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Abstract

The behavioral approach to systems theory, put forward 40 years ago by Jan C. Willems, takes a representation-free perspective of
a dynamical system as a set of trajectories. Till recently, it was an unorthodox niche of research but has gained renewed interest
for the newly emerged data-driven paradigm, for which it is uniquely suited due to the representation-free perspective paired with
recently developed computational methods. A result derived in the behavioral setting that became known as the fundamental
lemma started a new class of subspace-type data-driven methods. The fundamental lemma gives conditions for a non-parametric
representation of a linear time-invariant system by the image of a Hankel matrix constructed from raw time series data. This paper
reviews the fundamental lemma, its generalizations, and related data-driven analysis, signal processing, and control methods. A
prototypical signal processing problem, reviewed in the paper, is missing data estimation. It includes simulation, state estimation,
and output tracking control as special cases. The direct data-driven control methods using the fundamental lemma and the non-
parametric representation are loosely classified as implicit and explicit approaches. Representative examples are data-enabled
predictive control (an implicit method) and data-driven linear quadratic regulation (an explicit method). These methods are equally
amenable to certainty-equivalence as well as to robust control. Emphasis is put on the robustness of the methods under noise.
The methods allow for theoretical certification, they are computationally tractable, in comparison with machine learning methods
require small amount of data, and are robustly implementable in real-time on complex physical systems.
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1. Introduction

The behavioral approach to system theory was put forward
by Jan C. Willems in the early 1980s to resolve “many awkward
things with input/output thinking” (Willems, 2007b, Section 8).
In addition to enforcing “input/output thinking”, conventional
system theory approaches invariably associate a dynamical sys-
tem with one of its representations, e.g., a convolution, transfer
function, or state-space representation. The new perspective
brought by the behavioral approach separates the system from
its numerous representations by defining a system as a set of
trajectories. This abstract set-theoretic perspective makes the
“input/output thinking” a choice rather than a requirement.

In addition to making the input/output thinking optional, sep-
aration of the system from its representations has other far
reaching consequences. It gives a geometric view of a lin-
ear time-invariant system as a (low-dimensional) shift-invariant
subspace in a (high-dimensional) trajectory space. This geo-
metric viewpoint is often simpler and more natural than the
classical frequency-domain and state-space ones. It led to a
“clear and rational foundation under the problem of obtaining
models from time series” Willems (1986, 1987). In particular,
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the global total least squares (Roorda and Heij, 1995), deter-
ministic subspace (Van Overschee and De Moor, 1996), and
structured low-rank approximation (Markovsky, 2013, 2019)
approaches to system identification are motivated by (Willems,
1986, 1987). More recently, the behavioral approach con-
tributed key ideas and techniques for data-driven analysis, sig-
nal processing, and control. This paper reviews these ideas and
techniques, presents some of the methods that originate from
them, and outlines research directions for future work.

In the contemporary language of machine learning, the new
techniques are unsupervised and non-parametric. The tech-
niques are unsupervised in the sense that they use directly the
raw time-series data without labeling or pre-processing inputs
and outputs, which require human decision making. The meth-
ods are non-parametric in the sense that they do not involve a
parametric model representation of the data-generating system
nor of the solution, e.g., the filter or the controller.

The results reviewed in the paper originate from Willems
et al. (2005) and Markovsky (2017). The key result of Willems
et al. (2005), which became known as the fundamental lemma,
gives conditions for existence of a non-parametric representa-
tion of a discrete-time linear time-invariant system that is spec-
ified by a trajectory of the system. The second cornerstone for
this paper is the idea put forward in Markovsky (2017) that var-
ious signal processing and control problems can be posed and
solved as a single generic missing data estimation problem.
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Recently, an ever-growing number of generalizations and ap-
plications of the fundamental lemma has appeared in the con-
text of data-driven analysis and control. We provide a concise
and comprehensive (albeit not exhaustive) review of the litera-
ture. A peculiar aspect of the literature centered around the fun-
damental lemma (and behavioral system theory in general) is
that from the publication of the result in 2005 till 2018 the result
remained unnoticed—as evident by the citation record—before
it has blossomed in the wake of data-driven control methods.

In what follows, we provide a brief historical recap and
contextualization of (Willems et al., 2005). The fundamental
lemma was originally conceived as a purely theoretical system
identification result: it gives identifiability conditions for deter-
ministic linear time-invariant systems. These conditions can be
viewed also as input design guidelines. Under certain speci-
fied conditions on the input signal and the data-generating sys-
tem, the collected data reveal the system dynamics. Informally,
when the data is assembled in a Hankel matrix, it spans the set
of all finite-length trajectories of the system, i.e., it represents
the finite-time behavior of the system. The identifiability con-
ditions given by the fundamental lemma are important, how-
ever, in retrospect what led to the renewed interest is the non-
parametric representation that gave rise to a new computational
approach for solving data-driven analysis and design problems.

The non-parametric representation was used originally as a
tool to find alternative derivations of existing subspace identifi-
cation methods (Markovsky et al., 2005). It revealed the system
theoretic meaning of computational steps in the methods. For
example, the oblique projection was shown to compute sequen-
tial free responses of the system. Later on the non-parametric
representation was used for solving other data-driven problems.

As a byproduct of the fundamental lemma, new algorithms
for system identification, data-driven simulation, and data-
driven control were proposed by Markovsky et al. (2006) and
Markovsky and Rapisarda (2008). The algorithms for data-
driven simulation and control of (Markovsky and Rapisarda,
2008), which are a follow-up of the ones in Markovsky et al.
(2005), are noteworthy because of:

• simplicity—they require only solving a system of linear
equations that involves no hyperparameters,

• generality—apply to multivariable systems under arbitrary
initial condition, and

• robustness—subsequent results show that with relatively
minor modifications the algorithms “work” also for noisy
data and nonlinear data-generating systems.

These features make the proposed data-driven simulation and
control algorithms a viable and practical alternative to the con-
ventional model-based approach that requires parametric model
identification followed by model-based simulation and control.

Earlier precursors of the data-driven control methods origi-
nating from the fundamental lemma are the work of Favoreel
et al. (1999) on subspace predictive control and the work of
Ikeda et al. (2001) and Fujisaki et al. (2004), who proposed a
conceptual framework for subspace-type data-driven control. In

Section 5.1.2 we show the connection of the subspace predic-
tive control to methods derived from the fundamental lemma.
The framework of Ikeda et al. (2001); Fujisaki et al. (2004) is
also motivated by the behavioral perspective of a system as a
set of trajectories and uses a non-parametric representation of
the system’s behavior similar to the ones shown in Section 3.3.

Subsequent work (Coulson et al., 2019a) built on the data-
driven control algorithms of (Markovsky and Rapisarda, 2008)
and embedded them in a robustified version of receding hori-
zon predictive control. The resulting procedure, called Data-
EnablEd Predictive Control (DeePC), saw many extensions and
successful implementations in different application areas. Since
2019, De Persis and Tesi (2019); van Waarde et al. (2020);
Berberich and Allgöwer (2020) and others used the core result
of the fundamental lemma for solving various analysis and con-
trol design problems directly from input-state data. The foun-
dations laid by the fundamental lemma as well as the numerous
adoptions and implementations led to a blossoming literature in
direct data-driven control, which is reviewed in this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a self-contained introduction to the behavioral
approach, which is sufficient to derive in Section 3 methods
for data-driven representation of linear time-invariant systems.
These methods are applied in Section 4 for the solution of a
generic missing data estimation problem and in Section 5 for
solving direct data-driven control problems via predictive con-
trol or explicit feedback policies. Section 6 gives conclusions
and poses open research directions. Selected, self-contained,
and educational proofs are given in the appendices.

2. Behavioral system theory

The idea of separating the notion of a dynamical system from
its representations is one of the hallmarks of the behavioral
approach to system theory. It also plays an important role in
data-driven system theory, signal processing, and control. Sec-
tion 2.1 defines a dynamical system and in particular a linear
time-invariant system as a set of trajectories. The class of lin-
ear time-invariant systems is refined in Section 2.2 by defining
the notion of model complexity and the subclass of bounded
complexity linear time-invariant systems. Three representa-
tions of bounded complexity linear time-invariant systems—
kernel, input/output, and input/state/output—are presented in
Section 2.3. A representation-free notion of controllability is
introduced and linked to the classical notion of state control-
lability in Section 2.4. The simulation problem and specifi-
cation of initial condition in a representation-free manner are
presented in Section 2.5. Our presentation is self-contained and
focused on what is needed for the coming sections on the fun-
damental lemma and data-driven control. For a more in-depth
introduction to the behavioral approach, we refer to (Willems,
1986, 1987, 1991; Polderman and Willems, 1998; Willems,
2007a).

2.1. Dynamical systems as sets of trajectories
The concept of a dynamical system is fundamental in sys-

tem theory. System theory textbooks, however, rarely define it
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rigorously. In the special case of a linear system, the concept
of a dynamical system is linked to the one of an input-output
map, defined by convolution or a transfer function if the sys-
tem is also time-invariant. More advanced textbooks identify a
dynamical system with the ubiquitous state-space equations.

The behavioral approach to system theory starts with a pro-
found, yet simple idea: a dynamical system is a set of trajec-
tories. This set is refered to as the behavior. Properties of the
system as well as problems involving the system are defined
in terms of the behavior. For example, a system is linear if
it is a subspace and time-invariant if it is invariant to the ac-
tion of the shift operator. Thus, a linear time-invariant system
is a shift-invariant subspace. There is no a priori reference to
inputs, outputs, and initial condition. However, the definition
has the input-output map as a special case and responses due to
nonzero initial condition are included in the behavior.

The behavior is all that matters: two systems are identical if
and only if their behaviors are equal. How the system is spec-
ified is an important but separate question. A specification of
the system is called a representation. Thus, in the behavioral
setting the concept of representation is decoupled from the one
of a system. A system admits different representations. For ex-
ample, convolution, transfer function, and state-space equations
are representations of a linear time-invariant system and not the
system itself. The system is the solution set of these equations.
The view of the representations as incidental is a major depar-
ture point of the behavioral from the classical approach.

A valid criticism of the behavioral approach is that it is ab-
stract and difficult to work with in practice. Relevant questions
being asked are: What is the value of the set-theoretic formal-
ism? What can be done with it that cannot be done in the clas-
sical setting by working with representations of the system?
How can problems be solved in practice without using repre-
sentations? Indeed, in practice representations are needed for
specifying a system and for solving problems both analytically
and computationally. The value of the set-theoretic formalism
is on the higher level of defining properties and problems in a
representation-free manner.

A representation-free problem formulation is important be-
cause it decouples the meaning and objectives of the problem
from its potential solution methods. The choice of the represen-
tation should pertain to the solution method only. In addition, to
the problem statement–solution method decoupling, the behav-
ioral approach led to new representations, analysis tools, and
design methods that have no counterparts in the input-output
setting. Till recently, using the behavioral approach had pri-
marily conceptual and theoretical benefits, as evident by a few
practical algorithms that came out from it. This has changed in
the last 15 years, when algorithms, software, and applications
inspired by or developed for the behavioral approach emerged.
The change was catalyzed by research on data-driven methods,
which are both using and contributing to the representation-free
perspective of dynamical systems.

Notation: The notation used in the rest of the paper is sum-
marized in Table 1. The space of q-variate one-side infinite
time-series (discrete-time signals) is denoted by (Rq)N. Recall

that a linear time-invariant (LTI) system B with q variables is
a shift-invariant subspace of (Rq)N. The set of q-variate linear
time-invariant systems is denoted by L q. In the next section,
we elaborate on the structure of a linear time-invariant system,
introducing the notion of system’s complexity and defining sub-
sets of L q of systems with bounded complexity.

notation: definition:
N := {1,2, . . .} set of natural numbers
w ∈ (Rq)N, w : N→ Rq q-variate real discrete-time signal

with time axis N
w|L:=

(
w(1), . . . ,w(L)

)
restriction of w to the interval [1,L]

w = wp∧wf concatenation of trajectories
σ , (σw)(t) := w(t +1) unit shift operator
B ⊂ (Rq)N discrete-time dynamical system B

with q variables
B|L := {w|L | w ∈B } restriction of B to the interval [1,L]
L q set of linear time-invariant systems

with q variables
m(B) / l(B) / n(B) number of inputs / lag / order of B
c(B) :=

(
m(B), l(B),n(B)

)
complexity of B

L q
c := {B ∈L q | c(B)≤ c} set of bounded complexity

linear time-invariant systems
HL(w) Hankel matrix with L block rows

constructed from w, see (9)
A† the pseudo-inverse of A

Table 1: Summary of notation.

2.2. Bounded complexity linear time-invariant systems

Apart from being a shift-invariant subspace, a linear time-
invariant system B has additional structure described by a set of
integers, called integer invariants or structure indices (Willems,
1986, Section 7). The most important ones are the number of in-
puts (free variables) m(B), the lag l(B), and the order n(B).
These structure indices are inherent properties of the system,
i.e., they are independent of its representation. However, as
shown in Section 2.3, the structure indices can be expressed
also in terms of the parameters of an input/output, minimal ker-
nel, and minimal state-space representations, where they are
linked to familiar concepts.

The restriction B|L of the system B ∈ L q to the interval
[1,L] is the set of L-samples long trajectories of B. By linearity
of B, B|L is a subspace of RqL. Its dimension dim B|L is

dim B|L = m(B)L+n(B), for L≥ l(B). (1)

The dimension formula (1) is used often in the rest of the
paper. An easily accessible proof based on the familiar in-
put/state/output representation of B is given in Appendix A.
(We refer to (Markovsky and Dörfler, 2020) for a state-space
independent proof.) Intuitively, dim B|L is the degrees of free-
dom in choosing a trajectory w ∈B|L of the system. The term
m(B)L in (1) corresponds to the degrees of freedom due to the
choice of the input, and the term n(B) corresponds to the de-
grees of freedom due to the choice of the initial condition.

The notion of complexity of a dynamical system is related to
the “size” of its behavior—the more complex the system is, the
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more trajectories it allows. In the case of linear time-invariant
systems, (1) characterizes the “size” of B. The system is called
bounded complexity if dim B|L < qL for sufficiently large L.
Bounded complexity implies that not all signals in (Rq)N are
trajectories of the system or, equivalently, that not all variables
are inputs, i.e., m(B)< q, and the order n(B) is finite. Since

l(B)≤ n(B)≤
(
q−m(B)

)
l(B), (2)

the lag l(B) of a bounded complexity system B is also finite.
Formulae (1) and (2) can be derived using the minimal kernel
and input/state/output representations of the system, introduced
in the next section. For details, see (Willems, 1986, Section 7).

Formally, we define the triple

c(B) :=
(
m(B), l(B),n(B)

)
as the complexity of B. Then,

L q
(m,`,n) := {B ∈L q |m(B)≤ m, l(B)≤ `, n(B)≤ n}

is the set of bounded complexity linear time-invariant systems.
The restricted behavior B|l(B)+1 of a bounded complexity

linear time-invariant system B uniquely specifies the system
(Markovsky and Dörfler, 2020, Lemma 12).

Hence, if a certain property can be certified for the set of
trajectories B|L of finite length L > l(B), then it holds for all
trajectories B. A system B without inputs, i.e., m(B) = 0,
is called autonomous. For a linear time-invariant autonomous
system dim B|L = n(B) if and only if L≥ l(B).

2.3. Parametric representations of bounded complexity linear
time-invariant systems

A bounded complexity linear time-invariant system B ∈
L q

(m,`,n) admits different parametric representations. Next,
we review 1) the kernel representation, which is a higher or-
der difference equation involving the variables, i.e., an auto-
regressive time-series model, 2) the input/output representation,
which is a kernel representation with additional structure—
partitioning of the variables into inputs and outputs—and 3) the
input/state/output representation, which in addition to the in-
put/output partitioning of the variables introduces an auxiliary
(state) variable, a first order difference equation of the state, and
a static relation among the output, input, and state.

