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Abstract

Subsampling of a linear periodically time-varying system results in a collection of linear time-invariant systems with common poles. This
key fact, known as “lifting”, is used in a two step realization method. The first step is the realization of the time-invariant dynamics
(the lifted system). Computationally, this step is a rank-revealing factorization of a block-Hankel matrix. The second step derives a state
space representation of the periodic time-varying system. It is shown that no extra computations are required in the second step. The
computational complexity of the overall method is therefore equal to the complexity for the realization of the lifted system. A modification
of the realization method is proposed, which makes the complexity independent of the parameter variation period. Replacing the rank-
revealing factorization in the realization algorithm by structured low-rank approximation yields a maximum likelihood identification
method. Existing methods for structured low-rank approximation are used to identify efficiently linear periodically time-varying system.
These methods can deal with missing data.

Key words: linear periodically time-varying systems, lifting, realization, Kung’s algorithm, Hankel low-rank approximation, maximum
likelihood estimation.

1 Introduction

1.1 Overview of the literature

Periodically time-varying systems, i.e., systems with periodic
coefficients, appear in many applications and have been stud-
ied from both theoretical as well as practical perspectives. The
source of the time-variation can be rotating parts in mechan-
ical systems Bittanti and Colaneri (2008); hearth beat and/or
breathing in biomedical applications Ionescu et al. (2010);
Sanchez et al. (2013); and seasonality in econometrics Ghy-
sels (1996); Osborn (2001). Linear periodically time-varying
systems also appear when a nonlinear system is linearized
about a periodic trajectory Sracic and Allen (2011).

In this paper, we restrict our attention to the subclass of
discrete-time autonomous linear periodically time-varying
systems. A specific application of autonomous linear peri-
odically time-varying system identification in mechanical
engineering is vibration analysis, also known as operational
modal analysis, see, e.g., Allen and Ginsberg (2006); Allen
et al. (2011). The problems considered in the paper are
exact (Section 2, Problem 1) and approximate (Section 5,
Problem 2) identification. The exact identification of an au-
tonomous linear periodically time-varying system is equiv-
alent to realization of an input-output linear periodically
time-varying system from impulse response measurement.
The approximate identification problem yields a maximum-
likelihood estimator in the output error model.

Input-output identification methods for linear periodically
time-varying systems are proposed in Hench (1995); Verhae-
gen and Yu (1995); Liu (1997); Mehr and Chen (2002); Yin

and Mehr (2010); Xu et al. (2012). Less attention is devoted
to the autonomous identification problem. A method for ex-
act identification, based on polynomial algebra, is proposed
in Kuijper (1999) and a frequency domain method for output-
only identification is developed in Allen (2009); Allen and
Ginsberg (2006). Both the method of Kuijper (1999); Kuijper
and Willems (1997) and the method of Allen (2009) are based
on a lifting approach, i.e., the time-varying system is repre-
sented equivalently as a multivariable time-invariant system.
The number of outputs p′ of the lifted system is equal to the
number of outputs p of the original periodic system times the
number of samples P in a period of the parameter variation.

1.2 Aim and contribution of the paper

Most methods proposed in the literature consist of the fol-
lowing main steps (see also Figure 1):

(1) preprocessing — lifting of the data,
(2) main computation — derivation of a linear time-

invariant model for the lifted data,
(3) postprocessing — derivation of an equivalent linear pe-

riodically time-varying model.

The key in solving the linear periodic time-varying realiza-
tion and identification problem is the lifting operation, which
converts the time-varying dynamics into time-invariant dy-
namics of a system with p′ = pP outputs. From a computa-
tional point of view, the realization of the lifted dynamics is a
rank-revealing factorization of a block-Hankel matrix. A nu-
merically stable way of doing this operation is the singular
value decomposition of a p′L× (T −L) matrix, where L is an
upper bound on the order, p is the number of outputs, and T
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Fig. 1. Main steps of the linear periodic time-varying system realization/identification methods. (LTI — linear time-invariant, LPTV —
linear periodically time-varying)

is the number of time samples. Its computational complexity
is O(L2p2PT ) operations.

Once the linear time-invariant dynamics of the lifted model
is obtained, it is transformed back to a linear periodically
time-varying model in a postprocessing step. In the subspace
identification literature, see, e.g., Hench (1995), this opera-
tion is done indirectly by computing shifted versions of the
state sequence of the model and solving linear systems of
equations for the model parameters. This method, refered to
as the “indirect method” is Algorithm 1 in the paper, has
computational complexity O(L2p2P2T ).

