the error on the known values.

2.3 Convex relaxation and nuclear norm

In this manuscript, we investigate the performance of the nuclear norm relaxation, which for the rank
minimization problem (RMIN) takes the form:

p̂ = argmin
p∈F(n+m)

‖S(p)‖∗ subject to p1:n = p0, (NNMIN)

where ‖X‖∗ is the nuclear norm (sum of all singular values of X). The intuition behind this relaxation
is the same as for using the `1-norm in compressed sensing: the nuclear norm is expected to force all
but a few singular values to be zero (a low-rank solution). In what follows, we will denote an optimal
solution to (NNMIN) as p̂(NNMIN).

In our applications, the pattern of missing data is fixed, as opposed to the random sampling in [CT10,
CR12], and the conditions for perfect recovery are much more restrictive. In particular, it was shown in
[DP15] and [UC16], that in Hankel matrix completion, the time series need to be sufficiently damped in
order to allow for a perfect recovery. In this paper, we show that for a wide range of structures a simple
block-wise scaling guarantees perfect recovery for the scaled matrix structure.

2.4 Alternatives to the nuclear norm

Nuclear norm minimization has been celebrated for its convex formulation, which offers strong theoreti-
cal recovery guarantees and robustness in the presence of noise. Nonetheless, several alternative methods
for matrix completion exist that avoid its convex relaxation while offering complementary advantages.
For instance, low-rank factorization-based approaches model the given matrix as a product UV and
apply alternating minimization to optimize for U and V . Although these methods tend to be more com-
putationally efficient, they often require careful initialization and might converge to local minima rather
than the globally optimal solution [JONS13]. In addition, Riemannian optimization techniques directly
optimize on the manifold of fixed-rank matrices to benefit from the intrinsic geometric structure of the
solution space, typically resulting in rapid convergence; however, their performance can be sensitive to
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noise and depends on the quality of the starting point [Van13]. Iterative hard thresholding methods en-
force a strict rank constraint via singular value truncation at each iteration, which can be highly efficient
in practice, yet they often lack the universal convergence guarantees that come with convex nuclear norm
methods [TW16]. Overall, while these alternatives provide efficient and scalable solutions in various set-
tings, nuclear norm minimization remains a cornerstone approach due to its balanced trade-off of robust
global optimality, provable error bounds, and practical effectiveness in a wide range of applications, as
described in this paper.

3 Block-column scaling for nuclear norm completion

3.1 Block-column scaling

In this section, we describe the proposed scaling so nuclear norm minimization for fixed structure obtains
exact recovery of missing values. Our proposal is to replace S(p) with the scaled matrix structure

Sε(p) := S(p)
[
IK−κ

εIκ

]
, (2)

where ε ≥ 0 is a small parameter, i.e. we scale the last κ columns of S(p), with 0 < κ < K, by a small
number ε. The following remark is of prime importance:

Remark 3.1. For ε > 0, we have rank{Sε(p)} = rank{S(p)} therefore all the solutions of the exact
matrix completion (RMIN) using either the original matrix S(p) or its scaled version Sε(p) coincide.

Our proposal is to replace S(p) with Sε(p), in the nuclear norm minimization problem (NNMIN),
and we seek to solve the modified problem

min
p∈R(n+m)

‖Sε(p)‖∗ subject to p(1:n) = p0. (NNMIN-ε)

Under several natural assumptions, replacing S(p) with the scaled Sε(p) leads to guaranteed exact re-
covery of the missing values pn+1:n+m, for suitably chosen ε. The goal is to choose such a scaling so
that the solution p̂(NNMIN-ε) of (NNMIN-ε) leads to exact recovery of pn+1:n+m and is therefore better
than p̂(NNMIN).

Related work Scaling of rows and columns has already been proposed for the case of unstructured
matrix completion. Such a scaling, equivalent to a weighted nuclear norm minimization [SS10] was
shown to be effective and provides better recovery guarantees than the ordinary nuclear norm minimiza-
tion [CBSW14]. There has been an increasing activity in analyzing non-uniform deterministic patterns
of missing values [FNP+21]. However, the authors are unaware of any such works that address the
case of structured matrix completion, except for the recent work [TL21] that mainly reveals connections
between weighting and structured completion (rather than using scalings to improve the performance of
the nuclear norm in the structured case). Our work therefore offers a novel contribution for ensuring
exact recovery of missing entries of structured matrices.

3.2 Assumptions and the main result

We now describe the necessary assumptions before discussing them in more detail in the subsequent
section.

Assumption 3.1. The solution p̂(RMIN) of the rank minimization problem (RMIN) is unique.

Assumption 3.2. For any optimal solution p̂(RMIN) of (RMIN), we have

rank{S(p̂(RMIN))} = rank{S0(p̂(RMIN))},

where S0(p) is the scaled structure (2) with ε = 0.

4



Assumption 3.3. The matrix structure S0(p) depends only on p1:n (i.e., the first n elements of the
vector p); in such a case we write S0(p)= S0(p1:n).

Before formulating the main results, we make some remarks about these technical assumptions.

Remark 3.2. Assumptions 3.2 to 3.3 concern the matrix S0(p)

S0(p) := S(p)
[
IK−κ

0

]
. (3)

This is a limiting (ε = 0) case of Sε(p), which is special for the following reasons:

• In this case, Remark 3.1 (on the equivalence of rank minimization problems for the scaled matrix
Sε(p) and S(p)) does not necessarily hold. Thus Assumption 3.2 ensures that an analogue of
Remark 3.1 holds true for ε = 0;

• As seen in (3), S0(p) contains the first K − κ columns of S(p) (which are left unscaled in Sε(p)
for any ε); thus Assumption 3.3 is equivalent to assuming that the parameters pn+1:n+m do not
appear in the first K − κ columns (i.e., all the missing elements pn+1:n+m are scaled by ε);

• From a practical point of view, S0(p) is not important as it does not depend on the missing elements
(so it does not provide a way to complete them); however, it is important for the theoretical analysis
of the scaled problem (NNMIN-ε) which appears later.

We are also going to provide examples for the assumptions in the following subsections. Under
Assumptions 3.1 to 3.3, the following result holds.

Theorem 3.3. Let Sε(p) be the scaled matrix structure (2) satisfying Assumptions 3.1 to 3.3, and p̂(RMIN)

be the unique solution of (RMIN). Then there exists ε0 such that for any ε ∈ (0, ε0), the minimizer
p̂(NNMIN-ε) of the scaled problem (NNMIN-ε) is unique and is equal to p̂(RMIN).

For ease of reading, the proof of the theorem will be split into several stages and into dedicated
subsections. In the rest of the section, we provide a discussion on the plausibility of the assumptions,
show the key ideas behind the proof, and also indicate how we can find an estimate for ε0.

3.3 Discussion on the assumptions: the case of Hankel matrices

In this subsection, we give examples for the assumptions using our running example, that of completing
Hankel matrices, which are linked to some well-known conditions in the literature.

Lemma 3.4. For completing the Hankel matrix HL(p) given in (1), Assumption 3.3 is equivalent to
κ ≥ m.

Proof. The last elements pn+1:n+m appear only in the m last columns of HL(p) and so the first K − κ
columns do not depend on pn+1:n+m if and only if κ ≥ m.

