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Abstract. We consider the problem of approximating an affinely structured matrix, for exam-
ple a Hankel matrix, by a low-rank matrix with the same structure. This problem occurs in system
identification, signal processing and computer algebra, among others. We impose the low-rank by
modeling the approximation as a product of two factors with reduced dimension. The structure of
the low-rank model is enforced by introducing a regularization term in the objective function. The
proposed local optimization algorithm is able to solve the weighted structured low-rank approxima-
tion problem, as well as to deal with the cases of missing or fixed elements. In contrast to approaches
based on kernel representations (in linear algebraic sense), the proposed algorithm is designed to
address the case of small targeted rank. We compare it to existing approaches on numerical exam-
ples of system identification, approximate greatest common divisor problem, and symmetric tensor
decomposition and demonstrate its consistently good performance.
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1. Introduction. Low-rank approximations are widely used in data mining, ma-
chine learning, and signal processing, as a tool for dimensionality reduction, feature
extraction, and classification. In system identification, signal processing, and com-
puter algebra, in addition to having low rank, the matrices are often structured, e.g.,
they have (block) Hankel, (block) Toeplitz, or (block) Sylvester structure. Motivated
by this fact, in this paper, we consider the problem of approximating a given struc-
tured matrix D ∈ R

m×n by a matrix D̂ ∈ R
m×n with the same structure and with a

pre-specified reduced rank (rank(D̂) ≤ r < min(m,n)).

Existing algorithms solve this problem i) by local optimization, ii) by using relax-
ations, or iii) using heuristics, such as the widely used Cadzow method [4]. Relaxation
methods include subspace-based methods [32, 15] and, more recently, nuclear norm
based methods [17, 16, 9]. Local optimization algorithms use kernel or input/output
(I/O) (also known as the structured total least squares (STLS) problem) representa-
tions of the rank constraint, as described in Table 1.1.

Table 1.1

Existing local optimization approaches for the structured low-rank approximation problem

Representation Summary References

Kernel RD̂ = 0, R ∈ R
(m−r)×m e.g., [18, 19, 30, 2]

I/O
[
X I

]
D̂ = 0, X ∈ R

(m−r)×r e.g., [7, 22, 26, 28, 24]

Image D̂ = PL, P ∈ R
m×r, L ∈ R

r×n [5]
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In this paper, we consider an underrepresented point of view, namely the image
representation of the rank constraint:

rank(D̂) ≤ r ⇐⇒ D̂ = PL for some P ∈ R
m×r, L ∈ R

r×n.

The image representation is widely used in the machine learning community, however,
there the matrices being approximated are unstructured. Imposing structure with the
image representation is a nontrivial problem [5]. As shown in this paper, however,
this problem can be resolved using regularization methods and an alternating pro-
jections (block coordinate descent) algorithm. We apply the proposed algorithm on
practically relevant and nontrivial simulation examples from system identification,
computer algebra (finding a common divisor of polynomials with noisy coefficients),
and symmetric tensor decomposition, and demonstrate its consistently good perfor-
mance.

The main competitors of the proposed local optimization approach are the kernel-
based algorithms, which aim at solving the same problem. In contrast to kernel-based
approaches which are meant for large rank r (small rank reductionm−r), the proposed
approach is more efficient for problems with small r. Moreover, for general affine
structures, existing kernel approaches have restrictions on the possible values of the
reduced rank r. With the new approach we can overcome this limitation.

Another advantage of the proposed algorithm is its simplicity. As we show in
Section 5.1, the proposed algorithm reduces to solving a sequence of least squares
problems with closed form solutions. Last but not least, we are able to solve the
weighted structured low-rank approximation problem, as well as to deal with the
cases of missing elements in the data matrix or fixed elements in the structure. These
“features” have great impact on the applicability of the proposed approach.

The rest of the paper is organized as follows. In Section 2, we discuss structured
matrices and how to obtain the closest structured matrix to a given unstructured
matrix (orthogonal projection on the space of structured matrices). In Section 3, the
main optimization problem and its extensions are presented. Our two reformulations
using regularization are proposed in Section 4. The main algorithm and its properties
are discussed in Section 5. In Section 6, it is compared with existing approaches on
numerical examples. In Section 7, we draw our final conclusions.

2. Structured matrices. Commonly used structures include Hankel, block
Hankel, Toeplitz, block Toeplitz, Sylvester, block Sylvester, banded matrices with
fixed bandwidth, and sparse matrices (with fixed sparsity pattern). These matrices
have a pattern for the position of their elements. For example, in a Hankel matrix
D ∈ R

m×n, the elements along any anti-diagonal are the same, i.e.,

D = Hm(p) =




p1 p2 p3 . . . pn

p2 p3 . .
.

p3 . .
. ...

... . .
.

. .
.

pm pm+1 pm+2 . . . pnp




for some vector p ∈ R
np , np = m + n − 1, called structure parameter vector for the

matrix D. Note that any m×n (unstructured) matrix can be considered as structured
matrix with np = mn structure parameters.

