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Abstract

Estimating a sum-of-damped-exponentials signal from noisy samples of the signal is a classic signal processing

problem. It can be solved by maximum likelihood as well as suboptimal subspace methods. In this paper, we

consider the related problem of sum-of-exponentials modeling, in which the model is constrained to be undamped.

This constraint is difficult to impose in subspace methods. We develop solution methods using an equivalent for-

mulation of the problem as Hankel matrix low-rank approximation. A necessary condition for the model to have

no damping is that a vector in the kernel of the Hankel matrix has palindromic structure. This condition leads to a

linear equality constraint, which is easy to impose in numerical algorithms. Simulation results show that even for a

relatively high noise-to-signal ratios the necessary condition is in fact also sufficient, i.e., the identified model has

no dumping. Another contribution of the paper is a method for sum-of-exponentials modeling based on circulant

embedding: low-rank approximation of a circulant matrix constructed from the given data. This method imposes

the constraint that the model has no damping plus an addition constraint that the model frequencies are on the

discrete-Fourier transform’s grid.

Keywords: System identification, Sum-of-exponentials modeling, Low-rank approximation, Behavioral ap-

proach, Subspace methods, Circulant embedding.
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1 Introduction

Consider a finite-horizon discrete-time real-valued signal that is a sum of n = 2k complex exponentials and a zero

mean white Gaussian signal

yd(t) = c1 sin(ω1t +φ1)+ · · ·+ ck sin(ωkt +φk)︸ ︷︷ ︸
ȳ(t)

+e(t), for t = 1, . . . ,T. (1)

We call ȳ the "true signal" and e the "noise". The problem considered is to estimate the true signal’s frequencies

ω1, . . . ,ωk from the "noisy signal" yd. Equivalently, we aim to find a sum-of-exponentials model for yd.

Sum-of-exponentials modeling is a basic problem in signal processing (sp-book-stoica; KM81; Modern spec-

tral estimation: Theory and applications). Two main solution approaches are subspace identification (VODM96;

“Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood”) and

maximum likelihood identification (sp-bresler; sp-abatzoglou; “Superresolution by structured matrix approxima-

tion”). In (sp-tufts-structured; slra; Low Rank Approximation: Algorithms, Implementation, Applications), it is

shown that existing identification methods are based on the fact that a Hankel matrix

HL(ȳ) :=



ȳ(1) ȳ(2) · · · ȳ(T −L+1)

ȳ(2) ȳ(3) · · · ȳ(T −L+2)

ȳ(3) ȳ(4) · · · ȳ(T −L+3)
...

...
...

ȳ(L) ȳ(L+1) · · · ȳ(T )


,

constructed from the true signal ȳ has rank at most n. Subspace methods do rank-n approximation of the matrix

HL(yd) constructed from the noisy data yd, using the singular value decomposition, i.e., they perform unstructured

low-rank approximation. Maximum likelihood methods do Hankel structured low-rank approximation of the matrix

HL(yd). Structured low-rank approximation is a nonconvex optimization problem. In general, it does not admit an

analytic solution. Current methods are based on local-optimization, starting from a suboptimal estimate, e.g., one

obtained by a subspace method.

The condition rank
(
HL(ȳ)

)
= n, however, is not equivalent to the condition that ȳ is a sum-of-exponentials signal.

The former imposes that ȳ is a sum of polynomials-times-damped-exponentials, while the latter imposes that the poles

of the model are simple and lie on the unit circle. Existence of polynomial factors of degree more than zero is related

to poles with multiplicity more than one. In modeling from noisy data, this is a nongeneric case, so that it is not

of major concern in practical applications. In contrast, the existence of nonzero damping, however, is generic and

implies that a model identified with only the constraint on the rank of the Hankel matrix is generically not a sum-of-

exponentials model. In addition to the rank constraint, a constraint that the poles are on the unit circle is needed. This

latter constraint, however, is difficult to impose in subspace identification methods as well as in optimization-based
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methods when the model parameters are not the poles themselves.

In this paper, we show how the relaxed constraint that the kernel of the Hankel matrix has a palindromic struc-

ture can effectively constrain the location of the identified poles to the unit circle. The problem of Hankel low-rank

approximation with a palindromic kernel is equivalent to Hankel low-rank approximation with an equality constraint

on the kernel parameter, as well as Hankel-plus-Toeplitz low-rank approximation, and mosaic-Hankel low-rank ap-

proximation. All these formulations, in turn, can be solved by the method of (“Software for weighted structured

low-rank approximation”). Imposing the palindromic structure in the subspace approach is also possible and leads

to the forward-backward linear prediction method (“Estimation of frequencies of multiple sinusoids: Making lin-

ear prediction perform like maximum likelihood”) and a modification of Kung’s method for for sum-of-exponentials

modeling (originally presented in (“A new identification method and model reduction algorithm via singular value

decomposition”) as a method for system realization).