To illustrate Lemma 3.4, consider a special case of a Hankel matrix (1) with n = 7, m = 2 and
κ = 3 (i.e., the right-hand side block is scaled):

H3(p) =

 p1 p2 p3 p4 p5 p6 p7
p2 p3 p4 p5 p6 p7 p8
p3 p4 p5 p6 p7 p8 p9

 ,
and it is seen that Assumption 3.3 is satisfied. We also note that a necessary condition for Assumption 3.1
is r = rank{HL(p0)} < L (otherwise any completion of HL(p0) has rank L, and is thus nonunique).
Under a stronger well-known condition, we can guarantee that both Assumption 3.1 and Assumption 3.2
are also satisfied.
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Lemma 3.5. Let Assumption 3.3 be satisfied. If, in addition,

eL = (0, . . . , 0, 1) 6∈ span{HL(p0)} ,

then both Assumption 3.1 and Assumption 3.2 are also satisfied.

Lemma 3.5 is well-known in Hankel low-rank approximation literature (see [HR84, Def. 5.9, p.
99],[GNZ01, §5.3], but also [GU23, Mar08]), and we summarize a proof in Appendix 7.1. In particular,
Lemma 3.5 holds true for time series that are sums of complex exponentials and polynomials, and this is
the example that follows.

Example 3.6 (see e.g., [GU23, Thm 5.1]). Let pk, k = 1, . . . , n be given as

pk =

s∑
j=1

Pj(k)λ
k
j , k = 1, 2, . . . (4)

where Pj(k) are complex polynomials of degrees at most νj−1 and λj ∈ C. Then if r = ν1+ . . .+νr ≤
min(κ − 1, L − 1, n+1

2 ), then the rank minimization of HL(p) is unique (is of rank r), and the unique
completion is given by the same formula (p̂k = pk, k = n + 1, . . . , n + m in (4)). Therefore, both
Assumption 3.1 and Assumption 3.2 are satisfied.

We offer further commentary of the applicability of Assumptions 3.1 to 3.3 for some other problem
settings.

Remark 3.7. The problem treated in Lemma 3.5 and Example 3.6 can be viewed as a special case of
more general behavioral systems theory. In particular, Assumptions 3.1 to 3.3 are similar to Assumptions
A1 – A3 in [MD22] which considers the same problem (for the special case of a so-called mosaic-Hankel
structure) from a systems theoretic perspective. The main difference is the method of solution, which is
not based on the nuclear norm relaxation.

Additionally, Assumptions 3.1 to 3.3 are intuitive for the problem of data-driven simulation, which
is presented in depth in Section 6.4. For example, Assumption 3.2 corresponds to the condition of per-
sistency of excitation [WRMD05]. We also note that a similar scaling was heuristically proposed for
special case of data-driven simulation in [DM19], where it was proposed to scale the matrix as[

γIK−κ
Iκ

]
S(p),

where γ is a large number. Such a scaling is, in fact, equivalent to (2) if we take γ = ε−1.

Finally we discuss on the applicability of Assumptions 3.1 to 3.3 when the missing values occur
elsewhere in the parameter vector p.

Remark 3.8. Our results also apply when:

• missing data are located in the middle of the vector p;

• the columns in the middle of the matrix are scaled by ε.

Indeed, this case can be treated by rearranging the columns of the matrix and the elements of the param-
eter vector (this operation does not affect neither rank, nor the nuclear norm).

Consider the following example

H3(p) =

 p1 p2 p3 p4 p5 p6 p7
p2 p3 p4 p5 p6 p7 p8
p3 p4 p5 p6 p7 p8 p9

 ,
with missing elements p4 and p5. We can rearrange the columns to get an equivalent matrix

S(p) =

 p1 p6 p7 p2 p3 p4 p5
p2 p7 p8 p3 p4 p5 p6
p3 p8 p9 p4 p5 p6 p7

 ,
and by permuting the arguments of the vector, we obtain an equivalent matrix structure that satisfies
Assumption 3.3.

6



4 Roadmap for the proof

4.1 Nuclear norm minimization: optimality conditions

In order to give the main ideas behind the proof of Theorem 3.3, we recall the optimality conditions for
(NNMIN) from [UC16, GU18], and we cover both real- and complex-valued matrices.

Let p̂ be a parameter vector for which we wish to test optimality of (NNMIN) and r = rank{S(p̂)}.
Let us introduce the following notation for the compact SVD:

S(p̂) = UΣV H, U ∈ CL×r, Σ ∈ Rr×r, V ∈ CK×r.

The key quantities needed for formulating the optimality conditions are:

• the polar factor B def
= UV H (semi-unitary matrix in polar decomposition)

• and projectors on the left and right nullspace of S(p̂):

Q1 = IL −UUH, Q2 = IK − V V H.

Note that the polar factor B and the projectors Q1 and Q2 depend on p̂ (which is fixed in the proofs),
therefore we omit this dependence in the notation for the ease of reading.

Next, we recall notation for basis matrices, which are needed to consider structured matrix comple-
tion problems. An affine matrix structure [Mar19] can be parameterized as:

S(p) = S0 +

m+n∑
k=1

pkSk. (5)

For example, for the Hankel structure (1), the basis matrices are

S1 =


1 0 ··· 0 0

0 0 . .
.
0 0

... . .
.
. .
.
. .
. ...

0 0 . .
.
0 0

0 0 ··· 0 0

,S2 =


0 1 ··· 0 0

1 0 . .
.
0 0

... . .
.
. .
.
. .
. ...

0 0 . .
.
0 0

0 0 ··· 0 0

, . . . ,Sm+n =


0 0 ··· 0 0

0 0 . .
.
0 0

... . .
.
. .
.
. .
. ...

0 0 . .
.
0 0

0 0 ··· 0 1

,
with S0 being the zero matrix.

Using the notation introduced above, the necessary (and sufficient) optimality conditions for an op-
timal solution of (NNMIN) can be formulated as follows.

Lemma 4.1 (First-order optimality conditions, [UC16, Proposition 14], [GU18]). The point p̂ is a min-
imizer of (NNMIN) if and only if there exists a matrix M ∈ CL×K with spectral norm ‖M‖2 ≤ 1,
satisfying

〈Q1MQ2 +B,Sk〉F = 0, for all k ∈ {n+ 1, . . . , n+m}. (6)

If, in addition, the norm of matrix M satisfies ‖M‖2 < 1, and the set of matrices {Q1SkQ2}n+mk=n+1 is
linearly independent, then p̂ is the unique minimizer of (NNMIN).

Lemma 4.1 is, in fact, based on the notion of subdifferential of the nuclear norm, which is parameter-
ized by matrices M with ‖M‖2 < 1 (see Section 7.2). A particular matrix M satisfying the conditions
of Lemma 4.1 (with ‖M‖2 < 1) is called a dual certificate2. Our proof strategy relies on construct-
ing a particular dual certificate for the given solution of (NNMIN), i.e., the matrix M satisfying linear
constraints (6), for which we can guarantee ‖M‖2 < 1.