• A kernel representation of the system B is defined by a
linear constant-coefficients difference equation

B = ker R(σ) :=
{

w | R(σ)w = 0
}
, (3)

where σ is the unit shift operator, (σw)(t) := w(t+1) and
the operator R(σ) is defined by the polynomial matrix

R(z) = R0 +R1z+ · · ·+R`z`

=

R1(z)
...

Rk(z)

=

R1
0 +R1

1z+ · · ·+R1
`1

z`1

...
Rk

0 +Rk
1z+ · · ·+Rk

`k
z`k

 ∈ Rk×q[z].

The kernel representation (3) is called minimal if the num-
ber of equations k is as small as possible over all kernel
representations of B (Willems, 1991, Definition III). In
a minimal kernel representation, k = p := q−m(B)—the
number of outputs of B—and ` := deg R :=maxi `i is also
minimized over all kernel representations of B. The min-
imal degree ` of R is equal to the lag l(B) of the system.
The minimal total degree n := ∑

k
i=1 `i of R is equal to the

order n(B) of the system.

• Input/output representation: For a permutation matrix Π∈
Rq×q and an integer m ∈ [1,q] define via[

u
y

]
:= Π

−1w (4)

a partitioning of the variables w(t) ∈ Rq into u(t) ∈ Rm

and y(t) ∈ Rp, where p = q−m. Let Πu be the projection
of w on the variable u, i.e., Πuw := u. Acting on a set,
Πu projects all elements in the set. The partitioning (4) is
an input/output partitioning of B, i.e., u is an input and y
is an output of the system, if 1) ΠuB = (Rm)N, i.e., u is
a free variable, 2) the output y is not anticipating the in-
put u (Willems, 1991, Definition VIII.4), and 3) the num-
ber of inputs m := dim u is maximal over all partitionings
(4) of B that satisfy properties 1 and 2.

Let B = ker R(σ) be a minimal kernel representation. The
partitioning (4) is an input/output partitioning of B if and
only if with

[
Q −P

]
:= RΠ, where the polynomial ma-

trix P ∈ Rp×p[z] is non-singular (Willems, 1991). The re-
sulting input/output representation (also called polynomial
matrix descriptions (Antsaklis and Michel, 1997, Chap-
ter 7.5)) is

Bi/o(P,Q,Π) =
{

Π [u
y ] | Q(σ)u = P(σ)y

}
.

• The input/state/output representation is defined as

B = Bss(A,B,C,D,Π)

:=
{

Π [u
y ] | there is x ∈ (Rn)N, such that

σx = Ax+Bu, y =Cx+Du
}
, (5)

where Π ∈ Rq×q is a permutation and
[

A B
C D

]
∈

R(n+p)×(n+m). The input/state/output representation (5) is
called minimal if n := dim A is as small as possible over
all input/state/output representations of B (Willems, 1991,
Definition VII.5). In a minimal input/state/output repre-
sentation, the state dimension n is equal to the order n(B)
of the system. The lag l(B) also manifests itself in a min-
imal input/state/output representations of B. It is equal to
the smallest k, for which the extended observability matrix

Ok(A,C) := col(C,CA, . . . ,CAk−1) (6)

reaches full column rank, i.e., rankOk(A,C) = n.

In a minimal input/state/output representation (5), the pair
(A,C) is state observable, i.e., rankOl(B)(A,C) = n(B),
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however, the pair (A,B) need not be state controllable, i.e.,

rank
[
B AB · · · Al(B)−1B

]
= n(B). (7)

As shown in the next section, (A,B) is state controllable
if and only if the system B is controllable in a new
representation-invariant sense of controllability.

2.4. Controllability in the behavioral setting

As all system properties, in the behavioral setting, controlla-
bility is defined in terms of the behavior: B is controllable if
for any wp,wf ∈B and t0 ∈ N, there is τ ∈ N and w ∈B, such
that w(t) = wp(t), for t ∈ [1, t0], and w(t) = wf(t), for t ≥ t0 +τ

(Willems, 1991, Definition V.1). I.e., B is controllable if it is
possible to “patch” any “past” trajectory wp to any “future” tra-
jectory wf by including a control trajectory wc over a period of
length τ; see Figure 1 for a visual illustration.

t

w

wp

wc wf

t0 t0 + τ

control

Figure 1: A system is controllable if any “past” trajectory wp can be concate-
nated with any “future” trajectory wf via a suitable “control” trajectory wc.

Note that the definition of controllability in the behavioral
setting is not restricted to linear time-invariant systems: it ap-
plies to general dynamical systems. In (Pillai and Willems,
1999), it is used also in the context of multidimensional sys-
tems. When specialized to linear time-invariant systems, the
notion of controllability in the behavioral setting is related but
not equivalent to the classical notion of state controllability (7).

The state controllability is defined as a property of the pair
of parameters (A,B) in an input/state/output representation
Bss(A,B,C,D) of a linear time-invariant system B. It depends
therefore on the choice of the representation (albeit it is invari-
ant under similarity transformations) as well as on the proper-
ties of the system B. A particular pair (A,B) may be uncontrol-
lable because the input has no sufficient effect on the output or
due to a “bad” choice of the state. Disentangling the two causes
is an important benefit of using the behavioral setting. Con-
trollability in the behavioral setting is a property of a system B
only. Thus, it is independent of the choice of the representation.

In order to show the relation between the behavioral and
the classical notions of controllability, consider a linear time-
invariant system B ∈L q with an input/state/output representa-
tion B =Bss(A,B,C,D). Without loss of generality we assume
that the parameters (A,B,C,D) are in the Kalman decomposi-

tion form:

A =


Acō ? ? ?
0 Aco 0 ?
0 0 Ac̄ō ?
0 0 0 Ac̄o

 , B =


Bcō
Bco
0
0

 ,
C =

[
0 Cco 0 Cc̄o

]
.

The system B has a direct sum decomposition B =Bctr⊕Baut
into a controllable subsystem Bctr ∈ L q and an autonomous
subsystem Baut ∈ L q, see (Willems, 1991, Proposition V.8).
The controllable subsystem Bctr corresponds to the subsystem
Bss(Aco,Bco,Cco,D) in the Kalman decomposition, and the au-
tonomous subsystem Baut corresponds to Bss(Ac̄o,0,Cc̄o,0).
Therefore, in order to preserve the behavior, unobservable
states in a state-space representation can be removed, but un-
controllable states that are observable should not be removed.
Indeed, the unobservable states have no contribution to B, how-
ever, the uncontrollable states that are observable define the au-
tonomous subsystem Baut and removing them changes B.

The fact that uncontrollable–observable states can not be re-
moved clashes with the classical wisdom that “minimality” of a
state-space representation of a system implies both state observ-
ability and state controllability. A quadruple (A,B,C,D) that is
both state observable and state controllable is called a minimal
realization of the system. The surprising fact brought by the be-
havioral approach is that some nonminimal realizations are in
fact real; equivalently, there are “real-life” systems that do not
admit minimal state-space realization. The behavioral notion of
controllability clarifies the folklore behind the “without loss of
generality” assumption of existence of a minimal realization as
well as the cancellation of common poles and zeros in a transfer
function. In both questions—when a minimal realization exists
and when a pole-zero cancellation is allowed—the answer is
“when the system is controllable”.

2.5. Simulation and specification of initial condition
Simulation of a dynamical system is one of the basic oper-

ations in the arsenal of system theory. It is defined for a sys-
tem with an input/output partitioning of the variables as fol-
lows: Finding the output of the system, given the system, the
input, and the initial condition. From a mathematical point of
view, simulation is the problem of solving an equation, e.g.,
(3), (2.3), or (5) if the system B is given by on of the repre-
sentations reviewed in Section 2.3. From the behavioral point
of view, simulation is particular way to parametrize a trajectory
w ∈B of the system B, i.e., abstractly viewed, simulation is
the problem of selecting an element of the behavior. A con-
venient way of achieving parametrization of w ∈B is to fix an
input/output partitioning (4) of the variables, and take as param-
eters the input component u of w = Π [u

y ] and the initial condi-
tion. As shown next, the initial condition can be specified also
by a trajectory—a “prefix” trajectory wini for w.

Formally, the simulation problem is defined as follows:
Given a system B, an input/output partitioning (4), input u ∈
(Rm)L, and initial condition wini ∈ (Rq)Tini ,

find y ∈ (Rp)L, such that wini∧Π(u,y) ∈B|Tini+L, (8)
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see Figure 2 for a graphical illustration.

t

w

Tini

wini w

≥ `

Figure 2: Initial condition for a trajectory w ∈B are specified in the behavioral
setting by a prefix trajectory wini of length Tini ≥ l(B). The condition that w is
generated from the initial condition specified by wini is then wini ∧w ∈B.

The assumption that wini is a trajectory of B guarantees ex-
istence of a solution to the simulation problem (8). However, in
general, the solution may not be unique. In order to render the
solution unique, wini has to be “sufficiently” long. A sufficient
condition for this is that Tini ≥ l(B).

Lemma 1 (Initial condition specification (Markovsky and
Rapisarda, 2008)). Let B ∈ L q admit an input/output parti-
tion w = (u,y). Then, for any given wini ∈ BTini with Tini ≥
l(B) and u ∈ (Rm)L, there is a unique y ∈ (Rp)L, such that
wini∧ (u,y) ∈B|Tini+L.

Proof. Two proofs of Lemma 1 are given in Appendix B. The
first one is based on an input/state/output representation of B.
The second one is based on a generic basis of B|Tini+L.

The trajectory wini plays the role of the initial state in the
state-space setting. It can be shown that for Tini ≥ l(B), the
vector wini of sequential samples is a state vector of the system
(Rapisarda and Willems, 1997). Then, problems of estimation
of wini can also be understood as state estimation problems.

3. Data-driven non-parametric model representation

This section presents a non-parametric representation of lin-
ear time-invariant systems that is at the core of the subspace-
type data-driven analysis, estimation, and control methods. The
non-parametric representation is the image of a Hankel matrix
constructed from trajectories of the system. It has been used im-
plicitly since the 90’s in subspace identification and related data
matrices are extensively used in dictionary learning and mo-
tion primitives. A theoretical foundation for its use, however,
was provided only later by the so-called fundamental lemma.
Apart from providing a foundation for the non-parametric rep-
resentation, the fundamental lemma, reviewed in Section 3.1,
gives also identifiability conditions, i.e., conditions under which
the data-generating system can be uniquely identified from the
data. While the fundamental lemma provides sufficient condi-
tions for identifiability and for the non-parametric representa-
tion from an input design perspective, Section 3.2 presents al-
ternative necessary and sufficient conditions based on the rank
of the Hankel matrix of the data. Section 3.3 previews two

ways of using the non-parametric representation for solving
data-driven analysis, signal processing, and control problems.

3.1. The fundamental lemma
Given one “long” trajectory wd ∈ (Rq)T of a linear time-

invariant system B ∈ L q, multiple “short” trajectories of B
can be created exploiting time-invariance. In what follows, the
subscript “d” stands for “data” and indicates one or more tra-
jectories of a system that are used to implicitly specify it. Let
L ∈ {1, . . . ,T } be the length of the “short” trajectories and de-
fine the cut operator

w|L :=
(
w(1), . . . ,w(L)

)
.

Sequential application of the shift σ and cut |L operators on wd
results in N = T −L+1, L-samples-long trajectories

(σ0wd)|L,(σ1wd)|L, . . . ,(σT−Lwd)|L.

The (qL)× (T −L+1)-dimensional matrix

HL(wd) :=


wd(1) wd(2) · · · wd(T −L+1)
wd(2) wd(3) · · · wd(T −L+2)

...
...

...
wd(L) wd(L+1) · · · wd(T )

 , (9)

formed by stacking these trajectories next to each other is called
the Hankel matrix of wd (with depth L). Although HL(wd) is
well defined for any L∈ {1, . . . ,T }, we require HL(wd) to have
more columns than rows, which implies

L≤ Lmax :=
⌊

T+1
q+1

⌋
,

where bac is the largest integer smaller than or equal to a.
A signal ud ∈ (Rm)T is called persistently exciting of order L

if HL(ud) is full row rank, i.e., rankHL(ud) = mL. It follows
from (1) that a persistently exciting signal ud of order L can-
not be modeled as a trajectory of an autonomous linear time-
invariant system with lag less than L. For ud to be persistently
exciting of order L, it must be sufficiently rich and long. In
particular, it must have at least Tmin := (m+ 1)L− 1 samples.
Persistency of excitation plays an important role in system iden-
tification and input design problems.

The following result, which became known as the fundamen-
tal lemma, gives both identifiability conditions as well as input
(experiment) design guidelines.

Lemma 2 (Fundamental lemma (Willems et al., 2005)). Con-
sider a linear time-invariant system B ∈ L q with an in-
put/output partition w = (u,y). Let

1. wd = (ud,yd) ∈B|T be a trajectory of B,
2. the system B be controllable, and
3. the input component ud of wd be persistently exciting of

order L+n(B).

Then, any L-samples long trajectory w of B can be written as
a linear combination of the columns of HL(wd) and any lin-
ear combination HL(wd)g, for g ∈RT−L+1, is also a trajectory
of B, i.e.,

image HL(wd) = B|L. (10)
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About the proof: While the inclusion image HL(wd)⊆B|L
follows directly from the linearity and time-invariance proper-
ties of the system, the question when equality holds is not ob-
vious. The original proof in Willems et al. (2005) is based on a
kernel representation of the system and uses the notion of anni-
hilators of the behavior. The tool used in this proof is abstract
algebra. An alternative proof based on a state-space represen-
tation is given in van Waarde et al. (2020b). Both proofs are by
contradiction. Quoting from Willems et al. (2005):

"The interesting, and somewhat surprising, part of
Theorem 1 is that persistency of excitation of order
L+n(B) is needed in order to be able to deduce that
the observed sequences of length L have the ‘correct’
annihilators and the ‘correct’ span. In other words,
we have to assume a ‘deeper’ persistency of excita-
tion on ud than the width of the windows of (ud,yd)
which are considered."

Currently there is no constructive proof that gives an intuition
why the additional persistency of excitation is needed nor how
conservative the conditions are.

Lemma 2 states conditions on the input ud and the system B
under which, independently of the initial condition correspond-
ing to wd, the Hankel matrix HL(wd) spans the restricted behav-
ior B|L. Therefore, the image of the Hankel matrix HL(wd)
is a representation of the system B, as long as trajectories
of length L are concerned. The resulting representation (10)
is non-parametric, applies to controllable linear time-invariant
systems, and depends on the given data wd only. Although (10)
is a representation of the restricted behavior B|L, the fact that it
involves raw data only and no parameters distinguishes it from
conventional parametric and non-parametric system representa-
tions that are traditionally called “models”. In this sense, direct
data-driven methods using only (10) are “model-free.”

Over time, Lemma 2 became known as the fundamental
lemma because of its foundational importance for system iden-
tification, data-driven analysis, signal processing, and control.
Indeed, since B|l(B)+1 completely specifies the system B,
choosing L = l(B)+1 in Lemma 2, we obtain conditions under
which B can be recovered from the data wd, i.e., identifiability
conditions. Moreover, the result is interpretable and as shown
later on in the overview, algorithms derived from it are tractable
and robust.

A special case of the fundamental lemma that derives iden-
tifiability condition used in subspace identification (Van Over-
schee and De Moor, 1996; Verhaegen and Dewilde, 1992) is
when the system B is given by an input/state representation,
i.e., the output is equal to the state:

B = {(u,x) | σx = Ax+Bu}. (11)

Note that in this case l(B) = 1. Applied to (11), Lemma 2 leads
to the following result (Willems et al., 2005, Corollary 2).

Corollary 3. Consider a trajectory (ud,xd) ∈ B|T of a sys-
tem (11) with m := dim u inputs and state dimension n := dim x.
Assume that (A,B) is controllable. Then,

1. if ud is persistently exciting of order n,

rank
[
xd(1) · · · xd(T )

]
= n,

2. if ud is persistently exciting of order n+1,

rank
[

ud(1) · · · ud(T )
xd(1) · · · xd(T )

]
= n+m,

3. if ud is persistently exciting of order n+L,

rank
[

HL(ud)[
xd(1) · · · xd(T −L+1)

]]= mL+n.

