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Abstract

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data.
For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling
problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear
time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding modeling
problems becomes structured low-rank approximation. Low-rank approximation has applications in:
system identification; signal processing, machine learning, and computer algebra, where different types
of structure and constraints occur.

This paper gives an overview of recent progress in efficient local optimization algorithms for solving
weighted mosaic-Hankel structured low-rank approximation problems. In addition, the data matrix may
have missing elements and elements may be specified as exact. The described algorithms are imple-
mented in a publicly available software package. Their application to system identification, approximate
common divisor, and data-driven simulation problems is described in this paper and is illustrated by
reproducible simulation examples. As a data modeling paradigm the low-rank approximation setting
is closely related to the the behavioral approach in systems and control, total least squares, errors-in-
variables modeling, principal component analysis, and rank minimization.

Keywords: low-rank approximation, total least squares, structured matrix, variable projection, miss-
ing data, system identification, reproducible research, literate programing, noweb.

1 Introduction

Science is aiming at discovering patterns in empirical observations. The simplest and most basic form of
a pattern is the linear relation and a convenient data structure for organizing the observations is the two
dimensional array of numbers—the matrix. The problem of finding linear relations among the columns
or rows of a matrix is closely related to the numerical linear algebra problem of computing the rank of a
matrix. Linear relations exist if and only if the matrix is “low-rank”, i.e., its rank is less than the smaller of
its dimensions.

The problem of discovering more complicated data patterns, such as nonlinear and dynamical relations,
can also be posed and solved as a rank computation problem for a matrix obtained from the data via a prob-
lem dependent transformation. We call such matrices structured. There is a direct correspondence between
types of patterns considered in the applications and types of structured matrices used in the mathemati-
cal problem formulation described in this paper. Specific examples illustrating this statement are given in
Section 2.
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Noise in the data, however, can disguise the exact properties present (or hypothesized) in the noise-free
data. This makes the estimation and approximation issues critical in real-life data modeling applications.
In Section 2, we show that the problem of discovering exact patterns in the data is equivalent to computing
the rank of a structured matrix, constructed from the data. In Section 3, we make a transition to the more
realistic problem of structured low-rank approximation, where the “best” approximation of the given data
by data that is consistent with the desired exact property is aimed at.

The emphasis in this paper is on applications in systems, control, and signal processing. General intro-
duction to application of the structured low-rank approximation methods developed is given in Section 5.
Details about applications in signal processing and numerical examples presented are given in Section 7.
The examples include sum-of-damped exponentials modeling, using prior knowledge about pole location,
data modeling with missing data, and approximate common divisor computation. An interesting application
of missing data estimation, shown in Section 7.5, is data-driven simulation and control [MR08, Mar10], i.e.,
direct computation of a signal of interest (simulated response or feed-forward control) from data without
explicit model identification.

As explained in Section 4, the structured low-rank approximation setting is closely related and other data
modeling approaches—structured total least-squares [GV80, MV07, MSV10], behavioral paradigm [PW98],
errors-in-variables modeling [Söd07], principal component analysis [Hot33, Jol02, Jac03], and rank min-
imization [LV09, Faz02]. We refer to reader to the overview papers [Sch91, MV07, Mar08] and the
book [MWVD06] for extensive literature survey about these connections and bibliography. This paper
is an update of [Mar08] and [MV07] with new applications, methods for missing data estimation, fast ap-
proximation of mosaic-Hankel-like matrices, and availability of robust and efficient methods implementing
the theory.

2 Examples of properties equivalent to rank deficiency of a matrix

The general concept outlined in the introduction is illustrated and motivated in this section on five specific
examples of data patterns:1

E1. N, q-dimensional vectors d1, . . . ,dN belong to a subspace of dimension m< q,

E2. N, 2-dimensional vectors d1, . . . ,dN belong to a conic section,

E3. the scalar sequence
(
y(1), . . . ,y(T )

)
is a sum of n< T/2 damped exponentials,

E4. the q-dimensional vector sequence
(
w(1), . . . ,w(T )

)
is a trajectory of a bounded complexity linear

time-invariant system, and

E5. two polynomials a and b have a common divisor of degree at least ℓ.

Each example is expressed as a rank constraint

rank(D)≤ r, (1)

for a suitably chosen matrix D and a natural number r. The matrix D is structured, i.e., it is a function of the
data. Its size and structure depend on the example and are specified later on. The observation that as diverse
examples as E1–E5 lead to (1) motivates the statement that the low-rank property of a structured matrix
constructed from the data is a general property in data modeling. Each example is next briefly discussed.

1In data modeling, a pattern of the data is called a model and a collection of related patterns (e.g., linear, conic section, etc.)
is called a model class.

2



Example E1 In the simplest example E1, D is the matrix of the (horizontally) stacked vectors
[
d1 · · · dN

]

and the upper bound r on the rank of D is equal to the subspace dimension m. Indeed, the equivalence of
statement E1 and the rank condition (1) is a basic linear algebra fact. In the case of subspace fitting, the
data matrix D is unstructured, i.e., the observed variables di j enter directly as elements of the data matrix D.
As shown next, this is not the case in the more complicated examples.

Example E2 The notion of rank plays also a central role in the problem of detecting whether the points
{d1, . . . ,dN } ⊂ R

2 belong to a conic section B ⊂ R
2. Although a conic section B is a nonlinear curve, it

is linearly parameterized

B =
{

d =

[
a

b

]
|
[
a2 ab a b2 b 1

]
θ = 0

}
, for some θ 6= 0,

by monomials a2, ab, a, b2, b, and 1 of degree up to 2. We have,

{d1, . . . ,dN } ⊂ B ⇐⇒ θ⊤D = 0,

where D is the 6×N matrix 


a2
1 a2

2 · · · a2
N

a1b1 a2b2 · · · aNbN

a1 a2 · · · aN

b2
1 b2

2 · · · b2
N

b1 b2 · · · bN

1 1 · · · 1



, (2)

whose columns are nonlinear transformations of the corresponding data vectors di =
[ ai

bi

]
. Thus, state-

ment E2 is equivalent to the rank condition (1) with D given in (2) and r = 5.
The matrix (2) is an example of a nonlinear structure. In the rest of the paper, we consider only affinely

structured matrices, which allow effective solution methods (see Section 6). As illustrated by examples
E3–E5, the affine structure is general enough to cover important classes of applications in systems, control,
and signal processing.2

