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Comparison of adaptive and model-free methods

for dynamic measurement

Ivan Markovsky

Abstract—Dynamic measurement aims to improve the speed
and accuracy characteristics of measurement devices by signal
processing. State-of-the-art dynamic measurement methods are
model-based adaptive methods, i.e., 1) they estimate model
parameters in real-time and 2) based on the identified model
perform model-based signal processing. The proposed model-
free method belongs to the class of the subspace identification
methods. It computes directly the quantity of interest without an
explicit parameter estimation. This allows efficient computation
as well as applicability to general high order multivariable
processes.

Index Terms—subspace methods, total least squares, adaptive
filtering, model-free signal processing.

I. INTRODUCTION

Dynamic measurement aims to improve the speed and

accuracy characteristics of measurement devices by real-time

signal processing. A well known special case of dynamic

measurement, used in this paper as an illustrative example,

is the dynamic weighing problem [2]. We formalize dynamic

measurement as an input estimation problem for a dynamical

system with step input and use ideas from subspace identifica-

tion in order to solve it. In our problem formulation, the step

level is the unknown (to-be-measured) quantity, the output is

the known (measured) quantity, and the input-output relation

represents the dynamics of the measurement process.

Two situations are distinguished: known dynamics and

unknown dynamics of the measurement process. The case

of known dynamics is often unrealistic. For example, in the

dynamic weighing problem, the process dynamics depends

on the to-be-measured variable (see Section V-B), so that it

is unknown a priori. In this paper, we consider the case of

unknown measurement process dynamics.

Approaches based on adaptive filtering, system identifica-

tion, neural networks, etc. are proposed in the literature for

solving the dynamic weighing problem. A good introduction

to the subject and overview of approaches is given in [7].

The approach based on adaptive filtering offers state-of-the-art

methods for dynamic weighing, however, these methods tend

to be computationally more expensive than simpler methods

based on linear time-invariant compensation. In this paper, we

compare the model-free method, presented in Section IV with

the adaptive filtering algorithm of [9].

Adaptive filters estimate the measurement process dynamics

as well as the quantity of interest. Note that although the

measurement process dynamics is not needed, it is estimated

by the adaptive filter as a by product. An attractive feature of

the model-free approach is that parameter estimation of the
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measurement process dynamics is not required. Such methods

are known as model-free or data-driven [6], [5], [4]. Apart

from the above mentioned conceptual difference, an advantage

of the model-free algorithm for dynamic measurement over

the existing ones is that it is applicable to general high-order

multivariable measurement processes.

II. PROBLEM FORMULATION

The general problem considered is defined as follows.

Problem 1. Given p-dimensional vector output observations

y =
(
y(1), . . . ,y(T )

)
, y(t) ∈ R

p

of a stable linear time-invariant system with known dc-

gain G ∈ R
p×m, generated by step input u = ūs, where s is

the unit step function s(t) = 1 if t ≥ 0 and s(t) = 0 otherwise,

find the input step value ū ∈ R
m.

In steady-state, the output of the device is equal to

y(∞) = ȳ := Gū.

In order to be able to determine uniquely the value of interest ū

from ȳ, the dc-gain matrix G must be known and must have a

left inverse. A necessary and sufficient condition for existence

of a left inverse of G is that G has full column rank, i.e., the

following condition must be satisfied

rank(G) = m. (A)

Assuming that (A) is satisfied, and choosing the least-

squares left inverse G+
ls = (G⊤G)−1G⊤, of G, we obtain

an unbiased estimator û := G+
ls y, which we call the “naive

estimator”. The naive estimator is a static correction, which

uses only knowledge of the dc-gain.

If properly designed, dynamic compensators can signifi-

cantly outperform the naive estimator. Due to the unknown

process dynamics, however, the dynamic compensators are

adaptive systems: they perform on-line process identification

and model based design. The model-free approach bypasses

the parameter identification and compensator design steps and

derives directly the quantity of interest—the estimate of the

measured variable—by processing y.