The rank conditions appearing in Corollary 3 are extensively
used in the subspace identification literature, however, they are
assumed and there were no tests available to verify them from
given input-output data wd = (ud,yd) that is an arbitrary trajec-
tory. Corollary 3 gives such a test. Corollary 3 is also exten-
sively used in data-driven analysis and control, see Section 5.3.

The fundamental lemma has been generalized for uncontrol-
lable systems (Mishra et al., 2020; Yu et al., 2021), data con-
sisting of multiple trajectories (van Waarde et al., 2020b), other
matrix structures (Coulson et al., 2020), as well as the fol-
lowing model classes: affine (Berberich et al., 2021c), linear
parameter-varying (Verhoek et al., 2021), flat systems (Alsalti
et al., 2021), finite impulse response Volterra (Rueda-Escobedo
and Schiffer, 2020), and Wiener-Hammerstein (Berberich and
Allgöwer, 2020). Other works extending the fundamental
lemma to nonlinear systems use the Koopman operator (Lian
and Jones, 2021a; Lian et al., 2021b). Experiment design meth-
ods for the fundamental lemma, i.e., methods for choosing the
trajectory wd, are considered in (van Waarde, 2021; Iannelli
et al., 2020; De Persis and Tesi, 2021a).

Like the fundamental lemma, however, all above cited gen-
eralizations depend on a priori given input/output partitioning
of the variables and provide sufficient conditions in terms of
persistency of excitation of the input. The following section
presents an alternative result that relaxes the assumption of a
given input/output partitioning. It expresses the persistency of
excitation in terms of all variables, provides necessary and suf-
ficient conditions not assuming controllability, and widens the
class of data matrix structures.

3.2. Identifiability
More generally, instead of one trajectory wd, consider a set

Wd := {w1
d, . . . ,w

N
d }, wi

d ∈ (Rq)Ti (12)

of N trajectories of a dynamical system B, i.e.,

wi
d ∈B|Ti , for all i = 1, . . . ,N. (13)

We refer to Wd as the data and to B as the data-generating
system. The question “Can we recover the data-generating sys-
tem B from the data Wd?” is called the identifiability question.
In order to make the identifiability question well posed, it is
necessary to know in addition to the data Wd a model class M
to which the to-be-identified system B belongs. In this paper
this is the linear time-invariant model class L q or L q

c that uses
prior knowledge of an upper bound c on the complexity.
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Definition 4 (Identifiability). The system B ∈M is identifi-
able from the data (12–13) in the model class M if B is the
only model in M that fits the data exactly, i.e.,

B̂ ∈M and Wd ⊂ B̂ =⇒ B̂ = B.

Identifiability gives conditions for well-posedness of the ex-
act identification problem, which is the map Wd 7→ B̂ ∈M
from data to a model in the model class.

For a set of time series Wd, the Hankel matrix (9) is gener-
alized to the mosaic-Hankel matrix (Heinig, 1995; Usevich and
Markovsky, 2014)

HL(Wd) :=
[
HL(w1

d) · · · HL(wN
d )
]
.

In (Markovsky and Dörfler, 2020), the following identifiabil-
ity condition for a linear time-invariant data-generating sys-
tem B ∈L q is proven: the system B is identifiable from the
data (12–13) if and only if

rankHl(B)+1(Wd) = m(B)
(
l(B)+1

)
+n(B).

The following corollary of the identifiability condition pro-
vides a foundation for a non-parametric representation of the
restricted behavior B|L of the data-generating system.

Corollary 5. [Corollary 19, (Markovsky and Dörfler, 2020)] If
the data-generating system B is linear time-invariant,

image HL(Wd)⊆B|L, for all L ∈ { l(B)+1, . . . ,Lmax }.

Moreover, for L≥ l(B), image HL(Wd) = B|L if and only if

rankHL(Wd) = m(B)L+n(B). (14)

Proof. A representation-free proof is given in Appendix C. The
key argument is showing that the dimension of the image of the
Hankel matrix HL(Wd) is equal to the dimension of B|L. Then,
(14) follows from the dimension formula (1).

Corollary 5 is an alternative to the fundamental lemma. Like
the fundamental lemma, it gives conditions under which the im-
age of the Hankel matrix HL(Wd) constructed from the data
generates the restricted behavior B|L. Unlike the fundamen-
tal lemma, however, Corollary 5 does not require a given in-
put/output partitioning of the variables nor controllability of the
data-generating system. Also, Corollary 5 gives a necessary and
sufficient condition while the fundamental lemma gives suffi-
cient conditions only. Condition (14) is reminiscent to the per-
sistency of excitation condition in the fundamental lemma. We
refer to it as a generalized persistency of excitation. It is ver-
ifiable from data Wd and prior knowledge of the structure in-
dices m(B), l(B), and n(B). An experiment design problem
achieving the condition (14) with a minimal length input is ad-
dressed by van Waarde (2021).

Another way in which Corollary 5 generalizes the funda-
mental lemma is that it allows for multiple trajectories (12) as
in (van Waarde et al., 2020b). The mosaic-Hankel matrix in
Corollary 5 includes as special cases other matrix structures,

such as the Hankel matrix (9), the Page matrix, and the trajec-
tory matrix. The trajectory matrix used in dictionary learning
(Brunton et al., 2016) collects time series column-by-column as

TL(Wd) :=

w1
d(1) w2

d(1) · · · wN
d (1)

...
...

...
w1

d(L) w2
d(L) · · · wN

d (L)

 ∈ RqL×N (15)

and is a special case of the mosaic-Hankel matrix when all time
series wi

d have length T1 = · · ·= TN = L, i.e., wi
d ∈ (Rq)L for all

i∈ {1, . . . ,N }. Coined by Damen et al. (1982), the Page matrix
PL(wd) ∈ RqL×T ′ of the signal wd ∈ (Rq)T with L block rows
is a special trajectory matrix (and therefore a special mosaic-
Hankel matrix) obtained by taking wi

d = (σ (i−1)Lwd)|L, for i ∈
{1, . . . ,T ′ }, where T ′ := bT/Lc. Alternatively, the Page matrix
PL(wd) can be obtained from the Hankel matrix HL(w) by
column selection:

PL(wd) :=
[
wd|L (σLwd)|L · · · (σ (T ′−1)Lwd)|L

]
=

wd(1) wd(L+1) · · · wd
(
(T ′−1)L+1

)
...

...
...

wd(L) wd(2L) · · · wd(T ′L)

 . (16)

Like the Hankel matrix HL(wd), the Page matrix PL(wd) also
consists of L-samples long trajectories, however, unlike the
Hankel matrix, the Page matrix has no repeated elements on
the anti-diagonals. The Page matrix has been independently
derived as a basis for the system behavior in (Coulson et al.,
2020; Agarwal et al., 2018).

Some pros and cons of the different matrix structures are
as follows: the Hankel matrix conditions the data on time-
invariance leading to larger dimensional data matrices, whereas
the trajectory and Page matrices offer algorithmic advantages
since they are unstructured. Clearly the latter require more data.
Markovsky and Dörfler (2020) report empirical results showing
advantages of the Hankel matrix when used for system iden-
tification, while in Section 5 we show that the trajectory and
Page matrices have advantages when used in direct data-driven
control. We will touch upon these points in later sections and
continue focusing on the mosaic-Hankel matrix HL(Wd) keep-
ing the special matrix structures in mind. The essential property
of all data matrices is that every column of the matrix, viewed
as a time series, is an L-samples long trajectory of the system.

3.3. Data-driven representation of the restricted behavior

The fundamental lemma and Corollary 5 provide a non-
parametric representation of the restricted behavior B|L as the
image of the mosaic-Hankel matrix HL(Wd) of the data with
depth L. Under the generalized persistency of excitation condi-
tion (14) (or conditions 1–3 of Lemma 2),

B|L = image HL(Wd). (17)

For given L, the non-parametric data-driven representation (17)
is completely specified by the data Wd. Under (14), it is valid
for any multivariable linear time-invariant system. Note that the

8



alternative conditions 1–3 of the fundamental lemma restrict the
class of systems due to the controllability assumption.

Based on (17), two approaches for solving data-driven anal-
ysis, signal processing, and control problems were proposed:

1. solving a system of linear equations, and
2. solving a rank-constrained matrix approximation and com-

pletion problem.

The first approach, originally used for data-driven simulation
and open-loop linear quadratic tracking control in (Markovsky
and Rapisarda, 2008), expresses the constraint that w ∈ (Rq)L

is a trajectory of the system B as existence of a solution of a
system of linear equation:

w ∈B|L ⇐⇒ w = HL(Wd)g has a solution g. (18)

The right-hand-side condition of (18) involves only the col-
lected data, so that the system B need not be known. The
approach using (18) requires basic linear algebra—the solution
of a system of linear equations. For details see Section 4.3,
where (18) is used for data-driven missing data estimation.
Modifications of the approach for noisy data Wd are presented
in Section 4.4 and in Section 5 for data-driven control.

The second approach expresses the constraint that w ∈ (Rq)L

is a trajectory of a bounded complexity linear time-invariant
system B as a rank condition:

w ∈B|L ⇐⇒ rank
[
Hδ (Wd) Hδ (w)

]
= rankHδ (Wd),

for any δ ∈ { l(B)+1, . . . ,L}. (19)

The right-hand-side of (19) involves only the data and the pa-
rameter δ , so that again the system B need not be known. The
condition is valid for any value of δ in the interval [l(B)+1,L],
however, different choices of δ lead to different methods. Of
most interest are the extremes δ = L and δ = l(B)+ 1. The
case δ = L recovers the system of equations (17) approach,
while the case δ = l(B)+1 leads to the mosaic-Hankel struc-
tured rank-constrained matrix approximation and completion
approach of Markovsky (2008). In Section 4 we use (19) with
δ = l(B) + 1 for data-driven missing data estimation and in
Section 5 the rank constraint (19) is used for pre-processing.

In (19), for δ = l(B)+1, the generalized persistency of exci-
tation condition coincides with the identifiability condition. In
contrast, in (18), L is the length of the signal w, which is given
and is in general larger than l(B)+ 1. The required general-
ized persistency of excitation for using the system of equations
approach (18) is therefore more restrictive than the one for us-
ing the matrix completion approach (19) with δ = l(B) + 1.
Also, growing L implies growing dimension of the system of
equations, which increases the computational cost.

Both deficiencies of (18)—the higher persistency of excita-
tion and the higher computational cost—can be overcome by
splitting w into length-δ pieces and computing each piece sep-
arately using (18), matching the initial condition of one piece
with the final conditions of the previous piece, see (Markovsky
et al., 2005, Lemma 3). The resulting algorithm requires solv-
ing recursively a sequence of smaller dimensional systems of

linear equations rather than one larger system. In the limit, the
lengths of the pieces can be taken as δ = l(B)+ 1, which en-
sures that the required persistency of excitation is the same as
the one for identifiability of the data-generating system B. In
this case, however, (18) is equivalent to a one-step-ahead pre-
dictor, which is essentially a model-based solution approach.
The recursive algorithm outlined above is therefore a more flex-
ible solution method that uses a δ -steps ahead data-driven pre-
diction, where δ is a hyperparameter.

4. Data-driven missing data estimation

Apart from the data-driven representation that emerged from
the fundamental lemma, the paper is based on another key idea,
put forward in Markovsky (2017): a missing part of a generic
trajectory of the system can be used to represent and compute
the object that is aimed at, e.g., the predicted signal in fore-
casting problems and the input signal in control problems. The
seeds for this idea can be traced back to Markovsky and Rapis-
arda (2008). In Markovsky and Rapisarda (2008) two seem-
ingly different problems—simulation and control—are solved
by minor variations of the same basic method. It gradually
emerged that this similarity is not incidental but a manifesta-
tion of a more general principle: rank deficiency of a structured
data matrix. Consequently, the problem is structured matrix
low-rank approximation and completion Markovsky (2014).

The problem considered in Markovsky (2017) deals with
noisy data and its solution requires local optimization methods.
In contrast, the problems in Markovsky and Rapisarda (2008)
are for exact data and analytical solutions are derived. This
disconnect between the two approaches is unfortunate. Latter
research showed that the two approaches are complementary.
In the context of data-driven control, the results in Markovsky
(2017) were generalized for noisy data, using regularization
methods. In Dörfler et al. (2021) and Markovsky and Dörfler
(2021) the low-rank approximation/completion approach and
the regularization approaches are unified.

This section presents the missing data estimation problem.
First, Section 4.1 shows how familiar model-based problems,
such as simulation, Kalman smoothing, and output tracking
control can be viewed as missing data estimation. Then, Sec-
tion 4.2 presents a generic formulation of the missing data es-
timation problem that fits the examples as special cases. The
generic problem is data-driven, i.e., instead of a system a set of
trajectories Wd is given. Section 4.3 outlines two solution ap-
proaches assuming that the data Wd is exact. The first solution
is based on a rank constrained matrix approximation and com-
pletion reformulation of the problem that uses (19). The second
solution is based on the system of linear equations reformula-
tion of the problem that uses (18). Section 4.4 shows modifi-
cations of the methods for the case of inexact/noisy data Wd.
Numerical case studies are shown in Section 4.5. Finally, Sec-
tion 4.6 comments on application of the data-driven methods
for linear time-invariant system analysis.
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4.1. Conventional model-based problem formulations

In order to fit conventional problems that are defined in terms
of inputs and outputs in the behavioral setting, in this section
we partition the variables w into inputs u and outputs y. For
simplicity, we assume that w = [u

y ], i.e., in (4) Π = I. Also, in
order to specify or estimate initial condition in a representation-
free manner, we split the time axis into “past” wini—the first
Tini samples—and “future” wf—the remaining Tf samples (see
Section 2.5). Then, by Lemma 1, we take Tini ≥ l(B).

Our goal is to show how conventional problems, such as sim-
ulation, smoothing, and output tracking control are equivalent
to corresponding missing data estimation problems. For exam-
ple, the simulation problem defined in (8) was already posed
as missing data estimation: find the unknown yf from the given
initial condition wini and input uf. The main message of this
section is that the missing data estimation framework goes be-
yond simulation. Next, we show that it fits also two versions
of state estimation—Kalman smoothing and errors-in-variables
Kalman smoothing—as well as a output tracking control.

• Kalman smoothing The problem is defined as follows:
given a linear time-invariant system B and a “noisy” tra-
jectory wf, find the initial condition wini. In the con-
ventional Kalman smoothing problem the “noisy” trajec-
tory wf is generated in the output error setup: the output is
measured with additive noise yf = yf + ỹf, while the input
is assumed exact uf = uf. The true value wf of the trajec-
tory wf is generated by the system B from some unknown
true initial condition wini, i.e., wini ∧wf ∈ B|Tini+Tf . As-
suming further on that the measurement noise ỹf is zero
mean, white, Gaussian with covariance matrix that is a
multiple of the identity, the maximum-likelihood estima-
tion problem for the initial condition wini is given by

minimize over ŵini and yf ‖yf− ŷf‖2

subject to ŵini∧ (uf, ŷf) ∈B|Tini+Tf .
(20)

A byproduct of estimating the initial condition ŵini in (20)
is an approximation of the output ŷf. The signal ŷf is the
best estimate of the true output ȳf, given the model B
and the prior knowledge about the measurement noise.
Problem (20), which defines the conventional Kalman
smoother (Kailath et al., 2000), is also a missing data esti-
mation problem for wini, however, the output yf is approx-
imated rather than fitted exactly.

• Errors-in-variables (EIV) Kalman smoothing The out-
put error setup used in the conventional Kalman smooth-
ing problem is asymmetric in the observed variables: the
output is assumed noisy while the input is assumed exact.
A symmetric setup where all variables are treated on an
equal footing as noisy is called errors-in-variables. The
errors-in-variables setup is consistent with the behavioral
approach where all variables are treated on an equal foot-
ing without splitting them into inputs and outputs. The
state estimation problem in the errors-in-variables setup
is again: given a linear time-invariant system B and a

“noisy” trajectory wf, find the initial condition wini, how-
ever, now the “noisy” trajectory wf is wf = wf + w̃f, where
wini∧wf ∈B|Tini+Tf for some wini and a zero mean, white,
Gaussian noise w̃f with covariance matrix that is a mul-
tiple of the identity. The maximum-likelihood estimation
problem for the initial condition wini is then:

minimize over ŵini and ŵf ‖wf− ŵf‖2

subject to ŵini∧ ŵf ∈B|Tini+Tf .
(21)

Problem (21) defines the what is called errors-in-variables
Kalman smoother (Markovsky and De Moor, 2005). It is a
missing data estimation problem for wini, where the whole
given trajectory wf is approximated.