Apart from imposing polynomial structure on the kernel, another approach for sum-of-exponentials modeling ex-

plored in this paper is circulant embedding, i.e., we embed the Hankel matrix in a circulant matrix and do low-rank

approximation of the circulant matrix. The motivation for the circulant embedding approach is that circulant struc-

tured low-rank approximation admits an analytic solution (“Real-valued, low rank, circulant approximation”). When

ωi = πni/T , for some ni ∈ {0,1, . . . ,T}, i.e., the signal frequencies are on the discrete Fourier transform (DFT) grid,

the circulant embedding method leads simultaneously to a low-rank and Hankel-structured approximation of HL(yd).

For noise variance up to a certain (data dependent) threshold, the circulant embedding method recovers the true sig-

nal’s frequencies exactly.

The paper is organized as follows, in Section 2, we define the sum-of-exponentials model as a set of trajectories,

introduce the kernel representation, and define the identification problem. The identification problem is then solved

via three different approaches: maximum likelihood, subspace, and circulant embedding. The maximum likelihood

and subspace methods, presented in Section 3, use the constraint that the parameter in a kernel representation of the

model is palindromic. The circulant embedding method, presented in Section 4, leverages the prior knowledge that

the true signal’s frequencies are on the DFT grid. Simulation examples, illustrating the performance of the methods,

are shown in Section 5.

2 Problem formulation

Denote by Mn the model class of sum-of-exponential models of order (number of exponentials) at most n. Following

the behavioral approach in system theory (Introduction to Mathematical Systems Theory; “The behavioral approach

to open and interconnected systems: Modeling by tearing, zooming, and linking”; Exact and Approximate Modeling

of Linear Systems: A Behavioral Approach), we define a model B ∈Mn as a set of trajectories. The fact that y is a

trajectory of a model B is concisely written as y ∈B.
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A model B ∈Mn can be represented by equations. This leads to different parameterizations of the model. In this

paper, we use three representations and their corresponding model parameters.

1. Sum-of-sines representation

B(ω) = {y | y(t) = c1 sin(ω1t +φ1)+ · · ·+ ck sin(ωkt +φk), for all t, where c,φ ∈ Rk }.

The vector of the frequencies ω = (ω1, . . . ,ωk) ∈ Rk parametrizes the model. The amplitudes c1, . . . ,ck and

phases φ1, . . . ,φk parameterize the trajectories y of the model.

2. Difference equation representation

B(R) = {y | R0y+R1σy+ · · ·+Rnσ
ny = 0},

where σ be the backwards shift operator

(σy)(t) := y(t +1), for all t.

The difference equation representation is defined by a polynomial

R(z) := R0z0 +R1z1 + · · ·+Rnzn.

It is also refered to as a kernel representation because the model B(R) is defined by the kernel kerR(σ) of the

polynomial operator R(σ). The vector of coefficients

R :=
[
R0 R1 · · · Rn

]

is not unique. Indeed, B(R) = B(αR), for any α 6= 0. However, the roots z1, . . . ,zn of R(z) are invariant of the

representation and are called the poles of B. The trajectories y of a model with a kernel representation can be

parameterized by the n "past samples"
(
y(−n+1), . . . ,y(−1),y(0)

)
.

3. State-space representation

B(A,C) = {y | there is x, such that y =Cx,σx = Ax}.
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The model parameters in a state space representation are the matrix A ∈ Rn×n and the vector c ∈ R1×n. They

are not unique due to a change of basis transformation:

B(A,C) = B(VAV−1,cV−1), for all nonsingular V ∈ Rn×n.

The trajectories y of a model with a state space representation B(A,C) are conveniently parameterized by the

initial state vector x(1) ∈ Rn.

The parameters of a model B ∈Mn in the frequencies, kernel, and state space representations are related. Let

i be the imaginary unit. Up to a reordering of the poles, we have that zi = eiωi , for i = 1, . . . ,k and zi = e−iωi , for

i = k+1, . . . ,2k. Also, the eigenvalues of A are equal to the poles of the model.