The main shortcoming of the indirect method is that it re-
quires extra computations for the derivation of the shifted
state sequences and the solution of the systems of equations
for the model parameters. This increases the computational
complexity by a factor of P compared with the complexity of
the realization of the lifted system. We show in Section 4 that
the linear periodically time-varying model’s parameters can
be obtained directly from the lifted model’s parameters with-
out extra computations. The resulting method, refered to as
the “direct method” is Algorithm 2 in the paper. Its computa-
tional complexity is O(L2p2PT ). A further improvement of
the indirect method (Algorithm 3) operates on a L×p(T −L)
Hankel matrix and requires O(L2pT ) operations.

The maximum-likelihood estimation problem is considered
in Section 5. Using the results relating the realization problem
to rank revealing factorization of a Hankel matrix constructed
from the data, we show that the maximum-likelihood identi-
fication problem is equivalent to Hankel structured low-rank
approximation. Subsequently, we use existing efficient local
optimization algorithms Usevich and Markovsky (2013) for
solving the problem.

The motivation for reformulating the maximum likelihood
identification problem as structured low-rank approximation
is the possibility to use readily available solution methods.
Structured-low-rank approximation is an active area of re-
search that offers a variety of solution methods, e.g., con-
vex relaxation methods, based on the nuclear norm heuris-
tic. There are also methods for solving problems with miss-
ing data Markovsky and Usevich (2013). Identification with
missing data is a challenging problem, however, using the
link between system identification and low-rank approxima-
tion, identification of autonomous periodically time-varying
systems with missing data becomes merely an application of
existing methods.

The main contributions of the paper are summarized next.

(1) Reduction of the computational cost of linear periodi-
cally time-varying system realization from O(L2p2P2T )
to O(L2pT ).

(2) Maximum-likelihood method for linear periodically
time-varying system identification with computational
complexity per iteration that is linear in the number
of data points. In addition, the maximum-likelihood
method can deal with missing data.

2 Preliminaries, problem formulation, and notation

An autonomous discrete-time linear time-varying system B

can be represented by a state space model

B = B(A,C) := {y | x(t + 1) = A(t)x(t),y(t) =C(t)x(t),

for all t, with x(1) = xini ∈R
n }, (1)

where A(t)∈R
n×n and C(t)∈R

p×n are the model coefficient
functions — A is the state transition matrix and C is the output
matrix. A state space representation B(A,C) of the model B

is not unique due to a change of basis, i.e.,

B = B(A,C) = B(Â,Ĉ),

where, for all t

Â(t) =V (t + 1)A(t)V−1(t) and Ĉ(t) =C(t)V−1(t), (2)

with a nonsingular matrix V (t) ∈ R
n×n.

In this paper, we consider the subclass of autonomous linear
time-varying systems, for which the coefficient functions A
and C are periodic with period P

A(t) = A(t + kP) and C(t) =C(t + kP), for all t and k.

Such systems are called linear periodically time-varying and
are parameterized in state space by two matrix sequences

(
A1, . . . ,AP

)
and

(
C1, . . . ,CP

)
,

such that

A(t) = A(t−1) mod P+1 and C(t) =C(t−1) mod P+1.

The nonuniqueness of the coefficients functions (A,C) of a
periodic time-varying system’s state space representation is
given by (2). In order to preserve the periodicity of the co-
efficient functions, however, we restrict our attention to state
transformations V to periodic, i.e., V (t) =V(t−1) mod P+1, for
some

(
V1, . . . ,VP

)
, where Vi ∈ R

n×n and det(Vi) 6= 0.

The class of autonomous linear periodically time-varying sys-
tems with order at most n and period P is denoted by L0,n,P.
(The zero subscript index stands for zero inputs.)
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Problem 1 (Realization of an autonomous linear periodi-
cally time-varying system) Given a trajectory

y =
(
y(1), . . . ,y(T )

)
,

of an autonomous linear periodically time-varying system B,
the period P of B, and the state dimension n of B, find a

state space representation B(Â,Ĉ) of the system B, i.e.,

find B̂ ∈ L0,n,P such that y ∈ B̂.

The assumption that the order n of B is given can be relaxed,
see Note 2.

Notation

• B(A,C), defined in (1), is a linear autonomous periodically
time-varying system with state space parameters (A,C).
When A and C are constant matrices (rather than matrix
sequences) the system is linear time-invariant.

• For a vector time series y =
(
y(1), . . . ,y(T )

)
, y(t) ∈R

p we
define the pL× (T −L+ 1) block-Hankel matrix with L,
1 ≤ L ≤ T block-rows

HL(y) :=




y(1) y(2) y(3) · · · y(T −L+ 1)

y(2) y(3) . .
.

y(T −L+ 2)

y(3) . .
. ...