Example E3 A sum-of-damped-exponentials sequence
(
y(1), . . . ,y(T )

)
, i.e., a sequence of the form

y(t) = c1zt
1 + · · ·+ cnzt

n
, for t = 1, . . . ,T, (3)

where c1, . . . ,cn and z1, . . . ,zn are given complex numbers, satisfies a difference equation

R0y(t)+R1y(t +1)+ · · ·+Rny(t +n) = 0, for t = 1, . . . ,T −n, (4)

and parameter vector
R :=

[
R0 R1 · · · Rn

]
6= 0

The relation (4) is again linear in the parameters, so that the condition for existence of solution is a rank
constraint of the type (1). The difference equation (4), however, results in a matrix equation RD = 0, with

2As explained in Section 3, the affine structure is still too general for development of practically efficient algorithms. The
best compromise between generality and efficiency is the mosaic-Hankel-like structure.
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a (n+1)× (T −n) Hankel structured matrix D

Hn+1,T−n(y) :=




y(1) y(2) y(3) · · · y(T −n)

y(2) y(3) . .
.

y(T −n+1)

y(3) . .
. ...

...
y(n+1) y(n+2) · · · y(T )




, (5)

i.e., the elements on the antidiagonals of the matrix are equal to each other. The upper bound r on the rank
of D is equal to the number n of damped exponentials.

Example E4 The sum-of-damped-exponentials model (3) is a special case of a linear time-invariant dy-
namical system. In the behavioral approach to system theory [Wil87], a dynamical system is defined as a set
of trajectories. A system can be specified by different representations. For example, a linear time-invariant
system can always be represented by a vector constant coefficients difference equation

R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0, for t = 1, . . . ,T − ℓ, (6)

where the coefficients Ri ∈ R
p×q are such that the matrix polynomial R(z) := ∑ℓ

i=0 Riz
i is full row rank. In

this case, (6) is a system of p linearly independent equations.
Using the notation H , defined in (5) for scalar sequences, the difference equation (6) can be written as

a matrix equation [
R0 R1 · · · Rn

]
D = 0, where D = Hℓ+1,T−ℓ(w).

Note that, in this case, the data matrix D is Hankel with q×1 block elements (a block Hankel matrix). This
shows that statement E4 is also a special case of (1) for D block Hankel and r = (ℓ+1)q−p. The bound r

on the rank of D bounds the complexity of the model.

Example E5 Finally, in the polynomial common divisor example E5, there is a relation

rank(D)≤ r := na +nb −2ℓ+1

between the degree ℓ of a common divisor of the polynomials

a(z) = a0 +a1z+ · · ·+ana
zna and b(z) = b0 +b1z+ · · ·+bnb

znb

and the rank of the Sylvester sub-resultant matrix [ASÅ04] of a and b:

[
Snb−ℓ+1(a)
Sna−ℓ+1(b)

]
, where Sk(a) :=




a0 a1 · · · ana

. . .
. . .

. . .

a0 a1 · · · ana


 ∈ R

k×(na+k). (7)

(By default, all blank entries in a matrix are zeros.) A summary of the matrices D and their maximum
ranks r, in the subspace, conic section, sum-of-damped-exponentials, linear time-invariant dynamical sys-
tem, and common divisor examples is given in Table 1.
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Summary of the examples The examples have the following common feature:

a property of the data is equivalent to the low-rank property of a matrix constructed from the

data.

The problem of checking the presence or absence of a property of the data is then reduced to the standard
numerical linear algebra problem of computing the rank of a matrix. Existing algorithms and software are,
therefore, readily available for solving the original problem. Note that a range of applications are equivalent
to a single abstract problem, for which robust and efficient methods and software are readily available. The
key step in applying the approach sketched above and further developed in this paper is to find the relevant
matrix D and rank constraint r in (1) for the data property of interest.

example data matrix D structure rank bound r

E1 subspace
[
d1 · · · dN

]
unstructured

subspace
dimension m

E2
conic

section (2) polynomial 5

E3
sum of
damped

exponentials
Hℓ+1,T−ℓ(y) Hankel

number of
exponents n

E4
linear

time-invariant
system

Hℓ+1,T−ℓ(w)
block

Hankel
ℓq+m

E5
greatest
common
divisor

[
Snb−ℓ+1(a)
Sna−ℓ+1(b)

]
Sylvester

na +nb −2ℓ+1
ℓ= GCD degree

Table 1: Summary of data matrices D and rank bounds r in the examples.

3 Structured low-rank approximation

Examples E1–E5 are qualitative statements about properties of the data. In practice the data is often noise
corrupted and the properties are generically not satisfied. Even for exact data, in finite precision arithmetic,
the problem of computing the rank of a matrix is notoriously difficult and should be avoided.

A more general and more useful problem than the one of establishing the presence or absence of an
exact property is the one of finding a quantitative measure of how far the data is from satisfying the property.
One way to formalize this problem is to define a distance measure from the data to the subset of the data
space where the property of interest is satisfied. As shown above, the subset of the data space for which
the property is satisfied is a manifold of low-rank matrices, so that the distance computation problem is a
low-rank approximation problem.

For the examples considered, the low-rank approximation problem leads to classical problems: prin-
cipal component analysis [Hot33] and total least squares [GV80, MV07], in the case of E1; orthogonal
regression, also called geometric fitting [GGS94, Nie01], in the case of E2; output error system identifica-
tion [SS89, Lju99], in the case of E3; errors-in-variables system identification [Söd07], in the case of E4;
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and approximate common divisor [KL98], in the case of E5. Similarities and differences of the low-rank ap-
proximation setting to other modeling paradigms are explained in Section 4 and an overview of applications
is given in Section 5. Next, we define formally the low-rank approximation problem.

The general problem considered in this paper is to find the nearest (in some specified sense) matrix D̂ to
a given matrix D, where D̂ has rank less than or equal to a specified number r and the same structure as the
one of D. A matrix structure is a class of matrices, which can be defined as the image {S (p) | p ∈ R

np }
of a function S : Rnp → R

m×n, e.g., the affine structures

S (p) =
np

∑
i=1

Si pi, where Si ∈ R
m×n. (8)

An example of affine matrix structure S is the Hankel structure (5).3 For example, H2(p) = [ p1 p2
p2 p3 ] is

represented by (8) with

S0 = 0, S1 =

[
1 0
0 0

]
, S2 =

[
0 1
1 0

]
, and S3 =

[
0 0
0 1

]
.