Under the assumption that the given data is generated from a true model B̄ ∈Mn with additive zero-mean, white,

Gaussian noise, i.e.

yd = ȳ+ e, where ȳ ∈B ∈Mn and e∼ N(0,s2I),

the maximum likelihood estimator B̂ of B̄ is defined by the optimization problem

minimize over ŷ and B̂ ‖yd− ŷ‖ subject to ŷ ∈ B̂ ∈Mn. (2)

Here as well as in the rest of the paper, ‖ · ‖ denotes the Euclidean norm.

3 Methods based on Hankel low-rank approximation with palindromic kernel

A model B = ker R(σ) is a sum-of-exponentials model if and only if the roots of R(z) are simple and are on the unit

circle. The constraint on R(z) that is equivalent to the constraint that its roots are on the unit circle, however, can

not be expressed analytically for polynomials of degree more than four (Abel’s impossibility theorem). In Section

3.1, first, we introduce a simple necessary condition and show its system theoretic meaning. The condition is that

R(z) is palindromic and its meaning is that the trajectories of the model ker R(σ) are time-reversible (“Palindromic

polynomials, time-reversible systems, and conserved quantities”). In Section 3.2, we use the necessary condition in

order to solve a relaxed version of the maximum likelihood problem (2). Finally, in Section 3.3, we use the condition

for deriving subspace identification methods.
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3.1 Palindromic kernel representations and time-reversible systems

A kernel representation of a sum-of-exponentials model has structured parameter R(z). If the model has no offset, i.e.,

ωi 6= 0 (mod 2π), for i = 1, . . . ,k or, equivalently zi 6= 1, for i = 1, . . . ,n, then R(z) is palindromic.

Proposition 1 ((“Palindromic polynomials, time-reversible systems, and conserved quantities”)). Let B ∈Mn and

let kerR(σ) be a kernel representation of B. Assuming that 1 is not a pole of B, R is a palindromic polynomial, i.e.,

Rn−i = Ri, for i = 0,1, . . . ,k.

If the model has an offset, R(z) is anti-palindromic, i.e., Rn−i =−Ri, for i = 0,1, . . . ,k. In the rest of the paper, we

assume that the model has no offset, so that as a necessary condition for sum-of-exponentials modeling, we have that

the parameter R(z) of a kernel representation is palindromic.

The condition that R(z) is palindromic is not sufficient for the poles of the model to be on the unit circle. It is

sufficient for a weaker condition: symmetry with respect to the unit circle, i.e., if z is a pole of the system, then 1/z is

also a pole of the system. In addition, since the signal is real-valued, the poles must be symmetric with respect to the

real axis, i.e., if z is a pole, its complex conjugate z̄ is also a pole. Therefore, the poles of a model B = ker R(σ) with

R(z) palindromic, occur in quadruples (z, z̄,1/z,1/z̄).

Define the time-reversal operator

rev
(
y(1),y(2), . . . ,y(t)

)
:=
(
y(T ),y(T −1), . . . ,y(1)

)
.

The palindromic structure of R(z) implies time-reversibility of the trajectories y of the model B = ker R(σ).

Proposition 2 ((“Palindromic polynomials, time-reversible systems, and conserved quantities”)). Let B = kerR(σ)

with R(z) palindromic. Then, for all y ∈B, revy ∈B.

3.2 Optimization method

Proposition 1 leads to the following relaxation of the maximum likelihood identification problem (2):

minimize over ŷ and R ∈ R1×(n+1) ‖yd− ŷ‖

subject to ŷ ∈B = ker R(σ), R 6= 0, and Ri = Rn−i, for i = 1, . . . ,k.
(3)
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Since a palindromic vector R ∈ R1×(n+1) can be expressed in terms of half of its coefficients:

R =
[
R0 R1 · · · Rk

]
︸ ︷︷ ︸

R′


1 1

. . . . .
.

1


︸ ︷︷ ︸

Ψ

, (4)

the optimization in (3) is actually over the vector R′ ∈ R1×(k+1).

The link between sum-of-exponentials-modeling (3) and low-rank approximation is given by

ŷ ∈B = ker R(σ) ⇐⇒ RHn+1(ŷ) = 0 and R 6= 0. (5)

Using (4) and (5), we obtain the following Hankel structured low-rank approximation problem that is equivalent to (3)

minimize over ŷ and R′ ∈ R1×(k+1) ‖yd− ŷ‖

subject to R′ΨHn+1(ŷ) = 0 and R′ 6= 0.
(6)

This problem can be solved by the variable projection method and software of (varpro; “Software for weighted struc-

tured low-rank approximation”).