In this section, we first formally introduce the affine structures and then discuss
the orthogonal projection on the space of structured matrices.
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2.1. Affine structures. Formally, affine matrix structures are defined as

(2.1) S(p) = S0 +

np∑

k=1

Skpk,

where S0, S1, . . . , Snp
∈ R

m×n, p ∈ R
np and np ∈ N is the number of structure

parameters. We require np to be minimal in the sense that

image(S) := {S(p) | p ∈ R
np}

cannot be represented with less than np parameters. It is convenient to define the
following matrix

(2.2) S =
[
vec(S1) · · · vec(Snp

)
]
∈ R

mn×np ,

where vec(X) denotes the vectorized matrix X. The minimality of np is equivalent
to S having full column rank. For simplicity, we assume that

(A) the matrix S consists of only zeros and ones and that there is at most one
nonzero element in each row of the matrix

[
vec(S0) S

]
, i.e., every element

of the structured matrix corresponds to (at most) one element of p.
This assumption is satisfied for the common structures mentioned earlier ((block) Han-
kel, (block) Toeplitz, etc.) Assumption (A) implies that np ≤ mn and S⊤ vec(S0) = 0.

2.2. Orthogonal projection on image(S). Next we discuss the orthogonal
projection of an unstructured matrix on the space of structured matrices image(S).
This projection is used in the optimization algorithm of Section 5. After presenting
the general formula, we discuss the simple intuitive explanation of the orthogonal
projection, namely that it is equivalent to averaging elements corresponding to the
same structure parameter pk.

Lemma 2.1. For a structure S satisfying assumption (A), the orthogonal projec-
tion PS(X) of a matrix X on image(S) is given by

(2.3) PS(X) := S(ΠS vec (X)), where ΠS := (S⊤ S)−1S⊤.

The proof is given in the appendix. With some modifications, this lemma also holds
for any affine S.

The effect of applying ΠS on a vectorized m×n matrix X is producing a structure
parameter vector by averaging the elements of X, corresponding to the same Sk.
Indeed, the product S⊤vec(X) results in a vector containing the sums of the elements
corresponding to each Sk. By assumption (A), S⊤ S is a diagonal matrix, with
elements on the diagonal equal to the number of nonzero elements in each Sk, i.e.,

S⊤ S =



‖S1‖2F 0

. . .

0 ‖Snp
‖2F


 =



nnz(S1) 0

. . .

0 nnz(Snp
)


 ,

where nnz stands for the number of nonzero elements. Therefore multiplying by
(S⊤ S)−1S⊤ corresponds to averaging.

In particular, applying ΠS on a (vectorized) structured matrix extracts its struc-
ture parameter vector, since

ΠS vec(S(p)) = (S⊤ S)−1S⊤ S p = p.

For future reference, using (2.1), (2.2), and (2.3), we also have the following equality

(2.4) vec(PS(X)) = vec(S0) + SΠS vec(X).
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3. Weighted structured low-rank approximation. In this section, after pre-
senting the main optimization problem, we discuss its extensions and its equivalent
matrix representation.

The weighted structured low-rank approximation problem is formulated as follows

(3.1) min
p̂
‖p− p̂‖W subject to rank(S(p̂)) ≤ r,

where W ∈ R
np×np is a symmetric positive semidefinite matrix of weights and

‖x‖2
W

:= x⊤W x.

If W is the identity matrix, then the problem reduces to its unweighted counterpart,
i.e., ‖ · ‖W = ‖ · ‖2.

3.1. Extensions. Next we discuss three (hidden) extensions, which have a sig-
nificant impact on the applicability of the structured low-rank approximation problem.

Weights. Being able to deal with weights in (3.1) has a number of advantages
in practice. If prior knowledge is available about the importance or the correctness of
each (noisy) structure parameter, this knowledge can be encoded in the problem using
a diagonal weight matrix W , where each diagonal element relates to the importance
of the corresponding parameter or encodes how much we trust the corresponding
parameter. In addition, finding the closest structured matrix to a given structured
matrix with respect to the Frobenius norm, can also be encoded with a diagonal
weight matrix, as further discussed in Section 6.2. Finally, 0/1 weights are used when
dealing with missing elements, as we discuss below.

Missing values. Due to sensor failure, malfunctioning of a communication chan-
nel, or simply due to unseen events, real-world data can have unknown (missing)
elements. If repeating the experiments until all data are collected is not an option,
for example because of high price of the experiments or high computational time, the
missing data have to be approximated as well. The problem of estimating missing
data is also known as the matrix completion problem and is well-studied in the case
of unstructured matrices. In the case of structured matrices, however, this problem
has few solutions [21].

One way to deal with missing elements is to introduce zeros in the weight matrix
W at the positions corresponding to the missing elements. In the most common case
when W is a diagonal matrix with weights corresponding to the importance of each
of the structure parameters pi, i = 1, . . . , np, having a missing parameter pj is dealt
with by taking its corresponding weight to be zero, i.e., W (j, j) = 0.

Fixed elements. By having a matrix S0 in (2.1), we allow the considered affine
structure to have fixed elements. In practice, the fixed elements are often all zeros
(S0 ≡ 0), for example in the case of sparse matrices with a fixed sparsity pattern.
However, we aim at dealing with the more general case of arbitrary fixed elements.

3.2. Problem reformulation using matrix representation. Consider the
following reformulation of (3.1). For a given matrix D = S(p),
(3.2) min

D̂

‖D − D̂‖2W subject to rank(D̂) ≤ r and D̂ ∈ image(S).