2It is a standard term in the nuclear norm minimization literature [CT10, CR12] as it refers to duality in convex optimization
[BV04].
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4.2 Candidate dual certificate and its norm

Instead of finding M with small spectral norm (as suggested by Lemma 4.1), we relax the problem
and find M with small Frobenius norm (subject to constraints (6)), which has explicit solution. A matrix
with minimal Frobenius norm will be called a candidate dual certificate (see also [CT10]), this is defined
next.

Definition 4.2. A candidate dual certificate for p̂ in (NNMIN) is a minimizer of

M∗ def
= argmin ‖M‖F subject to constraints in (6). (7)

Due to the standard inequality ‖M‖2 ≤ ‖M‖F , a candidate dual certificate becomes a dual certifi-
cate if ‖M∗‖F < 1 (and thus will ensure optimality in (NNMIN)). Therefore, the key point of the proof
would be to guarantee that such an inequality holds for a sufficiently scaled problem, as shown by the
following proposition.

Proposition 4.3. Under Assumptions 3.1 to 3.3 let p̂ = p̂(RMIN), and let M∗(ε) denote the candidate
dual certificate for the scaled problem (NNMIN-ε). Then, for small ε > 0, the candidate dual certificate
exists, is unique, and its squared Frobenius norm has the expansion

‖M∗(ε)‖2F = m0ε
2 + o(ε2),

where m0 is a constant depending only on S(p̂(RMIN)).

The precise form of the constant m0 will be given in Section 5.3. Note that, in particular, Propo-
sition 4.3 ensures that limε→0 ‖M∗(ε)‖2F = 0, which shows that for sufficiently small ε we have
‖M∗(ε)‖F < 1. We conclude this section with a remark on usefulness of Proposition 4.3; it will enable
us to provide a practical estimate for the value of the scaling needed to obtain exact recovery.

Remark 4.4. For small ε, Proposition 4.3 suggests that we can replace ‖M∗(ε)‖2F with its leading term
approximation. Therefore, the value of ε, chosen such that ‖M∗(ε)‖2F ≈ ε2m0 = 1 is a good estimate
to enable exact recovery. It is given by

ε̃ =
1
√
m0

(8)

4.3 Sketch of the proof

To give a gist of the proof, we first note that the constraints (6) are linear in elements of M and thus can
be equivalently vectorized as

A vec(M) = b, (9)

where A ∈ Cm×LK and b ∈ Cm are the matrices obtained by vectorizing (6):

A =

vec
T(Sn+1)(Q

T
2 ⊗Q1)

...
vecT(Sn+m)(Q

T
2 ⊗Q1)

 , (10)

b =

−〈B,Sn+1〉
...

−〈B,Sn+m〉

 , (11)

and vec(·) denotes the vectorization operation which stacks the columns of a matrix into a single col-
umn vector, ⊗ is the Kronecker product, and the polar factor B, and the projectors Q1,Q2 are as in
Lemma 4.1.
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With such notation, the candidate dual certificate is more easily constructed. Indeed, in terms of
vectorized constraints (9), the minimization (7) is equivalent to minimizing the 2-norm of the vector
vec(M) subject to linear constraints A vec(M) = b. Therefore (see e.g., [BV04, Ch.6]), when A is
full row-rank (i.e., rank{A} = m), the candidate dual certificate M∗ is unique and has an explicit
expression in terms of A and b in (9):

vec(M∗) = AH(AAH)−1b; (12)

in addition, the Frobenius norm of the optimal solution is given by

‖M∗‖2F = ‖ vec(M∗)‖22 = bH(AAH)−1b. (13)

The proof of Theorem 3.3 can be summarized as follows:

1. For a fixed p̂ = p̂(RMIN), we test its optimality for (NNMIN-ε) using Lemma 4.1 and the vectorized
form of constraints (9).

2. For the case of the scaled structure Sε(p), the matrices in (9) also depend on ε (i.e., they become
A(ε), b(ε)).

3. Under Assumptions 3.1 to 3.3, we show A(ε) is full row rank (hence (12) and (13) hold for the
candidate dual certificate depending on M∗(ε)).

4. We then show that the norm ‖M∗(ε)‖F < 1 for small ε, and hence ‖M∗(ε)‖2 ≤ ‖M∗(ε)‖F < 1,
which implies that M∗(ε) is a valid dual certificate (in the sense of Lemma 4.1) for (NNMIN-ε).

5 Proof of the main result

This section is organized as follows. We first discuss in Section 5.1 the implications of the assumptions
of Theorem 3.3 and derive the form of the perturbed projectors and basis matrices. Based on lemmas in
Section 5.1, we provide in Section 5.2 expressions for A(ε) and b(ε) from (10) and (11). Finally, we
Section 5.3 we give the proof of Theorem 3.3 and Proposition 4.3.

5.1 Scaled matrix structure: basis matrices and orthogonal projectors

In order to get analogous expressions for (12) and (13) for the scaled matrix structure Sε(p), we adapt
(10)–(11) to the scaled problem (NNMIN-ε). Specifically, in this subsection, we provide details on the
matrices B,Q1,Q2,Sk for the scaled matrix structure Sε(p). Note that the scaled matrix structure Sε(p)
is expressed as

Sε(p) = S0(ε) +

N∑
k=1

pkSk(ε).

Following from the linearity of the scaling (2) where Sk(ε) depend linearly on ε. We have the following
lemma relating Sk(ε) to Sk for the missing values.

Lemma 5.1. Under Assumption 3.3, the scaled basis matrices for the missing values can be expressed
as:

Sk(ε) = εSk, for all k ∈ {n+ 1, . . . , n+m}. (14)

Proof. Since the scaling (2) amounts just to multiplying by the matrix S(p) on the right and by linearity
of (5) we have that, for all k,

Sk(ε) = Sk

[
IK−κ 0

0 εIκ

]
,

Since, by Assumption 3.3, the limiting structure S0(p) (and thus the left block of S(p)) does not depend
on pn+1, . . . , pn+m, we obtain (14).
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In what follows, we fix p̂ = p̂(RMIN) and assume that one of Assumptions 3.2 to 3.3 holds. For the
scaled matrix structure Sε(p̂) we look at the corresponding projectors Q1(ε),Q2(ε) (as defined as in
Section 4.1), and show that these projectors have the following form.

Lemma 5.2. Let p̂ be fixed. Then:

1. Under Assumption 3.2, the projector Q1(ε) on the left nullspace of Sε(p̂) is constant for any ε
(even, ε = 0)

Q1(ε) = Q1,

where Q1 = Q1(0) is the projector on the left nullspace of S0(p̂).

2. Under Assumption 3.3, the matrix Q2(0) (the projector on the right nullspace of S0(p̂)) has the
form

Q2(0) =

[
∗ 0(K−κ)×κ

0κ×(K−κ) Iκ

]
;

in particular, SkQ2(0) = Sk for k ∈ {n+ 1, . . . , n+m}

3. Under Assumptions 3.2 to 3.3, the right projector Q2(ε) has the expansion

Q2(ε) = Q2(0) + o(ε),

and thus is continuous in a neigborhood of ε = 0.

Proof. 1. Due to Assumption 3.2, the range of Sε(p) does not change with ε and is equal to the range
of S0(p̂) . Therefore, the left nullspace also does not change with ε and Q1(ε) = Q1(0).