...

y(L) y(L+ 1) · · · y(T )




.

• The extended observability matrix of a linear periodically
time-varying system with a state space representation
B(A,C) is

OL(A,C) :=




C(1)

C(2)A(1)

C(3)A(2)A(1)
...

C(L)A(L− 1)A(L− 2) · · ·A(1)




.

• The “lifting” operator

liftP(y) =
(
y′(1), . . . ,y′(T ′)

)

=







y(1)
...

y(P)


 ,




y(P+ 1)
...

y(2P)


 , . . . ,




y((T ′− 1)P)
...

y(T ′P)





 ,

(3)

with T ′ :=
⌊

T
P

⌋
, (⌊a⌋ is the largest integer smaller than

a) sub-samples the p-dimensional vector sequence y at a
period P starting from the 1st, 2nd, . . . , Pth sample and
stacks the resulting P sequences in an augmented p′ := pP-
dimensional vector sequence y′—the lifted sequence. Ap-
plied on a system B, the operator liftP acts on all trajec-
tories of the system.

3 Realization of the lifted system

As shown in (Bittanti and Colaneri, 2008, Section 6.2.3), the
lifted system liftP

(
B(A,C)

)
admits an nth order linear time-

invariant representation

B(Φ̂,Ψ̂) = liftP
(
B(A,C)

)
, with Φ̂ ∈ R

n×n and Ψ̂ ∈ R
p
′×n.

The problem of obtaining the parameters Φ̂ and Ψ̂ from the
lifted trajectory y′ of the periodically time-varying system is
a classical linear time-invariant realization problem. We use
Kung’s method Kung (1978), which is based on the Hankel
matrix HL(y

′). The number of block-rows L must be such
that both the number of rows and the number of columns
of HL(y

′) are greater than n.

Note 1 (On the choice of the parameter L) From the point
of view of minimizing the computational cost, L is chosen as
small as possible, i.e.,

L = Lmin :=

⌈
n+ 1

p′

⌉
,

(⌈a⌉ is the smallest integer larger than a). In the presence of
noise, however, the accuracy of Kung’s algorithm is improved
by increasing L. In Kumaresan and Tufts (1982), it is shown
that best approximation is achieved by choosing L so that the
Hankel matrix HL(y

′) is close to square, i.e.,

L = Lsq :=

⌈
T ′+ 1

p′+ 1

⌉
.

Let

HL(y
′) = OC , where

O ∈R
Lp

′×n

C ∈ R
n×(T ′−L)

(4)

be a rank revealing factorization of the block-Hankel matrix
HL(y

′). Such a factorization can be obtained, for example,
from the singular value decomposition

HL(y
′) =USV

′⊤ =U
√

S︸ ︷︷ ︸
O

√
SV

′⊤
︸ ︷︷ ︸

C

, (5)

where √
S := diag(

√
s1, . . . ,

√
sn).

The parameter Ψ̂ is set equal to the first p′ rows of the ma-

trix O and Φ̂ is computed from the shift equation

Φ̂C = C , (6)

where C is C with the last column removed and C is C with
the first column removed.

Note 2 (Unknown order n) If the order of the linear peri-
odically time-varying system is not given a priori, it can be
determined from the rank of HL

(
liftP(y)

)
.

Note 3 (Inexact data and model reduction) Truncation of
the singular value decomposition (5) is a method to perform
(unstructured) low-rank approximation, which has the system
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theoretic interpretation of identifying reduced order model.
In the case of perturbation of exact data by noise, truncation
of the singular value decomposition to the order of the true
system has the effect of signal de-noising.

The C factor of the factorization (4) has the form

C =
[
x̂ini Φ̂x̂ini · · · Φ̂T ′−L+1x̂ini

]

=
[
x̂′(1) x̂′(2) · · · x̂′(T ′−L)

]

=:
[
X̂ ′

1 x̂′(T ′−L)
]
,

(7)

where x̂ini is the initial condition and x̂′(1), x̂′(2), . . . is the

state sequence of the linear time-invariant model B(Φ̂,Ψ̂).
The initial condition x̂ini can be obtained directly from C

or it can be re-estimated back from the data by solving the
overdetermined system of linear equations

y′ = OT ′(Φ̂,Ψ̂)x̂ini, (8)

and defining

x̂′(t ′) := Φt′−1x̂ini, for t ′ = 1,2, . . .

In the numerical examples of Section 6, we set the initial
condition x̂ini equal to the first column of C .

Note 4 (Inexact data and model reduction) In the case of
noisy data or a true system that is not in the model class
(see Note 3), (8) generically has no exact solution. Then, the
least-squares approximate solution can be used as a means
of estimating the initial condition from (8).