In (3.2), ‖ · ‖2W is a semi-norm on the space of matrices Rm×n, induced by a positive
semidefinite matrix W ∈ R

mn×mn as

‖D‖2W := (vec(D))⊤Wvec(D).
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Note that for a given W in (3.2) and W defined as

(3.3) W = S⊤WS

we have that

‖S(p)‖2W = vec(S(p))⊤Wvec(S(p)) = (Sp)⊤WSp = p⊤Wp = ‖p‖2
W
.

Therefore, for W and W related by (3.3), problems (3.1) and (3.2) are equivalent.

4. Regularized structured low-rank approximation. Each of the constraints
in (3.2) can easily be handled separately. Approximating a matrix by a structured
matrix without imposing low-rank can be performed by orthogonally projecting the
matrix on the space of structured matrices (see Section 2.2). Unweighted low-rank
approximation without imposing structure can be done using truncated singular value
decomposition SVD [11]. However, imposing both low-rank and fixed structure on the
approximation is nontrivial even in the unweighted case (when W = Inp

). Likewise,
the weighted low-rank approximation problem is difficult already in the unstructured
case (when S = I) [29].

We approach the weighted structured low-rank approximation problem from a
new point of view, namely by a regularization technique. We propose two novel
reformulations and discuss their relation to the original problem.

The main idea is to have one of the requirements satisfied at each step whereas
the other one is gradually better satisfied at each successive iteration. Upon conver-
gence both constraints should be satisfied. We have the following two choices (see
Figure 4.1):

(3.2): → low-rank
→ structure

(4.1): → low-rank
→ regularized structure

(4.2),(4.3): → regularized low-rank
→ structure

Fig. 4.1. Optimization problems

• regularize the structure constraint

(4.1) min
P,L
‖D − PL‖2W + λ‖PL− PS(PL)‖2F ,

where λ is a regularization parameter (discussed in Section 5.1.1), ‖·‖F stands
for the Frobenius norm and PS(PL) is defined in (2.3), or

• regularize the rank constraint

(4.2) min
P,L
‖D − PS(PL)‖2W + λ‖PL− PS(PL)‖2F .

Note that for λ = ∞ the term ‖PL − PS(PL)‖ has to be zero and the three
problems (3.2), (4.1) and (4.2) are equivalent. The interpretations of (4.1) and (4.2)
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are however different. In (4.2), the structure is satisfied at each step and the low
rank is ’secondary’. In (4.1), it is the other way around, although in both cases
both constraints are satisfied at the solution. The choice of λ is further discussed in
Section 5.1.1.

Given W in problem (3.1), there are many possibilities to choose W satisfying
(3.3), so that problems (3.2) and (3.1) are equivalent. However, the following holds
true.

Remark 1. Problem (4.2) is independent of the choice of W and can be formu-
lated using W in the following way

(4.3) min
P,L
‖p−ΠSvec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F .

Because of this reason, we will focus on problem formulation (4.2) and its equiv-
alent representation (4.3). For a particular choice W∗ = Π⊤

S
WΠS (which satisfies

(3.3)), problem (4.1) is equivalent to (4.3).

5. The proposed algorithm. In this section, we propose an algorithm in the
framework of the penalty methods. We first discuss how the minimization prob-
lem (4.3) can be solved for a fixed value of the regularization parameter λ and then
present the algorithmic and computational details related to the proposed algorithm.

5.1. Description of the algorithm. The main idea is to solve the minimization
problem (4.3) by alternatingly improving the approximations of L, for fixed P ,

(5.1) min
L
‖p−ΠS vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F

and of P , for fixed L,

(5.2) min
P
‖p−ΠS vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F .

Let In be the n× n identity matrix and let ’⊗’ be the Kronecker product

X ⊗ Y =



x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY


 , for X ∈ R

m×n.

Lemma 5.1. Problems (5.1) and (5.2) are equivalent to the following least squares
problems

(5.3)

(5.1) ⇔ min
L

∥∥∥∥∥

[
M ΠS

√
λ(Imn − SΠS)

]
(In ⊗ P ) vec(L)−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

,

(5.2) ⇔ min
P

∥∥∥∥∥

[
M ΠS

√
λ(Imn − SΠS)

]
(L⊤ ⊗ Im) vec(P )−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

,

where W = M
⊤
M with M ∈ R

np×np .
The proof is given in the appendix.
Both reformulations in Lemma 5.1 are least squares problems and can be solved

in closed form. For fixed λ, we propose an algorithm in the framework of alternating



REGULARIZED STRUCTURED LOW-RANK APPROXIMATION 7

least squares and block coordinate descent, namely we alternatingly improve the ap-
proximations of L and of P by solving the least squares problems in (5.3). We discuss
the update strategy for λ in Section 5.1.1. The choice of initial approximation P0

for P and the stopping criteria are discussed in Section 5.1.2. The summary of the
proposed algorithm is presented in Algorithm 1.

Algorithm 1 Regularized structured low-rank approximation

Input: p ∈ R
np , S0 ∈ R

m×n, S ∈ R
mn×np , W = M

⊤
M ∈ R

np×np , r ∈ N, P0 ∈ R
m×r.

Output: Factors P ∈ R
m×r and L ∈ R

r×n, corresponding to a structured low-rank
approximation problem (4.3).