2. Note that we have
S0(p̂) =

[
∗ 0L×κ

]
,

and therefore the right projector has the form

Q2(0) = IK −
(
S0(p̂)†S0(p̂)

)
= IK −

[
∗ 0(K−κ)×κ

0κ×(K−κ) Iκ

]
. (15)

In particular, this implies that SkQ2(0) = Sk for k ∈ {n+1, . . . , n+m} since by Assumption 3.3
only the last κ columns of such Sk are nonzero.

3. By Assumption 3.2, the rank of Sε(p̂) is constant for all ε ∈ R . Therefore, the right nullspace pro-
jector Q2(ε) is continuous and analytic in a neighborhood of 0 (for example, due to the analyticity
of the projectors [Kat95, Ch. II, Theorem 1.10]).

Finally, we return to the unscaled case, to demonstrate the implications of the assumptions on the
solution of the rank minimization problem.

Lemma 5.3. Under Assumptions 3.2–3.3, a vector p̂ = p̂(RMIN) is a minimizer of (RMIN) if and only if
it is the solution of the following linear system of equations:{

Q1S(p̂) = 0,

p̂1:n = p0,
(16)

where Q1 is the projector on the left nullspace of S0(p0).

Proof. By Assumption 3.2, p̂ = p̂(RMIN) is an optimal solution to (RMIN) if and only if

rank{S(p̂)} = rank{S0(p0)} . (17)

Next, we notice that the nonzero part of S0(p0) is a submatrix of S(p̂), and therefore (17) holds if and
only if the column space (resp. left nullspace) of S(p̂) coincides with the column space (resp. the left
nullspace) of S0(p0), which happens if and only if (16) is satisfied.
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5.2 Candidate dual certificate for the scaled case

In order to get closed-form expressions of the matrices in (9), we require additional notation. Let Sk be
the basis matrices in (5). We define the following matrix S′:

S′ =
[
vec(Sn+1) · · · vec(Sn+m)

]
∈ RLK×m. (18)

Using such notation, the following lemma holds true.

Lemma 5.4. Under both Assumptions 3.2 and 3.3, we have that, for the scaled sturcture Sε(p) the
matrices A(ε) and b(ε) defined in (9) have the form

A(ε) = ε(S′)T(QT
2 (ε)⊗Q1) = ε

(
(S′)T(I ⊗Q1) + ε

)
, (19)

b(ε) = −ε(S′)T vec(B(ε)). (20)

Proof. We first note that

Q1(ε)Sn+k(ε)Q2(ε) = εQ1Sn+kQ2(ε) = εQ1Sn+k(Q2(0) + o(ε)) = ε(Q1Sn+k + o(ε)),

where the last three equalities are due to Lemma 5.2. By vectorizing, rows of A(ε) can be expressed as

vec(Q1Sn+1Q2(ε)) = ε(QT
2 (ε)⊗Q1) vec(Sn+k) = ε ((I ⊗Q1) vec(Sn+k) + o(ε)) ,

which, after transposition, yields the desired result for A(ε). Similarly, for b(ε) we get

(b(ε))k = − vec(Sn+k(ε))
T vec(B(ε)) = −ε vec(Sn+k)T vec(B(ε)),

which completes the proof.

In order to use (12) and (13), we require that A(ε) is full row rank. The proof relies on Lemma 5.3
to show that the main term of (19) is full rank.

Proposition 5.5. Under Assumptions 3.1–3.3, rank{A(ε)} = m in some neighborhood of 0 (for all
ε ∈ (0, ε1) for some ε1).

Proof of Proposition 5.5. The matrix A(ε) has m rows, and therefore, by (19), it is sufficient to show
that rank{S′T(I ⊗Q1)} = m, which, by semi-continuity of the rank would imply rank{A(ε)} = m in
a neighborhood of 0.

To do that, we make use of Lemma 5.3. Let us take the parameterization of feasible p̂ in (NNMIN)
p̂ = p̂(z) = (p0, z), for z ∈ Cm and denote x0 = vecS(p̂(0)). Then, by applying vectorization, we
have that

vec(S(p̂)) = x0 + S′z.

Therefore, the condition (16) can be equivalently rewritten as (I⊗Q1)(S
′z+x0) = 0, or after regroup-

ing the terms,
(I ⊗Q1)S

′z = −(I ⊗Q1)x0. (21)

By Assumption 3.1, the solution of (21) exists and is unique, therefore, the matrix (I ⊗Q1)S
′ must be

full column rank, otherwise there is another solution to (21) (and therefore, another solution to (16)). But
the matrix ((I ⊗Q1)S

′) is just the transpose of (S′)T(I ⊗Q1), therefore, the proof is complete.

We finish this section with a lemma on the form of b(ε) from (20).

Lemma 5.6. Under Assumptions 3.1–3.3, the vector b(ε) is analytic in a small neighborhood of 0 and
has an expansion:

b(ε) = ε2(b2 + o(ε)). (22)
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Proof. We first show that B(ε) is real-analytic in a neighborhood of ε. For this we first note that (thanks
to Lemma 5.2) there is an semi-unitary (i.e., WHW = I) matrix W ∈ CL×r spanning the column
space of Sε(p̂) for any ε. Then we have that

Sε(p̂) = WWHSε(p̂), (23)

where Z(ε) := WHSε(p̂) is full row rank for all ε ∈ R. Therefore, the polar factor (for real ε) can be
expressed as (see e.g., [GL17])

B(ε) = W (Z(ε)ZH(ε))−
1
2Z(ε),

and therefore is real-analytic in ε in a neighborhood of 0:

B(ε) = B0 + εB1 + o(ε). (24)

Now recall that the right block of S0(p̂) is zero by (3), hence,

B0 = W (Z(0)ZH(0))−
1
2WHS0(p̂) =

[
∗ 0L×κ

]
.

Therefore, by Lemma 5.2 (i.e., from Assumption 3.3), we have

〈B0,Sk〉 = 0 for all k ∈ {n+ 1, . . . , n+m}.

Combining (20) and (24), we get b(ε) = ε2(b2 + o(ε)) with

b2 = −(S′)T vec(B1) (25)

which completes the proof.

5.3 The proof of the main theorem

Proof of Theorem 3.3. Now let us denote by M∗(ε) the candidate dual certificate (Definition 4.2) for the
scaled case. Thanks to Proposition 5.5, we have rank{A(ε)} = m for small ε, therefore, by (13), we
have that

‖M∗(ε)‖2F = bH(ε)(A(ε)AH(ε))−1b(ε).

Note that from (19) we have

A(ε)AH(ε) = ε2((S′)T(I ⊗Q1)(S
′) + o(ε)),

which is real analytic in a neighborhood of 0, with ((S′)T(I ⊗Q1)(S
′) nonsingular by Proposition 5.5.

Therefore, we get that, from (22):

‖M∗(ε)‖2F = ε2(b2 + o(ε))H
(
A(ε)AH(ε)

)−1
ε2(b2 + o(ε))

= ε2
(
bH2

(
(S′)T(I ⊗Q1)(S

′)
)−1

b2 + o(1)

)
,

which is analytic in a neighborhood of 0. This implies that there exists a neighborhood of 0 such that

‖M∗(ε)‖22 ≤ ‖M∗(ε)‖2F < 1,

which concludes the proof.