III. NOTATION AND PRELIMINARIES

The model-free method for dynamic measurement is based

on properties of the class of dynamical systems considered:

responses of linear time-invariant systems to step inputs. First,

we introduce the notation used in the paper and then state the

properties used in the derivation of the algorithm.
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A. Notation

A dynamical system is defined by the set B of its trajec-

tories. The statement “w is a trajectory of the system B” is

concisely written as “w ∈B”. The system under consideration

has an input-output partitioning w = (u,y), i.e., the first com-

ponents of the trajectory are inputs and the remaining ones

are outputs. The set of functions from R to R
q is denoted

by (Rq)R. The restriction of w ∈ (Rq)R on the set T ⊂ R is

denoted by w|T and, similarly, the restriction of B ⊂ (Rq)R

on T is denoted by B|T .

Linear time-invariant systems B admit an input-state-output

representation

B = Bss(A,B,C,D) := {w = (u,y) | there is x, such that

d

dt
x = Ax+Bu, y =Cx+Du in continuous-time or

σx = Ax+Bu, y =Cx+Du in discrete-time},

where

(σ τ y)(t) := y(t + τ), for all t.

A state space representation of an autonomous linear time-

invariant system B is denoted by Bss(A,C).

B. Behavior of a system with step input

Let the unknown measurement process dynamics B be a

linear time-invariant system of order n with m inputs and p

outputs. We define the behavior Bs of the outputs of B,

generated by step inputs, i.e.,

Bs := {y | (ūs,y) ∈ B, for some ū ∈ R
m }.

It can be shown that Bs is a linear time-invariant autonomous

system of order n+m. Moreover, m poles of Bs are at zero, in

the continuous-time case, or at one, in the discrete-time case,

i.e.,

Bs = B
′
s + ȳs,

for a vector ȳ ∈ R
p and a system B′

s, which is autonomous

linear time-invariant of order n.

Define the unit difference operator

∆ := (1−σ−1).

The behavior ∆Bs is linear time-invariant autonomous of

order n and

Bs = ∆Bs + ȳs, for some ȳ ∈ R
p.

Therefore, for any y ∈ Bs that corresponds to a step input ūs,

we have

y = ȳs+∆y, where ȳ = Gū and ∆y ∈ ∆Bs. (1)

IV. MODEL-FREE ALGORITHM

Assume that an upper bound nmax for the order n of ∆Bs

is known and consider the block-Hankel matrix

H (∆y) :=




∆y(1) ∆y(2) · · · ∆y(nmax)
∆y(2) ∆y(3) · · · ∆y(nmax + 1)

∆y(3) . .
. ...

...
...

∆y(T −nmax) · · · · · · ∆y(T )



,

with nmax columns, constructed from ∆y. Since the observed

output y is exact and the order of the system ∆B is n, we

have that image
(
H (∆y)

)
⊆ ∆B|[1,...,T−nmax] and

rank
(
H (∆y)

)
≤ n. (2)

Assuming that equality holds in (2) (persistency of excitation

of ∆y, see [10]), we have that

image
(
H (∆y)

)
= ∆B|[1,...,T−nmax].

Then, using (1), we obtain the system of linear equations






G
...
G


 H (∆y)



[

ū

ℓ

]
=




y(nmax + 1)
...

y(T )


 . (3)

ℓ := ⌈n/p⌉, where ⌈·⌉ denotes rounding to the nearest bigger

integer. The matrix in the left-hand-side and the right-hand-

side of (3) depend on the given output data y and the dc-gain G

only. Therefore, the quantity of interest ū can be computed

directly from the data by solving (3). The resulting model-

free method is summarized in Algorithm 1.

Algorithm 1 Model-free method for dynamic measurement.

Input: y ∈ (Rp)T , G ∈ R
p×m, and natural number nmax.

1: Compute the difference signal ∆y.

2: Solve the system of linear equations (3).

Output: ū.