1: Set ΠS = (S⊤S)−1S⊤.
2: Set P = P0, λ1 = 1.
3: for j = 1, 2, . . . until a stopping criterion is satisfied do
4: for k = 1, 2, . . . until a stopping criterion is satisfied do
5: Update L from (5.1).
6: Update P from (5.2).
7: end for
8: Set λj+1 such that λj+1 > λj .
9: end for

Due to the simplicity of Algorithm 1, dealing with weights, missing elements
and structures with fixed elements is straightforward. The weight matrix W and the
matrix with fixed elements S0 are readily introduced in (5.3) thus in and Algorithm 1.
Dealing with missing elements is realized by introducing zeros in the weight matrix
W at the positions corresponding to the missing elements. A numerical example
with weights, corresponding to using Frobenius norm as a distance measure in (3.2),
is given in Section 6.2. Examples with missing values are given in Section 6.2 and
in Section 6.4. The examples in Section 6.3 and in Section 6.4 have fixed zero and
nonzero elements, respectively.

5.1.1. Parameter λ. In theory, if we fix λ = ∞, then (4.3) is the exact struc-
tured low-rank approximation problem. In practice, we may fix λ to a “large enough”
value and the solution PL is only approximately a structured matrix. The higher the
value of λ, the better the structure constraint is satisfied; however, too large values
may lead to numerical issues. Alternatively, adaptive schemes for updating λ are also
possible. We can start from a small value and increase it with each iteration or set
of iterations. This way we allow the algorithm to move to a “good region” first and
then impose more strictly the structure constraint [25].

Algorithms using such update scheme for λ are reported to converge faster. The
following strategy has been proposed in [25, §17.1]: if solving the previous subproblem
was expensive, increase λ only modestly, e.g., λj+1 = 1.5λj . If solving the previous
subproblem was cheap, increase λ more ambitiously, λj+1 = 10λj .

5.1.2. Initial Guess and Stopping Criterion. Let D = UrΣrV
⊤
r be the

truncated SVD of the given matrix D (D = S(p)). Since the truncated SVD provides
the best (in the unweighted case) low-rank approximation of a given matrix, Ur is a
good initial approximation of the matrix P .

Consider the following stopping criteria. For the inner minimization problem, i.e.,
when λ is fixed to λj , stop when the derivatives of the objective function are smaller
than τj with τj → 0 as j →∞. In practice, if we do not want to compute derivatives,
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we can stop when there is little change in P and L. Note that for small λ we do not
need to solve the problem exactly. Thus, we can stop the inner iteration earlier and
avoid slow convergence. Only at the end, when λ becomes large, good approximation
is required. For the outer minimization (main problem) we stop when λ is “large
enough”, e.g, 1014.

We declare that PL is a structured matrix if

‖PL− PS(PL)‖2F
‖PL‖2F

< ε

for a small ε, e.g., ε = 10−12.

5.2. Properties of the algorithm.

5.2.1. Computational Complexity. The main computational cost is due to
solving the least squares problems in (5.3), which is equivalent to solving two systems
of linear equations. The size of the systems’ matrices are (np +mn)× rn and (np +
mn)× rm, respectively. Suppose that m ≤ n and recall that np ≤ mn. Then, the cost
for one inner iteration step of the proposed algorithm is

O((rn)2(np +mn)) = O(n3mr2).

Note that this estimate does not take into account the available structure and sparsity
of the matrices in (5.3). If the structure and sparsity are exploited, faster computation
can be performed. Additionally, compared to the kernel approaches, which are fast
for large values of r (preferably r = m − 1), the proposed approach is designed for
small values of r. If the structure is not taken into account, the kernel approaches
also have computational cost that is cubic in n, namely O((m− r)3n3), and moreover
their cost per iteration is higher in m for small r.

5.2.2. Convergence Properties. Algorithm 1 falls into the setting of the pe-
nalty methods for constrained optimization [25, §17.1] whose convergence properties
are well understood. For fixed λ, the proposed algorithm is an alternating least
squares (or block coordinate descent) algorithm. Since we can solve the least squares
problems in (5.3) in closed form, every limit point of the generated sequence is a
stationary point [1, 12]. The convergence rate of these methods is linear.

For the convergence properties of the algorithm as λ→∞, we have the following
theorem borrowed from the theory of quadratic penalty method [25, Th. 17.2.].

Theorem 5.2. For τj → 0 and λj →∞, if a limit point (P,L)∗ of the sequence
{(P,L)}j is infeasible, it is a stationary point of the function ‖PL− PS(PL)‖2F . On
the other hand, if a limit point (P,L)∗ is feasible, then (P,L)∗ is a KKT (Karush-
Kuhn-Tucker) point for problem (3.1) and

lim
j
−λj‖PL− PS(PL)‖2F = λ∗,

where λ∗ is the multiplier that satisfies the KKT conditions.

6. Numerical experiments. In this section we apply the proposed algorithm
on three different problems, namely, system identification, finding a common divisor of
polynomials (with noisy coefficients), and symmetric tensor decomposition. Although
these problems arise in completely different fields, are essentially different, and require
different features (weights, fixed elements, or missing element), we demonstrate the
consistently good performance of Algorithm 1.
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6.1. Related algorithms. In ourMatlab simulations, we compare Algorithm 1
with Cadzow’s algorithm [4] and the kernel-based algorithm slra [20, 30, 21], which
also aim to solve problem (3.2). The former is popular in signal processing applica-
tions due to its simplicity and the latter has been recently extended to work with
missing data. We next briefly summarize the main ideas behind these algorithms.

Cadzow’s algorithm [4] consists of repeating the following two main steps

• “project” the current structured approximation to a low-rank matrix, e.g.,
using truncated SVD,

• project the current low-rank matrix to the space of structured matrices.