For a given structure S , a vector p ∈R
np , refered to as the structure parameter vector, specifies a structured

matrix S (p). The distance between matrices with the same structure is expressed equivalently as the
distance between their structure parameter vectors. In what follows, we use the weighted (semi-)norm

‖p‖2
w :=

np

∑
i=1

wi p
2
i ,

defined by the nonnegative vector w =
[
w1 · · · wnp

]⊤
.

The structured low-rank approximation problem is defined as follows.

Problem 1 (Structured low-rank approximation problem). Given matrix structure specification S , vector
of structure parameters p, nonnegative vector w, and desired rank r, find a structure parameter vector p̂,
such that the corresponding matrix S (p̂) has rank at most r, and is as close as possible to p in the sense of
the weighted semi-norm ‖ · ‖w, i.e.,

minimize over p̂ ∈ R
np ‖p− p̂‖2

w subject to rank
(
S (p̂)

)
≤ r. (SLRA)

Without loss of generality, it is assumed that m ≤ n.
A solution method for general affine structure (8) is presented in Sections 6. As illustrated by examples

E3–E5, applications in signal processing, system identification, and computer algebra lead to special lin-
early structured low-rank approximation problems. The block-Hankel and Sylvester structure, appearing in
system identification and computer algebra, are instances of a mosaic-Hankel-like structure [Hei95]

S (p) := ΦHm,n(p), (9)

where Hm,n is the block matrix with Hankel blocks (see (5))

Hm,n(p) =




Hm1,n1(p(11)) · · · Hm1,nN
(p(1N))

...
...

Hmq,n1(p(q1)) · · · Hmq,nN
(p(qN))


 ,

m :=
[
m1 · · · mq

]

n :=
[
n1 · · · nN

] (10)

Φ is a full row rank matrix, and the p(i j)’s are subvectors of p. A fast algorithm for mosaic-Hankel low-rank
approximation is outlined in Section A.2.

3This representation of a Hankel matrix is memory and computation inefficient and is not used in practical implementations.
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In regular problems, the weight vector w is positive, however, it is useful to consider also the extreme
cases of infinite and zero weights in the approximation criterion, so that, in general, w ∈ [0,+∞)∪{+∞}.
An infinite weight wi = +∞ imposes the equality constraint p̂i = pi on the optimization problem (SLRA)
and a zero weight wi = 0 makes the parameter pi irrelevant. Indeed, in case of an infinite weight wi =+∞,
the cost function ‖p− p̂‖w is infinite unless p̂i = pi, so that the infinite weight specifies implicitly a hard
constraint of a fixed element in the approximation vector p̂.

In the case of zero weight wi = 0, the error term pi − p̂i is excluded from the cost function, so that pi

does not influence the solution. Parameter values corresponding to zero weights are marked with the symbol
NaN (not a number) and are considered as missing values.

4 Related paradigms, problems, and algorithms

4.1 Structured total least squares

The total least squares method is introduced by Golub and Van Loan [Gol73, GV80] as a solution technique
for an overdetermined system of linear equations AX ≈ B, where A ∈R

m×n and B ∈R
m×(m−r) are the given

data and X ∈ R
n×(m−r) is unknown. The total least squares approximate solution X̂ of the system AX ≈ B

is a minimizer of the following optimization problem

minimize over X , Â, and B̂
∥∥[A B

]
−
[
Â B̂

]∥∥
F subject to ÂX = B̂, (11)

where ‖ · ‖F denotes the Frobenius norm.
With X ∈ R

r×•, problem (11) is generically equivalent to approximation of the matrix D :=
[
A B

]
by

a rank r matrix D̂ :=
[
Â B̂

]
in the Frobenius norm

minimize over D̂ ∈ R
m×n ‖D− D̂‖2

F subject to rank(D̂)≤ r. (12)

While a solution to the low-rank approximation problem (12) always exists, the total least squares prob-
lem (11) may fail to have a solution. The nongeneric case of lack of total least squares solution occurs when
the optimal approximating matrix D̂ of (12) can not be represented in the form ÂX = B̂.

The generalization of the total least squares problem to systems of linear equations with structured ma-
trices A and B is called structured total least squares [DM93]. The structured total least squares problem
is generically equivalent to the structured low-rank approximation problem. Many algorithms for solv-
ing structured total least squares approximation are proposed in the literature [AMH91, RPG96, LMV00,
MLV00, MVP05] . The variable projection-like method presented in Section 6 is related to the structured
total least squares algorithm of [MVP05].

4.2 Behavioral paradigm

The system of equations ÂX ≈ B̂ implies a functional relation among the variables Â to B̂ (B̂ is a func-
tion of Â). In system theory and signal processing, such a relation defines what is called an input-output
representation of a model. The rank constraint in (12) does not impose an a priori fixed functional rela-
tion or input-output partition on the variables of the matrix D̂, however, the rank deficiency of D̂ implies
that such relations exist. They can be inferred from D̂ after the approximation problem is solved. The
representation-free approach to data modeling is known in the systems and control literature as the behav-
ioral paradigm [Wil87, Wil07].

(SLRA) is a computational method for data modeling in the behavioral setting.
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Related methods for system identification in the behavioral setting are developed by Roorda and Heij [RH95,
Roo95]. From a system theoretic point of view, the inner minimization (16) of Hankel structured low-rank
approximation problem is a Kalman smoothing problem [MD05]. This link allows alternative methods for
fast cost function and derivatives evaluation.

4.3 Errors-in-variables model

In the classical regression model, an input-output partitioning of the variables is imposed and the input
variables (regressors) are assumed to be noise free. This setup is inadequate for applications where all
variables are obtained through measurements and should be treated on an equal footing. The relevant
statistical setup in this case is the errors-in-variables model [Söd07]

di = d̄i + d̃i, for i = 1, . . . ,N,

where di is the vector of measured variables, d̄i is its true value, and d̃i is the measurement noise. Low-
rank approximation problem is a maximum likelihood estimator in the errors-in-variables setup, under the
assumption that the measurement noise is zero mean, normally distributed, with covariance matrix known
up to a scaling factor [Mar08]. Therefore, low-rank approximation yields a statistically optimal estimator in
the errors-in-variables setting. Conversely, the errors-in-variables setting provides the relevant testbed for
the methods developed in this paper.