Finally, we give the proof of Proposition 4.3.
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Proposition 5.7 (Proposition 4.3, reformulated). Under Assumptions 3.1 to 3.3 let p̂ = p̂(RMIN), and
let M∗(ε) denote the candidate dual certificate for the scaled problem (NNMIN-ε). Then, for small
ε > 0, the candidate dual certificate exists, is unique, and its squared Frobenius norm (see (13)) has the
expansion

‖M∗(ε)‖2F = m0ε
2 + o(ε2),

where m0 is a constant defined as follows:

m0 = bH2 ((S
′)T(I ⊗Q1)S

′)−1b2.

The term b2 has the expansion b2 = −(S′)T vec(B1) (see (25), the coefficient corresponding to ε2 from
(22)), where B1 is the first-order term in the expansion (24), which can be found as

B1 = U0Σ
−1
0 UH

0 ∆; (26)

where in (26), U0 and Σ0 are the terms of the SVD of S0(p̂) = U0Σ0V
H
0 and

∆ :=

(
S(p̂)

[
0K−κ 0

0 Iκ

])
is the notation that we introduce for the unscaled block of Sε(p̂) (so that Sε(p̂) = S0(p̂) + ε∆).

Proof. To show that B1 has the form (26), we denote Z(ε) as in (23), with a particular choice of W =
U0. Recall that Z(ε) is a perturbation of a full-row-rank matrix Z0

Z(ε) = Z0 + εZ1,

with
Z0 = UH

0 S0(p̂), Z1 = UH
0 ∆,

where 〈Z0,Z1〉F = 0. Then from [GL17, Lemma 3.2, eq. (28)], we get that the polar factor of Z(ε) has
expansion

P(Z(ε)) = P(Z0) + ε(Z0Z
H
0 )
− 1

2Z1 + o(ε).

Bringing it all together and using Z0 = UH
0 S0(p̂) = Σ0V

H
0 , we get

B1 = U0(Z0Z
H
0 )
− 1

2Z1 = U0(Σ
2
0)
− 1

2Z1 = U0(Σ0)
−1UH

0 ∆,

which completes the proof.

6 Numerical examples

In this section we describe some expository numerical examples describing how the scaling proposed
enables exact recovery. We later focus on forecasting time series and data-driven simulation to offer just
two application areas. Exact recovery guarantees obtained via nuclear norm minimization for structured
matrices can be extended beyond these examples based on Hankel-type structures to other formats that
naturally appear in diverse applications. For example, Toeplitz matrices—which often model convolu-
tion operators in imaging, communications, and system identification—arise when linear systems exhibit
time-invariant or shift-invariant properties. Circulant matrices, which are a special case of Toeplitz ma-
trices where each row is a cyclic shift of the previous one, are common in the analysis of digital filters
and in channel estimation problems because they diagonalize under the discrete Fourier transform. Such
structures also emerge in array processing and radar signal detection where block-Toeplitz or block-
circulant matrices characterize multi-channel or spatial correlations. In these contexts, exact recovery
results can be used to robustly interpolate missing measurements or reconstruct degraded signals while
preserving the inherent matrix structure. This not only leads to more efficient computational algorithms
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(by exploiting fast Fourier transform techniques in the circulant case) but also reinforces the reliability of
system identification and deconvolution methods in applications ranging from advanced medical imaging
to network communications. Several application areas for which the result in this paper has significant
consequence are also described in [Mar19] and the references therein.

In our current implementation, we leverage CVX [GB14, GB08], a software for convex optimization,
which provides a rapid and versatile framework for our computations. This setup enables us to efficiently
handle a variety of problem instances without extensive tailoring to specific applications. Due to the non
specific optimization routines we have used in this paper, we may experience some loss in efficiency
since it is not specifically optimized for any particular problem or application. This generality means
that while our approach can be applied to a wide range of scenarios, it might not be as finely tuned or
perform as well as methods designed for specific tasks. However, if needed, our method can serve as an
effective initial step for non-convex optimization routines.

Efficient algorithms for matrix completion leverage a variety of advanced computational techniques
to improve performance and scalability. One primary approach involves first-order optimization methods,
such as those described in [Bec17]. Randomized linear algebra also plays a crucial role in efficient matrix
completion [HMT11]. By using random sampling and projections, these methods can approximate the
leading singular values and vectors with high accuracy while significantly reducing the computational
load compared to traditional deterministic algorithms. The efficient computation of SVD is particularly
important in matrix completion. Structured matrices further enhance the efficiency of SVD computations
(e.g., [LQ00]). Algorithms that exploit these structures can perform SVD more rapidly.

6.1 The rank-1 case

In this example, we revisit the numerical study of [UC16], and take pk = λk, λ ∈ R, with structure
as described in (1). The aim is to investigate for which range of λ and ε do the solutions of (RMIN)
and (NNMIN-ε) coincide. It is shown in [UC16, Thm. 6] that for the case with no matrix scaling (i.e.
ε = 1) if |λ| < 1 then the solution of (NNMIN) is unique and coincides with the solution of (RMIN),
namely pn+k = λn+k. Otherwise, the solutions do not coincide. In this numerical exercise we show that
the scaling (2) and consequent solving of the scaled optimization problem (NNMIN-ε) indeed increases
the range of |λ| for which we get exact (perfect) recovery of missing values. We use (12) to compute
candidate dual certificates to evidence this.

(a) m = 1 (b) m = 2

Figure 1: Plot of the Frobenius norm of the candidate dual certificate as given in (13) against λ for the
form of p as described, with n = 10, L = 4, κ = m.

Figure 1 is a plot of the Frobenius norm of the candidate dual certificate as given in (13) against
λ for the form of p as described, with n = 10, L = 4, κ = m, for different numbers of unknown
observations m and scaling ε, as stated within the figure. The horizontal ‘dashed’ lines denote the value
when the Frobenius norm of the candidate dual certificate is one. By Lemma 4.1, when this norm is
strictly less than one then the solution of (NNMIN-ε) is unique, coincides with that of (RMIN), and thus
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we have exact recovery of the m missing values. The range of λ for which we have exact recovery is a
function of the scaling parameter ε, the range increases as more scaling (in the sense of taking ε small) is
applied. For p with exponential growth, the more observations that are unknown, then the more scaling
is required for exact recovery. Note that the point at which the solution with no scaling (ε = 1) intersects
the horizontal ‘success’ line, is the value of λ as given in [GU18, Corollary 4.3], which gives bounds on
λ for which the solution of (NNMIN) coincides with that of (RMIN).

6.2 The rank-r case

We extend the example of the previous section for a more challenging problem, and instead take pk =∑r
j=1 λ

k
j , λj ∈ R, with again Hankel structure as described in (1). We take m = 1, L = 10, n = 20,

κ = 1 and each λj is independently sampled uniformly in the range (0, u), for some selected u > 0. We
explore the influence of u and r and how they interact with the necessary amount of scaling (dictated
by the parameter ε) to yield the Frobenius norm of the candidate dual certificate as given in (13) to be
smaller than 1.