4 Computation of the linear time-varying system’s pa-
rameters

4.1 Indirect method

Define the matrices

X̂ ′
i :=Vi

[
x(i) x(i+P) x(i+ 2P) · · · x

(
i+(T ′−L− 1)P

)]
,

for i = 1, . . . ,P,

constructed from the state sequence
(
x(1),x(2), . . .

)
in a state-

space basis, defined by Vi. The derivation of X̂ ′
1 is a by-product

of the realization of the lifted system B(Φ̂,Ψ̂), see (7).

The shifted state sequences X̂ ′
2, . . . , X̂

′
P can also be computed

from (4) by using the i-steps shifting data
(
y(i), . . . ,y(T )

)

instead of
(
y(1), . . . ,y(T )

)
. Note that the computation of X̂ ′

i
through (4) results in general in a basis Vi that is different
from V j, for i 6= j.

The model parameters (Â,Ĉ) are computed from the equa-
tions [

X̂ ′
i+1

Yi

]
=

[
Âi

Ĉi

]
X̂ ′

i , for i = 1, . . . ,P, (9)

where

Yi :=
[
y(i) y(i+P) y(i+ 2P) · · · y

(
i+(T ′−L− 1)P

]
.

The matrix X̂ ′
P+1 is obtained from X̂ ′

1 by pre-multiplication
with Φ (i.e., shift with P steps forward)

X̂ ′
P+1 := ΦX̂ ′

1.

This guarantees that X̂ ′
P+1 is in the same basis as X̂ ′

1, which
implies that V1 =VP+1.

Algorithm 1 summarizes the method for realization of linear
periodically time-varying systems, described above.

Algorithm 1 Indirect algorithm for linear periodically time-
varying system realization. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0

(2) realization of the lifted system: (y′,n) 7→ B
(
Φ̂,Ψ̂)

((4) and (6)) O
(
(Lp′)2T ′)

(3) state estimation: compute the state sequence matrices

X̂ ′
1, . . . , X̂

′
P and define X̂ ′

P+1 := Φ̂X̂ ′
1 O

(
P(Lp′)2T ′)

(4) parameter estimation: solve the systems (9)
O
(
P(n+p′)2

)

Output: Parameters Â and Ĉ of the linear periodically time-
varying system. overall cost: O(L2p2P2T )

4.2 Direct method

The most expensive step of Algorithm 1 is the computation

of the shifted state sequences X̂ ′
i , which requires P factoriza-

tions of block-Hankel matrices. As proven in the following

proposition, the parameters (Â,Ĉ) of the linear periodically
time-varying system can be obtained directly from the pa-

rameters (Φ̂,Ψ̂) of the linear time-invariant system, without
extra computation.

Proposition 1 The linear periodically time-varying system

B(Â,Ĉ), with parameters

Â1 := In, . . . , ÂP−1 := In, ÂP := Φ̂ (10)

Ψ̂ =: col(Ĉ1, . . . ,ĈP), where Ĉi ∈ R
p×n, (11)

is equivalent to the linear time-invariant system B(Φ̂,Ψ̂),

i.e., B(Φ̂,Ψ̂) = liftP
(
B(Â,Ĉ)

)
.

PROOF. We have to show that a response y of the system

liftP
(
B(Â,Ĉ)

)
is also a response of the linear time-invariant

system B(Φ̂,Ψ̂). Let xini be the initial condition of the linear

periodically time-varying system B(Â,Ĉ) that generates y.
We have

y(1) = Ĉ1xini, . . . ,y(P) = ĈPxini

y(P+ 1) = Ĉ1Φ̂xini, . . . ,y(2P) = ĈPΦ̂xini

...

y(t ′P+ 1) = Ĉ1Φ̂t′xini, . . . ,y(2P) = ĈPΦ̂t′xini.
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On the other hand, the response of the linear time-invariant

system B(Φ̂,Ψ̂) to the initial condition xini is

y′(t ′) = Ψ̂Φ̂t′xini =




Ĉ1

...

ĈP


Φ̂t′xini, for t ′ = 0, . . . ,T ′−1.

(12)

It follows that liftP(y) = y′.

Algorithm 2 summarizes the direct method for realization of
linear periodically time-varying systems.

