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ABSTRACT

Estimation of line spectra is a classical problem in signal pro-
cessing and arises in many applications. The problem is to es-
timate the frequencies and corresponding amplitudes of a sum
of sinusoidal components from noisy measurements. It can be
solved with maximum likelihood methods or with suboptimal
subspace methods. The constraint that the model does not
have damping is difficult to impose in subspace methods. We
develop an equivalent formulation as a structured low-rank
approximation problem and present a necessary condition for
the model to be undamped. The condition is that a vector in
the kernel of a Hankel matrix of observations has palindromic
structure and it leads to a linear equality constraint which is
easily incorporated into a numerical algorithm. Simulations
show that even for relatively high noise-to-signal ratios, the
necessary condition is in practice also sufficient, i.e., the iden-
tified model does not have damping.

Index Terms— Line spectral estimation, structured low-
rank approximation, palindromic kernels, subspace methods

1. INTRODUCTION

Spectral analysis concerns the problem of determining the
spectral content of a time series from finite data [1]. In several
applications the encountered signals can be well described
as a sum of damped or undamped complex-valued sinusoidal
signals. The latter occurs in e.g. telecommunications, radar,
sonar and seismology, and the signal is said to have a line
spectrum [1, Chapter 4]. The former occurs e.g. in magnetic
resonance spectroscopy [1, Sec. 5.6.3]. The main task is to
estimate the model parameters, namely the angular frequen-
cies, and the corresponding amplitudes (and damping fac-
tors), from noisy measurements. Signals can be real-valued,
in which case both the sine and the corresponding cosine must
be present, or complex-valued, for example as a sub-problem
in the reconstruction of finite rate of innovation signals [2].

There are two main approaches, maximum likelihood
identification [3, 4] and subspace identification [5, 6, 7].
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Subspace approaches are based on the low-rank property of
a Hankel structured matrix of noise-free observations, and
a decomposition of this matrix with two full-rank matrices
that have a particular shift structure. Both properties are
lost when measurements are corrupted by noise. Classical
methods perform unstructured low-rank approximation of
the measurement matrix using a singular value decomposi-
tion, followed by a least squares fit of the signal components
to the estimated subspace basis. More recently, structured
low-rank approximation methods were developed [8, 9].

The rank deficiency of the Hankel matrix is not sufficient
for the signal to be a sum of undamped exponentials. The
constraint that poles of the model are simple and lie on the
unit circle is difficult to impose when the model parameters
are not the poles themselves. We show how the relaxed con-
straint that the kernel of the Hankel matrix has a palindromic
structure can effectively restrict the location of the identified
poles, or equivalently, ensure that the signal is undamped.

The rest of this paper is organized as follows. Section 2
states the problem and describes different model representa-
tions. Section 3 introduces the concept of palindromic kernels
which are then exploited in the solution methods proposed in
Section 4. Section 5 supports the claims with numerical evi-
dence and Section 6 concludes the paper.

2. PROBLEM STATEMENT AND MODEL
REPRESENTATIONS

Consider a finite-horizon discrete-time real-valued signal that
is a sum of k real-valued sinusoids and therefore n = 2k com-
plex exponentials

y(t) = ∑
k
`=1 c`sin(ω`t +φ`)︸ ︷︷ ︸

ȳ(t)

+e(t), for t = 1, . . . ,T, (1)

with c` ∈ R,φ` ∈ [−π,π], and where ȳ(t) is the noise-free
sum-of-sines signal and e(t) additive observation noise which
is assumed to be zero-mean, white Gaussian noise.

Denote by Mn the model class of sum-of-exponential
models of order (the number of exponentials) at most n.
Adhering to the behavioral approach in system theory [10], a
model is defined as a set of trajectories B ∈Mn. The fact that
y is a trajectory of a model B is concisely written as y ∈B.
Let σ denote the backward shift operator (σy)(t) := y(t +1).



A model B ∈Mn can be represented by by equations, lead-
ing to different parameterizations:

1. sum-of-sines

B(ω) = {y | y(t) satisfies (1) for all c`,φ` ∈ R}

parameterized by vector of frequencies ω ∈ Rk;

2. state-space representation

B(A,c) = {y | there is s, such that y = cx, σx = Ax},

parameterized by matrices A ∈ Rn×n and c ∈ R1×n;

3. difference equation (kernel representation)

B(R) = {y |R0 +R1σy+ · · ·+Rnσ
ny = 0},

parameterized by polynomial

R(z) := R0 +R1z+ · · ·+Rnzn.