• Output tracking Finally, the least-squares output track-
ing problem is defined as follows: given initial condi-
tion wini, and an output yf, find an input ûf, such that

minimize over ûf and ŷf ‖yf− ŷf‖2

subject to wini∧ (ûf, ŷf) ∈B|Tini+Tf .
(22)

The signal ûf is the open-loop optimal control signal.
Problem (22) is a missing data estimation problem, where
the missing data is the input. The given data is the refer-
ence signal yf, which is approximated in the least-squares
sense by the output ŷf. In the special case when the ref-
erence output yf ∈ B|Tf , the problem is called output-
matching. The output-matching problem is dual to the
simulation problem, where the missing data is the output yf
and the given data is wini and the (exact) input uf.

In Section 5.1, we address the data-driven control exten-
sions of (22). Note that the errors-in-variables Kalman
smoothing problem (21) (with a more general weighted
2-norm cost function) is equivalent to the linear-quadratic
tracking control problem (36), defined in Section 5.1.

Table 2 summarizes the examples. The data-driven versions
of these signal processing problems assume given data Wd of
the system B. Consequently, the data-driven solution methods
avoid identifying a parametric representation of B.

example reference wini uf yf
simulation (8) E E ?
Kalman smoothing (20) ? E N
EIV Kalman smoothing (21) ? N N
output tracking (22) E ? N

Table 2: The examples considered can be viewed as estimation of a missing
part of a trajectory (the question marks “?”s in the table) where other parts of
the trajectory are given as exact (E) or inexact/noisy (N).

4.2. Generic missing data problem formulation

In all problems considered in Section 4.1 the goal is to min-
imize the error signal e := w− ŵ, where w contains the given
data (exact, noisy, or reference signal) as well as missing values
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and ŵ is a trajectory of the system. The information about ex-
act, noisy, reference, and missing data is encoded in the weights
vi(t)≥ 0 of the element-wise weighted semi-norm (see Table 3)

‖e‖v :=

√
L

∑
t=1

q

∑
i=1

vi(t)e2
i (t).

Note that the given noisy and reference data is treated in the
same way by approximating it in the weighted least squares
sense. The difference is in the interpretation of the weights.
In the noisy case and using the maximum-likelihood estimation
principle, the weights are determined by the inverse of the noise
variances, which are assumed a priori known. In the reference
tracking case, the weights define the control objective, which is
specified by the designer.

The examples considered are then special cases of the fol-
lowing generic missing data estimation problem

minimize over ŵ ‖w− ŵ‖v subject to ŵ ∈B|L (23)

for suitable choices of the trajectory w and the weights v. The
formulation (23) not only generalizes the problems considered
in Section 4.1 but can also be used to formulate other prob-
lems such as simulation with terminal conditions, trajectory
generation with way points, and estimation of missing data
(Markovsky and Dörfler, 2021).

In order to solve (23) numerically, we reformulate it as an
equality constrained least-squares minimization. Let Iexact be
the vector of indices of the exact given elements and Itba be the
vector of indices of the to-be-approximated (tba) given noisy or
reference elements. We overload the notation w|L for a vector
of indices I ∈ {1, . . . ,qL}K

w|I :=
[
wI1 · · · wIK

]> ∈ RK

as the subvector of w ∈ RqL with indices I . Similarly, for lat-
ter usage, HL(wd)|I is the submatrix of HL(wd) with row in-
dices I . With this notation in place, the missing data estima-
tion problem (23) becomes:

minimize over ŵ ‖w|Itba − ŵ|Itba‖v|Itba

subject to ŵ ∈B|L and ŵ|Iexact = w|Iexact .
(24)

In the next section we present methods for solving (24) based
on the data-driven representation (17) of the system B.

4.3. Solution methods with exact data Wd

As previewed in Section 3.3, there are two distinct ap-
proaches: one by solving a system of linear equations and one
by solving a rank-constrained matrix approximation and com-
pletion problem. In this section, we use them for solving the
missing data estimation problem (24). We begin with the rank-
constrained matrix approximation and completion approach.

By means of Corollary 5 and (19), we obtain a data-driven
version of the missing data estimation problem (24):

minimize over ŵ ‖w|Itba − ŵ|Itba‖v|Itba

subject to rank
[
Hδ (Wd) Hδ (ŵ)

]
= rankHδ (Wd)

and ŵ|Iexact = w|Iexact .

(25)

I.e., assuming that (14) holds, the missing data estimation prob-
lem (24) is equivalent to the mosaic-Hankel structured low-
rank matrix approximation and completion problem (25) for
any δ ∈ { l(B)+ 1, . . . ,L}. The hyperparameter δ of (25) de-
termines the shape of the Hankel matrix. In case of exact data,
it does not affect the solution.

An independent yet similar data-driven approach to output
tracking (22) was conceptually laid out by Ikeda et al. (2001).
The authors also base their approach on the rank condition (14)
to specify the rank of the Hankel matrix containing past data,
the future output reference, and the future inputs to be designed.

Due to the rank constraint, (25) is a nonconvex optimization
problem. A convex relaxation, based on the nuclear norm ‖ ·‖∗
regularization (see (Fazel, 2002)) is

minimize over ŵ ‖w|Itba − ŵ|Itba‖v|Itba

+ γ
∥∥[Hδ (Wd) Hδ (ŵ)

]∥∥
∗

subject to ŵ|Iexact = w|Iexact ,

(26)

where δ and γ are hyperparameters. The parameter γ con-
trols the trade-off between the approximation error ‖w|Itba −
ŵ|Itba‖v|Itba

and the nuclear norm of the Hankel matrix, which
is a surrogate for the system’s complexity. Generally, γ should
be chosen large enough in order to ensure the desired rank (19).
In (Dreesen and Markovsky, 2019) it is suggested to consider a
weighted data matrix

[
αHδ (Wd) Hδ (ŵ)

]
, where α ≥ 1. It

is shown that for α above certain threshold the solution of (26)
coincides with the solution of (25), i.e., the missing data is re-
covered exactly by solving (26).

The other approach for solving (24) is to use the linear equa-
tions representation (18). It leads to the equality-constraint
least-squares problem (Markovsky and Dörfler, 2021)

minimize over g and ŵ ‖w|Itba − ŵ|Itba‖v|Itba

subject to ŵ = HL(Wd)g and ŵ|Iexact = w|Iexact ,
(27)

which admits a closed-form solution (Golub and Van Loan,
1996, Chapter 12). Note also that (27) has no hyperparameters.
In case of uniform weights (i.e., νi = constant, for all i ∈Itba)
and no exact data (i.e., Iexact = /0), the solution of (27) is

ŵ = HL(Wd)
(
HL(Wd)|Itba

)†w|Itba , (28)

where M† is the pseudo-inverse of M.
The approach (27) using the linear equations representa-

tion is at first glance superior to the one using the low-rank
Hankel matrix approximation and completion (25) due to the
simplicity of the solution (28) and due its effective modifica-
tions for the case of inexact data presented in the next sec-
tion. In case of inexact data, however, a modification of (25)
also leads to methods for computing the statistically optimal
maximum-likelihood estimator in the errors-in-variables setup
(Markovsky, 2017).

4.4. Solution methods with inexact/noisy data Wd

In Section 4.3, we assumed that Wd is exact. In this section,
we assume that Wd as well as w|Itba are noisy and are generated
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weight used if to by
vi(t) = ∞ wi(t) exact interpolate wi(t) ei(t) = 0
vi(t) ∈ (0,∞) wi(t) noisy/reference approximate wi(t) min ‖vi(t)ei(t)‖2

vi(t) = 0 wi(t) missing fill in wi(t) ŵ ∈ B̂|L

Table 3: The information about exact, noisy, reference, and missing data elements wi(t) is encoded into the weights vi(t) of the element-wise weighted semi-
norm ‖ · ‖v.

in the errors-in-variables setup:

wi
d = wi

d + w̃i
d, for i = 1, . . . ,N and w|Itba = w|Itba + w̃|Itba ,

where wi
d, w|Itba are the true values of wi

d, w|Itba , respec-
tively, and w̃i

d, w̃|Itba are the measurement noises that are as-
sumed to be zero mean, Gaussian with joint covariance ma-
trix

(
diag(v1

d, . . . ,v
N
d ,v|Itba)

)−1. The true values of the signals
are exact trajectories of a linear time-invariant system B with
complexity bounded by c = (m, `,n), i.e.,

wi
d ∈B|Ti , for i= 1, . . . ,N, w∈BL, and B ∈L q

c . (29)

The maximum-likelihood estimation problem in the errors-
in-variables setup (29) is (Markovsky, 2017)

minimize over Ŵd, ŵ, and B̂
N

∑
i=1
‖wi

d− ŵi
d‖2

vi
d

+‖w|Itba − ŵ|Itba‖
2
v|Itba

subject to ŵi
d ∈ B̂|Ti for i = 1, . . . ,N, ŵ ∈ B̂|L,

B̂ ∈Lc, and ŵ|Iexact = w|Iexact .

(30)

By using the data-driven complexity characterization (19)
and the fact that rankH`+1(Wd) = (`+1)m+n, we restate the
maximum-likelihood estimation problem (30) in a data-driven
fashion as a mosaic-Hankel structured low-rank approximation
and completion problem:

minimize over Ŵd and ŵ
N

∑
i=1
‖wi

d− ŵi
d‖2

vi
d

+‖w|Itba − ŵ|Itba‖
2
v|Itba

subject to rank
[
H`+1(Ŵd) H`+1(ŵ)

]
≤ m(`+1)+n

and ŵ|Iexact = w|Iexact .

(31)

The latter is a nonconvex optimization problem due to the rank
constraint. Local optimization methods based on the variable
projections are developed in (Markovsky and Usevich, 2013).
Suboptimal solution methods presented later on are:

1. a sequential two-step model-based approach and
2. convex relaxations based on sparse regularization.

The approach based on the linear equations representa-

tion (18) leads to the problem

minimize over g ‖w|Itba −HL(Ŵ
?

d )|Itba g‖v|Itba

subject to Ŵ ?
d ∈argmin

Ŵd

N

∑
i=1
‖wi

d− ŵi
d‖2

vi
d

subject to rankH`+1(Ŵd)≤ m(`+1)+n,

(32)

which is also non-convex due to the rank constraint in the in-
ner optimization. Problem (32) is a bi-level program: the inner
level is estimation of Wd and the outer level is estimation of the
missing data w|Imissing using the estimate Ŵ ?

d of Wd. Similar to
(31), the bi-level problem (32) is amenable to either a sequen-
tial two-step procedure or a convex relaxation based on sparse
regularization.

Two-step procedure: preprocessing of Wd

The bi-level optimization problem (32) generally cannot be
separated in two independent problems. Indeed, the solution of
the outer problem depends on the inner problem and, in general,
Ŵ ?

d depends on the given data w|Igiven , which includes the to-
be-approximated w|Itba and the exact w|Iexact samples, as well
as on Wd.

A heuristic two-step procedure estimates Wd using Wd only:

1. preprocess Wd, aiming to remove the noise, and
2. using the “cleaned” signal Ŵd, find w|Imissing .

Thus, the two-step procedure reduces the problem with inexact
data to the already solved problem with exact data.

The maximum-likelihood estimation of Wd from Wd and the
prior knowledge (29) is

minimize over Ŵd and B̂
N

∑
i=1
‖wi

d− ŵi
d‖2

vi
d

subject to ŵi
d ∈ B̂|Ti for i = 1, . . . ,N and B̂ ∈L q

c .

(33)

The formulation (33), however, is still a nonconvex optimiza-
tion problem. For its solution, we use the SLRA package (Use-
vich and Markovsky, 2014), which is based on local optimiza-
tion and computes as a byproduct an estimate B̂ of the data
generating system. Thus the two-step procedure becomes a
model-based approach for solving (30): 1) using Wd, identify
a model B̂, 2) using B̂ and w|Igiven , do model-based estima-

tion of w|Imissing (problem (24), using B̂).
Although in general, the two-step procedure is suboptimal,

when dim Igiven ≤mL+n, the problem decouples and the two-
step procedure is optimal, i.e., the solution of (30) coincides
with the solution of (33) followed by (24).
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A suboptimal heuristic for preprocessing Wd is to perform
unstructured low-rank approximation of the Hankel matrix
HL(Wd) by truncation of the singular value decomposition
(SVD). The resulting Algorithm 1 does not derive a parametric
model B̂ of B and thus may be referred to as data-driven. Al-

Algorithm 1 Data-driven missing data estimation with low-
rank approximation preprocessing.
Input: Wd, Igiven, w|Igiven , m, and n.

1: Compute the SVD: HL(Wd) =UΣV>.
2: Let r := mL+ n and let P ∈ RqL×r be the submatrix of U

consisting of its first r columns.
3: Compute ŵ := P(P|Igiven)

>w|Igiven .
Output: ŵ.

gorithm 1 requires prior knowledge of the number of inputs m
and the order n, however, it has no other hyperparameters.

Regularized least-squares approaches
Other approximation methods for missing data estimation

with inexact data Wd are the nuclear norm relaxation of (31)

minimize over Ŵd and ŵ
N

∑
i=1
‖wi

d− ŵi
d‖2

vi
d

+‖w|Itba − ŵ|Itba‖
2
v|Itba

+ γ

∥∥∥[Hδ (Ŵd) Hδ (ŵ)
]∥∥∥
∗

subject to ŵ|Iexact = w|Iexact

(34)

and the `1 regularization of (32) (Markovsky and Dörfler, 2021)

minimize over g ‖w|Itba −HL(Wd)|Itba g‖2
v|Itba

+λ‖g‖1

subject to ŵ|Iexact = w|Iexact .

(35)

The solution of (34) depends on the choice of the hyperpa-
rameters δ and γ . Empirical evidence suggest that the opti-
mal value for δ is the largest one δ = L. The hyperparam-
eter γ controls the fitting accuracy versus model complexity
trade-off. Since larger γ implies larger approximation error
‖w|Itba − ŵ|Itba‖v|Itba

, the optimal choice is the smallest value,
for which the rank constraint is met. It can be found by bisec-
tion (Markovsky, 2012).

The `1-norm regularization method (35) is based on the
fact that, in case of exact data Wd, g can be chosen sparse.
Namely, with ‖g‖0 denoting the number of nonzero elements
of g, ‖g‖0 = mL+ n. Then, the 1-norm ‖g‖1 can be used as a
convex relaxation of ‖g‖0. This method is proposed in (Dör-
fler et al., 2021a) for solving a related data-driven control prob-
lem and is used for data-driven interpolation in (Markovsky and
Dörfler, 2021). For the numerical solution of (35) in the exam-
ples of Section 4.5, we use CVX (Grant and Boyd, 2008) and
the ADMM method (Parikh and Boyd, 2014).

To summarize: problems (30)–(32) are equivalent and have
the same hyperparameters (m, `,n). They are the statement

and data-driven reformulations of the underlying maximum-
likelihood data-driven missing data estimation problem. Prob-
lem (33) is a reformulation of the inner problem in (32) as
a maximum-likelihood model identification problem with the
same hyperparameters (m, `,n). Problems (30)–(33) are non-
convex. Local optimization methods for solving them require
a favorable initialization and are computationally expensive. In
comparison, problems (34) and (35) are convex relaxations of
the underlying problem (30). Their hyperparameters are the
regularization coefficients γ and λ , and their solutions can be
used as initializations for local methods solving (30). Though,
the solutions of the convex relaxations (34)–(35) are also of in-
terest in their own right and may result in favorable outcomes;
see the case studies in Section 4.5. Also, there are efficient
computational methods for (35) Parikh and Boyd (2014).