(a) u = 1 (b) u = 1

(c) u = 1.5 (d) u = 1.5

(e) u = 2 (f) u = 2

Figure 2: Plots (3-d and contour) of the proportion of times the Frobenius norm of the candidate dual
certificate as given in (13) exceeds one, with ε (lhs) against r = 1, 2, . . . , 8 (bottom), for different u.
Parameter settings are m = 1, L = 10, n = 20, κ = 1.

Figure 2 contains plots (3-d and contour) of the proportion of times this Frobenius norm of the
candidate dual certificate (13) exceeds one, with ε plotted against r = 1, 2, . . . , 8, for different u. We
take 10,000 Monte-Carlo simulations. The amount of scaling required for exact recovery of the missing

15



values increases with r and u. This is consistent with the intuition as written in [UC16] and [GU18], that
the observed vector needs to be sufficiently damped in order for (NNMIN) to yield an identical solution
to (RMIN).

In the examples considered so far, we have opted to compute the Frobenius norm of the candidate
dual certificate, ‖M∗‖F , as given in (13), instead of its spectral norm ‖M∗‖2 by virtue of Theorem 3.3,
thus obtaining a weaker sufficient condition. We now investigate the gap between these norms. We take
the same signal as described at the opening of this section, with L = 10, n = 20, r = 3 and κ = m, and
inspect the ratio ‖M∗‖F /‖M∗‖2 for different m and u.

Figures 3 and 4 contain boxplots of the ratio ‖M∗‖F /‖M∗‖2 for different m and u (as stated in
the caption), ε = 0.5 and ε = 0.1 respectively, taken over 10, 000 Monte-Carlo simulations. The ratio
appears more variable as the number of missing values m increases, and for small u the ratio seems to be
a piece-wise linear function ofm, increasing until beginning to (approximately) plateau after a particular
number of missing observations. For small ε the ratio is smaller.

(a) u = 1 (b) u = 3 (c) u = 7

Figure 3: Boxplots of the ratio ‖M∗‖F /‖M∗‖2 for differentm and u (as stated in the caption), ε = 0.5.

(a) u = 1 (b) u = 3 (c) u = 7

Figure 4: Boxplots of the ratio ‖M∗‖F /‖M∗‖2 for differentm and u (as stated in the caption), ε = 0.1.

We now discuss the result of Proposition 5.7. Using the notation as given in this proposition, Figure 5
is a plot of the ratio ‖M∗‖F /ε

√
m0 against ε and r for the example considered with κ = 1, for different

u, again taken over 10, 000 Monte-Carlo simulations. The leading term approximation of the Frobenius
norm of the candidate dual certificate M∗ can be seen to be an excellent approximation, with deviation
only for more ‘complex’ time series for large r or u, but this deviation can be mitigated with a selection
of a smaller ε.

6.3 Forecasting time series

In this section we provide figures directly showing the impact of scaling upon forecasting a given sig-
nal/time series. Take pk = exp(λk) sin(2πωk), λ = ω = 0.1, with Hankel structure as described in
(1). We take m = 5, L = 4, n = 10, κ = 5. Practically one may view the problem considered here

16



(a) u = 0.5 (b) u = 1 (c) u = 2

Figure 5: Ratio ‖M∗‖F /ε
√
m0 against ε and r for the example considered with κ = 1 and different u.

as forecasting ahead five observations having already recorded ten exact observations of a signal/time
series.

Figure 6 contains plots of the signal p with the solutions obtained from (NNMIN-ε) and (NNMIN)
(i.e., nuclear norm minimization with and without scaling, respectively). The failure of (NNMIN) to
exactly recover the time series is clearly evident, and the introduction of scaling gives exact recovery of
the m = 5 missing values once ε is taken sufficiently small. The final value of ε ≈ 0.0694 is that found
from (8), showing its value in selecting the scaling parameter ε in practice.

(a) ε = 0.25 (b) ε = 0.15 (c) ε = 0.0694

Figure 6: Plots of the signal p (blue curve) with the solutions obtained from (NNMIN-ε) (black cross,
with ε as given) and (NNMIN) (orange circle).

6.4 Data-driven simulation

In this subsection, we describe an example of structured matrix completion that appears in modeling (lin-
ear time-invariant) dynamical systems (with p inputs and m outputs) that transform an input sequence
u(t) ∈ Rp to the output sequence y(t) ∈ Rm. The simulation problem [Mar17] aims at computing the
output time series for a given dynamical system, input and initial conditions; the system parameters often
have to be estimated prior to simulation. The data-driven approach to simulation [Mar19, DM19] avoids
the step of estimating system parameters and is rather based on previously recorded data of inputs and
outputs produced by the system. As shown in [Mar19, DM19], data-driven simulation can be reformu-
lated as structured matrix completion. More details on the data-driven simulation problem are provided
in Appendices 7.3 and 7.4, and we give below just necessary details to formulate the matrix completion
problem.

Let ud ∈ Rm×Td and yd ∈ Rp×Td be some known input-output pair of time series (“data”)

ud = (ud(1), . . . ,ud(Td) ) , yd = (yd(1), . . . ,yd(Td) ) ,
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and a new input time series us ∈ Rm×Ts the goal is to find the corresponding output ys ∈ Rp×Ts

us = (us(1), . . . ,us(Ts) ) , ys =
(
ys(1), . . . ,ys(`),ys(`+ 1), . . . ,ys(Ts)︸ ︷︷ ︸

unknown

)
,

assuming the knowledge of its first `� Ts values (initial conditions).
By choosing the parameter L ≥ ` + 1 and denoting Kd = Td − L + 1 and Ks = Ts − L + 1, the

approach of [DM19] consists in minimizing the rank of the following L(m+ p)× (Kd +Ks) matrix

ML =



ud(1) ud(2) · · · ud(Kd) us(1) us(2) . .
.

. .
.

· · · us(Ks)

ud(2) ud(3) · · ·
... us(2) us(3) . .

.
. .
.

· · ·
...

... . .
.
· · ·

...
... . .

.
. .
.

. .
.

· · ·
...

ud(L) . .
.
· · · ud(Td) us(L) . .

.
. .
.

. .
.

· · · us(Ts)

yd(1) yd(2) · · · yd(Kd) ys(1) · · · ys(`) ys(`+ 1) · · · ys(Ks)

yd(2) yd(3) · · ·
...

... . .
.

. .
.

. .
.

· · ·
...

... . .
.
· · ·

... ys(`) . .
.

. .
.

. .
.

· · ·
...

... . .
.
· · ·

... ys(`+ 1) . .
.

. .
.

. .
.

· · ·
...

... . .
.
· · ·

...
... . .

.
. .
.

. .
.

· · ·
...

yd(L) . .
.
· · · yd(Td) ys(L) . .

.
. .
.

. .
.

· · · ys(Ts)



.

(27)
We consider a randomly generated single-input single-output (m = p = 1) linear time-invariant

system of order ` = 6 (generated by MATLAB’s function DRSS). The input is a standard normal zero-
mean white Gaussian noise sequence ud of length Td = 40 and we denote the corresponding (noise-free)
output as yd. The simulation input us of length Ts = 20+ ` is generated in the same way, and the (noise-
free) simulation output is denoted by ỹs. All simulations assume to start from zero initial conditions. We
set the number of block rows L of the Hankel matrix to L = `+ 1.