The model B(R) is determined by the kernel kerR(σ) of the
polynomial operator R(σ), hence the term kernel representa-
tion. The vector of coefficients R :=

[
R0 · · · Rn

]
, is obvi-

ously not unique, since B(αR) =B(R) for any α 6= 0. How-
ever, the roots of z1, . . . ,zn, are invariant w.r.t. the representa-
tion and are called the poles of the model B. The trajectories
y of the model B with a kernel representation ker R(σ) can
be parameterized by n “past” samples(

y(−n+1), . . . ,y(−1),y(0)
)
.

The parameters of the model B ∈Mn in the three repre-
sentations are related. Up to a reordering, zi = e jωi , for i =
1, . . . ,k, and zi = e−iωk for i = k+ 1, . . . ,2k, while the eigen-
values of the matrix A are equal to the poles of the model.

3. PALINDROMIC KERNELS

Model B with kernel representation ker R(σ) is a sum-of-
exponentials model if and only if the roots of the polynomial
R(z) lie on the unit circle. Unfortunately, expressing the con-
straint on the roots of R(z) as a constraint on its coefficient
vector R is analytically impossible for polynomials of degree
more than four (see Abel’s impossibility theorem).

A necessary condition for the poles of B to lie on the unit
circle is that their locations must be symmetric w.r.t. the unit
circle. This condition can be expressed in terms of the kernel
coefficients. More precisely, ker R(σ) must be palindromic.
A polynomial R(z) is palindromic if Rn−i =Ri, for i= 0, . . . ,k,
and anti-palindromic if Rn−i = −Ri, for i = 0, . . . ,k. The
property that the kernel is palindromic has a system-theoretic
interpretation, namely that the trajectories of the model it rep-
resents are time-reversible. Later, in Section 5, it will be
demonstrated empirically that imposing the necessary condi-
tion improves the performance.

Theorem 1. See [11, Thm. 2]. Consider the following con-
ditions: i) every root λ ∈ C of R(z) is either on the unit circle
or R(z) has a root 1/λ with the same multiplicity as λ ; ii) 1
is a root of R(z) with even multiplicity (multiplicity 0 means
that 1 is not a root of R(z)); iii) 1 is a root of R(z) with odd
multiplicity. The polynomial R(z) is palindromic if and only
if i) and ii) hold, and is anti-palindromic if and only if i) and
iii) hold.

Corollary 2. Let B ∈Mn be a set of trajectories belonging to
the class of sum-of-exponentials models and kerR(σ) a kernel
representation of B. Assuming that 1 is not a pole of B, R(z)
is palindromic.

Since the signals are real-valued, poles must come in pairs
that are symmetric w.r.t. the real axis, i.e.if λ is a pole, its
complex conjugate λ̄ is necessarily also a pole. This fact and
Theorem 1 imply that the complex roots of palindromic and
anti-palindromic polynomials that do not fall on the unit circle
can be divided into quadruples (λ ,1/λ , λ̄ ,1/λ̄ ). Roots that
lie on the unit circle or the real line, except possibly roots at
±1, can be grouped into tuples (λ ,1/λ ).

There is an interesting link between palindromic/anti-
palindromic kernels and the concept of time-reversibility [11].
Let rev denote the time-reversal operator

rev
(
y(1),y(2), . . . ,y(t)

)
:=
(
y(T )y(T −1), . . . ,y(1)

)
.

Then, time-reversibility of the trajectories means that for all
y ∈B also rev(y) ∈B, and a time-reversible system is de-
fined as a system for which this property holds.

Proposition 1. If B(R) is defined by a palindromic or anti-
palindromic polynomial R(z), then for all y ∈ B, it is true
that rev(y) ∈B, i.e., the trajectories are time-reversible.

If the sum-of-exponentials model does not contain an off-
set, then ωi 6= 0 modulo 2π for i = 1, . . . ,k, or equivalently,
λi 6= 1 for i = 1, . . . ,n. If the model contains an offset, the
polynomial R(z) will be anti-palindromic. In the remainder
of the paper, it is assumed that the model does not have an
offset and only palindromic kernels are considered.