4.5. Numerical case studies
First, we compare the approximation methods for missing

data estimation on a Monte-Carlo simulation example. Then,
we compare the methods on real-data.

Simulated data
The data generating system used in this section is the bench-

mark example of Landau et al. (1995). It is a 4th order single-
input single-output system B defined by a kernel representa-
tion (3) with parameter

R(z) =
[
−0.5067 0.8864

]
z0 +

[
−0.2826 −1.3161

]
z1

+
[
0 1.5894

]
z2 +

[
0 −1.4183

]
z3 +

[
0 1

]
z4.

The trajectory wd is generated in the errors-in-variables setup,
with wd ∈ B|100 a random trajectory of B. The noise stan-
dard deviation is selected to match a desired noise-to-signal
ratio of wd. In the experiments, the noise-to-signal ratio is
varied in the interval [0,0.1] (i.e., up to 10% noise). The to-
be-interpolated trajectory w is the step response of B from an
input u = w1 to an output y = w2. The interpolation horizon
is L = 10. Note that in this setup the two-step model-based
method — (33) followed by (24) — is optimal, i.e., it solves
the maximum-likelihood estimation problem (30).

As a performance metric, consider the estimation error

emissing :=
‖w|Imissing − ŵ|Imissing‖

‖w|Imissing‖
100%,

where ŵ is the computed solution, is averaged over 100 Monte-
Carlo repetitions of the experiment with different noise real-
izations. Figure 3 shows that the two-step model-based method
(2s-ml) achieves the smallest average estimation error. This is
expected because it is the maximum-likelihood method for the
specific simulation setup considered. The maximum-likelihood
method requires nonlinear local optimization but sets a lower
bound on the achievable estimation error by the other methods
that are cheaper to compute albeit suboptimal in the maximum-
likelihood sense. The results show that Algorithm 1, i.e.,
the two-step method with low-rank approximation preprocess-
ing (lra), is marginally better than the method based on the
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pseudo-inverse (28) (pinv). Note that the low-rank approxi-
mation preprocessing method requires knowledge of the model
complexity in order to achieve the “right” complexity reduction,
while the method based on the pseudo-inverse does not require
any prior knowledge. Because of this, the similar performance
of pinv and lra is surprising.

The `1-norm regularization method (35) (l1) with optimal
choice of the hyperparameter λ = 0.1 gives the worst results.
As shown in the next section however this is not the case when
real-life data is used. Empirical evidence by Wegner et al.
(2021); Huang et al. (2021a); Markovsky and Dörfler (2021)
also confirms the good performance of the `1-norm regulariza-
tion for noisy data coming from nonlinear systems.

Figure 3: The results of data-driven simulation using noisy data obtained in
the errors-in-variables setting confirm empirically that the maximum-likelihood
method (2s-ml) is statistically optimal. The performance of the two-step
method with low-rank preprocessing (lra) is comparable with the one of the
pseudo-inverse method (28) (pinv). Their performance is worse than the one
of the maximum-likelihood method but better than the one of the `1-norm reg-
ularization method (l1).

Real-data: Air passengers data benchmark
The data set used in this section is a classic time-series fore-

casting benchmark of Box and Jenkins (1976). It consists
of 144 samples that represent the monthly totals of interna-
tional airline passengers (in thousands of passengers) between
01/1949 and 12/1960. We use the first 110 samples as the
given trajectory wd and the remaining 34 samples as the to-
be-interpolated trajectory w. From w, the first half is the given
data w|Itba and the second half w|Imissing is missing (see Fig-
ure 4, up). For Algorithm 1, we set the parameters m = 0 (no
inputs) and n = 6 (the best value obtained by trial-and-error.)
The results in Table 4 (see also Figure 4, down) show that
`1-norm regularization method (35) (l1) with optimized value
of λ achieves the best prediction. Second best is the solution
based on the pseudo-inverse (28) (pinv).

egiven, % emissing, %
pinv 0 3.9168
lra 4.0384 5.2688
l1 3.3664 3.3387
2s-ml 4.0572 fail

Table 4: Performance of the data-driven missing data estimation methods on
the Box-Jenkins airline passenger benchmark.

Figure 4: Up: splitting of the data into wd (wd), w|Itba (w(Itba)), and
w|Imissing (w(Imissing)). Down: predictions obtained by the methods. The
`1-norm regularization method (35) (l1) with optimized value of λ achieves
the best prediction.

The two-step model-based method 2s-ml fails (relative er-
ror above 100%) and the low-rank preprocessing also does not
improve the result of (28). The poor performance of 2s-ml
and lra is attributed to the fact that wd does not satisfy a true
linear time-invariant model dynamics, however, 2s-ml and
lra use this as prior knowledge and enforce it in the prepro-
cessing step. On the other hand l1 and pinv are based on a
non-parametric representation which does not impose an a pri-
ori given bound on the model’s complexity.

4.6. Data-driven analysis

Further system analysis problems were addressed using the
data-driven representation (17). van Waarde et al. (2020) pro-
posed stability, controllability, and stabilizability tests (for de-
tails see Section 5.3). Romer et al. (2019); Maupong et al.
(2017); Rosa and Jayawardhana (2021); Koch et al. (2020) con-
sidered data-driven dissipativity analysis, Monshizadeh (2020)
considered data-driven model reduction, and Markovsky (2015)
considered estimation of the DC-gain from a finite number sam-
ples of a step response. Data-driven analysis result for polyno-
mial systems are presented in Martin and Allgöwer (2021).

5. Data-driven control

Data-driven control methods can be loosely classified into
indirect data-driven control approaches consisting of sequen-
tial system identification and model-based control as well as
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direct data-driven control approaches seeking an optimal de-
cision compatible with data recorded from the system. Both
approaches have a rich history, and they have received renewed
interest cross-fertilized by novel methods and widespread in-
terest in machine learning. Representative recent surveys for
indirect and direct approaches are by Pillonetto et al. (2014);
Chiuso and Pillonetto (2019); Hjalmarsson (2005) and Hou and
Wang (2013); Recht (2019); Hewing et al. (2020), respectively.

The pros and cons of both paradigms have often been elabo-
rated on. Whereas the indirect approach is modular and well un-
derstood, modeling and identification is cumbersome, its results
are often not useful for control (due to, e.g., incompatible un-
certainty quantifications), and practitioners often prefer end-to-
end approaches. Direct methods promise to resolve these prob-
lems by learning control policies directly from data. However,
they are often analytically and computationally less tractable
and rarely apply to real-time and safety-critical systems.

The methods reviewed in this article, based on the funda-
mental lemma, lend themselves both for direct as well as in-
direct approaches. Regarding the indirect approaches, the fun-
damental lemma in (Willems et al., 2005) has historically been
developed as a foundation for subspace system identification
methods based on an experiment design perspective. We refer
to Markovsky et al. (2006) for a discussion on how the fun-
damental lemma relates to the indirect approach (i.e., system
identification) and focus on direct data-driven control here.

5.1. Open-loop data-driven linear quadratic tracking
Our exposition follows up on the approaches presented in

Section 4, but we impose more structure in this section. As
an extension to the tracking problem (22), consider the linear
quadratic (LQ) optimal tracking control problem

minimize over uf, yf ∑
Tf
t=1 ‖yf(t)− yr(t)‖2

Q +‖uf(t)−ur(t)‖2
R

subject to (uini,yini)∧ (uf,yf) ∈B|Tini+Tf

(36)

on a finite horizon Tf > 0, where wr = (ur,yr) ∈ RqTf is a user-
defined reference trajectory (not necessarily in B|Tf ), wf =
(uf,yf) ∈ RqTf is the future trajectory of length Tf ≥ 1 to be de-
signed, and wini =(uini,yini) is a given prefix trajectory of length
Tini ≥ ` setting the initial condition; see Lemma 1. Further,
Q� 0 and R� 0 are user-defined weighting matrices, where �
(�) and ≺ (�) denote positive and negative (semi)definiteness,
respectively, and ‖e‖Q =

√
eT Qe is a (semi-)norm for Q � 0.

We remark that a quadratic cost is convenient but not strictly
necessary for many of the approaches reviewed in this section.

The LQ control problem (36) is an instance of errors-in-
variables Kalman smoothing (21). Problem (36) is standard and
can be solved by a variety of methods provided that a parametric
model (typically in state-space representation) of B is available
(Anderson and Moore, 2007). In what follows, we survey di-
rect data-driven approaches related to the fundamental lemma
and the data-driven image representation (17) of B|Tini+Tf .

For simplicity, this section considers only a single data tra-
jectory wd and the Hankel matrix HTini+Tf(wd). Extensions to
multiple trajectories and mosaic-Hankel matrices are possible.

5.1.1. Data-driven approach to finite-time LQ control
Given data wd collected offline which is persistently exciting

of sufficient order, the fundamental lemma implies that the con-
catenated initial and future trajectory w := wini∧wf ∈B|Tini+Tf
lies in the image of HTini+Tf(wd), that is, w = HTini+Tf(wd)g for
some g. According to wini = (uini,yini) and wf = (uf,yf), per-
mute and partition the Hankel matrix as

[
wini
wf

]
∼


uini
uf
yini
yf

 , HTini+L(wd)∼


Up
Uf
Yp
Yf

=

[
HTini+Tf(ud)
HTini+T (yd)

]
,

where ∼ denotes similarity under a coordinate permutation.
With this notation in place, the LQ tracking control problem
(36) can be posed in the equivalent data-driven formulation

minimize over uf, yf, g ‖yf− yr‖2
Q +‖uf−ur‖2

R

subject to


Up
Yp
Uf
Yf

g =


uini
yini
uf
yf

 ,
(37)

where (with slight abuse of notation) we redefined Q and R as
blkdiag(Q, . . . ,Q) and blkdiag(R, . . . ,R), respectively.

The data-driven LQ control formulation (37) has been first
presented and analyzed by Markovsky and Rapisarda (2008),
and an explicit solution has been proposed. An earlier precur-
sor and solution to data-driven LQ control based on the funda-
mental lemma is due to Fujisaki et al. (2004). Their approach
is geometric, and the design is based on controllable and reach-
able subspaces which can be constructed from HTini+Tf(wd).

If the underlying state is directly available, Q= 0, Tf≥ n, and
a terminal condition on yr(Tf) is imposed, the LQ control for-
mulation (36) reduces to classic minimum energy control, and
a similar data-driven solution has been investigated by Baggio
et al. (2019) and follow-up articles (Baggio et al., 2021; Baggio
and Pasqualetti, 2020). Based on numerical case studies, Bag-
gio et al. (2019) concluded that the direct data-driven approach
displays superior performance (especially for large data size
and state dimension) over the explicit (model-based) minimum
energy control formula invoking the controllability Gramian.

If the initial conditions are not a priori given, the data-driven
LQ control problem (37) entails both estimation of an initial
prefix trajectory wini (equivalent to imposing the initial condi-
tion of a latent state variable; see Lemma 1) as well as pre-
diction and optimization of the future system behavior wf. It
is clean, tractable, and theoretically insightful, albeit it is not
immediately clear how to extend it beyond the setting of exact
data wd or how to derive closed-form feedback control policies
in the infinite-horizon setting. These questions will be further
pursued in Sections 5.2 and 5.3. Before that we briefly review
a historic precursor to the LQ control formulation (36).

5.1.2. Subspace predictive control
Subspace predictive control (SPC) coined by Favoreel et al.

(1999) is an early data-driven control approach originating from
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subspace system identification, which has seen plenty of theo-
retical developments and practical applications; see (Huang and
Kadali, 2008) for a survey. Although SPC historically predates
the fundamental lemma, it can be nicely introduced within the
framework of the previous section. SPC seeks a linear relation,
i.e., a matrix K, relating past and future inputs and outputs as

yf =
[
Kp Kf

]︸           ︷︷           ︸
=K

uini
yini
uf

 . (38)

The multi-step predictor K can be found from data by replac-
ing the variables (uini,yini,uf,yf) in (38) by the Hankel matrix
data (Up,Yp,Uf,Yf) and solving for K approximately in the least-
square sense, that is, (Huang and Kadali, 2008, Section 3.4):

K = argmin
K̂

∥∥∥∥∥∥Yf− K̂ ·

Up
Yp
Uf

∥∥∥∥∥∥
F

= Yf

Up
Yp
Uf

†

, (39)

where ‖ ·‖F denotes the Frobenius norm, and uniqueness holds
under full rank conditions descending from, e.g., the fundamen-
tal lemma. For exact data, (38)–(39) is an ARX model with
rank(Kp) = n assuring LTI behavior of desired complexity and
a lower block-triangular zero pattern of Kf assuring causality.
For inexact data, LTI behavior of desired complexity is pro-
moted by low-rank approximation (typically, via singular-value
thresholding of Kp) (Favoreel et al., 1999). By heuristically
thresholding Kf towards a block-triangular zero pattern one
aims to gain causality (Huang and Kadali, 2008, Remark 10.1).

These steps bring the linear relation (38) half-way towards
an LTI model. Though a model has further structure, e.g., Kf is
Toeplitz, and the entries of Kp and Kf are coupled. Nevertheless,
the linear relation (38)–(39) without further post-processing has
demonstrated excellent performance as a data-driven predictor
employed in receding-horizon predictive control across various
case studies; see (Zeng et al., 2010; Lu et al., 2014; Vajpayee
et al., 2017) and (Huang and Kadali, 2008) for an overview.

Connections between SPC and data-driven LQ control
The close connections between the SPC predictor (38)–(39)

and the direct data-driven LQ control problem (37) have been
remarked upon a few times (Huang et al., 2019; Dörfler et al.,
2021a; Fiedler and Lucia, 2021), and we summarize them be-
low.

Observe that the variable g can be eliminated from the con-
straint of (37) as yf =Yfg, where g is any solution to the remain-
ing constraint equations. Whereas the solution g is not neces-
sarily unique, the resulting output yf is unique (Markovsky and
Rapisarda, 2008, Proposition 1). One choice is the associated
least norm-solution, that is, yf = Yfg? where

g? =
[

Up
Yp
Uf

]† [uini
yini
uf

]
= argmin over g ‖g‖2

subject to
[

Up
Yp
Uf

]
g =

[uini
yini
uf

]
.

(40)

With this reformulation and elimination of g the direct data-
driven LQ control problem (37) reduces to

minimize over uf, yf ‖yf− yr‖2
Q +‖uf−ur‖2

R

subject to yf = Yf

Up
Yp
Uf

†uini
yini
uf

 ,
(41)

that is, we recover the multi-step SPC predictor (38)–(39).
Observe that the reformulation of the direct data-driven LQ

control problem (37) towards SPC was only possible since g
was unconstrained, unpenalized, and any solution results in the
same output – in case of exact data. In case of inexact data, the
reformulation (40) suggests a regularization of the LQ problem
(37) with ‖g‖2 to filter out noise akin to least squares (39). We
we will further pursue this line of ideas in the next section.

5.2. Data-enabled predictive control

For deterministic LTI systems the direct data-driven LQ
tracking control (37) can be implemented at face value in a
receding-horizon predictive control fashion; see (Yang and Li,
2013) or the related SPC literature (Huang and Kadali, 2008).
Indeed, in this case, it can be shown that the data-driven LQ
problem (37) is equivalent to a model-based predictive control
(MPC) formulation (Coulson et al., 2019a, 2020).

When departing from deterministic LTI systems and exact
data, it is tempting to opt for a certainty-equivalence imple-
mentation, that is, to implement the control as in (37) despite
not satisfying the assumptions. However, the latter approach
fails. This can be intuitively understood from the perspec-
tive of dictionary learning. The columns of the Hankel ma-
trix HTini+Tf(wd) serve as a library of trajectories, and the LQ
problem (37) linearly combines these trajectories to synthesize
the optimal control trajectory. However, a superposition of tra-
jectories from B|Tini+Tf is again a valid trajectory of B|Tini+Tf
only for linear systems. Even in the linear stochastic case a su-
perposition of trajectories does not generally preserve the noise
statistics, e.g., a linear combination of Gaussian random vari-
ables with identical variance equals another Gaussian random
variable though with a generally different variance. Even more
detrimental: a Hankel matrix HTini+Tf(wd) built from noisy data
will likely have full rank, not reveal an LTI behavior of bounded
complexity, and any optimal control trajectory w is feasible for
(37), that is, the predicted optimal trajectory can be arbitrarily
optimistic and non-realizable when applied to the real system.