4.4 Principal component analysis

The principal component analysis method [Pea01, Jol02, Jac03] is defined as follows: given a set of vectors

D = {d1, . . . ,dN } ⊂ R
q,

drawn from a zero mean distribution, find a subspace B = ker(R) of dimension r, which maximizes the
empirical variance of the projected data on the subspace. The problem is equivalent to approximation of the
data matrix

D =
[
d1 · · · dN

]
.

by a rank r matrix.

Principal component analysis gives a statistical interpretation of the deterministic low-rank

approximation problem.

4.5 Rank minimization

In the low-rank approximation problem, the fitting error ‖p− p̂‖w is minimized subject to a hard constraint
on the rank of the approximating matrix S (p̂). In the related structured rank minimization problem [LV09,
Faz02]

minimize over p̂ rank
(
S (p̂)

)
subject to ‖p− p̂‖w ≤ e,

the rank of S (p̂) is minimized subject to a hard constraint on the fitting error. Both problems are NP-hard
and are equivalent in the sense that a method for solving one of them can be used for solving the other.

More generally, one can consider the bi-objective problem

minimize over p̂

[
‖p− p̂‖w

rank
(
S (p̂)

)
]
.
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Then, the rank minimization and low-rank approximation problems can be viewed as ways of scalarizing
the bi-objective problem. Another scalarization of the bi-objective problem is the regularized problem

minimize over p̂ ‖p− p̂‖w + γ rank
(
S (p̂)

)
.

The solutions of all three problems above trace the same Pareto optimal curve when the corresponding
hyper parameters—r, in the low-rank approximation problem, e in the rank minimization problem, and γ in
the regularized problem—are varied.

Suboptimal solutions to these NP-hard problems can be computed by relaxing them to convex optimiza-
tion problems. A popular convex relaxation of the rank constraint is the nuclear norm, defined as the sum
of the singular values. An upper bound on the nuclear norm can be expressed as a linear matrix inequality,
so that the relaxed problems are semi-definite programming problems. Consequently, they can be solved by
readily available algorithms and software.

4.6 Other related problems

A subarea of low-rank approximation that is not covered in this overview is tensors low-rank approximation

[WVB10, LV00]. Tensor methods are used in higher order statistical signal processing problems, such as
independent component analysis, and multidimensional signal processing, such as spatio-temporal model-
ing and video processing, to name a few. Other areas of research on low-rank approximation that we do not
cover are nonnegative low-rank approximation and matrix completion [Mar11]. Nonnegative constraints
appear, for example, in chemometrics, image, and text processing [BBL+07]. These constraints are im-
posed in solution methods by a rank revealing factorization with nonnegative factors. In addition, upper
bounds on the elements are imposed in the method of [KIP12].

5 Applications

Many data-driven modeling problems in systems and control, signal processing, and machine learning as
well as problems in computer algebra (see Figure 1) can be posed as a structured low-rank approximation
problem (SLRA) for suitably defined structure S , weight vector w, and rank constraint r. As illustrated by
examples E1–E5, there is a correspondence between the matrix structure S of the low-rank approximation
problem (SLRA) and the model class in the data modeling problems (see Table 2).

Table 2: Correspondence between the matrix structure S of the low-rank approximation problem (SLRA)
and the model class in the data modeling problem.

Structure S ↔ Model class
unstructured ↔ linear static
Hankel ↔ scalar linear time-invariant
q×1 Hankel ↔ q-variate linear time-invariant
q×N Hankel ↔ N equal length trajectories
mosaic-Hankel ↔ N general trajectories[
Hankel unstructured

]
↔ finite impulse response

block-Hankel Hankel-block ↔ 2-dimensional linear shift-invariant

Advantages of reformulating problems as the structured low-rank approximation problem (SLRA) are:
1) links among seemingly unrelated problems are established, 2) generic methods, algorithms, and software
can be reused in different application domains. In order to justify this claim, we apply the generic software
for solving (SLRA), described in Section 6, to three vastly different applications: system identification,
data-driven simulation, and computation of an approximate common divisor of three polynomials.
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Figure 1: Structured low-rank approximation as a generic problem for data modeling.

In system theory, it is well known that there is a connection between model reduction and system
identification. At the heart of both problems is the fact (illustrated by example E3) that a time series is a
trajectory of a linear time-invariant system of bounded complexity if and only if a Hankel matrix constructed
from the time-series is rank deficient. Also, there are known connections among signal processing methods,
such as forward-backward linear prediction [KT82, TS93, AG07] and harmonic retrieval [SM05], on one
hand, and system identification methods, such as the prediction error methods [Lju99], on the other hand.

Cross-disciplinary links among computer algebra, machine learning and system theory however are less
explored. The low-rank approximation setting offers a platform for establishing such links on a global scale.
Indeed, formulating a new problem as a low-rank approximation problem with a specific structure relates
this problem to all problems that are known to be equivalent to low-rank approximation with the same type
of structured matrix.

Another advantage of formulating a problem as the structured low-rank approximation problem (SLRA)
is that a range of different solution methods becomes readily available for that problem. The main types of
methods, with a few representatives for each type, are:

• global solution methods (see [UM12, Section 3]),

– semi-definite programming relaxations of rational function minimization [JdK06],

– methods based on solving systems of polynomial equations [Ste04];

• local optimization methods,

– variable projection [MVP05],

– alternating projections [WAH+97]; and

• heuristics based on convex relaxations,

– multistage methods [VD96],

– nuclear norm heuristic [Faz02].

The methods have different properties, which may be advantages or disadvantages in different applications.
Multistage methods are, in general, faster but less accurate than the optimization based methods. Local
optimization methods require initial approximations. The solution obtained and the amount of computations
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may be affected strongly by the bad initialization. Global optimization methods are currently impractical
for realistic signal processing applications (e.g., large data sets or real-time applications), where the required
computational effort is an important consideration.

In our experience the most promising approach for batch model identification is local optimization
using an approach similar to the variable projection principle [GP03]. This approach is very effective in
data modeling problems where the model complexity (number of inputs and lag or order of the system) is
much smaller than the amount of data. This is a typical situation in control and signal processing. The
method described in the following section is of the variable projection family and is therefore intended for
data approximation by low-complexity models. In Section 7, we show numerical examples with a publicly
available software implementation of the method.