By performing its projections, this algorithm does not optimize over any optimization
variables. The algorithm proposed in this paper, on the other hand, optimizes over the
parameter matrices P and L. As shown in [8], Cadzows algorithm lacks convergence
properties.

The slra algorithm [30, 20] is based on the kernel representation of the rank
constraint , i.e.,

rank(D̂) ≤ r ⇐⇒ RD̂ = 0 for some full row rank matrix R ∈ R
(m−r)×m

and uses the variable projection method [10], i.e., reformulation of the problem as inner
and outer optimization, where the inner minimization admits an analytic solution.
The outer problem is a nonlinear least squares problem and is solved by standard local
optimization methods, e.g., the Levenberg–Marquardt method [23]. Generalization
to problems with fixed and missing data is presented in [21]. Efficient implementation
of the methods based on the variable projection is available for the case of mosaic-
Hankel matrices [20, 30]. With n > m, the computational complexity of the cost
function and derivative evaluation is O(m2n). Therefore, this approach is suitable for
applications with n≫ m and small rank reduction m−r. In statistical estimation and
data modeling—the main application areas of the algorithm—n≫ m corresponds to
modeling of large amount of data by a low-complexity model. In contrast, Algorithm 1
is meant for problems with small r. Moreover, for general affine structures, slra has
a restriction on the possible values of the reduced rank r. Algorithm 1 overcomes this
limitation.

6.2. Autonomous system identification. In this section, we will use the fact
that the proposed algorithm can work with weighted norms and with matrices having
missing elements.

Background. In system theory, an autonomous linear time-invariant dynamical
model [19] can be defined by a difference equation

(6.1) θ0 y(t) + θ1 y(t+ 1) + · · ·+ θℓ y(t+ ℓ) = 0, for t = 1, . . . , T − ℓ,

where ℓ is the order of the system. The problem of system identification is: esti-
mate the model parameter θ =

[
θ0 θ1 · · · θℓ

]
∈ R

ℓ+1, given a response y =
[y(1), . . . , y(T )] ∈ R

T of the system.
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The difference equation (6.1) can equivalently be represented as

(6.2)
[
θ0 θ1 · · · θℓ

]




y(1) y(2) y(3) . . . y(T − ℓ)

y(2) y(3) y(4) . .
.

y(3) . .
. ...

... . .
.

. .
.

y(ℓ+ 1) y(ℓ+ 2) y(ℓ+ 3) . . . y(T )




︸ ︷︷ ︸
Hℓ+1(y)

= 0.

It follows from (6.2) that the Hankel matrix Hℓ+1(y) is rank deficient, or in other
words, rank(Hℓ+1(y)) ≤ ℓ.

In the more realistic noisy case however, (6.1) and (6.2) hold only approximately.
The problem of identifying the system then reduces to finding a rank-ℓ approximation
of Hℓ+1(y). The parameter θ can then be easily computed from the null space of the
obtained approximation.

If enough samples are provided, which is usually the case, another possible refor-
mulation of (6.1) is the following
(6.3)

[
θ0 θ1 · · · θℓ 0

0 θ0 θ1 · · · θℓ

]




y(1) y(2) y(3) . . . y(T − ℓ− 1)

y(2) y(3) y(4) . .
.

y(3) . .
. ...

... . .
.

. .
.

y(ℓ+ 2) y(ℓ+ 3) y(ℓ+ 4) . . . y(T )




︸ ︷︷ ︸
Hℓ+2(y)

= 0.

Compared to (6.2), the matrix Hℓ+2(y) in (6.3) has one more row and one column less
but its rank is still ℓ. The rank is however now reduced by 2 since we have ℓ+2 rows.
(This can also be concluded from the fact that there are now 2 linearly independent
vectors in the null space of the matrix.) We can continue reshaping by adding rows
and removing columns, e.g., until we get an (almost) square matrix. This could be
useful since there are indications that truncated SVD of a square Hankel matrix relates
to a better (initial) noise reduction. Note that if T is large, the square matrix would
have low rank compared to its dimensions.

Example: System identification in Frobenius norm. In this example, we
will use the fact that the proposed algorithm can work with weighted norms. In par-
ticular, in order to approximate a structured matrix S(p) with a low-rank structured
matrix S(p̂) in Frobenius norm, i.e.,

min
p̂
‖S(p)− S(p̂)‖2F subject to rank(S(p̂)) ≤ r

we need to take W from (3.1) and (4.3) to be a diagonal matrix with weights equal to
the number of occurrences of each structure parameter pi, i = 1, . . . , np. We consider
the Frobenius norm as a distance measure between the data matrix and the approxi-
mation to facilitate the comparison with Cadzow’s algorithm. In the next example,
we illustrate the performance of the proposed algorithm with respect to the 2-norm
‖p− p̂‖22.
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The considered true (noiseless) signal y0 is the sum of the following two exponen-
tially damped cosines

(6.4)

y0(t) = y0,1(t) + y0,2(t),

y0,1(t) = 0.9t cos(π5 t),

y0,2(t) = 1
5 1.05

t cos( π
12 t+

π
4 ),

t = 1, . . . , 50, shown in Figure 6.1. The rank of the corresponding Hankel matrix is

0 10 20 30 40 50
−2

−1

0

1

2

 

 

y0,1
y0,2

Fig. 6.1. True components in the system identification examples.