function [sys, yh, info] = sem_slra1(y, n, sys_ini)

if exist(’sys_ini’), opt.Rini = poly(eig(sys_ini)); end

s.m = n + 1; I = eye(n / 2 + 1); opt.psi = [I I(:, end-1:-1:1)];

[yh, info] = slra(y, s, n, opt);

sys = ss(tf(1, info.Rh, -1)); sys = ss(sys.a, [], sys.c, [], -1);

function [sys, yh, info] = sem_slra2(y, n, sys_ini)

if exist(’sys_ini’), opt.sys0 = sys_ini; else, opt = []; end

[sys, info, yh] = ident({y(:) flipud(y(:))}, 0, n, opt);

3.3 Subspace methods for sum-of-exponentials modeling

Problem (3) is a nonconvex optimization problem that does not admit an analytic solution. The method of (“Software

for weighted structured low-rank approximation”) is based on local optimization. In this section, we present two other

heuristics for solving problem (3). These methods ignore the Hankel structure, i.e., they do unstructured low-rank ap-

proximation and subsequently estimate the model parameters from the resulting low-rank matrix factorization.

Ignoring the Hankel structure, we can compute a one-dimensional approximate left kernel of ΨHn+1(yd) by the

singular value decomposition. A basis vector R′ then leads to an approximate model with kernel parameter R′Ψ.

Equivalently, the kernel parameter can be computed from the singular value decomposition of the mosaic-Hankel
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matrix

[
Hn+1(yd) Hn+1(rev yd)

]
. (7)

The resulting methods (see Algorithms 1 and 2) are known as forward-backwards linear prediction due to the time-

reversibility of the identified model ker R(σ).

Algorithm 1 Forward-backward linear prediction, version 1
Input: Sequence yd and an even natural number n.

1. Construct the Hankel-plus-Toeplitz matrix H := ΨHn+1(yd).

2. Compute the left singular vector R′ of H, related to the smallest singular value.

3. Define R := R′Ψ.

Output: Parameter R of a kernel representation of the model.

function sys = sem_ker1(y, n)

I = eye(n / 2 + 1); psi = [I I(:, end-1:-1:1)];

r = psi * lra(psi * blkhank(y, n + 1), n);

sys = ss(tf(1, r, -1)); sys = ss(sys.a, [], sys.c, [], -1);

Algorithm 2 Forward-backward linear prediction, version 2
Input: Sequence yd and an even natural number n.

1. Construct the mosaic-Hankel matrix H :=
[
Hn+1(yd) Hn+1(rev yd)

]
.

2. Compute the left singular vector R of H related to the smallest singular value.

Output: Parameter R of a kernel representation of the model.

function sys = sem_ker2(y, n)

r = lra(moshank({y(:) flipud(y(:))}, n + 1), n);

sys = ss(tf(1, r, -1)); sys = ss(sys.a, [], sys.c, [], -1);

Empirical observations show that subspace methods give more accurate estimates of the model parameters when

the number of rows L of the Hankel matrix HL(yd) is chosen, so that HL(yd) is as square as possible. In the forward-

backward linear prediction method, L = n+1, so that with T � n, (7) is a highly skewed rectangular matrix. To avoid

this issue, next, we present a modification of Kung’s method.

Kung’s method (“A new identification method and model reduction algorithm via singular value decomposition”)

is based on realization theory (“Effective construction of linear state-variable models from input/output functions”).
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It splits the identification problem into two steps. For exact data,

1. computation of a rank revealing factorization

HL(yd) = OC , with O ∈ RL×n and C n×(T−L),

where L is a user defined parameter of the method, chosen as a natural number between n+1 and T −n,

2. solution of a system of linear equations OÂ = O, for Â, where O is the matrix O with the first row removed

and O is the matrix O with the last row removed.

The eigenvalues of Â are the poles of the identified system. For noisy data, both Steps 1 and 2 involve approximation.

Step 1 is an approximate rank revealing factorization, computed by a rank-n truncation of the singular value decom-

position, i.e., unstructured low-rank approximation and Step 2 is an approximate solution in the ordinary least-squares

sense. Choosing the parameter L as the nearest integer to T/2 results in as square as possible Hankel matrix HL(yd).

function sys = kung(y, n)

T = length(y); L = round(T / 2);

[r, O] = lra(blkhank(y, L), n);

a = O(1:end-1, :) \ O(2:end, :);

sys = ss(a, [], O(1, :), [], -1);

The modification of Kung’s method for time-reversible systems is:

1. computation of a rank revealing factorization H =OC of the mosaic-Hankel matrix H :=
[
HL(yd) HL(rev yd)