6 Variable projection-type algorithms for structured low-rank ap-

proximation

The rank constraint in (SLRA) can be expressed as a condition that the dimension of the left kernel of S (p̂)
is at least m− r

rank
(
S (p̂)

)
≤ r ⇐⇒ there is a full row rank matrix R ∈ R

(m−r)×m,
such that RS (p̂) = 0.

(rankR)

Using (rankR), (SLRA) is rewritten in the following equivalent form

minimize over p̂ ∈ R
np and R ∈ R

(m−r)×m ‖p− p̂‖2
w

subject to RS (p̂) = 0 and R is full row rank.
(13)

Problem (13) is a nonlinear least squares problem, which, in general, admits no analytic solution. However,
the variable p̂ can be eliminated by representing (13) as a double minimization problem:

minimize over full row rank R ∈ R
(m−r)×m M(R), (14)

where
M(R) := min

p̂
‖p− p̂‖2

w subject to RS (p̂) = 0. (15)

The computation of M(R) for given R is refered to as the /inner minimization/ problem and the minimization
(14) of the function M over R is referred to as /outer minimization/ problem.

As shown in Section (A.1), the inner minimization problem (15) is a linear least squares problem

M(R) = min
p̂

‖diag(
√

w)(p− p̂)‖2
2 subject to G(R)(p̂− p) = vec

(
RS (p)

)
, (16)

where
G(R) :=

[
vec(RS1) · · · vec(RSnp

)
]
∈ R

(m−r)n×np .

Here vec is the column-wise vectorization operator: for an m×n matrix A=
[
a1 · · · an

]
, vec(A) is the mn

vector
[
a⊤1 · · · a⊤n

]⊤
. Problem (16) admits an analytic solution, though special care is needed for fixed

values (wi = +∞) and missing values (wi = 0), see Section A.1. Furthermore, in Section A.2, it is shown
that fast evaluation of M can be performed for mosaic-Hankel-like structured matrices (9).

The main advantage in the reformulation of (13) as (14) is the elimination of the optimization variable
p̂. Indeed, (14) has less optimization variables than (13) — m(m−r) versus np+m(m−r)). In applications
of modeling data by a low-complexity model, p̂ is high dimensional and R is small dimensional. Therefore,
the elimination of the p̂ leads to a big reduction in the number of the optimization variables.
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The approach, described above, for solving (13) is similar to the variable projection method [GP03] for
solution of separable unconstrained non-linear least squares problems

minimize over x and θ ‖A(θ)x−b‖2
2, (17)

where matrix valued function A and the vector y are the given data and the vector x is the to be found
parameter. The low-rank approximation problem (13), however, is different from the nonlinear least squares
problem (17). Instead of the explicit function b̂ = A(θ)x, where x is unconstrained, an implicit relation
RS (p̂) = 0 is considered, where the variable R is constrained to have full row rank. This fact requires new
type of algorithms where the nonlinear least squares problem is an optimization problem on a Grassmann
manifold, see [AMS08, AMSD02, MMH03, BA11].

In (14), the cost function M is minimized over the set of full row rank matrices R ∈ R
(m−r)×m. It can be

seen from the definition (15) of M(R) that the cost function depends only on the space spanned by the rows
of R:

rows of R′ and R′′ span the same subspace =⇒ M(R′) = M(R′′).

Therefore, (14) is a minimization problem on the Grassmann manifold Gr(m−r,m) of all (m−r)-dimensional
subspaces of Rm. In order to find a minimum of M, the search space in (14) can be replaced by a set of
matrices R∈R

(m−r)×m that represent all subspaces from Gr(m−r,m), e.g., matrices satisfying the constraint

RR⊤ = Im−r. (18)

In the software package of [MU14], problem (SLRA) is solved numerically by a function with interface

[ph, info] = slra(p, s, r, opt)

The input arguments p, s, and r correspond to the vector of the structure parameters p, the structure speci-
fication S , and the bound r on the rank of the approximating matrix, respectively. The output argument ph
is a locally optimal solution p̂ of (SLRA). The argument s is a structure with fields m, n, phi, and w. The
fields m and n are the vectors m and n that specify the mosaic-Hankel matrix (10), and phi is the Φ matrix
(default value I). The vector w is the weight vector w ∈ R

np (default value is vector of all ones).
The arguments opt and info contain input options and output information for the optimization solver,

respectively. For example, the optional field opt.Rini is used as an initial approximation for the opti-
mization method. The minimizer R̂ of (16) is provided in the field info.Rh.

In the software package, problem (14) is solved by local minimization over parameters θ ∈ R
nθ , such

that R = R(θ)

minimize over θ ∈ R
nθ M

(
R(θ)

)
subject to R(θ)R⊤(θ) = Im−r. (SLRAθ )

(SLRAθ ) is a standard nonlinear least squares problem, for which existing methods, e.g., the Levenberg-
Marquardt algorithm [Mar63] implemented the GNU Scientific Library [G+], are used.

The function R allows specification of linear structure of the matrix R

R = R(θ) := vec−1
m−r(θΨ), (19)

where vec−1(·) is the inverse of the column-wise vectorization operator and Ψ ∈ R
nθ×(m−r)m is a full row-

rank matrix that is passed by the optional parameter opt.Psi (default value I). Applications leading
to structured low-rank approximation with linearly structured kernel are identification with fixed poles (see
Section 7.2) and approximate common divisor computation for three or more polynomials (see Section 7.6).
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7 Numerical examples

In this section, we describe the application of (SLRA) to system identification (Section 7.1–7.4), data-
driven simulation (Section 7.5), and approximate common divisor computation (Section 7.6). Numerical
examples with the variable projection method, described in this paper and implemented in [MU14] are
presented. The reported numerical results are reproducible in the sense of [BD95] by downloading the
slra package [MU14] from

https://github.com/slra/slra

and following the instructions in /doc/overview-readme.txt.

7.1 Autonomous system identification

In system theoretic and signal processing terminology, the difference equation (4) defines an autonomous
linear time-invariant dynamical model. The problem of finding the model from observed trajectory of
the system is called a system identification problem [Lju99, SS89]. The particular identification problem
considered in this section is defined as follows: Given a time series

y =
(
y(1), . . . ,y(T )

)
∈ R

T

and a natural number ℓ,

minimize over ŷ ∈ R
T and

[
R0 R1 · · · Rℓ

]
6= 0 ‖y− ŷ‖2

2

subject to R0ŷ(t)+R1ŷ(t +1)+ · · ·+Rℓŷ(t + ℓ) = 0, for t = 1, . . . ,T − ℓ.
(20)

The constraints of (20) are equivalent to

rank
(
Hℓ+1,T−ℓ(ŷ)

)
≤ ℓ,

so that, (20) is equivalent to the Hankel low-rank approximation problem

minimize over ŷ ∈ R
T ‖y− ŷ‖2

2

subject to rank
(
Hℓ+1,T−ℓ(ŷ)

)
≤ ℓ,

(21)

which is a special case of (SLRA) with

m = ℓ+1 and n = T − ℓ.