To study the effect of the data scaling, we replace the data ws = (us,ys) by εws and investigate
the results for values of ε in the range [10−3, 103]. The nuclear norm minimization using the proposed
block-column scaling (NNMIN-ε) returns the (scaled) simulation output ŷs, which is then compared to
the true simulation output ỹs after rescaling the result by multiplying it with ε−1. Figure 7 contains the
result of this analysis, showing the relative simulation error ‖ŷs − ỹs‖/‖ỹs‖ with ỹs the true simulation
output. At large values ε� 1 the simulation signal is close to a zero signal (and the relative error is one).
As ε decreases, the reconstruction error gradually decreases and for a sufficiently small value ε� 1 the
method returns the true simulation output ỹs.

7 Conclusion

We have introduced a technique to achieve exact recovery of missing entries of structured matrices using
the commonly used nuclear norm relaxation of low-rank matrix completion where the observations are
recorded without noise. To do this we use block-column scaling of the given matrix. As well as de-
scribing the theoretical basis of this approach we have offered several examples showing the usefulness
and merit of our proposed technique. We provide a result suggesting a value for our scaling parameter
which will be helpful for practical use of our results. There is significant potential for synergizing our
theoretical advancements with several practical applications in fields such as time-series analysis, data-
driven simulation, and more. Future work will consider the hard problem of when observations are noisy
and not exact, and to derive conditions for when Assumption 3.1 is verifiable for general affine matrix
structures.
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Figure 7: The relative reconstruction error in the data-driven simulation problem exhibits a transition to
a zero error for sufficiently small values of the scaling parameter ε. This effect is shown on the simulated
signal where large values of ε � 1 result in a zero simulation output (relative error of 1), while small
values of ε� 1 lead to a perfect reconstruction of the signal in the noiseless case, indicated by the bold
line connecting the circled points. We additionally show simulation results for intermediate values of ε
in grey lines that have a nonzero relative error — their corresponding relative errors are indicated on the
left panel by circles.

Appendix

7.1 Forecasting for Hankel matrices

Proof of Lemma 3.5. Note that S0(p) depends only on p′0 = (p0)1:n+m−κ

S0(p) :=
[
HL(p′0) 0.

]
whereHL(p′0) is a subblock ofHL(p0). Under the assumption [GNZ01, §5.3], p′0 has a unique minimal
rank completion for any number of forecasted values.

7.2 Subdifferential of the nuclear norm

Definition 7.1 (Subdifferential of a function f at x). For a convex function f : RN → R, the subdiffer-
ential [HUL01, p. 167] of f at x, denoted by ∂f(x), is defined as the set

∂f(x)
def
=
{
z ∈ RN : f(y) ≥ f(x) + 〈z,y − x〉, for all y ∈ RN

}
.

Notice that if f is differentiable at x, then the subdifferential contains a single element, namely the
gradient, i.e., ∂f(x) = ∇f(x).

The subdifferential of the nuclear norm of a matrix X , is related to the SVD of X as follows.
Consider a rank-r matrix X ∈ RL×K , and its compact SVD as

X = UΣV >,

with orthonormal U ∈ RL×r and V ∈ RK×r, and Σ ∈ Rr×r a diagonal matrix with the nonzero singular
values. Let also U⊥ ∈ RL×(L−r) and V⊥ ∈ RK×(K−r) be the matrices containing the remaining left and
right singular vectors (spanning the left and right nullspaces of X , respectively). Then the subdifferential
of the nuclear norm [Wat92, p.41] at X is the following set of matrices:

∂‖X‖∗ =
{[

U U⊥
] [I 0

0 Z

] [
V V⊥

]T
: Z ∈ R(L−r)×(K−r), ‖Z‖2 ≤ 1

}
,
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In what follows, we use a slightly more compact notation. Denote by B
def
= UV T the polar factor of

X and by Q1 and Q2 the orthogonal projectors on the left and right nullspace of X respectively:

Q1=U⊥U
T
⊥ = IL −UUT, Q2=V⊥V

T
⊥ = IK − V V T.

Then the subdifferential of the nuclear norm at X can be expressed as

∂‖X‖∗ =
{
B +Q1MQ2 : M ∈ RL×K with ‖M‖2 ≤ 1

}
. (28)

Let f(p) = ‖S(p)‖∗ denote the function that maps coefficients p to the nuclear norm of the associ-
ated structured matrix S(p). By the chain rule, the subdifferential of f at p is (see [UC16])

∂f(p) =
{[
〈S1,H〉F · · · 〈SN ,H〉F

]>
: H ∈ ∂ ‖X‖∗ and X = S(p)

}
, (29)

where 〈·, ·〉F denotes the Frobenius inner product. Combining (28) with (29) and the standard neces-
sary and sufficient conditions for convex optimization problems, we can easily obtain conditions for the
structured nuclear norm minimization case.

7.3 Linear dynamical systems and block-Hankel matrices

Willems’ behavioral system theory [PW98] defines a system B as the set of its admissible trajectories
w. A trajectory w of a discrete-time q-variate system B (in shorthand notation ‘w ∈ B’) is a sequence
w = (w(1), . . . ,w(T ) ), with w(t) ∈ Rq for t = 1, . . . , T . In this paper we consider the class of
q-variate linear time-invariant (LTI) systems Lq. An LTI system B ∈ Lq (with m inputs and p outputs,
such that q = p+m) has a kernel representation

B =
{
w |R0w(t) + · · ·+R`w(t+ `) = 0, for t ≥ 1

}
, (30)

where R =
[
R0 R1 . . . R`

]
, in which Ri ∈ Rp×q is a kernel parameter that specifies the system.

This formulation can be viewed as a difference equation describing the admissible trajectories w ∈ B.
The minimal value for ` for which (30) holds, is an invariant of the system B and is called the lag.

For a trajectory w, the block-Hankel matrix is defined similarly to (1) as

HL(w)
def
=


w(1) w(2) · · · w(T − L+ 1)

w(2) w(3) · · ·
...

...
...

...
w(L) w(L+ 1) · · · w(T )

 ∈ RqL×(T−L+1). (31)

The block-Hankel matrix captures into the language of linear algebra the linear time-invariance of B, and
is closely connected to the kernel representation of B ∈ Lq. For a trajectory w ∈ B, the block-Hankel
matrix HL(w) with L ≥ `+ 1 is (row) rank-deficient, since RH`+1(w) = 0. More precisely, the rank
of the block-Hankel matrix HL(w) is bounded [Mar19]

rankHL(w) ≤ mL+ p`, (32)

for T � L, and under the persistency of excitation condition.
A trajectory w ∈ B admits a partitoning into inputs and outputs: i.e., there exists two time series

u(t) ∈ Rm (input) and y(t) ∈ Rp (output), so that the vector w(t) is a permutation of the elements of
the vector

[
u(t)
y(t)

]
; we will write w = (u,y) for short and assume that the permutation is known.