4, i.e., rank(Hm(y0)) = 4, for m = 5, 6, . . . , 46. We added noise in the following way

(6.5) y(t) = y0(t) + 0.2
e(t)

‖e‖ ‖y0(t)‖,

where e(t) were drawn independently from the normal distribution with zero mean
and unit standard deviation. The added noise increases the rank of Hm(y0), so rank-4
approximation has to be computed.

We ran Algorithm 1, slra and Cadzow’s algorithm. To facilitate the comparison
with slra, we set m = r + 1 (i.e., m = 5). The initial approximation was obtained
using the truncated SVD. Since slra is sensitive to the initial approximation, in
addition to its default initialization, we ran slra starting from the solution obtained
by Kung’s method [15] (row “Kung→ slra” in Table 6.1), which is a heuristic method
for Hankel structured low-rank approximation.

After 1000 iterations, Cadzow’s algorithm still did not converge and the rank of
its structured approximation was 5 instead of 4, with smallest singular value of the
approximation 0.0027. The result obtained by slra when initialized with Kung’s
method and the result obtained by Algorithm 1 were similar to each other. The
computed trajectories (for one run) are presented in Figure 6.2. The numerical

0 10 20 30 40 50
−2

−1

0

1

2

 

 

given
true
reg_slra
slra

Fig. 6.2. Noisy data y, true data y0 and the trajectories obtained from Algorithm 1 and slra,
for the example (6.4)–(6.5). The computations are with respect to the Frobenius norm.
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Table 6.1

Numerical errors of the initial approximation (by SVD), Cadzow’s algorithm, slra, Kung’s
heuristic algorithm, slra initialized with Kung’s algorithm’s solution, and the proposed algorithm
(Algorithm 1), for the example (6.4)–(6.5).

Algorithm ‖S(y)− S(ŷ)‖2F ‖S(y0)− S(ŷ)‖2F Remarks
init.approx. 37.7107 36.1934
Cadzow (4.4916) (1.0740) incorrect rank
slra 11.3892 7.0164
Kung [15] 7.1655 3.6906 heuristic
Kung → slra 4.6106 0.4915

Algorithm 1 4.6124 0.4794
‖PL−PS(PL)‖2

F

‖PL‖2
F

= 1.6 · 10−25

errors are presented in Table 6.1. The error of the initial approximation reported in
Table 6.1 is computed by finding the closest structured matrix having the same kernel
as the truncated SVD approximation.

Different realizations of the example lead to slightly different numerical results.
However, the main conclusions of this example stay the same.

Example: System identification with missing data. In this example, we
illustrate the fact that the proposed algorithm can work with matrices having missing
elements. We continue with the above example but since Cadzow’s algorithm cannot
be applied to the missing data case directly, this time the objective function is with
respect to the more standard parameter norm ‖p− p̂‖22.

Since the rank of the true Hankel matrix is 4, standard algorithms need at least 5
(5 = 4+1) consecutive data points for identification. However, in the example below,
we removed every 5th data point, so these algorithms cannot be applied directly.
Algorithm 1 and slra, however, can identify the system, as shown in Figure 6.3.
The initial approximation for the missing values was provided by averaging their two

0 10 20 30 40 50
−2

−1

0

1

2

 

 

given
missing
true
reg_slra
slra

Fig. 6.3. Noisy data (subset of y), missing data (subset of y0), true data y0 and the trajectories
obtained from Algorithm 1 and slra for the example (6.4)–(6.5) with missing data.

neighboring data points, after which the initial approximation for the algorithms was
obtained by the truncated SVD. In addition, as before, slra was also initialized with
the solution of Kung’s algorithm. The obtained trajectories from Algorithm 1 and
slra (initialized with the solution of Kung’s algorithm) almost coincide with the true
(unobserved) signal. The numerical errors are presented in Table 6.2.

Different realizations of the example lead to slightly different numerical results.
We also observed that for smaller noise variance, slra and Algorithm 1 compute the
same solution, but for higher values of the noise Algorithm 1 is generally more robust.
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Table 6.2

Numerical errors of the initial approximation (by SVD), slra, Kung’s heuristic algorithm,
slra initialized with Kung’s algorithm’s solution, and the proposed algorithm (Algorithm 1), for the
example (6.4)–(6.5) with missing data.

Algorithm ‖y − ŷ‖2given ‖y0 − ŷ‖2missing ‖y0 − ŷ‖2all Remarks

init.approx. 8.4295 1.9481 10.2588
slra 8.4123 1.9447 10.2386
Kung [15] 1.2480 0.2722 0.6935 heuristic
Kung → slra 0.9228 0.1404 0.2750

Algorithm 1 0.9026 0.0511 0.1540
‖PL−PS(PL)‖2

F

‖PL‖2
F

= 4.9 · 10−27

6.3. Approximate common divisor. Another application of structured low-
rank approximation and thus of Algorithm 1 is finding approximate common divisors
of a set of polynomials. Existence of a nontrivial common divisor is a nongeneric
property. Given a noisy observation of the polynomials’ coefficients (or due to round-
off errors in storing the exact polynomials coefficients in a finite precision arithmetic),
the polynomials have a nontrivial common divisor with probability zero. Assuming
that the noise free polynomials have a common divisor of a known degree, our aim
in the approximate common divisor problem is to estimate the common divisor from
the noisy data. The problem can be formulated and solved as Sylvester structured
low-rank approximation problems, see [31]. Since the Sylvester matrix has fixed zero
elements, in this example, we use the feature of Algorithm 1 to work with structured
matrices having fixed elements.