Under the generic assumption (A), given

T ≥ nmax +m (4)

exact output samples, Algorithm 1 computes the exact input

step value ū. (Condition (4) ensures that system (3) has at least

as many unknowns as equations.)

In the case of noisy data, the system (3) generically has

no solution. A heuristic modification of Algorithm 1 for the

noisy case is to replace the exact solution on step 2 with the

least squares approximation. The resulting estimation method

is unbiased, however, it is not statistically efficient. An efficient

maximum likelihood method for known process dynamics is

the Kalman filter. To the best of our knowledge, there are

no maximum likelihood methods for dynamic measurement

proposed in the literature for the case of unknown process

dynamics.

A recursive version of Algorithm 1 is obtained by using

a recursive method for solution of the system of linear

equation (3). Details for an on-line implementation, using the

recursive least squares algorithm, are given in the appendix.

The computational cost for updating the estimate with a new

measurement is O
(
(m+ n)2

p
)
, which is similar to the one of

dynamic measurement with a fixed compensator of order n.

In the next section, the on-line model-free estimation

method is tested empirically. Matlab software reproducing the

reported results is available from

http://homepages.vub.ac.be/~imarkovs/

publications/sensor-ieee-code.tar

The results show that the model-free algorithm is effective in

solving dynamic weighing problems.
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V. EXAMPLES

A. Simulation setup

In the simulations, we use the output error model

y = y0 + ỹ, (5)

where the exact output y0 =
(
y0(1), . . . ,y0(T )

)
is a uniformly

sampled output trajectory of a continuous-time system B =
Bss(A,B,C,D), obtained with step input ū0s and initial condi-

tion xini. The measurement noise ỹ is white Gaussian process

and the sampling rate is chosen, so that sufficiently many

output samples are collected during the observed transient

process.

The adaptive and model-free methods are applied on the

data y and the corresponding estimates are plotted. In addition,

we show the result of the naive estimator û := G+
ls y. The

convention used in the figures to denote the different estimates

is as follows:

• naive estimator — dotted line,

• recursive model-free algorithm — dashed line,

• adaptive filter of [9] — dashed-dotted line.

The true parameter value ū is denoted by dashed line and the

true output trajectory y0 by a solid line.

In all experiments, the results for a specific noise realization

are presented along with the average estimation errors

e =
1

N

N

∑
i=1

‖ū− û(i)‖1,

where ‖·‖1 is the 1-norm and û(i)(t) is the estimate of ū, using

the data up to time t in an ith Monte Carlo repetition.

B. Dynamic weighing

We use the dynamic weighing problem for the empirical

comparison of the methods, because it is an important and well

studied special case of the dynamic measurement problem. In

addition, the adaptive method of [9] is designed and optimized

for this problem. Application of adaptive filtering methods

to other dynamic measurement problems would require a

nontrivial modification of the methods and is outside the scope

of this paper.

The setup of the problem is as follows: an object with

mass M is placed on a platform with mass m. The platform

is modeled as a mass, spring, damper system and its vertical

deviation from the equilibrium point is the measured signal y.

The dynamical response of the weighing system starts from

a certain (in general nonzero) initial condition. Note that by

placing the object on the platform results in a step change of

the total mass parameter, as well as a step input to the system.

The measurement process dynamics is governed by the

differential equation

(M+m)
d2

dt2
y =−ky− d

d

d t
y−Mg,

where g is the gravitational constant, k is the elasticity, and

d is the damping. Choosing the state vector as position and

velocity and taking as an input u0 = Ms, we obtain a state

space model B(A,b,c,0) of the weighting process with the

following parameters

A =

[
0 1
k

M+m
d

M+m

]
, b =

[
0

− g
M+m

]
, c =

[
1 0

]
.