Numerical example

The sequence ȳ, shown in Figure 2, left, (solid line) is an exact trajectory of an autonomous linear time-
invariant system with lag ℓ = 6. Indeed, the left kernel of the Hankel matrix Hℓ+1,T−ℓ(ȳ) has dimension
equal to one and a basis vector R̄ for the left kernel of Hℓ+1,T−ℓ(ȳ) gives a difference equation representa-
tion (4) with lag ℓ of the exact model for ȳ.

In the simulation example, however, the identification data y = ȳ+ ỹ is corrupted by zero mean white
Gaussian noise ỹ, so that an exact model does not exist for the data. A heuristic method for approximate
autonomous system identification is Kung’s method [Kun78]. The model obtained by Kung’s method is
suboptimal in the output error criterion ‖y− ŷ‖ and is used as an initial approximation for the structured
low-rank optimization. Figure 2, left, shows the optimal fit (dashed line) obtained by the slra function,
the noisy data (dotted line), and the true data (solid line).

In order to validate the predictive ability of the identified model, we forecast the next Tval = 100 samples

yv :=
(
yv(T +1), . . . ,yv(T +Tv)

)

of the time series y, shown in Figure 2, right (solid line). The prediction ŷv of the model is obtained by
iterating the recursion (4) with initial conditions ŷ(T − ℓ+1), . . . , ŷ(T ). Figure 2, right, shows the fit of the
validation data (dashed line) and the prediction (dashed-dotted line) by a model obtained in the next section.
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Figure 2: Autonomous system identification example. Noisy trajectory (dotted black), optimal approxima-
tion (dashed blue), and true trajectory (solid red), and prediction with fixed poles ŷ′v (black dashed-dotted).

7.2 Autonomous system identification with fixed poles

The complex numbers z1, . . . ,zn in the sum-of-damped-exponentials model (3) describe the behavior of the
model and are called poles. The poles of an autonomous linear time-invariant model, defined by a difference
equation (4), are equal to the roots of the polynomial

R(z) := R0 +R0z+ · · ·+Rℓz
ℓ.

An ℓ+ 1 dimensional vector R =
[
R0 R1 · · · Rℓ

]
corresponds to a degree ℓ polynomial R(z) and, vice

verse, a polynomial of degree ℓ corresponds to the ℓ+ 1 dimensional vector formed of its coefficients in,
say, increasing order of the degree.

Consider the Hankel low-rank approximation problem (21) and let R be a basis for the left kernel of
the approximating matrix Hℓ+1,T−ℓ(ŷ). Denote by z1, . . . ,zℓ the zeros of R(z). Since R is real, the zeros
appear in complex conjugate pairs. Otherwise, the poles z1, . . . ,zℓ are unconstrained by the approximation
problem (21). In this section, we impose a constraint that some zeros of R(z) are fixed at predefined
locations zf,1, . . . ,zf,ℓf in the complex plane (observing the complex conjugate symmetry) and the other
zeros are unconstrained. The fixed zeros define a real polynomial

Rf(z) :=
ℓf

∏
i=1

(z− zf,i)

and the free zeros define a polynomial θ(z) of degree ℓ− ℓf. With this notation, the fixed zeros constraint is

R(z) = θ(z)Rf(z),

or in matrix notation
R = θSnθ

(Rf), where nθ = ℓ− ℓf+1.

The resulting Hankel low-rank approximation problem with fixed poles is of the form (19), with the Ψ
matrix being the polynomial multiplication matrix Snθ

(Rf), see (7).

Numerical example

As a numerical example of identification with fixed poles, consider the problem of trend estimation. The
data y is modeled as the sum of a ramp function and a trajectory of an autonomous linear time-invariant
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system. The full model is an autonomous linear time-invariant system with a double pole at one. Therefore,
it has ℓ−2 free poles and two poles fixed at one.

The true time series ȳ defined in the previous section is generated as a sum of a ramp function and a
trajectory of a 4th order autonomous linear time-invariant system. Using this prior knowledge, we obtain
a better approximation of the true data generating system. The identified model is validated by predicting
the validation data yv. Figure 2, right, shows the result obtained (dashed-dotted line). Although the fixed
double pole at one leads to worse fit of the identification data, it improves the fit of the validation data.

7.3 Autonomous system identification with missing data

A block of ℓ or more missing values splits the data into two independent datasets. With N −1 such blocks
of missing data the problem is equivalent to identification from N datasets. Note, however, that in general
the datasets have different number of samples T1, . . . ,TN . System identification from multiple datasets with
different lengths is a mosaic-Hankel low-rank approximation problem with

m = ℓ and n =
[
T1 − ℓ · · · TN − ℓ

]
.

In the more general case of arbitrary distributed missing values, the identification problem is posed as a
weighted Hankel low-rank approximation problem. Let Im be the indices of the missing samples and I m

be the indices of the given samples. The appropriate weight vector is:

w ∈ R
T , with w(Im) = 0 and w(I m) = 1.

Numerical example

Standard identification methods require at least ℓ+ 1 sequential data point of a trajectory of the system.
In the example, shown in Figure 3, data points are periodically missing with a period ℓ+1. Although the
classical methods are not applicable in this case, methods for solving (SLRA) can be used by assigning
zero weights in the cost function to the missing data elements. The noisy trajectory with missing data point
(dotted black), the optimal approximation, obtained by slra (dashed blue), and the true trajectory (solid
red) are plotted in Figure 3.
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Figure 3: System identification with periodically missing data (crosses on the x-axis). Noisy trajectory
(dotted black), optimal approximation (dashed blue), and true trajectory (solid red).