]
,

where L is a user defined parameter of the method, chosen as a natural number between n+1 and T −n,

2. computation of a kernel parameter R ∈ R1×(n+1) of the model using the forward-backwards linear predic-

tion method applied to the set of time series yi :=
(
O1i, . . . ,OLi

)
, for i = 1, . . . ,n, i.e., computation of a one-

dimensional approximate left kernel of the mosaic-Hankel matrix

[
Hn+1(y1) Hn+1(rev y1) · · · Hn+1(yn) Hn+1(rev yn)

]
.
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A basis vector R for the left kernel defines a kernel representation of the identified model. As in the classical Kung’s

method, with noisy data Steps 1 and 2 are performed approximately, using the singular value decomposition and least-

squares approximation, respectively. Choosing the parameter L as the nearest integer to T/2 then tends to improves

the performance of the method.

function sys = sem_kung(y, n)

T = length(y); L = round(T / 2);

[r, O] = lra(moshank({y(:), y(end:-1:1)}, L), n); revO = flipud(O);

H = []; for i = 1:n, H = [H blkhank(O(:, i), n+1) blkhank(revO(:, i), n+1)]; end

r = lra(H, n); sys = ss(tf(1, r, -1)); sys = ss(sys.a, [], sys.c, [], -1);

4 Circulant embedding

Let y =
(
y(1), . . . ,y(T )

)
be a T -samples long discrete-time signal. The circulant matrix defined by y is

T (y) :=


y(1) y(T ) y(T −1) · · · y(2)

y(2) y(1) y(T −2) · · · y(3)
...

. . .
. . .

. . .
...

y(T ) y(T −1) y(T −2) · · · y(1)

 .

function c = y2c(y), c = toeplitz(y, [y(1); vec(y(end:-1:2))]);

Assume that the periodic extension of y on the interval [1,∞)

PE(y) :=
(
y(1), . . . ,y(T ), y(1), . . . ,y(T ), . . .

)

is exact for a model B ∈Mn. It follows then from the linearity and time-invariance properties of B, that the columns

of the circulant matrix T (y) are all T -samples long trajectories of B. Therefore, the rank of T (y) is at most equal to n.

In case of noisy data yd = ȳ+ e, the rank of T (yd) is generically equal to T . The circulant embedding method

does a rank-n approximation of T (yd) by truncation of the singular value decomposition. The resulting approxima-

tion matrix is also circulant. The signal ŷ that approximates the data yd is extracted from the approximation matrix by

selecting its first column.

function y = c2y(c), y = c(:, 1);
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Let M ′
n ⊂Mn be the class of models B ∈Mn, which have frequencies ω̂i, i = 1, . . . ,n of on the DFT grid, i.e.,

ωi ∈
{

0
2π

T
,1

2π

T
, . . . ,(T −1)

2π

T

}
. (8)

Note that M ′
n is a finite set. A model B̂ identified by the circulant embedding method with rank-n specification is

in M ′
n.

Proposition 3. The approximation ŷ obtained by the circulant embedding method with rank-n specification is such

that ŷ ∈ B̂ ∈Mn.

The implication of Proposition 3 is that the approximation ŷ, computed by the circulant embedding method is an

exact trajectory of a model in the model class Mn. Therefore, the parameters of this model can be obtained from ŷ by

a standard exact identification method, e.g., the classical Kung’s method.

The complete circulant embedding method is summarized in Algorithm 3.

Algorithm 3 Circulant embedding method
Input: Sequence yd and an even natural number n.

1. Compute the low-rank approximation Ŷ of the circulant matrix Y = T (yd).

2. Let ŷ be the first column of Ŷ .

3. Compute the model parameters from ŷ, using the classical Kung’s method.

Output: Parameters (A,C) of a state-space representation of the model.

Note 4. Since by construction the signal ŷ computed by the circulant embedding method is exact for a model B̂ in

the model class M ′
n, Step 3 of Algorithm 3 does not involve approximation.

function [sys, yh] = sem_circ(y, n)

c = y2c(y); [r, p, ch] = lra(c, n); yh = c2y(ch); sys = kung(yh, n);

The circulant matrix is diagonalized by the DFT and its eigenvalues are equal to the discrete Fourier coefficients.

This fact, allows us to do fast low-rank approximation of a circulant matrix by using the fast Fourier transform. This

shows that the circulant embedding method is just a formalization of the classical frequency analysis approach for

detection of a periodic signal in noise by looking for peaks in the spectrum.

function [sys, yh] = sem_circ_fast(y, n)

yf = fft(y); [~, I] = sort(abs(yf), 1, ’descend’);

yfh = zeros(size(yf)); yfh(I(1:n)) = yf(I(1:n)); yh = real(ifft(yfh));

sys = kung(yh, n);
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Algorithm 4 Fast circulant embedding method
Input: Sequence yd and an even natural number n.