Aside from the above issues related to the data wd collected
offline, the data wini = (uini,yini) collected online (before im-
plementing an instance of the optimal control (37)) is typically
noise-corrupted as well which leads to feasibility issues and fur-
ther deterioration of the realized control performance.

For these reasons the certainty-equivalence approach has to
be replaced by a robust one. Below we review Data-EnablEd
Predictive Control (known by its acronym DeePC) coined by
Coulson et al. (2019a) as a robustified receding-horizon imple-
mentation of the direct data-driven LQ tracking control (37).
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5.2.1. Robustified formulation of the direct data-driven LQ op-
timal control problem & DeePC

As previously discussed, the need for robustification of the
direct data-driven LQ problem (37) is two-fold. First, note that
when implementing (37) in receding-horizon, the data wini =
(uini,yini) is measured and repeatedly updated online. In case
of inexact data, due to measurement noise and input/output dis-
turbances, the constraint equations Upg = uini and Ypg = yini
determining the initial behavior may not be feasible. As a rem-
edy, DeePC opts for a moving-horizon least-error estimation
(Rawlings et al., 2017) and softens these constraints as[

Up
Yp

]
g =

[
uini +σuini
yini +σyini

]
, (42)

where σuini and σyini are slack variables penalized in the cost.
Second, aside from the above additive uncertainty, the data-

driven LQ problem (37) is also subject to multiplicative uncer-
tainty, since the data-matrices Up, Yp, Uf, and Yf are also subject
to noise. This noise can be mitigated offline by pre-processing
the trajectory library (e.g., by seeking a low-rank approxima-
tion of HTini+Tf(wd) as in Section 4.4), but in the spirit of di-
rect data-driven control – seeking an online decision based on
raw data – DeePC opts for a regularization of the LQ problem
(37). In particular, a nonnegative term h(g) is added to the cost
function. This regularization term will be justified later in Sec-
tion 5.2.2, but the attentive reader may recall from Section 4.4
that h(g) = ‖g‖1 corresponds to a convex relaxation of a low-
rank approximation de-noising scheme, and ‖g‖2 is connected
to a pre-conditioning of the predictor à la SPC in (40).

A third minor – yet practicably important – modification is to
augment the data-driven LQ problem (37) with input and out-
put constraints uf ∈ U and yf ∈ Y , respectively. These can
account for, e.g., input saturation, operational limits, or termi-
nal constraints needed for closed-loop stability of the predictive
control scheme (Borrelli et al., 2017; Rawlings et al., 2017).

These three modifications give rise to the DeePC problem

minimize over uf, yf, g, σuini , σyini ‖yf− yr‖2
Q +‖uf−ur‖2

R

+λuini‖σuini‖
2
2 +λyini‖σyini‖

2
2 +λg ·h(g)

subject to


Up
Yp
Uf
Yf

g =


uini +σuini
yini +σyini

uf
yf

 and (uf,yf) ∈U ×Y ,

(43)

where λuini , λyini , and λg are nonnegative scalar regularization
coefficients (hyperparameters). Many variations of the estima-
tion penalty λuini‖σuini‖2

2 + λyini‖σyini‖2
2 are conceivable, e.g.,

choosing norms weighted by inverse noise covariances, disre-
garding the penalty on σuini in absence of input noise, or remov-
ing the squares in the spirit of exact penalization, i.e., for suf-
ficiently large (λuini ,λyini) the slack variables (σuini ,σyini) take a
non-zero value only if the constraints are infeasible.

Observe that the DeePC formulation (43) can be compacti-

fied by eliminating the variables uf, yf, σuini , σyini :

minimize over g ‖Yfg− yr‖2
Q +‖Ufg−ur‖2

R

+λyini‖Ypg− yini‖2
2 +λuini‖Upg−uini‖2

2 +λg ·h(g)

subject to (Ufg,Yfg) ∈U ×Y .

(44)

In fact, in absence of constraints, (44) takes the form of a regu-
larized regression problem

minimize over g ‖HTini+Tf(wd)g−wr,ini‖2
P +λg ·h(g), (45)

where P is the block-diagonal matrix blkdiag(λuini I,λyini I,R,Q)
and wr,ini = (uini,yini,ur,yr). The latter compact formula-
tion does not only provide a regression perspective on the
DeePC problem, but also motivates the use of Bayesian, non-
parametric, or robust regression methods to approach and ex-
tend the DeePC problem formulation (45).

5.2.2. Robustification of DeePC by means of regularization
The regularization term h(g) in (43)–(45) is needed to robus-

tify the optimal control design in case of inexact data wd arising
from possibly non-deterministic and nonlinear processes. The
regularizations have first been proposed heuristically by Coul-
son et al. (2019a) before being constructively derived. Different
assumptions on the data lead to different regularizers. In what
follows, we briefly review five different variations.

1) Regularization derived from pre-processing
In case of inexact data, the matrix HTini+Tf(wd) will generi-

cally not have the desired rank m(Tini +Tf)+n and will not re-
veal an LTI behavior of desired complexity. As in Section 4.4,
the noisy data matrix can be pre-processed via structured low-
rank approximation. Formally, this can be posed as a bi-level
optimization problem: namely, solve the optimal control prob-
lem subject to pre-processing of the data matrix as in (33):

minimize over g ‖HTini+Tf(ŵ
?
d)g−wr,ini‖2

P

subject to ŵ?
d ∈ argmin over ŵd and B̂ ‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c

(46)

This non-convex bi-level decision making problem can be for-
mally reduced and convexified as in (35) leading to the di-
rect DeePC formulation (45) with an `1-norm regularization
h(g) = ‖g‖1; see (Dörfler et al., 2021a, Theorem 4.6) for de-
tails.

2) Regularization derived from least-square identification
As a second source of regularization, consider solving the

optimal control problem (37) (neglecting constraints and noisy
estimation for simplicity) with an ARX predictor as in SPC
(38), where the multi-step predictor K is found by ordinary least
squares as in (39). This procedure can be formally posed again
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as a non-convex bi-level decision making problem:

minimize over uf, yf ‖yf− yr‖2
Q +‖uf−ur‖2

R

subject to yf = K?

uini
yini
uf


K? = argmin over K

∥∥∥∥∥∥Yf−
[
Kp K f

]︸            ︷︷            ︸
=K

Up
Yp
Uf

∥∥∥∥∥∥
F

subject to rank(Kp) = n

and K f lower-block triangular
(47)

Here, the rank constraint on Kp promotes an LTI behavior of
desired complexity, and the lower-block triangular structure of
K f assures causality, as discussed after (39). When dropping
these constraints and re-parametrizing the least-square criterion
by a least-norm problem as in (40), the DeePC formulation (43)
can be derived as a convex relaxation to (47) with regularizer

h(g) =

∥∥∥∥∥
(

I−
[

Up
Yp
Uf

]† [Up
Yp
Uf

])
g

∥∥∥∥∥ , (48)

where ‖ · ‖ is any norm; see (Dörfler et al., 2021a, Theorem
4.5) for details. This projection-based regularizer assures that
a particular least-norm solution g is singled out corresponding
to the least-square criterion in (40). Finally, we note that the
projection-based regularizer (48) is consistent, i.e., the solution
of the LQ problem (37) also solves the regularized problem (43)
in case of exact data wd. In comparison, mere norm-based reg-
ularizers h(g) = ‖g‖ are not consistent and bias the solution.

Synopsis: The above two direct and regularized data-driven
control approaches are due to reducing and convexifying the in-
direct “first pre-process/identify and then control” problems. In
either case, the magnitude of the regularization coefficient λg
ensures to which extent the inner pre-processing/identification
problems are (approximately) enforced. However, unlike (46)
or (47) no projection on the the class of LTI models of desired
complexity is enforced. As a result, noise is not entirely re-
moved (no variance reduction) but no erroneous model selec-
tion (no bias) is encountered. These bias-variance trade-off dis-
cussions give an intuition when indirect data-driven control ap-
proaches are inferior (respectively, superior) to a direct DeePC
formulation; see (Dörfler et al., 2021a) for a discussion. Fur-
ther trade-offs between the direct and indirect approaches are
discussed by Krishnan and Pasqualetti (2021) concluding that
either approach can be superior depending on prediction hori-
zon, state dimension, noise level, and size of the data set.

3) Regularizations derived from robust optimization
An entirely different route towards regularization can be de-

rived by robustifying the regression-based DeePC formulation
(45) (without constraints and regularization) as in related robus-
tified regression problems (Bertsimas and Copenhaver, 2018;

Xu et al., 2010; El Ghaoui and Lebret, 1997)

minimize over g maximize over ŵd ∈W(wd)

‖HTini+Tf(ŵd)g−wr,ini‖2
P ,

(49)

where W(wd) is an uncertainty set typically centered at the col-
lected offline data wd. Huang et al. (2021b,c) consider different
structured and unstructured uncertainty sets ranging from mere
norm balls, over interval-valued and column-wise uncertainties
(relevant for a trajectory matrix structure), to uncertainties with
Hankel structure. For each of these Huang et al. (2021b,c) pro-
pose tractable reformulations, many of which take the form (45)
with norm-based regularization terms h(g). Moreover, Huang
et al. (2021b) also consider the case of robustified constraints
and provide bounds on the realized system performance.

4) Regularizations derived from distributional robustness
A similar (albeit stochastic) perspective leading to regular-

ization is due to distributional robustness (Kuhn et al., 2019).
Problem (44) (without regularization term) can be abstracted as

minimize over g ∈ G (wd) f (wd,g) , (50)

where G (wd) and f (wd,g)) denote the constraint set and objec-
tive of (44), respectively. Since the data wd has arisen from a
stochastic process, one may equivalently rewrite (50) as

minimize over g ∈ G (wd) Eŵd∼P̂
[ f (ŵd,g)] , (51)

where P̂ is the associated empirical distribution built using the
measured data wd, i.e., the measure of ŵd concentrates on wd.

If the solution of the sample-average problem (51) is imple-
mented on the real system, one suffers an out-of-sample loss
since the true data-generating distribution P is due to some
(possibly nonlinear, non-stationary, non-Gaussian) stochastic
process that is only poorly represented by the samples P̂. To
be robust against such processes, Coulson et al. (2019b, 2020)
propose the distributionally robust DeePC formulation

infg∈G supQ∈Bp
ε (P̂)

Eŵd∼Q [ f (ŵd,g)] , (52)

where the ambiguity Bp
ε (P̂) is a Wasserstein ball of radius ε > 0,

centered at P̂, and with metric induced by the `p-norm. One
can show that, under integrability conditions and for a Lipschitz
objective, the distributionally robust formulation (52) is equiv-
alent to the regularized DeePC (44) with λg being ε times the
Lipschitz constant of the cost and with regularizer h(g) = ‖g‖?p,
where ‖ · ‖?p is the dual norm of that one used to construct the
Wasserstein ball (Coulson et al., 2020, Theorem 4.1). For ex-
ample, safeguarding against uncertainty in `∞-norm in the space
of trajectories is equivalent to `1-norm regularization.

The same methods can also be applied to distributionally
robustify stochastic formulations of constraints Coulson et al.
(2020). Furthermore, data compression and sample-complexity
results are in Fabiani and Goulart (2020); Coulson et al. (2020).
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5) Regularization related to robust control
Xue and Matni (2020) propose a data-driven formulation of

the system level synthesis (SLS) subspace constraint (Ander-
son et al., 2019) (parameterizing the admissible closed-loop re-
sponses) by means of the non-parametric representation (17)
and assuming full state measurements. The resulting robust LQ
formulation (with bounded adversarial disturbances on the data
matrix) results again in a norm-based regularization (Xue and
Matni, 2020, eq. (3.9)). Building on this connection to SLS,
Lian and Jones (2021b) provide an extension to a class of un-
certain LTI systems and a DeePC formulation with disturbance-
affine feedback. Furthermore, Furieri et al. (2021a,b) extend
these works towards safety constraints, measurement and pro-
cess noise, and partial observations (i.e., output feedback) by
deriving a data-driven reformulation of the recently proposed
input-output parametrization (Furieri et al., 2019). The authors
also address robust and constrained linear quadratic Gaussian
(LQG) design, provide a tractable upper bound, and a subopti-
mality certificate with respect to the ground-truth LQG control.

Aside from regularization, we also mention the following
methods seeking a robust DeePC formulation. Xu et al. (2021)
consider measurement noise within ellipsoidal uncertainty sets,
characterize noise sequences consistent with the data, and trans-
form the robust control problem to a semidefinite program via
the S-Lemma. Yin et al. (2020a,b) propose a maximum likeli-
hood framework to DeePC under Gaussian noise: namely, start-
ing from (37) a vector g is sought that maximizes the likelihood
of observing both the predicted and the measured output tra-
jectories yf and yini, respectively. The resulting formulation is
amenable to a sequential quadratic programming approach.

Last, we remark that all of the above approaches towards ro-
bustified DeePC empirically show excellent closed-loop perfor-
mance and may outperform each other depending on the spe-
cific problem scenario, noise characteristics, etc., as demon-
strated in various case studies; see also Section 5.2.4. In fact,
regularization is a key aspect in the formal closed-loop stabil-
ity and robustness analysis by Berberich et al. (2021b) (see also
Section 5.2.3) for noisy data or when interconnecting DeePC
with a nonlinear system. Note that certain regularizers can be
justified in multiple ways, e.g., the `1-norm regularizer might
arise due to low-rank pre-processing, a robust regression for-
mulation, or a distributional robust formulation. Finally, both
theoretic and empirical results show that the performance of
some robustifications is superior when choosing particular data
matrix structures, e.g., Page and trajectory matrices (15)-(16)
with independent columns instead of Hankel matrices (Huang
et al., 2021a; Coulson et al., 2020; Huang et al., 2021b).

5.2.3. Closed-loop receding-horizon and recursive implemen-
tations: certificates and extensions

The previous subsections have focused mostly on the opti-
mization formulation of DeePC with exception of Huang et al.
(2021b); Xue and Matni (2020); Furieri et al. (2021a,b) that also
certify the realized open-loop control performance optimizing
over input vectors and affine control policies, respectively.

There have also been various approaches towards certify-
ing the closed-loop behavior when implementing DeePC as

receding-horizon control. Notable are the sequence of papers
(Berberich et al., 2020b, 2021d; Bongard et al., 2021; Berberich
et al., 2021c, 2020c). The initial work by Berberich et al.
(2021b) provides closed-loop stability and robustness guaran-
tees (in the sense of practical exponential stability) of DeePC
(43) with ridge regularizer h(g) = ‖g‖2

2 and terminal equilib-
rium constraints. Later articles extend and complement this
work towards robust output constraint satisfaction Berberich
et al. (2020c), time-varying references (Berberich et al., 2020b),
less restrictive terminal ingredients (Berberich et al., 2021d),
implementations without terminal ingredients (Bongard et al.,
2021), and linear tracking control for nonlinear systems with
online data adaptation (Berberich et al., 2021c). Independently,
Berberich et al. (2021c) also provide a version of the funda-
mental lemma for affine systems resulting from linearizing non-
linear systems. In comparison to other nonlinear fundamental
lemma extensions (briefly reviewed after Lemma 2) which gave
rise to DeePC implementations, Berberich et al. (2021c) also
certify the resulting nonlinear closed-loop properties.

Alpago et al. (2020) depart from the receding-horizon esti-
mation (42) in DeePC towards a recursive Kalman filtering ap-
proach using the parametric solution of the optimization prob-
lem (45) to construct a hidden state. As an independent side
note, the parametric solution takes the form of a piece-wise lin-
ear affine feedback policy (compared to standard linear feed-
back policies) which sheds further light on the remarkable per-
formance of DeePC when applied to nonlinear systems.