Algorithm 2 Direct algorithm for linear periodically time-
varying system realization. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0

(2) modeling: (y′,n) 7→ B
(
Φ̂,Ψ̂)

(e.g., Kung’s algorithm: (4) and (6)) O
(
(Lp′)2T ′)

(3) define Â and Ĉ via (11) 0

Output: Parameters Â and Ĉ of the linear periodically time-
varying system. overall cost: O(L2p2PT )

4.3 Modification of the direct method

Consider the “transposed” lifted sequence

y′⊤ :=
(
y′⊤(1), . . . ,y′⊤(T ′)

)
, y′⊤(t) ∈ R

1×p
′

and the associated L×p′(T ′−L+ 1) block-Hankel matrix

HL(y
′⊤) :=




y′⊤(1) y′⊤(2) y′⊤(3) · · · y′⊤(T ′−L+ 1)

y′⊤(2) y′⊤(3) . .
.

y′⊤(T ′−L+ 2)

y′⊤(3) . .
. ...

...

y′⊤(L) y′⊤(L+ 1) · · · y′⊤(T ′)




.

(13)
The parameter L satisfies the constraints L > n and p(T ′ −
L− 1)> n. As before, for best approximation accuracy, L is

selected to make HL(y
′⊤) as square as possible. For minimal

computational cost, L is chosen as small as possible, which
in the case of (13) is n+ 1.

Since y is a trajectory of the linear periodically time-varying
system B(A,C), we have that

HL(y
′⊤) = OL(Φ̂

⊤,x⊤ini) ·O⊤
T ′−L+1(Φ̂,Ψ̂).

Therefore, the parameters (Ψ̂,Φ̂) of the lifted system can be
identified from the rank revealing factorization

HL(y
′⊤) =USV⊤ =U

√
S︸ ︷︷ ︸

O

√
SV⊤

︸ ︷︷ ︸
C

. (14)

The initial condition xini is the transposed first row of the O

factor, Ψ is the transposed first n× p block element of C ,

and Φ̂⊤ is a solution of the shift equation

OΦ̂⊤ = O, (15)

where O is O with the last row removed and O is O with the
first row removed.

The resulting identification method is summarized in Algo-
rithm 3.

Algorithm 3 Modified direct algorithm for linear periodically
time-varying realization. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0

(2) modeling: (y′,n) 7→ B
(
Φ̂,Ψ̂) ((14) and (15))

O
(
L2 p′T ′)

(3) define Â and Ĉ via (11) 0

Output: Parameters Â and Ĉ of the linear periodically time-
varying system. overall cost: O(L2pT )

Note that the computational cost of Algorithm 3 is indepen-
dent of the period P and is linear in the number of out-
puts p. This is a significant improvement over Algorithm 2.
In addition, as discussed in the next section, using the ma-

trix HL(y
′⊤) instead of HL(y) has an important advantage

in the case of optimal approximate identification.

5 Maximum likelihood identification

As commented in Notes 3 and 4, the realization algorithms
1–3 can be used in the case of noisy data as estimation meth-
ods. Using instrumental variables, the basic algorithms pre-
sented can be extended to different noise assumptions, re-
sulting in a class of the non-iterative identification methods,
such as the MOESP methods Verhaegen and Dewilde (1992).
Despite many advantages, however, non-iterative methods do
not estimate optimal (in an a priori specified sense) models.
Therefore, the problem of iteratively refining the model com-
puted by subspace methods using optimization-based meth-
ods is considered next.

5.1 Noise assumptions

Assume that the data is generated in the output error setup:

y = y+ ỹ, where y ∈ B ∈ L0,n,P

and ỹ is zero mean white Gaussian

process with covariance matrix ξ 2Ip.

(16)

The “true value” y of the data y is generated by a linear peri-
odically time-varying system B(Ā,C̄), refered to as the “true
system”. Persistency of excitation of the lifted true trajec-
tory y′

rank
(
HLmin

(y′)
)
= n (17)

is required for identifiability of the data generating system.
Note that (17) imposes implicitly a condition on the initial

state xini as well as on the true system B.
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Our aim is to estimate the true linear periodically time-
varying system B(Ā,C̄) from the data y and the prior
knowledge that the true system belongs to the model class
L0,n,P. The log likelihood function for the data generating
model (16) is

L(B̂, ŷ) =

{
const− 1

2ξ 2 ‖y− ŷ‖2
2 if ŷ ∈ B̂

−∞ otherwise

The maximization of L leads to the following optimization
problem

minimize over ŷ and B̂ ‖y− ŷ‖2

subject to ŷ ∈ B̂ ∈ L0,n,P.
(18)

Problem 2 (Maximum likelihood identification of an au-
tonomous linear periodically time-varying system) Given a
trajectory

y =
(
y(1), . . . ,y(T )

)
,

and a model class L0,n,P, specified by natural numbers n

and P, find a minimizer B̂ of (18)

For noisy data, the identified model has generically order n.
If the data is exact and is generated by a linear periodically
time-varying system of order less than n, a nonminimal exact
model exists. This case is easy to detect (e.g., by checking
the rank of the Hankel matrix Hn+1

(
liftP(ŷ

⊤)) and does not
require optimization.