Background. For a polynomial

a(z) = a0 + a1 z + · · ·+ an z
n,

define the multiplication matrix

Sk(a) =



a0 a1 · · · an 0

. . .
. . .

. . .

0 a0 a1 · · · an








k .

We consider three polynomials a, b, and c and for simplicity let they be of the same
degree n. A basic result in computer algebra, see, e.g., [14], is that a, b, and c have a
nontrivial common divisor if and only if the generalized Sylvester matrix

(6.6)



Sn(b) Sn(c)

Sn(a) 0

0 Sn(a)




has rank at most 3n− 1. Alternatively, one can consider another type of generalized
Sylvester matrix [13]

(6.7)



Sn(a)

Sn(b)

Sn(c)


 ,

whose rank deficiency is equal to the degree of the greatest common divisor of a,
b, and c. Formulation (6.7) is more compact than the one in (6.6), especially if the
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number of polynomials is large. These results are generalizable for arbitrary number of
polynomials (2, 3, . . .) of possibly different degrees and arbitrary order of the required
common divisor.

In the case of inexact coefficients, the generalized Sylvester matrices are gener-
ically full rank. The problem of finding the approximate common divisor is then
transformed to the problem of approximating the matrix in (6.6) or in (6.7) by low-
rank matrices with the same structure. This can be done with Algorithm 1 and with
the alternative method slra. For simplicity, in our example we take three polyno-
mials of degree 2 and desired (greatest) common divisor or order one (one common
root). However, Algorithm 1 is applicable in the general case as well.

Example. Let

a(z) = 5− 6z + z2 = (1− z) (5− z),

b(z) = 10.8− 7.4z + z2 = (2− z) (5.4− z),

c(z) = 15.6− 8.2z + z2 = (3− z) (5.2− z).

Aiming at a common divisor of degree one, we approximate (6.6) and (6.7) with,
respectively, rank-5 and rank-3 matrices. The obtained solution with Algorithm 1,
applied on (6.7) is

â(z) = 4.9991− 6.0046 z + 0.9764 z2 = 0.9764 (0.9928− z) (5.1572− z),

b̂(z) = 10.8010− 7.3946 z + 1.0277 z2 = 1.0277 (2.0378− z) (5.1572− z),

ĉ(z) = 15.6001− 8.1994 z + 1.0033 z2 = 1.0033 (3.0149− z) (5.1572− z),

with a common root 5.1572. The roots of the original and approximating polynomials,
as well as the polynomials themselves are plotted in Figure 6.4. The same results

0 1 2 3 4 5 6
 

 

a
b
c
â
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ĉ

(a) roots
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c

â
b̂
ĉ

(b) polynomials

Fig. 6.4. Results for the example of approximate common divisor of three polynomials.

were obtained with slra, applied on (6.6). Due to the non-convexity of the problem,
Algorithm 1 applied on (6.6) computed a slightly different solution with comparable
accuracy. Applying slra on (6.7) resulted in computing a common divisor of degree

2, i.e., â = b̂ = ĉ.
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6.4. Symmetric tensor approximation. Structured low-rank approximation
can be applied to decompose and approximate complex symmetric tensors into a sum
of symmetric rank-one terms. With this application we also demonstrate how the
proposed algorithm can deal with missing and fixed elements.

Background. A complex tensor of dimension n and order d, T ∈ C

d︷ ︸︸ ︷
n× · · · × n is

called symmetric if it is invariant under any permutation of the modes. A symmetric
tensor T admits a symmetric decomposition of rank r if it can be represented as a
sum of r rank-one symmetric terms:

(6.8) T =

r∑

k=1

d︷ ︸︸ ︷
vk ⊗ · · · ⊗ vk,

where vk ∈ C
n. The problem of symmetric tensor decomposition is to find a (minimal)

decomposition (6.8).
In [3], it was shown that T has a decomposition of rank r if and only if (excluding

some nongeneric cases)

rank(S(T , h)) ≤ r,

where S(T , h) is a quasi-Hankel structured matrix constructed from the tensor and
the vector h has unknown entries (latent variables). Therefore, the tensor decom-
position problem is a low-rank matrix completion of the structured matrix S(T , h).
Moreover, symmetric low-rank tensor approximation is equivalent to structured low-
rank approximation with missing data. The main difficulty for this reformulation is
that filling in missing data is nontrivial, and gives rise to multivariate polynomial
systems of equations [3].

Symmetric tensors are often represented as homogeneous polynomials [6] using

T ←→ T (x) := T ×1 x×2 x · · · ×d x,

where x ∈ C
n and ‘×i’ is the tensor-vector product with respect to the ith mode of

the tensor. With this representation, symmetric tensor decomposition is equivalent
to the Waring problem [3] of decomposing a homogeneous polynomial T (x) of degree
d into a sum of d-th powers of linear forms

T (x) :=
r∑

k=1

(v⊤
k x)

d.

We will represent our results in the polynomial form.