Finally, recently Nonhoff and Müller (2021); Bianchin et al.
(2021); Baros et al. (2020) applied online feedback opti-
mization (i.e., iterative algorithms in feedback with a system
(Hauswirth et al., 2021)) to steer an LTI system characterized by
the fundamental lemma. In a similar algorithmic spirit, Allib-
hoy and Cortés (2020) and Alexandru et al. (2021) consider net-
worked and distributed DeePC implementations, respectively.

5.2.4. DeePC: implementations and tuning recommendations
At its core, DeePC is a method for deterministic LTI systems

based on on super-imposing trajectories from a library. It is
due to the various robustifications reviewed in this section that
make DeePC “work” for nonlinear and stochastic systems, as
spectacularly showcased by many experimental and numerical
case studies. Below we summarize some practical validations
and recommendations for tuning the DeePC hyperparameters.

Notable experimental and computational DeePC case studies
Coulson et al. (2019a,b, 2020) use an aerial robotics simula-

tion case study via the DeePC method. Elokda et al. (2019)
experimentally implemented this case study and for the first
time demonstrated the performance, robustness, and real-time
implementability of DeePC. A video of a quadcopter success-
fully tracking step commands and a figure 8 trajectory can
be found here: https://polybox.ethz.ch/index.
php/s/ZHacWoJbxQlHDTz. Further within the realm of
robotics, DeePC has also been experimentally implemented to
swing up a laboratory pendulum Tischhauser et al. (2019) as
well as to control a 12 ton autonomous walking excavator Weg-
ner et al. (2021); see Figure 5 for an illustration. These two
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case studies are strongly nonlinear. While DeePC succeeds in
meeting the specifications, these two case studies also reveal
the limitations of the method and suggest an adaptive DeePC
method to provide tracking for strongly nonlinear systems.

Figure 5: The highly customized Menzi Muck M545 12 ton autonomous walk-
ing excavator from the HEAP (Hydraulic Excavator for an Autonomous Pur-
pose) project (Jud et al., 2021) served as a demonstration platform for DeePC.

On the power systems and electronics side, motivated by
an initial numerical case study (Huang et al., 2019), DeePC
has been successfully experimentally implemented on grid-
connected power converters (Huang et al., 2021c) and syn-
chronous motor drives (Carlet et al., 2020, 2021); see Fig-
ure 6 for an illustration of the laboratory setup. Further, Huang
et al. (2021a) provide a decentralized DeePC implementation
for power system oscillation damping in a large-scale numeri-
cal case study, which has also been successfully replicated by
R&D groups on industrial simulators. These studies showed
that implementing DeePC on microcontrollers is feasible albeit
computationally challenging. Further within the realm of en-
ergy, Lian et al. (2021a); Schwarz et al. (2019) study numerical
and experimental implementations for building automation.

Finally, Berberich et al. (2021a) successfully applied DeePC
to a nonlinear laboratory four-tank process. We note that both
Berberich et al. (2021a) and Lian et al. (2021a) consider adap-
tive implementations updating the data online.

Many of the above case studies are safety-critical sys-
tems with complex dynamics for which constraint satisfaction,
closed-loop stability, and real-time computation are essential.
Remarkably, the very same DeePC method with minor adjust-
ments has succeeded in all case studies from different areas.
Next we visit the crucial hyperparameters for DeePC tuning.

DeePC tuning recommendations
We now turn towards tuning recommendations for the DeePC

hyperparameters. Most hyperparameters also occur in model-
based MPC such as the horizon Tf, cost matrices Q and R, as
well as transient and terminal constraints U and Y . We refer
to (Borrelli et al., 2017; Rawlings et al., 2017) for standard tun-
ing recommendations, such as a sufficiently long horizon Tf for
closed-loop stability. The hyperparameters (λuini ,λyini) are as in
moving-horizon estimation (Rawlings et al., 2017) or general
Kalman filtering and account for (assumed) noise covariances.
Generally, (λuini ,λyini) should be chosen sufficiently large. This
leaves us with the estimation horizon Tini, data length T , reg-
ularization function h(g) and coefficient λg as unique DeePC

Test motorLoad motor
+ inverter + inverter

dSPACE
MicroLabBox

Torque meter

Figure 6: Carlet et al. (2021) used a synchronous motor drive test bench at the
EDLab Padova as a demonstration platform for DeePC and for comparisons to
SPC and certainty-equivalence control based on an identified model.

hyperparameters. While each case study is different, the fol-
lowing favorable tuning recommendations have emerged.

First, Tini controls the (presumed) model complexity.
Namely, Lemma 1 requires the initial horizon Tini to be longer
than the lag l(B) which by (2) is again bounded by the order
n(B) – both of which are unknown in a data-driven setting. It
proved useful to choose Tini simply sufficiently large: generally,
the realized closed-loop performance monotonically improves
but does increasingly less so after a certain threshold. For non-
linear systems this threshold is larger than the state-dimension
confirming the intuition that a higher-order LTI model can bet-
ter explain the data. Second, the length T of the data time series
wd has to be sufficiently long to assure persistency of excitation;
see the fundamental lemma. The analytic lower bound for T de-
pends on n(B) which is generally unknown. Similar to Tini, a
sufficiently large T proves beneficial. The second author has
had good experiences with choosing T so that the data matrix
HTini+Tf(wd) is square. Third and finally, all regularizers h(g)
perform well after tuning λg, and they can also be combined.
As discussed previously, the projection-based regularizer (40)
ensures consistency whereas norm-based regularizers robustify
the control at the cost of a bias. Concerning the coefficient λg,
most case studies approximately display a convex behavior: the
closed-loop performance improves when increasing λg beyond
a certain threshold, remains constant for a large interval of λg,
and then increases again beyond a second threshold. While the
desired λg can often be theoretically characterized (e.g., by the
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size of the uncertainty set in (49) or (52)), it remains a design
parameter practically found by increasing λg logarithmically
from a small value until the realized cost increases again.

5.2.5. Conceptually related approaches of relevance
We have throughout our review pointed to closely related

data-driven predictive control formulations based on the fun-
damental lemma such as SPC (Favoreel et al., 1999; Huang and
Kadali, 2008). There are other less closely but certainly con-
ceptually related approaches that we briefly discuss below.

One may take the vantage point that, given a single offline
data trajectory wd, DeePC is able to synthesize all admissible
future trajectories for predictive control. A similar perspec-
tive is taken by dynamic matrix control (DMC) (Cutler and Ra-
maker, 1980; Garcia et al., 1989), a historic precursor to MPC
originating from industry. DMC is a predictive control method
that designs future system trajectories based on a previously
recorded zero-initial condition step response. Although DMC
has many limitations (Lundström et al., 1995), it motivates data-
driven predictive control based on a single data trajectory.

Another perspective is that of dictionary learning. The con-
nection to DeePC is most obvious when using the trajectory
matrix structure (15) and looking at the regression formulation
(45). DeePC linearly combines trajectories from this dictio-
nary to synthesize the optimal control trajectory, and the role of
regularization is to avoid overfitting. A conceptually related `1-
regularized dictionary learning predictive control approach has
been presented by Kaiser et al. (2018). Likewise, Salvador et al.
(2019) use affine combinations of stored trajectories in order to
achieve offset-free tracking. Further, in the field of robotics the
idea of combining or concatenating stored motion primitives
(i.e., trajectories) has often been exploited for motion planning
(Frazzoli et al., 2005) or predictive control (Gray et al., 2012).

Finally, the geometric approach to optimal control (Marro
et al., 2002) relying on controlled and conditioned invariant
subspaces is by nature coordinate-free and can also be ap-
proached in a representation-free setting based on the funda-
mental lemma, as demonstrated by Fujisaki et al. (2004).

5.3. Data-driven design of explicit feedback control policies

The identifiability condition (17) and the fundamental lemma
provide a non-parametric representation of the restricted be-
havior B|L based on raw data, which immediately lends it-
self as predictor and estimator for finite horizon feedforward
and receding-horizon control, as presented in Sections 5.1–
5.2. By means of the weaving lemma (Markovsky et al., 2005,
Lemma 3), this predictor can in certain instances be extended
to an infinite-horizon setting, but is more conceptual than prac-
tically useful in case of noisy data, and it is not immediately
clear how to obtain a recursive model as well as an explicit
infinite-horizon feedback control law, e.g., the setting of the lin-
ear quadratic regulator (LQR). In a state-space setting, the two
articles (De Persis and Tesi, 2019; van Waarde et al., 2020) pro-
vided equally simple as well as ingenuous approaches on how
to parameterize an explicit state feedback design by means of
state-space data matrices and subspace relations amongst them.

5.3.1. Prototypical LTI stabilization & LQR problems
Consider a controllable input/state system as in (11){

(u,x) ∈ (Rm+n)N | σx = Ax+Bu
}
, (53)

where u(t) ∈ Rm, and the state x(t) ∈ Rn is explicitly available
as measurement. We will later comment on possible extensions
if only outputs are available.

To illustrate the utility of different approaches, we consider
two prototypical control problems, namely using state feedback
u = Kx for either model-based stabilization

find
K

A+BK is Schur stable

or infinite-horizon LQR optimal control

minimize over u ∑
∞

t=1 ‖x(t)‖
2
Q +‖u(t)‖2

R

subject to σx = Ax+Bu ,

where Q � 0, R � 0, and (Q1/2,A) is detectable. By means of
the familiar Lyapunov and Gramian matrices, the stabilization
and LQR problems can be parameterized as

find
K,P�0

(A+BK)P(A+BK)>−P≺ 0 (54)

and anticipating the solution u = Kx as

minimize over K,P� I trace
(

QP+K>RKP
)

subject to (A+BK)P(A+BK)>−P+ I � 0 ,
(55)

respectively. The LQR problem (55) admits many different
parameterizations, and the proposed form (55) can be turned
into a convex semidefinite program after a change of variables
Y = KP; see (Feron et al., 1992) for the continuous-time case.

Observe that both problems (54) and (55) are semidefinite
optimization (respectively, feasibility) problems parameterized
in terms of the closed-loop matrix A + BK. Likewise, many
other instances of robust and optimal control can be formulated
and parameterized similarly; see e.g. (Scherer and Weiland,
2000). The stabilization (54) and LQR (55) problems serve as
running examples for the developments in this section.

5.3.2. Subspace relations in state-space data
Consider time series of length L (respectively, L+ 1) of in-

puts and states recorded from the LTI system (53):

U :=
[
u(0) u(1) . . . u(L−1)

]
,

X :=
[
x(0) x(1) . . . x(L)

]
.

We partition the state data into predecessor and successor states:

X− :=
[
x(0) x(1) . . . x(L−1)

]
,

X+ :=
[
x(1) x(2) . . . x(L)

]
= σX− .

Since these time series satisfy the dynamics (53), we have that

X+ =
[
B A

][U
X−

]
. (56)
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Recall Corollary 3 of the fundamental lemma: namely, if
(u(0),u(1), . . . ,u(L−1)) is persistently exciting of order n+1,
then the input-state data matrix has full row rank:

rank
[

U
X−

]
= n+m . (57)

The rank condition (57) ensures that the pseudo-inverse of the
input-state data matrix is a right inverse, that is, the measure-
ment data equation (56) can be solved for (B,A). Different ap-
proaches towards stabilization (54) and LQR (55) may now be
pursued from the two subspace relations (56) and (57).

5.3.3. Least-square identification of a parametric state-space
model and certainty-equivalence control

Recall that the conventional approach to data-driven control
is indirect: first a parametric state-space model is identified
from data, and later on controllers are synthesized based on
this model. Regarding the identification of a state-space model:
given the data (U,X), we seek input and state matrices (B̂, Â)
so that they (approximately in the noisy case) satisfy the lin-
ear measurement equation (56). These can be obtained, e.g., as
solution to the ordinary least squares problem

[
B̂ Â

]
= argmin

B,A

∥∥∥∥X+−
[
B A

][U
X−

]∥∥∥∥
F
= X+

[
U
X−

]†

, (58)

where the solution is unique and given as above due to the iden-
tifiability condition (57).

Based on this identified pair of parameters (B̂, Â) from (58)
certainty equivalence controllers can be designed, that is, in the
stabilization (54) and LQR (55) problems, the matrices (B,A)
are replaced by their estimates (B̂, Â). In case of noisy data, the
uncertainty can be mitigated by robustifying the optimal con-
trol formulations. We refer to (Dean et al., 2019; Umenberger
et al., 2019; Treven et al., 2020; Mania et al., 2019) for recent
analysis, performance estimates for finite sample size, as well
as various comparisons. Independently, this approach is also
known as dynamic mode decomposition (DMD) in the nonlin-
ear dynamics and fluids communities (Proctor et al., 2016).

In either the certainty-equivalent or the robust case, these ap-
proaches to data-driven control are indirect since they rely on an
intermediate identification of a parametric state-space model.
In what follows, we review direct approaches descending from
the fundamental lemma and the subspace relations (56)-(57).

5.3.4. Optimal control parameterization by data matrices
The direct approach laid out by De Persis and Tesi (2019)

uses the subspace relations (56)-(57) to parametrize the sta-
bilization (54) and LQR (55) problems by raw data matrices.
Namely, due to the rank condition (57), for any control gain
matrix K, there is a (non-unique) (L×n) matrix G so that[

K
I

]
=

[
U
X−

]
G , (59)

and due to (56), the closed-loop matrix can be parametrized as

A+BK =
[
B A

][K
I

]
(59)
=
[
B A

][U
X−

]
G

(56)
= X+G . (60)

This trick is as simple as it is ingenuous: it allows to replace
the closed-loop matrix A+BK by X+G subject to the additional
constraint (59), and the control gain can be recovered as K =
UG. Thus, the stabilization (54) problem can be posed as

find
K,G,P�0

(X+G)P(X+G)>−P≺ 0 and
[

K
I

]
=

[
U
X−

]
G. (61)

Note that for K = 0, we obtain a data-driven stability test. After
the change of variables Q = GP, condition (61) can be posed as
a semidefinite constraint (De Persis and Tesi, 2019, Theorem 3)[

X−Q X+Q
? X−Q

]
� 0 , (62)

and, for any Q satisfying (62), K =UQ(X−Q)−1 is a stabilizing
gain. The converse statement holds as well. Analogously, the
LQR problem (55) can be parametrized by data raw matrices:

minimize over K,G,P� I trace
(

QP+K>RKP
)

subject to (X+G)P(X+G)>−P+ I � 0[
K
I

]
=

[
U
X−

]
G

(63)

After a substitution of variables, (63) can be solved as convex
optimization problem (De Persis and Tesi, 2019, Theorem 4).
This program (albeit convex) features matrix variables of size
L× n, i.e., dependent on the data size, which may be compu-
tationally challenging for a large data set. It is noteworthy that
this approach also extends to the multivariable output feedback
case by leveraging past outputs and inputs as states in a non-
minimal realization (De Persis and Tesi, 2019, Section VI).

Note that this approach never constructs the underlying sys-
tem matrices (B,A), as compared to identification (58). In fact,
it uses only a data-based characterization of the closed-loop ma-
trix A+BK = X+G, and even here G solving (59) is not unique.
This non-uniqueness provides an opportunity to further regu-
larize the design in presence of noise. E.g., similar to (48), a
least-norm solution minimizing ‖G‖F can be sought by adding
to (59) the orthogonality constraint (Dörfler et al., 2021b)∥∥∥∥∥

(
I−
[

U
X−

]† [U
X−

])
G

∥∥∥∥∥= 0 . (64)

Thus, the resulting closed-loop matrix from (60) takes the form

[
B A

][K
I

]
= X+G

(64),(59)
= X+

[
U
X−

]† [K
I

]
.

Hence, the implicitly used state-space matrices are [B A ] =

X+

[ U
X−

]†
and coincide with those in certainty-equivalence con-

trol and obtained from the least-squares estimate (58). Similar
to Section 5.2.2, alternative regularizations for the direct data-
driven control are conceivable (De Persis and Tesi, 2021b). We
refer to (Dörfler et al., 2021b) for an overview and comparison.
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5.3.5. Data informativity
The innovative approach put forward by van Waarde et al.