15



7.4 Identification of an input/output system

The examples presented so far illustrate different aspects of the scalar autonomous linear time-invariant
system identification problem (example E3 from the introduction). Next, we consider the general case of
a dynamical system with inputs (example E4). In (6), m := q− p variables (elements of w) are free, i.e.,
unrestricted by the model. In system theory, the free variables are called inputs and the remaining variables
outputs of the system. Although the separation of the variables into inputs and outputs is, in general, not
unique, the number of inputs is invariant of the input/output partition. The pair of integers (ℓ,m)—lag ℓ of
the equation (6) and number of inputs m—describes the complexity of the system.

Given a time series
w =

(
w(1), . . . ,w(T )

)
∈ (Rq)T

and a complexity, specified by a pair of natural numbers (m, ℓ),

minimize over ŵ ∈ (Rq)T and
[
R0 R1 · · · Rℓ

]
6= 0 ‖w− ŵ‖2

2

subject to R0ŵ(t)+R1ŵ(t +1)+ · · ·+Rℓŵ(t + ℓ) = 0, for t = 1, . . . ,T − ℓ.
(22)

In the special case of m = 0, (22) reduces to the output-only identification problem (20) and in the special
case of ℓ= 0, (22) reduces to static modeling (example E1). This seamless transition from one problem to
another is an important advantage of the adopted framework.

Although, from the application point of view, the input-output identification problem is a significant
generalization of the output-only identification problem, from the numerical linear algebra point of view, it
is a trivial one. The general identification problem (22) is also a Hankel low-rank approximation problem:

minimize over ŵ ∈ (Rq)T ‖w− ŵ‖2
2

subject to rank
(
Hℓ+1,T−ℓ(ŵ)

)
≤ ℓ.

(23)

More specifically, problem (23) is a special case of (SLRA) with

m =
[
ℓ+1 · · · ℓ+1

]
︸ ︷︷ ︸

q

and n = T − ℓ.

Numerical example

A linear time-invariant system, with an input/output partition of the variables w = (u,y), can be represented
by the difference equation

P0y(t)+P1y(t +1)+ · · ·+Pℓy(t + ℓ) = Q0u(t)+Q1u(t +1)+ · · ·+Qℓu(t + ℓ). (24)

We consider a simulation example with the second order single-input single-output system with parameters

Q̄ =
[
1 −1 1

]
and P̄ =

[
0.81 −1.456 1

]
.

The identification data w = (u,y) is a random trajectory of the system, perturbed by additive noise (errors-
in-variables setup) with noise standard deviation 0.05.

The true data generating system and the identified system by the slramethod are compared by plotting
their step responses. Figure 4 shows the true system’s step response s̄(t) (solid line) and the identified
system’s step response ŝ(t) (dashed line).
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Figure 4: Identification and data-drive simulation exmples. True s̄(t) (red solid) and identified ŝ(t) (blue
dashed) model step responses.

7.5 Data-driven simulation

The numerical example in the previous section shows model based simulation: first, a model is identified
from data and, second, the model’s step response is simulated. In this section, we show how an arbitrary
response of an unknown system can be obtained directly from (noisy) data of the system without identifying
the model in an intermediate step.

Consider two input/output trajectories

w′ =
[

u′

y′

]
∈ (Rq)T ′

and w′′ =
[

u′′

y′′

]
∈ (Rq)T ′′

of an unknown linear time-invariant system B with lag ℓ. The trajectory w′ specifies implicitly the system.
The trajectory w′′ is specified by its first ℓ samples (initial conditions)

w′′
p =

(
w′′(1), . . . ,w′′(ℓ)

)

and its input component
u′′f =

(
u′′(ℓ+1), . . . ,u′′(T ′′)

)
.

The problem is to find the output of B

y′′f =
(
y′′(ℓ+1), . . . ,y′′(T ′′)

)
,

which corresponds to the given initial conditions and input, directly from the data without identifying the
system B.

This problem is a mosaic-Hankel structured low-rank approximation problem

minimize over ŵ′ and y′′f ‖w′− ŵ′‖2
2

subject to rank
([

Hℓ+1(ŵ
′) Hℓ+1(w

′′)
])

≤ 2ℓ+1,
(25)

with exact data, the initial conditions w′′
p and the input u′′f , and with missing data, the to-be-simulated

response y′′f .
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Numerical examples

We use the same simulation setup as in Section 7.4. The to-be-simulated trajectory w′′ is the step response s

of the system, i.e., the response under zero initial conditions and step input:

u′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,1, . . . ,1︸ ︷︷ ︸
step input

), and y′′ =
(

0, . . . ,0︸ ︷︷ ︸
ℓ

,s(1),s(2), . . .,s(T ′′− ℓ)︸ ︷︷ ︸
step response

)
.

The step response ŝ, estimated by solving problem (25) is equal (up to numerical errors) to the one obtained
by the model-based simulation procedure in Section 7.4.

7.6 Approximate greatest common divisor of N polynomials

Our last example is about polynomials computations with inexact coefficients. Consider N polynomials
p1, . . . , pN of degrees n1, . . . ,nN , respectively. Similarly to the two polynomials case in example E5, the
degree of the greatest common divisor of p1, . . . , pN can be expressed as

degree
(
gcd(p1, . . . , pN)

)
= n1 + · · ·+nN − rank

(
S0(p1, . . . , pN)

)

where

Sℓ(p1, . . . , pN) :=




Sn1−ℓ(p2) · · · Sn1−ℓ(pN)
Sn2−ℓ(p1)

. . .

SnN−ℓ(p1)


 . (26)

is the generalized (multipolynomial) Sylvester sub-resultant matrix [ASÅ04, KYZ06] for p1, . . . , pN with
parameter ℓ. The structured matrix Sℓ(p1, . . . , pN) is a mosaic-Hankel-like matrix ΦHm,n with specification
of exact (zero) elements. For example, with N = 3 and n1 = n2 = n3 = 2,

Φ =

[
I4

02 I2

]
and H[2 6 ],6 =

[[
S1(p2) S1(p3)

]

S6(p1)

]
.

The approximate common divisor problem for N polynomials is defined as follows:

minimize over p̂1 ∈ R
n1+1, . . . , p̂N ∈ R

nN+1

∥∥∥∥∥∥∥




p1

...
pN


−




p̂1

...
p̂N




∥∥∥∥∥∥∥

2

2

subject to degree
(
gcd(p̂1, . . . , p̂N)

)
≥ ℓ

and is equivalent to the low-rank approximation problem with rank constraint

rank
(
Sℓ(p1, . . . , pN)

)
≤ n1 + · · ·+nN −Nℓ−1.