In Problem 2, no assumption is made about the initial con-
ditions from which the data y is generated. Consequently, in
the optimization problem (18), the initial conditions that gen-
erate ŷ are unconstrained.

5.2 Equivalence to structured total least squares

As shown in (Markovsky et al., 2005, Section III, Theorem 1),

ŷ ∈ B̂ ∈ L0,n,P ⇐⇒ rank
(
Hn+1

(
liftP(ŷ

⊤)
))

≤ n

and
[
0 · · · 0 1

]
6∈ leftker

(
Hn+1

(
liftP(ŷ

⊤)
))

.

so that, the optimization problem (18) is equivalent to a Han-
kel structured total least squares approximation problem.

Proposition 2 (Optimal identification of linear periodically
time-varying system via structured low-rank approximation)
Problem 2 is equivalent to the structured total least squares
approximation problem

minimize over ŷ ‖y− ŷ‖2

subject to rank
(
Hn+1

(
liftP(ŷ

⊤)
))

≤ n

and

[
0 · · · 0 1

]
6∈ leftker

(
Hn+1

(
liftP(ŷ

⊤)
))

.

(SLRA)

For the solution of the structured low-rank approxima-
tion problems (SLRA) we use the method of Usevich and

Markovsky (2013). It is based on the kernel representations
of the rank constraint

rank
(
Hn+1

(
liftP(ŷ

⊤)
))

≤ n ⇐⇒
there is an R1×(n+1), such that

RHn+1

(
liftP(ŷ

⊤)
)
= 0 and Rn+1 = 1.

In the method of Usevich and Markovsky (2013), the variable
projection approach is used Golub and Pereyra (2003), i.e.,
the optimization variable ŷ is eliminated for a fixed R by
analytically minimizing over it (a linear least norm problem).
The resulting nonlinear least squares problem for R is solved
by local optimization methods.

The solution ŷ of the structured low-rank approximation is
by construction an exact trajectory of a system in the model
class L0,n,P. Therefore, the remaining problem of finding
the model for ŷ (which is the optimal approximate model
for y) is an exact identification problem and can be solved by
Algorithm 3. The structured low-rank approximation meth-
ods of Usevich and Markovsky (2013), however, returns as
a byproduct the kernel matrix R. Therefore, a rank revealing
factorization (14) can be computed without using the com-
putationally more expensive singular value decomposition.

The orthogonal complement R⊥ of R is equal to the left fac-
tor O in (5). Knowledge of O is sufficient to determine the

parameters (Φ̂,Ψ̂) of the lifted system. The resulting optimal
identification method is summarized in Algorithm 3.

Algorithm 4 Algorithm for optimal linear periodically time-
varying system identification. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0
(2) modeling: (y′,n) 7→ (R, ŷ′) (SLRA)

O((n+ 1)3p′T ′) per iteration

(3) Compute O = R⊥ and define Â and Ĉ via (11).
O((n+ 1)3)

Output: Parameters Â and Ĉ of the linear periodically time-
varying system.

overall cost (for K iterations): O((n+ 1)3pT K)

The methods in the paper are implemented in MATLAB and
are available in the ident directory of the structured low-
rank approximation package Markovsky and Usevich (2014):

http://slra.github.io/

The simulation results presented in the following section can
be reproduced with the m-file pltv_all_examples.

5.3 Properties of an estimator

There are no linear or nonlinear transformations involved in
the lifting liftP(y) of the data and the transition from the iden-

tified parameters (Φ̂,Ψ̂) of the lifted system to the parameters

(Â, B̂,Ĉ, D̂) of the equivalent linear periodically time-varying
system (see, Proposition 1). Therefore, the properties of an
estimator of the linear periodically time-varying system are
inherited from the corresponding properties of the estimator,
used for the identification of the lifted system.
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In particular, the properties of the maximum likelihood esti-
mator in the linear time-invariant case are well known. In the
autonomous case, the problem is extensively studied in the
signal processing literature, where it is better known as "sum-
of-damped exponentials estimation" and "linear prediction".
In this case, the maximum likelihood estimator is, in general,
not consistent. Consistency can be recovered in the special
case of marginally stable system (undamped exponentials),
see Favaro and Picci (2012), or by using data of repeated
experiments.

Note 5 (Well damped systems) The trajectories of a well
damped autonomous system are quickly decaying. In the pres-
ence of noise, this effectively limits the number of samples
that can be used in an identification experiment. The issue of
the short response with sufficiently high signal-to-noise ra-
tio is intrinsic to the identification problem of well damped
autonomous system and is reflected in the lack of consistent
estimation methods.