1. Compute the DFT yf of yd, using the fast Fourier transform.

2. Let ŷf be the signal obtained from yf by setting to zero all but the n largest elements.

3. Compute the inverse DFT ŷ of ŷf.

4. Compute the model parameters from ŷ, using the classical Kung’s method.

Output: Parameters (A,C) of a state-space representation of the model.

5 Simulation examples

In this section, we compare empirically the four methods presented in the paper:

• sem_slra — the relaxed maximum likelihood method of Section 3.2, implemented by the variable projec-

tions method of (“Software for weighted structured low-rank approximation”),

• kung — the classical Kung’s method (“A new identification method and model reduction algorithm via singu-

lar value decomposition”),

• sem_kung — the modified Kung’s method, described in Section 3.3,

• sem_circ — the circulant embedding method, described in Section 4.

Section 5.1 describes the simulation setup and shows the results of a Monte Carlo simulation in two cases:

1. true model’s frequencies are on the DFT grid, and

2. true model’s frequencies are unconstrained.

Section 5.2 verifies empirically that the estimates obtained with the relaxed maximum likelihood estimator (3) coin-

cide with the ones obtained with the true maximum likelihood estimator (2). Finally, Section 5.3 verifies the fact that

the circulant embedding method tends to the maximum likelihood method when the sample size tends to infinity.
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5.1 Simulation setup and comparison of the methods

The simulation setup is as in (1), i.e., output error identification with a true system B̄ ∈Mn and a zero-mean white

Gaussian measurement noise. The noise-to-signal ratio is varied from 0 to 0.5 and the estimation results are averaged

over N = 100 Monte-Carlo repetitions. We consider two experiments: 1) the true signal’s frequencies are on the DFT

grid (8), 2) the true signal’s frequencies are real numbers between 0 and 2π , i.e., they are unrestricted.

Let B̄ be the true model and z̄1, . . . , z̄n its poles. We evaluate the accuracy of the estimated models by the average

relative parameter’s error

1
N

N

∑
k=1

‖θ̄ − θ̂ k‖
‖θ̄‖

,

where θ̄ is the true parameter vector θ̄ :=
[
1 θ̄1 · · · θ̄n

]
with

1+ θ̄1z+ · · ·+ θ̄nzn = Π
n
i=1(z− z̄i),

and θ̂ k is the parameter vector of the model B̂k obtained in the k-th Monte Carlo repetition.

clear all, addpath ../detss

k = 1; n = 2 * k; % number of sines and order of the LTI model

T = 25; N = 100; % number of samples and number of MC repetitions

np = 10; S = linspace(0, 0.5, np); % noise-to-signal ratio

%% generate a random sum-of-sines signal

if 0 % frequencies on the DFT grid

w = 2 * pi * randi(T, 1, k) / T; t = vec(0:T-1);

y0 = sin(w(ones(T, 1), :) .* t(:, ones(1, k))) * rand(k, 1);

sys0 = kung(y0, n);

else

rng(0); sys0 = dr_ms_ss(k); y0 = initial(sys0, rand(1, n), T - 1);

end

r0 = poly(eig(sys0)); R0 = r0(ones(N, 1),:);

%% MC simulation

for j = 1:np

s = S(j); j = j,

for i = 1:N
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yt = randn(T, 1); y = y0 + s * yt / norm(yt) * norm(y0);

sysh1 = sem_circ(y, n); r1(i, :) = poly(eig(sysh1));

sysh2 = sem_kung(y, n); r2(i, :) = poly(eig(sysh2));

sysh3 = sem_slra1(y, n); r3(i, :) = poly(eig(sysh3));

sysh4 = kung(y, n); r4(i, :) = poly(eig(sysh4));

end

res(:, j) = [norm(R0 - r1, ’fro’)

norm(R0 - r2, ’fro’)

norm(R0 - r3, ’fro’)

norm(R0 - r4, ’fro’)] / norm(R0, ’fro’);

end

plot(S, res, ’-o’)

legend(’sem\_circ’, ’sem\_kung’, ’sem\_slra’, ’kung’, ’Location’, ’northwest’)

ylabel(’relative parameter error’), xlabel(’noise-to-signal ratio’)

ax = axis; axis([S(1) S(end) ax(3:4)])

The reported results are for an example with k = 1 random sines and T = 25 samples of a random trajectory of

the model. Figure 1 shows the estimation errors of the methods when the true signal’s frequency is on the DFT grid

and Figure 2 shows the results estimation errors of the methods when the true signal’s frequency are unrestricted. The

results confirm the fact that the more prior knowledge a method uses, the more accurate the estimated parameters are.