The motivation for this problem formulation is to modify the given polynomial coefficients as little as
possible in order to ensure that the modified polynomials have a common factor of a desired order. Then,
the exact common factor of the modified polynomials is by definition the approximate common factor for
the original polynomials.
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Numerical examples

Consider the polynomials

p1(z) = 5−6z+ z2 = (1− z)(5− z),
p2(z) = 5.72−6.3z+ z2 = (1.1− z)(5.2− z),
p3(z) = 6.48−6.6z+ z2 = (1.2− z)(5.4− z).

In the example, we are looking for an approximate common divisor of degree 1.
The computed approximation polynomials

p̂1(z) = 4.9989−6.0057z+0.9705z2,
p̂2(z) = 5.7200−6.2999z+1.0004z2,
p̂3(z) = 6.4811−6.5944z+1.0289z2

by the slra method have a common root 0.1924.

8 Conclusions

As diverse applications as linear time-invariant system identification, algebraic curve fitting, approximate
common divisor computation, and recommender systems can be posed and solved as a single core compu-
tational problem: low-rank matrix approximation. This fact allows reuse of ideas, algorithms, and software
from one application domain into another. In general, the low-rank approximation problem is nonconvex.
We presented a method based on the variable projection principle, which is applicable to general linearly
structured matrices and weighted 2-norm approximation criteria. In addition, the method can take into ac-
count fixed and missing data values. In the case of mosaic-Hankel-like matrices, the developed algorithm
for low-rank approximation has linear computational complexity in the number of data points. This makes
it efficient for data modeling by low-complexity linear time-invariant dynamical models.
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A Algorithmic details

A.1 Analytical solution of the inner minimization problem

In this section, we use the following additional notation.

• AI ,J is the submatrix of A with rows in I and columns in J (the row/column index can be replaced
by the symbol “:”, in which case all rows/columns are selected).

• nm is the number and Im := { i | wi = 0} is the set of missing values.

• nf is the number and If := { i | wi =+∞} is the set of fixed values.

• Imf := Im ∪If is the set of missing and fixed values, and I := {1, . . . ,np}\I .

• Wr := diag(wI mf
) is the part of the weight matrix related to given non-fixed data.

• A+ is the pseudoinverse of A and A⊥ is a matrix which rows form a basis for the left null space of A.

Consider the inner minimization problem (15). Using the change of variables

∆pr := pI mf
− p̂I mf

and (16), we have

RS (p̂) = 0 ⇐⇒
[
G:,I mf

G:,If G:,Im

]



pI mf
−∆pr

pIf

p̂m


= 0.

Therefore, (15) is equivalent to the generalized least norm problem [Pai79]

M(R) := min
∆pr, p̂m

‖∆pr‖2
Wr

subject to
[
G:,I mf

G:,Im

][ ∆pr
−p̂m

]
= G:,I m

pI m
.

(27)

The following theorem is adapted from [MU13] and gives the solution to (27).
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Theorem 2. Under the following assumptions:

1. G:,Im is full column rank,

2. 1 ≤ (m− r)n−nm ≤ np −nf −nm, and

3. Gr := G⊥
:,Im

G:,I mf
is full row rank,

problem (27) has a unique minimum,

M(R) = ∆p⊤r Wr∆pr = h⊤
(
GrW

−1
r G⊤

r

)−1
h, where h := G⊥

:,Im
G:,I m

pI m
. (28)

The minimum is attained by

p̂m =−G+
:,Im

(
G:,I m

pI m
−G:,I mf

∆pr
)

and ∆pr =W−1
r G⊤

r
(
GrW

−1
r G⊤

r
)−1

h.

A.2 Fast cost function evaluation

“. . . in good design, there must be an underlying correspondence between the structure of the
problem and the structure of the solution.” R. Gabriel

structure of the (SLRA) problem
S and w

↔ structure of the cost function
Γ (see (29))

l l
(in the mosaic-Hankel case)

represented by m,n, w
↔ (in the mosaic-Hankel case)

represented by Vk (see (30))

In [UM14] it is shown that for mosaic-Hankel structure (10) and positive weights (no missing values),
the cost function M (and its derivatives) can be evaluated efficiently. The algorithm is implemented in a
C++ software package [MU14].

Let γi := w−1
i , for i = 1, . . . ,np, where (+∞)−1 := 0. By (28) the cost function is equal to

M(R) = vec⊤
(
RS (p)

)
Γ−1(R)vec

(
RS (p)

)
,

where
Γ(R) := G(R)diag(γ)G⊤(R) ∈ R

(m−r)n×(m−r)n. (29)

The evaluation of M(R), for a given R, requires solution of the system of linear equations

Γ(R)u = vec
(
RS (p)

)
.

For structure of the form ΦHm,n, the matrix Γ(R) is block-diagonal

Γ(R) = diag
(
Γ(1)(RΦ), . . . ,Γ(N)(RΦ)

)
,

with Γ(k)(R) being the matrix Γ for the structure Hm,nk
and the corresponding subvector of w.
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The efficiency of the algorithm is based on the fact that Γ is block banded with bandwidth s=max(m1, . . . ,mN).
In addition, for uniform weights, Γ is block-diagonal with block-Toeplitz elements

Γ(R) :=




Γ1,1 · · · Γ1,s 0
...

. . .
. . .

. . .

Γs,1
. . .

. . .
. . . Γn−s+1,n

. . .
. . .

. . .
...

0 Γn,n−s+1 · · · Γn,n




, where Γi, j = RVi, jR
⊤ ∈ R

(m−r)×(m−r).

The matrices Vi, j ∈ R
m×m depend only on the structure specification and the weights, so that they can be

precomputed outside the optimization loop. For mosaic-Hankel structured problems Hm,n, where m =[
m1 . . . mq

]
, the matrices Vi, j, i ≥ j, are

Vi, j =

{
(Um)

j−i if w = 1 (uniform weights) and

diag(γi, j)(Um)
j−i otherwise ,

(30)

where γi, j ∈ R
m is a subvector of γ , and

Um := diag(Um1, . . . ,Umq
), with Um :=




0 1 0 0
...

. . .
. . . 0

...
. . . 1

0 . . . . . . 0



.

For general weights, the cost function evaluation has complexity O(smn) and for uniform weights the
complexity is O(mn), assuming that an efficient method (e.g., the Schur-type algorithms [KS95]) is used
for the Cholesky factorization of the block-Toeplitz matrices Γ(i)(RΦ).
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