The performance of the recursive model-free algorithm

is compared on test examples with the performance of the

adaptive filtering method of [9]. Following the empirical

observations in Section III of [9] about the algorithm’s speed

of convergence, we use the “simple data vector (11–2)” and

pre-filter the data by a low-pass filter. Apart from the low-

pass filter the adaptive algorithm requires specification of the

initial conditions—the past values of y, the initial parameter

vector θ (0), and the initial covariance matrix P(0). These

parameters are not specified in [9] and their choice affects

the performance of the method. In the simulation examples,

reported in this paper, we set y(−1)= y(0)= 0 and assign θ (0)
and P(0) to the batch solution of the estimation problem for the

first three data points y(1),y(2),y(3). The same initialization

is used for the recursive model-free algorithm, see (6).

Numerical results with object’s masses 1, 10, and 100 are

shown in Figures 1–3, respectively. They indicate that, on the

average, the model-free method achieves better performance.

Note, however, that neither the model-free nor the adaptive

method are statistically optimal. Therefore, the question of

computation of the limit of performance as well as design

of improved computational methods remains open. For on-

line implementation the computational cost (efficiency) is an

important limiting factor that should be taken into account. In

this respect, the proposed model-free method achieves good

statistical accuracy vs computational efficiently trade-off.

VI. CONCLUSIONS AND FUTURE WORKS

A new method for speeding up measurement processes with

slow dynamics was developed. Knowledge of the process

dynamics is not required and the process dynamics is not

explicitly identified. The method is applicable to general high-

order multivariable linear time-invariant processes. Recursive

implementation of the method, based on ordinary least squares

approximation, has computational complexity per time step,

comparable with the one of linear time-invariant compensation

with precomputed filter gain and performance that is compara-

ble to the one of the adaptive filtering methods. The recursive

least squares method, however, is suboptimal in the output

error setup. Future work aims at modification of the method

to make it optimal (maximum-likelihood) in the output error

case and generalization of the algorithm to estimation under

different noise assumptions.
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Fig. 1. Simulation 1: M = 1
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Fig. 3. Simulation 3: M = 100

APPENDIX

The implementation of Algorithm 1 requires only solution

of the system of linear equations (3). In the case of noisy data,

the ordinary least squares approximation is used instead. Each

data point y(t) corresponds to p equations. The recursive least

squares algorithm, updates the solution available on the current

iteration by a new data point solution. In order to simplify the

notation, let Ax ≈ b, where A ∈ R
m×n, be the system (3). Let

a(i) = ai,: be the ith row of A, A1:i,: the submatrix of A formed

by the first i rows, b(i) := bi, and b1:i the subvector of b formed

by the first i elements. An algorithm (see, [3, Lemma 2.6.1 and

Problem 2.6]) for computing the (exponentially weighted) least

squares approximate solutions x(n), . . . ,x(m) of the sequence

of problems A1:i,:x(i)≈ b1:i, for i = n, . . . ,m is

K :=
1

λ
Pa⊤

(
1+

1

λ
aPa⊤

)−1

σx = x+K(b− ax), x(0) = xini

σP =
1

λ

(
P−KaP

)
, P(0) = Pini.

The forgetting factor λ ∈ (0,1] specifies an exponential

weighting λ iri of the residual r := Ax−b in the least squares

approximation criterion. The algorithm is initialized with the

solution of the system formed by the first n equations

xini := A−1
1:n,:b1:n, Pini := (A⊤

1:n,:A1:n,:)
−1. (6)
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[7] M. Niedźwiecki and A. Wasilewski. Application of adaptive filtering to
dynamic weighing of vehicles. Contr. Eng. Practice, 4:635–644, 1996.

[8] J.-M. Papy, L. De Lathauwer, and S. Van Huffel. A shift invariance-
based order-selection technique for exponential data modelling. IEEE

Signal Proc. Lett., 14(7):473–476, 2007.
[9] W.-Q. Shu. Dynamic weighing under nonzero initial conditions. IEEE

Trans. Instrumentation Measurement, 42(4):806–811, 1993.
[10] J. C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor. A note on

persistency of excitation. Control Lett., 54(4):325–329, 2005.