6 Numerical examples

The estimation accuracy of Algorithms 1–4, measured by the
prediction error, is compared on a test example from Allen et
al. (2011). In Section 6.2, the computational advantages of
the modified method (Algorithm 3) over the classical method
(Algorithm 1) is illustrated on a marginally stable linear pe-
riodically time-varying system. Identification with missing
data is shown in Section 6.3 and statistical properties of the
maximum likelihood estimator (Algorithm 4) are shown in
Section 6.4. Finally, in Section 6.4 we show a simulation
example of a sixth order system with realistic values of the
model parameters.

6.1 Comparison of the methods on Mathieu oscillator

In all examples, the data is generated according to the output
error model (16). In this subsection, the true data generating
system is Mathieu oscillator—a spring-mass-damper system
with time-periodic spring stiffness. A state-space representa-
tion of Mathieu oscillator is

Āτ =

[
0 1

ā1 ā2,τ

]
, C̄τ =

[
1 0

]
, for τ = 1, . . . ,P,

where, in the particular simulation example shown, the pa-
rameters are

ā1 =−0.9 and ā2,τ =−
(
0.1+ 0.4cos(2πτ/P)

)
.

The periods length is P= 3 and the data y consists of T ′ = 20
periods.

Algorithms 1–4 are applied on the first 3/4 of the simulated
data (identification data) and the obtained models are evalu-
ated in terms of the relative prediction error

e =
‖ȳval − ŷval‖2

‖ȳval −mean(ȳval)‖2

(19)

on the remaining 1/4 of the data (validation data). The re-
ported results are averaged over 100 noise realizations.

The identification experiment is repeated for a range of noise
variances ξ 2. Table 1 shows the averaged relative approxima-
tion errors e for all methods and all noise variances. Among
the subspace methods, best estimation accuracy achieves Al-
gorithm 3. Used as an initial approximation for the maximum-
likelihood algorithm, the estimate of Algorithm 3 is further
improved by Algorithm 4. Figure 2 shows the bias and vari-
ance components of the error.

6.2 Computational efficiency on large examples

In this subsection, we illustrate the computational advantages
of the proposed in the paper Algorithm 3 over the classi-
cal Algorithm 1. In order to apply the methods on an exam-
ple with large number of samples, the true data is generated
by a marginally stable autonomous linear periodically time-
varying system, i.e., the eigenvalues z̄1, . . . , z̄n of Ā1Ā2 . . . ĀP

are chosen on the unit circle (observing the complex conju-
gate symmetry) and all have multiplicity one.

Define

θ̄ (z) := (z− z̄1) · · · (z− z̄n) = zn + θ̄1zn−1 + · · ·+ θ̄n

and let

θ̄⊤ :=
[
θ̄1 · · · θ̄n

]

be the true system’s parameter vector. Similarly, let θ̂ be the
identified system’s parameter vector. The estimation accuracy
is measured by the relative parameter error

e =
‖θ̄ − θ̂‖2

‖θ̄‖2

, (20)

averaged over 100 Monte Carlo repetitions of the identifica-
tion with different noise realizations.

The reported results of computation error and parameter error
are shown for randomly generated examples with T = 10000
data points and period P ranging from 10 to 1000. The average
computational times of the subspace algorithms are shown
in Table 2 and the corresponding approximation errors in
Table 3. Algorithm 3 is several orders of magnitude faster
than Algorithm 1.

6.3 Missing data

The possibility to solve linear periodically time-varying
identification problems with missing data, using the method
of Markovsky and Usevich (2013), is illustrated in this sub-
section on the example of Section 6.1 (Mathieu oscillator).
The signal-to-noise ratio is 10 and a fraction of the output
samples are missing in a random pattern. Algorithm 4 is ap-
plied on the noisy incomplete data and the identified model
is validated by computing the relative estimation error of the
missing samples

e =
‖ȳmissing − ŷmissing‖2

‖ȳmissing −mean(ȳmissing)‖2

. (21)

The results reported in Table 4 are averaged over 100 different
random patterns of the missing values.
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Inf 12 6 4 3 2.4 2

Alg. 1 0.0000 0.0794 0.1625 0.2316 0.3137 0.4071 0.4635

Alg. 2 0.0000 0.0795 0.1600 0.2253 0.3128 0.3981 0.4585

Alg. 3 0.0000 0.0788 0.1550 0.2244 0.3058 0.3845 0.4525

Alg. 4 0.0000 0.0736 0.1473 0.2123 0.2738 0.3577 0.4315

Table 1
Relative prediction errors (19) in identifying Mathieu oscillator with signal-to-noise ratios varying from ∞ (exact data) to 2.
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Fig. 2. Bias |ȳ−mean(ŷ)| and standard deviation std(ŷ) of the modeled responses.