Remark 7.2 (SISO LTI systems). The case m = p = 1 is referred to as single-input-single-output
(SISO); in this case the lag ` is equal to the system order. Moreover, the block-Hankel matrix has rank
rankH`+1(w) ≤ 2`+ 1 (rank defeciency 1), with generically equality.
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7.4 Data-driven simulation as matrix completion

The simulation of a system for a given input signal can be stated as follows. Given a system B ∈ Lq, an
input us, and initial conditions wi

wi = (wi(−`+ 1),wi(−`+ 2), . . . ,wi(−1),wi(0) ) , (33)

find the output ys such that wi∧ws = wi∧(us,ys) ∈ B. This is a basic problem in system theory and is
studied in various formulations. In data-driven simulation, the system B is defined implicitly by a given
trajectory wd = (wd(1), . . . ,wd(Td) ) ∈ B, where ‘d’ stands for data. In this context, the simulation
of the output ys = (ys(1), . . . ,ys(Ts) ) for a given input us = (us(1), . . . ,us(Ts) ), where ‘s’ stands
for simulation, is done without first identifying the system B. We assume that the input ud of the given
trajectory wd = (ud,yd) is persistently exciting, so wd completely specifies the system B [WRMD05].
The data-driven simulation problem can then formally be stated as follows.

Problem 7.3 (Exact data-driven simulation).
Given a trajectory wd = (ud,yd) ∈ B ∈ Lq, an input us, and initial conditions wi, find the output ys,
such that wi ∧ws = wi ∧ (us,ys) ∈ B.

Remark 7.4. If we assume that the initial conditions are zero, i.e., wi ≡ 0, the specification of initial
conditions is done by prepending the trajectory w with ` zeros.

The rank-deficiency of the Hankel matrix HL(w), for L ≥ ` + 1, is closely related to the kernel
representation of the system B and its interpretation in terms of difference equations. The mosaic Hankel
matrix

[
HL(w

′) HL(w
′′)
]

built from two trajectories w′,w′′ ∈ B has the same rank as HL(w),
since w′ and w′′ satisfy the same difference equations, so rank

[
HL(w

′) HL(w
′′)
]
≤ mL+ p`.

This observation is crucial for formulating the data-driven simulation problem as a matrix completion
problem. Putting wd = (ud,yd) and ws = (us,ys) (where ws is only partially known), the unknown
output trajectory ys should be determined such that

rank
[
HL(wd) HL(ws)

]
≤ mL+ p`, for L ≥ `+ 1, (34)

implying that both trajectories belong to the same system B. Remark that again we need to specify initial
conditions to uniquely determine the simulation output ys. If we denote by w′s = wi∧ws the simulation
trajectory prepended with initial conditions, then data-driven simulation problem can be phrased as the
following block-Hankel matrix completion problem.

Problem 7.5 (Data-driven simulation via Hankel completion). Given a trajectory wd = (ud,yd) ∈ B ∈
Lq, an input us, and initial conditions wi, find the output ys from the following minimization problem.

minimize
ys

rank
[
HL(wd) HL(w

′
s)
]
, (35)

where ws = (us,ys).

By rearranging the rows of the mosaic Hankel matrix in (35), it is easy to see that Problem 7.5 is
equivalent to rank minimization of the matrix in (27) (where the fixed element in the right blocks in (27)
are due to initial conditions).
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polar decomposition. SIAM Journal on Matrix Analysis and Applications, 38(4):1354–
1379, 2017.

[GNZ01] Nina Golyandina, Vladimir Nekrutkin, and Anatoly A. Zhigljavsky. Analysis of time series
structure: SSA and related techniques. CRC press, 2001.

[GU18] Jonathan Gillard and Konstantin Usevich. Structured low-rank matrix completion for fore-
casting in time series analysis. International Journal of Forecasting, 34(4):582–597, 2018.

[GU23] Jonathan Gillard and Konstantin Usevich. Hankel low-rank approximation and completion
in time series analysis and forecasting: a brief review. Statistics and Its Interface, 2023. in
press.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

[HR84] Georg Heinig and Karla Rost. Algebraic methods for Toeplitz-like matrices and operators.
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Springer Verlag, Heidelberg, 2001.

22



[JONS13] Prateek Jain, Sewoong Oh, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix
completion using alternating minimization. In Proceedings of the 45th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 665–674, 2013.

[Kat95] Tosio Kato. Perturbation theory for linear operators. Springer-Verlag, 2nd corrected edi-
tion, 1995.

[Laz16] Damiana Lazzaro. A nonconvex approach to low-rank matrix completion using convex
optimization. Numerical Linear Algebra with Applications, 23(5):801–824, 2016.

[LQ00] Franklin T. Luk and Sanzheng Qiao. A fast eigenvalue algorithm for hankel matrices.
Linear Algebra and Its Applications, 316(1-3):171–182, 2000.

[Mar08] Ivan Markovsky. Structured low-rank approximation and its applications. Automatica,
44(4):891–909, 2008.

[Mar12] Ivan Markovsky. How effective is the nuclear norm heuristic in solving data approximation
problems? In Proc. of the 16th IFAC Symposium on System Identification, pages 316–321,
Brussels, 2012.

[Mar17] Ivan Markovsky. A missing data approach to data-driven filtering and control. IEEE Trans.
Automat. Contr., 62:1972–1978, 2017.

[Mar19] Ivan Markovsky. Low-Rank Approximation. Springer, New York, 2019.

[MD22] Ivan Markovsky and Florian Dörfler. Data-driven dynamic interpolation and approxima-
tion. Automatica, 135:110008, 2022.

[PW98] Jan Willem Polderman and Jan C. Willems. Introduction to mathematical systems theory:
a behavioral approach. Springer, New York, 1998.

[SS10] Nathan Srebro and Russ R. Salakhutdinov. Collaborative filtering in a non-uniform world:
Learning with the weighted trace norm. Advances in neural information processing sys-
tems, 23, 2010.

[TL21] Abiy Tasissa and Rongjie Lai. Low-rank matrix completion in a general non-orthogonal
basis. Linear Algebra and its Applications, 625:81–112, 2021.

[TW16] Jacob Tanner and Ke Wei. Low rank matrix completion by alternating steepest descent
methods. Applied and Computational Harmonic Analysis, 40:417–429, 2016.

[UC16] Konstantin Usevich and Pierre Comon. Hankel low-rank matrix completion: Performance
of the nuclear norm relaxation. IEEE Journal of Selected Topics in Signal Processing,
10(4):637–646, 2016.

[Van13] Benoı̂t Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM
Journal on Optimization, 23(2):1214–1236, 2013.

[Wat92] G. Alistair Watson. Characterization of the subdifferential of some matrix norms. Linear
Algebra Appl, 170(1):33–45, 1992.

[WRMD05] Jan C. Willems, Paolo Rapisarda, Ivan Markovsky, and Bart L. M. De Moor. A note on
persistency of excitation. Syst. Control Lett., 54(4):325–329, 2005.

[XJ12] Yun-Hai Xiao and Zheng-Fen Jin. An alternating direction method for linear-constrained
matrix nuclear norm minimization. Numerical Linear Algebra with Applications,
19(3):541–554, 2012.

23