In addition, nonlinear optimization of the maximum likelihood cost function (which can also be viewed as using prior

knowledge) improves the suboptimal results of Kung’s and modified Kung’s methods.

clear all, addpath ../detss

k = 1; n = 2 * k; % number of sines and order of the LTI model

T = 25; N = 100; % number of samples and number of MC repetitions

np = 10; S = linspace(0, 1.5, np); % noise-to-signal ratio

%% generate a random sum-of-sines signal

w = 2 * pi * randi(T, 1, k) / T; t = vec(0:T-1);

y0 = sin(w(ones(T, 1), :) .* t(:, ones(1, k))) * rand(k, 1);

sys0 = kung(y0, n); r0 = poly(eig(sys0)); R0 = r0(ones(N, 1),:);

%% MC simulation

for j = 1:np

s = S(j); j = j,

for i = 1:N

yt = randn(T, 1); y = y0 + s * yt / norm(yt) * norm(y0);
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sysh1 = sem_circ(y, n); r1(i, :) = poly(eig(sysh1));

end

res(:, j) = [norm(R0 - r1, ’fro’)] / norm(R0, ’fro’);

end

plot(S, res, ’-o’)

ylabel(’relative parameter error’), xlabel(’noise-to-signal ratio’)

ax = axis; axis([S(1) S(end) ax(3:4)])
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Figure 1: When the true model’s frequencies are on the DFT grid, the circulant embedding method gives exact results

(for as high noise-to-signal ratio as 1). From the other methods, the modified Kung’s method outperforms the classical

Kung’s method and the structured low-rank approximation method outperforms the modified Kung’s method. The

results are consistent with the level of prior knowledge used by the methods: only the circulant embedding method

uses the prior knowledge that the frequencies are on the DFT grid.

5.2 The relaxed maximum likelihood coincides with the maximum likelihood

In the comparison of methods, presented in Section 5.1, we did not include the maximum likelihood method 2. The

reason for this is that up to a certain noise-to-signal level the relaxed maximum likelihood method (3) gives identical

results as the maximum likelihood method. This is verified empirically in this section.

We compute the maximum likelihood estimator (2) by brute-force optimization over the frequencies ω1, . . . ,ωk

(using the function fminsearch from the Optimization Toolbox of MATLAB). The cost function minŷ∈B ‖yd− ŷ‖

evaluation is a linear least-squares problem (computed using the misfit function from (ident)). The resulting

method is implemented in the function sem_ml.

function [sys, yh, M] = sem_ml(y, sys_ini, opt)

if ~exist(’opt’), opt = []; end
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Figure 2: When the true model’s frequencies are unconstrained, the circulant embedding method generically results

in a biased estimate. Since all other methods are unbiased, for small noise-to-signal ratios the circulant embedding

method gives the worst estimates. The performance of the other methods with respect to each other is the same as in

the case when the true model’s frequencies are on the DFT grid.

a_ini = unique(abs(angle(eig(sys_ini))));

a = fminsearch(@(a) cost_fun(a, y), a_ini, opt);

[M, sys, yh] = cost_fun(a, y);

function [M, sys, yh] = cost_fun(a, y)

r = poly(exp(j * [a’ -a’])); sys = ss(tf(1, r, -1));

sys = ss(sys.a, [], sys.c, [], -1); [M, yh] = misfit(y, sys);

For the numerical comparison, we use the same simulation setup as in Section 5.1 with unconstrained true model’s

frequencies. Figure 3 verifies that the solutions obtained by sem_ml and sem_slra coincide (up to the convergence

tolerance of the optimization methods). As initial approximation for the optimization in both cases—maximum like-

lihood and relaxed maximum likelihood—we use the suboptimal solution obtained by sem_kung.