10 100 200 500 750 1000

Alg. 1 3.0684 0.2137 0.1870 0.1744 0.1978 0.2350

Alg. 3 0.2998 0.0021 0.0013 0.0007 0.0007 0.0007

Table 2
Computation times in seconds on problems with T = 10000 samples and period lengths from 10 to 1000.

10 100 200 500 750 1000

Alg. 1 0.0000 0.0999 0.0081 0.0160 0.5425 0.5614

Alg. 3 0.0000 0.0357 0.0027 0.0079 0.6457 0.6067

Table 3
Average relative error (20) on problems with T = 10000 samples and period lengths from 10 to 1000.

5 10 15 20 25 30 35

Alg. 4 0.0958 0.1165 0.1825 0.2826 0.3067 0.4272 0.6550

Table 4
Relative error in estimation of the missing data (21) as a function of the percentage of the missing data.
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6.4 Confidence ellipsoids

In this subsection, we illustrate the consistency of the maxi-
mum likelihood estimator in the case of a marginally stable
system. We also show the corresponding confidence bound
for the estimated parameters. The simulation setup is the same
as in Section 6.2. The reported results are generated by a sys-
tem with period length P = 100 and number of samples T
from 1000 to 5000. For each sample size, the identification
is repeated N = 100 times with independent noise realiza-
tions (but the true system remains fixed). The parameter es-
timation error (20) is shown in Figure 3 as a function of the
sample size T . Figure 4 shows the true parameters θ̄1, θ̄2 (red
cross), the 100 estimates θ̄ k

1 , θ̄
k
2 for T = 5000 (blue dots), and

the 95% confidence ellipsoid, computed from the covariance

matrix of θ̂ , and translated to θ̄ .

200 400 600 800 1000
0

0.002

0.004

0.006

0.008

0.01

T

e

Fig. 3. Estimation error e as a function of the sample size T .
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Fig. 4. 95% confidence ellipsoid.

6.5 Realistic 6th order example

The example presented in this section is a 6th order lowly
damped periodically time-varying system B(A,C), with state
space parameters

A(t) = Alti

(
1+α sin(2π f t)

)

C(t) =Clti

(
1+ γ sin(2π f t)

)
.

The terms α sin(2π f t) and γ sin(2π f t) define the time vari-
ation and have parameters α = 0.1, γ = 0.15, and f = 20.

B(Alti,Clti) is a 6th order autonomous linear time-invariant
system with resonance angular frequencies

ω̄1 = 2π 80rad/s, ω̄2 = 2π 130rad/s, ω̄3 = 2π 200rad/s

the poles’ damping ratios are

ζ1 = 0.015, ζ2 = 0.01, ζ3 = 0.02,

the transmission zeroes are

ωz,1 = 2π 105rad/s, ωz,2 = 2π 165rad/s,

and zeroes’ damping ratios

ζz,1 = 0.001, ζz,2 = 0.0008.

The system is simulated with initial condition

xini =
[
1 0 0 0 0 0

]⊤

over the interval [0,0.6], using MATLAB’s ordinary differen-

tial equation solver ode45 and is sampled with period 10−3.
The identification data are 601 noise perturbed output sam-
ples of the continuous-time trajectory. The noise is zero mean
independent normally distributed with signal-to-noise ratio 4.
The true, noisy, and estimated trajectories are shown in Fig-
ure 5.

7 Conclusions

In this paper, we developed realization and maximum likeli-
hood identification algorithms for autonomous linear period-
ically time-varying systems. The algorithms are based on 1)
lifting of the original time series, 2) modeling of the lifted
time-series by a linear time-invariant system, 3) the transition
from the time-invariant system’s parameters to the ones of
the periodic time-varying system. It is shown that the deriva-
tion of the periodic time-varying system’s state space param-
eters in step 3 can be done without extra computations. Also,
in step 2, the realization problem can be solved by a rank
revealing factorization of a block Hankel matrix with n+ 1
rows, where n is the order to the system. These facts lead
to a new efficient realization algorithm and a maximum like-
lihood identification algorithm, based on Hankel structured
low-rank approximation. Consequently, readily available ro-
bust and efficient optimization methods and software can be
used for identifying periodic linear time-varying systems.
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Fig. 5. True (dashed-dotted), noisy (dotted), and estimated (dashed) trajectories in the example of Section 6.5.
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