4. SOLUTION METHODS

4.1. Structured low-rank approximation

minimize over ŷ and R 6= 0 ||yd− ŷ||
subject to ŷ ∈B = ker R(σ) and Ri = Rn−i.

(2)

Note that the palindromic vector R ∈ R1×(n+1) can be ex-
pressed as

R=
[
R0 R1 . . . Rk

]︸ ︷︷ ︸
R′

1 1
. . .

...

1


︸ ︷︷ ︸

Ψ

(3)



and the optimization is actually over R′ ∈ R1×(k+1), using
only half the number of coefficients. The link between the
sum-of-exponentials model (1) and low-rank approximation
is given by

ŷ ∈B = ker R(σ) ⇐⇒ RHn+1(ŷ) = 0 and R 6= 0. (4)

Combining (2)–(4), an equivalent Hankel-structured low-rank
approximation problem is obtained

minimize over ŷ and R′ 6= 0 ||yd− ŷ||
subject to R′ΨHn+1(ŷ) = 0,

(5)

which can be solved with a variable projection method [12].
The proposed formulations as structured low-rank approxi-
mation can be regarded as relaxed versions of a maximum
likelihood problem [13].

4.2. Subspace methods

Optimization problems (2) & (5) do not admit an analytical
solution, nor is it convex. The discussed method only guar-
antees the convergence to a local optimum. Two alternative
sub-optimal heuristic approaches will be considered. These
methods split the identification problem into two steps: first,
an unstructured low-rank approximation, and second, least
squares estimation of the model parameters from the obtained
matrix factorization.

4.2.1. Kung’s method

Kung’s method is based on realization theory. For exact data,
a rank-revealing factorization

HL(y) = OC withO ∈ RL×n,C ∈ Rn×(T−L), (6)

exists where L is a user-defined natural number between n+1
and T −n. A system matrix Â is recovered as the solution of
a system of linear equations OÂ = O , where O is the matrix
O with the first row removed, and O is the matrix O with the
last row removed. The eigenvalues of Â are then the poles of
the system.

For inexact data, both steps involve an approximation.
The rank-revealing factorization is computed as a rank-n trun-
cation of the singular value decomposition, i.e., an unstruc-
tured low-rank approximation. Solving the system of linear
equations delivers an approximate solution in the ordinary
least-squares sense.

Empirical observations show that subspace methods give
more accurate estimates of the model parameters when the
number of rows L of the Hankel matrix H (yd) is chosen such
that H (yd) is as square as possible. Therefore L should be
the nearest integer to T/2.

4.2.2. Modifications to Kung’s method for time-reversible
systems

Ignoring the Hankel structure, an approximate one-dimensional
left kernel of the Hankel-plus-Toeplitz matrix H :=ΨHn+1(yd)
can be found as the left singular vector of H corresponding
to the smallest eigenvalue. A basis vector R′ then leads to a
model with kernel parameter R′Ψ. Equivalently, the kernel
parameter can be obtained as the left singular vector of the
mosaic-Hankel matrix

H :=
[
Hn+1(yd) Hn+1(rev(yd)

]
. (7)

corresponding to the smallest singular value.
Two versions of the procedure are thus obtained. Due to

the time-reversibility of the identified model ker R(σ), the
resulting methods can be seen as forward-backward linear
prediction. Both procedures have L = n+ 1, such that with
T � n, H in (7) is a highly skewed rectangular matrix. To
mitigate this issue another modification is made. Firstly,
a rank-revealing factorization of the mosaic Hankel matrix
is computed H :=

[
HL(yd) HL(rev(yd)

]
, i.e., H = OC ,

where L ∈ N and n + 1 < L < T − n. Secondly, a kernel
parameter R ∈ R1×(n+1) must be found for the forward-
backward linear prediction method applied to the set of time
series y(i) :=

(
O1i, . . . ,OLi

)
, for i = 1, . . . ,n. That is, com-

pute a one-dimensional approximate left kernel of the mosaic
Hankel matrix

H ′ =
[
Hn+1

(
y(1)
)

Hn+1
(
rev(y(1))

)
. . .