clear all

k = 1; n = 2 * k; % number of sines and order of the LTI model

T = 25; N = 100; % number of samples and number of MC repetitions

np = 10; S = linspace(0, 1.5, np); % noise-to-signal ratio

%% generate a random sum-of-sines signal

rng(0); sys0 = dr_ms_ss(k); y0 = initial(sys0, rand(1, n), T - 1);

r0 = poly(eig(sys0)); R0 = r0(ones(N, 1),:);
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%% MC simulation

for j = 1:np

s = S(j); j = j,

for i = 1:N

yt = randn(T, 1); y = y0 + s * yt / norm(yt) * norm(y0);

sys_ini = sem_kung(y, n);

sysh2 = sem_slra1(y, n, sys_ini); r2(i, :) = poly(eig(sysh2));

sysh1 = sem_ml(y, sysh2); r1(i, :) = poly(eig(sysh1));

end

res(:, j) = [norm(R0 - r1, ’fro’)

norm(R0 - r2, ’fro’)] / norm(R0, ’fro’);

end

plot(S, res, ’-o’)

legend(’sem\_ml’, ’sem\_slra’, ’Location’, ’northwest’)

ylabel(’relative parameter error’), xlabel(’noise-to-signal ratio’)

ax = axis; axis([S(1) S(end) ax(3:4)])
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Figure 3: Up to noise-to-signal ratio 1.2, the maximum likelihood and relaxed maximum likelihood methods give

identical results.

5.3 Accuracy of the circulant embedding method when the sample size tends to infinity

As illustrated by the numerical example in Section 5.1, when the true model’s frequencies are unconstrained, the

circulant embedding method (generically) gives a biased estimate. The reason for the bias is that the estimated fre-

quencies are constraint to be on the DFT grid. The bias is therefore determined by the spacing of the DFT grid. The

spacing of the DFT grid, in turn, is determined by the number of samples T . We verify empirically that as T increases
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the bias of the circulant embedding method decreases. The plot in Figure 4 shows the relative estimation error as a

function of the number of samples for the same simulation setup as in Section 5.1.

clear all

k = 1; n = 2 * k; % number of sines and order of the LTI model

s = 0.25; % fixed noise-to-signal ratio

np = 10; TT = linspace(25, 250, np); % different sample sizes

T = TT(end); N = 100;

rng(0); sys0 = dr_ms_ss(k); y0 = initial(sys0, rand(1, n), T - 1);

r0 = poly(eig(sys0)); R0 = r0(ones(N, 1),:);

%% MC simulation

for j = 1:np

T = TT(j); j = j,

for i = 1:N

yt = randn(T, 1); y = y0(1:T) + s * yt / norm(yt) * norm(y0(1:T));

sysh1 = sem_circ(y, n); r1(i, :) = poly(eig(sysh1));

sysh2 = sem_kung(y, n); r2(i, :) = poly(eig(sysh2));

sysh3 = sem_slra1(y, n, sysh2); r3(i, :) = poly(eig(sysh3));

sysh4 = kung(y, n); r4(i, :) = poly(eig(sysh4));

end

res(:, j) = [norm(R0 - r1, ’fro’)

norm(R0 - r2, ’fro’)

norm(R0 - r3, ’fro’)

norm(R0 - r4, ’fro’)] / norm(R0, ’fro’);

end

plot(TT, res, ’-o’)

legend(’sem\_circ’, ’sem\_kung’, ’sem\_slra’, ’kung’, ’Location’, ’northeast’)

ylabel(’relative parameter error’), xlabel(’number of samples’)

ax = axis; axis([TT(1) TT(end) ax(3:4)])

6 Conclusions

We developed a relaxed maximum likelihood method, a modification of Kung’s method, and a circulant embed-

ding method for sum-of-exponentials modeling. The relaxed maximum likelihood and modified Kung’s methods

exploit a necessary condition for the model to be a sum-of-exponentials model: its kernel representation should have

palindromic structure. The palindromic kernel structure corresponds to time-reversibility of the identified model.
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Figure 4: The relative estimation error of all methods decreases as the number of samples increases. For sem_circ,

this is due to the decreased spacing of the DFT grid.

Simulation results show that for as high noise-to-signal ratios as 1, the necessary condition is also sufficient, i.e., the

identified models by the methods are in fact sum-of-exponentials models.

The circulant embedding method does a low-rank approximation of a circulant matrix, which results in a circulant

low-rank approximation matrix. This method is closely related to the classical Fourier spectral analysis and can be

implemented by the fast Fourier transform. The circulant embedding method, however, imposes the constraint that

the frequencies of the identified model are on the DFT grid. When the true model’s frequencies are not on the DFT

grid, the circulant embedding method results in a biased estimate.

Imposing constraints on the kernel parameter of the model allows us to enforce other properties on the model, e.g.,

offset, trend, and seasonal components. Combining these additional constraint with the time-reversibility property,

obtained by palindromic kernel structure, is an interesting topic for future research.
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