(2020) relies on data informativity: given the data (U,X), all
linear systems that explain the data, i.e., that are compatible
with the measurement equation (56), are parameterized by

Σ =

{
(B,A)| X+ =

[
B A

][U
X−

]}
. (65)

The characterization of Σ is particularly interesting in the small-
data limit when the rank condition (57) does not hold, and we
cannot solve for a unique pair (B,A), i.e., Σ is not a singleton.

van Waarde et al. (2020) define the data (U,X) to be informa-
tive for stabilization by state feedback if there is a single feed-
back gain K so that A+BK is Schur stable for all (B,A) ∈ Σ. If
the rank condition (57) holds, then the data-informativity ques-
tion may be approached as in Section 5.3.4. In absence of the
rank condition (57), by studying the homogeneous solution set
of the measurement equation (56),

{
(B,A)| 0 = [B A ]

[
U
X

]}
, the

authors are able to cast this problem as a semidefinitess condi-
tion (van Waarde et al., 2020, Theorem 17): namely, the data
(U,X) are informative for stabilization by state feedback if and
only if there is a matrix Q so that X−Q= X−Q>, (62) holds, and
the stabilizing controller is obtained as K =UQ(X−Q)−1.

Hence, similar to De Persis and Tesi (2019), van Waarde
et al. (2020) arrive at the stabilization condition (62), though the
derivation does not require the rank condition (57). In summary,
the data informativity approach allows for stabilization even
though the data is not sufficiently rich to identify the system.
On the contrary, when studying data-informativity for the LQR
problem (55), the rank condition (57) is required (van Waarde
et al., 2020, Theorem 26), and a similar semidefinite program
formulation as in (63) can be derived – though with optimiza-
tion variables independent of the data size. van Waarde et al.
(2020) also study the output feedback case and various system
analysis questions from the view point of data informativity.

Applied to the problem of system identification, the infor-
mativity framework by van Waarde et al. (2020) leads to dif-
ferent identifiability definition and conditions than the ones
presented in Section 3.2. The identifiability problem in (van
Waarde et al., 2020) concerns the special case of the input/state
system (11), parameterized by the pair (A,B). Adapting the
problem formulation to general input/output systems, parame-
terized by quadruple (A,B,C,D), requires the notion of equiv-
alence classes in the space of parameters (A,B,C,D). A topic
for future work is to extend the informativity framework to in-
put/output systems and studying identifiability conditions.

5.3.6. Extensions beyond deterministic LTI systems
The articles by De Persis and Tesi (2019); van Waarde et al.

(2020) paved the way for manifold extensions to broader sys-
tem classes, further analysis and design questions, as well as ro-
bustifications in case of inexact data. We will primarily review
the latter here. In case the LTI dynamics (53) are subject to
process disturbances w (in what follows referred to as “noise”),

σx = Ax+Bu+w , (66)

then the set of all systems explaining the data is characterized
by all pairs of matrices (B,A) so that

X+ =
[
B A

][U
X−

]
+W (67)

for some realization W = [w(0) w(1) . . . w(L−1)] of the un-
known noise. In this case, by repeating the calculation (60),
a data-driven parametrization of the closed-loop matrix is ob-
tained as A+BK = (X+−W )G. From this point on, one may
again pursue either a certainty-equivalence or a robust design.

De Persis and Tesi (2021b) pursue a certainty-equivalence
approach, i.e., the control design is not robustified against noise.
The authors provide quantitative bounds on the noise magnitude
so that the certainty-equivalence design is stabilizing or a par-
ticular LQR suboptimality can be guaranteed. In a nutshell, the
technical approach is as follows: in the semidefiniteness con-
ditions (61) and (63), the matrix X+G (encoding A+BK in the
noiseless case) has to be replaced by (X+−W )G in the noisy
case. The key question is then under which conditions feasibil-
ity of the semidefinite constraint without W (i.e., the certainty-
equivalence case) implies feasibility with W . Since noise af-
fects the semidefinite constraint through a product of the terms
WGP, this approach also suggests to augment the LQR cost
with a regularizer of the form trace(WGP(WG)>) to mitigate
the effect of noise; see (De Persis and Tesi, 2021b, Section 5).

In the robust approach, the design seeks a stabilizing or opti-
mal control for all W in a prescribed uncertainty set. A tractable
and expressive uncertainty set is a quadratic matrix inequality
proposed by De Persis and Tesi (2019); Berberich et al. (2020a),
where one assumes that all uncertainty realizations satisfy[

I
W>

]> [
Φ11 Φ12
? Φ22

][
I

W>

]
� 0 , (68)

where Φ11 = Φ>11 and Φ22 = Φ>22 ≺ 0. For example, for Φ22 =
−I and Φ12 = 0 inequality (68) bounds the energy of W ; or with
1n×n being the (n×n) matrix of unit entries, Φ22 = − 1

n−1 (I−
1
n1n×n), and Φ12 = 0 (68) bounds the sample covariance of the
noise (van Waarde et al., 2020a). Different parameterizations of
the uncertainty set (68) have been proposed; see (van Waarde
et al., 2021) for a discussion and conversions thereof. We also
remark that Bisoffi et al. (2021); Martin and Allgöwer (2021);
Berberich et al. (2020d) considered point-wise (in time) noise
bounds to alleviate the potential conservatism of (68).

Given the data (U,X), a robustified version of the stabiliza-
tion problem (54) can then be posed as finding a feedback gain
K so that A+BK is Schur stable for all (B,A) compatible with
(67) and (68). At this point the data-driven robust design can
be approached with established methods: De Persis and Tesi
(2019) pose the problem as simultaneous satisfaction of a per-
turbed Lyapunov inequality with perturbation satisfying (68),
and derive a robustly stabilizing controller for sufficiently large
signal-to-noise ratio; Berberich et al. (2020a) recognize the
problem setup as a linear fractional transformation, apply ro-
bust control methods, and later extend the approach to grey-box
models including prior knowledge (Berberich et al., 2020d); al-
ternatively, by inserting W from (67) into (68), van Waarde et al.
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(2020a); van Waarde and Camlibel (2021) arrive at a quadratic
matrix inequality, pose the robust data-driven design as a simul-
taneous satisfaction of quadratic matrix inequalities, and solve
it via a matrix-valued version of Finsler’s and S-Lemma. Their
conditions are non-conservative (necessary and sufficient) for
the considered noise model and improve upon previous ones.

The above analysis has also been extended to stabilization of
weakly nonlinear systems in the absolute stability setting, i.e.,
when system stabilization can be achieved by means of linear
feedback and certified with a quadratic Lyapunov function. For
example, to stabilize a Lur’e system σx=Ax+Bu+Eφ(x) with
sector-bounded scalar nonlinearity φ(x)>(φ(x)− x) ≤ 0, one
can appeal to conceptually analogous methods as for a noisy
system (67) subject to an ellipsoidal uncertainty set as in (68)
(Luppi et al., 2021; van Waarde and Camlibel, 2021).

Also problems of (robust) invariance (Bisoffi et al., 2020a),
stabilization of polynomial systems aided by sum-of-squares
methods (Guo et al., 2020), or control design for bilinear
(Bisoffi et al., 2020b), delayed (Rueda-Escobedo et al., 2020),
switched (Rotulo et al., 2021), or rational (Strässer et al., 2020)
dynamical systems lead to similar linear matrix inequalities.

5.3.7. Discussion
Many other works have followed up on these ideas resulting

in a vibrant research arena. We will not provide an exhaustive
overview. Rather we conclude with a few remarks.

First, many other instances of robust and optimal control can
be formulated and parameterized as semidefinite optimization
(respectively, feasibility) problems in terms of the closed-loop
matrix A+BK (Scherer and Weiland, 2000). Conceptually, all
of these admit data-driven counterparts in case of exact data,
and similar robustifaction methods as in Section 5.3.6 can be
applied in case of noisy data. A possible caveat leading to com-
putational challenges are the sizable semidefinite programs.

Second, the above approaches model “noise” as a norm-
bounded disturbance rather than as a stochastic process. A
bridge between stochastic and worst-case noise models can be
built by averaging data sets and constructing high-confidence
norm bounds on W (De Persis and Tesi, 2021b, Section 6.2).

Third, the above approaches are all derived from the sub-
space relations (56)–(57) which again descend from the fun-
damental lemma. Though, the subsequent results are devel-
oped entirely in the state-space framework. Hence, most of the
methods have been created under the dogma that a state-space
representation is readily available with measurable states, and
extensions to output feedback are often more conceptual than
practically useful. However, in data-driven control design nei-
ther the state is available nor its dimension is a priori known,
which provides a fruitful avenue for future research.

6. Concluding discussion and open problems

The behavioral system theory defines a system as a set of
trajectories—the behavior—and is thus intrinsically amenable
to data-driven approaches. Particular system representations,
input/output partitioning of the variables, zero initial condition,

and other assumptions are not imposed a priori. System proper-
ties and design problems are specified in terms of the behavior.
Then, these properties can be checked, and analysis and design
problems can be solved using data-driven methods.

The fundamental lemma (Lemma 2) and Corollary 5, re-
viewed in Section 3, give conditions for existence of a non-
parametric data-driven representation of a linear time-invariant
system. The condition of Corollary 5 is verifiable from the data
and prior knowledge of the number of inputs, lag, and order of
the system. It is a refinement of the fundamental lemma, which
provides alternative sufficient conditions, assuming in addition
a given input/output partitioning of the variables and controlla-
bility of the system.

The data-driven representation allows approaching system
theory, signal processing, and control problems using basic lin-
ear algebra. It leads to general, simple, and practical solution
methods. This was illustrated in the paper by applying it on
a problem of data-driven missing data estimation. The result-
ing method assumes only linear time-invariant system dynam-
ics and has no hyperparameters. In case of noisy data, gener-
ated in the errors-in-variables setup, the maximum-likelihood
estimator is obtained by a Hankel structured low-rank approxi-
mation and completion problem. The maximum-likelihood es-
timation problem is nonconvex, however, `1-norm regulariza-
tion provides an effective convex relaxation.

The fundamental lemma has long served as a cornerstone of
indirect data-driven control, that is, sequential system identifi-
cation and control. Recently, multiple direct data-driven control
formulations have sparked from the fundamental lemma and the
associated non-parametric system representation. These can be
loosely classified as implicit and explicit approaches, as rep-
resented by the DeePC and data-driven LQR approaches. The
approaches are equally amenable to certainty-equivalence and
robust control implementations. Within the vast realm of data-
driven control, the approaches based on the fundamental lemma
are remarkable, as they are amenable to theoretic analysis and
certification, but they are also computationally tractable, re-
quire only few data samples, and robustly implementable in
real-time and safety-critical physical control systems.

While the initial fundamental lemma dates back almost 20
years, it has recently given rise to a blossoming literature in
the vibrant research arena of data-driven control. On top of the
manifold open problems already pointed out earlier, we see the
following promising and important avenues for future research.

On the theory side, the presented data-driven approaches
are based on an inherent LTI model specification—the non-
parametric model representation—and by means of robustifi-
fying and adapting the optimization methods they have been
successfully applied to stochastic, nonlinear, and time-varying
systems. Though what is missing is a bottom-up approach ex-
tending behavioral systems and the non-parametric representa-
tion to the stochastic and nonlinear domain. Furthermore, most
of the presented approaches rely on sequential exploration (data
collection) and control (exploitation). Though the overall goal
should be direct, online, and adaptive data-driven approaches
relying on partial and noisy output measurements.

On the computational side, data-driven methods are currently
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based on batch computation without exploitation of the special
structure of the data matrices. Because of this, the computa-
tional complexity of the data-driven methods does not compare
favorably with the one of model-based methods. A topic for
further research is therefore development of efficient computa-
tional methods as well as recursive methods that are suitable for
online computation. Other important topics are sensitivity anal-
ysis of the algorithms in case of noisy data, automatic tuning of
the hyperparameters, and selecting the matrix structure. In par-
ticular, we presented three different matrix structures: (mosaic)
Hankel, Page, and trajectory. Preliminary empirical evidence
suggests that they are suitable in different types of problems:
the Hankel matrix in model identification problems while the
Page and trajectory matrices in data-driven control via DeePC.
More experiments as well as theoretical analysis are needed in
order to find definitive guidelines for which matrix structure to
use under which assumptions.
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Appendix A. Proof of the dimension formula (1)

Let Bss(A,B,C,D) be a minimal input/state/output represen-
tation of the system B (cf. Section 2.3). For any w∈B|L, there
is x(1) = xini ∈ Rn, such that

w(t) = Π

[
u(t)
y(t)

]
, x(t +1) = Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t), for t = 1,2, . . . ,L.

This system of equations can be written more compactly as

w = ΠL

[
0 I

OL CL

][
x(1)

u

]
=: ML

[
x(1)

u

]
, (A.1)

where ΠL ∈ RqL×qL is a permutation matrix (determined by
Π and the re-grouping of the variables in the left-hand-side
and right-hand-side of (A.1)), OL ∈ RpL×n is the extended
observability matrix with L block rows, defined in (6), and
CL ∈ RpL×mL is the convolution matrix with L block rows

CL :=


h(0) 0 · · · 0

h(1) h(0)
. . .

...
...

. . .
. . . 0

h(L−1) · · · h(1) h(0)

 , (A.2)

constructed from the Markov parameters

h(0) = D, h(k) =CAk−1B, for k = 1,2, . . .

of the system. From (A.1), it follows that

dim B|L = rankML.

Since the representation is minimal and L≥ l(B), the extended
observability matrix OL is full column rank n. Then, due to the
lower-triangular block-structure of ML and the identity block,
ML is also full column rank. Therefore,

dim B|L = rankML = mL+n.

Appendix B. Proof of Lemma 1

We provide a state-space and a representation-free proof.

Appendix B.1. Using an input/state/output representation
Let Bss(A,B,C,D) be a minimal input/state/output represen-

tation of the system B. Since wini is a trajectory of B|Tini , there
is an x(1) = xini ∈ Rn, such that

yini = OTinixini +CTini uini, (B.1)

where OTini is defined in (6) and CTini is defined in (A.2). More-
over, the assumption that B(A,B,C,D) is a minimal represen-
tation and Tini ≥ l(B) imply that the extended observability
matrix OTini has full column rank. Therefore, the system of
equations (B.1) has a unique solution xini. The initial condi-
tion x(Tini + 1) for the trajectory wf is uniquely determined by
xini and uini

x(Tini+1) = ATini xini+
[
ATini−1B ATini−2B · · · AB B

]
uini.

The uniqueness of yf follows from the uniqueness of x(Tini+1).

Appendix B.2. A representation-free proof
Let n := n(B). By the dimension formula (1), there is a full

column rank matrix B ∈ Rq(Tini+L)×(m(Tini+L)+n), such that

wini∧ (u,y) = Bg,

for some g ∈ Rm(Tini+L)+n, i.e., the columns of B form a basis
for B|Tini+L. Denote with B′ ∈R(qTini+mL)×(m(Tini+L)+n) the sub-
matrix of B obtained by selecting the rows of B corresponding
to wini and u. The simulation problem (8) has a unique solution
if and only if the system of equations[

wini
u

]
= B′g (B.2)

has a unique solution g. A necessary and sufficient condition
for uniqueness of a solution of (B.2) is that B′ is full column
rank. By the assumption Tini ≥ l(B), using (1) and the fact that
u is a free variable, we have

rankB′ = dim{ [wini
u ] | wini ∈B|Tini and u ∈ RmL }

= mTini +mL+n = col dimB′,

so that, B′ is indeed full column rank.

Appendix C. Proofs of Corollary 5

The fact that image HL(Wd) ⊆B|L follows from the linear
time-invariance property of B and the exactness of the data Wd.
In order to prove that equality holds if and only if the general-
ized persistency of excitation condition (14) holds, note that

dim image HL(Wd) = rankHL(Wd) (C.1)

and (1). Since, image HL(Wd) is included in B|L, they are
equal if and only if their dimensions are equal. The result fol-
lows from (C.1) and (1).
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