Example. Consider the example from [3, §5.2], which is decomposition of a

polynomial (a tensor of dimension 3 and order 4), with x =
[
x0 x1 x2

]⊤
,

T (x) = 79x0x
3
1 + 56x2

0x
2
2 + 49x2

1x
2
2 + 4x0x1x

2
2 + 57x1x

3
0,

into a sum of 6 symmetric rank-one terms. (For dimension 3 and degree 4 complex
symmetric tensors, the generic rank is 6 [6]). In this case, in order to compute the
decomposition with the theory of [3] it is crucial to fill in the missing data.

We considered the 10 × 10 submatrix of the matrix in [3, p.14]. We fixed the
non-missing data (by setting them in S0), and computed the missing elements with
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Algorithm 1. The error on the deviation from the structure was around machine
precision (4.5 · 10−31). The computed tensor decomposition was

(6.9)

T (x) ≈ 6.94 (x0 + 0.895x1 + 0.604x2)
4

+6.94 (x0 + 0.895x1 − 0.604x2)
4

−4.94 (x0 − 0.982x1 + 0.657 i x2)
4

+4.94 (x0 − 0.982x1 − 0.657 i x2)
4

− (1.99− 11.9 i) (x0 + (0.128 + 0.308 i)x1)
4

− (1.99 + 11.9 i) (x0 + (0.128− 0.308 i)x1)
4
,

(where we have removed coefficients smaller than 10−12). This is a different expansion
from the one reported in [3, p.15]. This can be expected, because for generic ranks the
tensor decompositions are usually nonunique [6]. The approximation error of (6.9) on
the normalized polynomial coefficients is 1.7421 · 10−13.

Remark 2. Instead of the method used in [3, p.15], we computed the vectors
vk by joint diagonalization of matrices Mx1

and Mx2
of the quotient algebra (see [3]

for the definition of these matrices). For joint diagonalization we used the method
[27] from signal processing, where approximate joint eigenvectors are computed by
taking the eigenvectors of a linear combination of Mx1

and Mx2
. This was needed

because in the case of multiple eigenvalues of Mx1
(which is the case of our computed

decomposition), the method in [3, p.15] does not work correctly.
In this example, the data were exact and the goal was to compute exact rank-6

decomposition. However, Algorithm 1 can be used to solve the more general problem
of tensor low-rank approximation as well.

7. Conclusions. In this paper, we introduced a novel approach for solving the
structure-preserving low-rank approximation problem. We used the image represen-
tation to deal with the low-rank constraint, and a regularization technique, to impose
the structure on the approximation. The original problem has been reduced to solv-
ing a series of simple least squares problems with exact solutions. We have discussed
the properties of the proposed local optimization algorithm and ensured that it can
solve the weighted problem and deal with the cases of missing or fixed elements. The
proposed algorithm was tested on a set of numerical examples from system identifica-
tion, computer algebra and symmetric tensor decomposition and compared favorably
to existing algorithms.

The regularized structured low-rank approximation algorithm proposed in this
paper is an attractive alternative to the kernel approach: it is more robust to the
initial approximation (Section 6.2), allows us to use a simpler Sylvester matrix (6.7)
in the GCD setting, and can be used for symmetric tensor decompositions, where the
alternative slra method experiences difficulties. In contrast to algorithms based on
the kernel representation, the proposed regularized structured low-rank approximation
is designed for the problems requiring low ranks (small r). It is also worth noting
that there are no restrictions on the values of the rank r. An efficient implementation
of the algorithm and more detailed analysis of its applications in case of missing data
and GCD computation are a topic of future research.
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Appendix.

Proof. [Lemma 2.1.] The closest matrix in image(S) to an unstructured matrix
X is the solution of the minimization problem

arg min
X̂ ∈ image(S)

‖X − X̂‖2F ,

where ‖ · ‖F stands for the Frobenius norm. Equivalently, we need to solve

min
p∈R

np
‖X − S(p)‖2F ,

which can be written as

(A.1) min
p∈R

np
‖vec(X)− vec(S0)− Sp‖22.

Since, by assumption (A), S has full column rank and S⊤vec(S0) = 0, (A.1) is a least
squares problem with unique solution

p∗ = (S⊤ S)−1S⊤vec(X − S0) = (S⊤ S)−1S⊤vec(X).

Thus,

PS(X) = S((S⊤ S)−1S⊤vec(X)),

which completes the proof.

Proof. [Lemma 5.1.] Using the following well-known equality

vec(XY Z) = (Z⊤ ⊗X) vec(Y ),

we have

(A.2) vec(PL) = (In ⊗ P ) vec(L) = (L⊤ ⊗ Im) vec(P ).

Consider first problem (5.1). Problem (5.2) can be solved in a similar way. Using
(2.4) and (A.2), (5.1) can be reformulated as

min
L
‖p−ΠS vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F

⇐⇒ min
L
‖M(p−ΠS vec(PL))‖22 + λ‖vec(PL)− vec(PS(PL))‖22,

⇐⇒ min
L
‖M(p−ΠS vec(PL))‖22 + λ‖vec(PL)− vec(S0)− SΠS vec(PL)‖22,

⇐⇒ min
L
‖MΠS vec(PL))−Mp‖22 + ‖

√
λ(Imn − SΠS) vec(PL)−

√
λvec(S0)‖22,

⇐⇒ min
L

∥∥∥∥∥

[
M ΠS

√
λ(Imn − SΠS)

]
vec(PL)−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

,

⇐⇒ min
L

∥∥∥∥∥

[
M ΠS

√
λ(Imn − SΠS)

]
(In ⊗ P ) vec(L)−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

.

The derivation for P is analogous.
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