. . . Hn+1
(
y(n)
)

Hn+1
(
rev(y(n))

) ]
.

The construction in the second step leverages Lemma 3 and
the fact that for any other couple of trajectories y′,y′′ ∈ B
that enter the mosaic Hankel matrix

[
Hn+1(y′) Hn+1(y′′)

]
y′ and y′′ satisfy the same difference equation.

Lemma 3. If yd is a trajectory of T samples, yd ∈B that is
assumed to be persistently exciting of order n, then any L sam-
ples long trajectory y of B can be written as a linear combi-
nation of the columns of HL(yd) and any linear combination
of these columns is in turn a trajectory of B.

5. SIMULATION RESULTS

Three methods are compared in a numerical example: the
structured-low rank approach of Section 4.1, Kung’s method
of Section 4.2.1, and the modified version of Kung’s method
introduced in Section 4.2.2.

The setup is one of output error identification with a
true system B ∈Mn, and additive zero-mean white Gaus-
sian measurement noise e(t) ∼ N (0,σ2). Let B̄ be the
true model and z̄1, z̄2, . . . , z̄n its poles. The accuracy of an
estimation method is evaluated by the average relative error

1
Nmc

Nmc

∑
k

||θ̄ − θ̂ (k)||
||θ̄ ||

,
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Fig. 1. Kung’s method (green ◦), modified version of
Kung’s method (red ×) and structured low-rank approxima-
tion method (blue ∗). Solid curves correspond to a sinusoidal
component with a frequency on the DFT grid, dashed curves
correspond to an unrestricted frequency.

where θ̄ is the true parameter vector θ̄ ,
[
1 θ̄1 θ̄2 . . . θ̄n

]
with

1+ θ̄1z+ θ̄2z2 + . . .+ θ̄nzn = ∏
n
i=1(z− z̄i), and θ̂ (k) is the pa-

rameter vector of the model B(k) obtained in the k-th out of
Nmc Monte Carlo trials.

The reported results are obtained for a signal with only
k = 1 random sinusoidal component and T = 25 samples of a
random trajectory of that model. The noise-to-signal ratio is
varied from 0 to 0.5, and estimation results (for a given signal
and fixed settings) are averaged over Nmc = 100 Monte Carlo
repetitions. Figure 1 shows the estimation errors of the meth-
ods for two different experiments: one where the true model’s
frequency is restricted to the grid of the discrete Fourier trans-
form, i.e., multiples of 2π/N , and one where the true model’s
frequency is unconstrained, i.e., real numbers between 0 and
2π . The modified version of Kung’s method outperforms the
Kung’s classical method and the structured low-rank approx-
imation method outperforms the modified version of Kung’s
method.

Figure 2 depicts the estimation errors of the the structured
low-rank approximation method with those of a maximum
likelihood estimator that searches for the frequencies ω` by
brute force optimization. It is verified that the solutions co-
incide (up to the convergence tolerance of the optimization
methods) up to noise-to-signal ratio of 1. The results con-
firm that including prior information, here to be understood
as imposing the necessary condition on the location of poles,
improves the accuracy of the estimated parameters.

6. CONCLUSION

We proposed a relaxed structured low-rank approximation
method and a modification of Kung’s method. They ex-
ploit a necessary condition for the model to be a sum-of-
exponentials model: its kernel representation should have
palindromic structure. The palindromic kernel structure

0 0.5 1 1.5

noise-to-signal ratio

0.02

0.04

0.06

0.1

re
la

ti
v
e
 p

a
ra

m
e
te

r 
e
rr

o
r

Fig. 2. Up to a noise-to-signal ratio of 1 the results of
the (brute-force) maximum likelihood method and structured
low-rank approximation method are indistuingishable.

corresponds to time-reversibility of the model. Simulation
results show that even for relatively high noise-to-signal ra-
tios, the necessary condition is in practice also sufficient, i.e.„
the identified models are in fact sum-of-exponentials mod-
els. Imposing constraints on the kernel parameter allows to
enforce other properties on the model, e.g. offset, trend, and
seasonal components. Combining additional constraints with
the time-reversibility property, obtained by a palindromic
kernel structure, is an interesting topic for future research, as
is implementation for complex-valued sum-of-exponentials.
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