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Chapter 1

Dynamic measurement
Ivan Markovsky1

In metrology, a given measurement technique has fundamental speed and accuracy
limitations imposed by physical laws. Data processing allows us to overcome these
limitations by using prior knowledge about the sensor dynamics. The prior knowl-
edge considered in this paper is a model class to which the sensor dynamics belongs.
We present methods that are applicable to linear time-invariant processes and are
suitable for real-time implementation on a digital signal processor. The uncertainty
of the estimates are quantified by their covariance matrices.

1.1 Introduction

The accuracy of measurement devices is reduced by measurement noise and transient
response. The transient response of the measurement device decays exponentially,
so that measuring longer has the effect of (eventually) reducing this source of error.
Measuring longer also yields more data, which when used effectively reduces the
error due to the measurement noise. The objective, however, is to achieve faster as
well as more accurate measurement: there is a trade-off between speed and accuracy
determined by the physical properties of the measurement device.

Our goal is to design methods that bring the performance of the measurement
device to the theoretically optimal one. To do this, we take into account the dynami-
cal properties of the sensor and reduce the measurement time needed for a specified
measurement accuracy. Instead of waiting for the sensor’s natural transient response
to die out, the methods proposed predict the steady state value. The prediction is
possible thanks to the assumption that the sensor is a low-order linear time-invariant
system. At the same time as reducing the effect of the transient, the methods take
into account the measurement noise, reducing also its effect.

How realistic is the low-order linear time-invariance assumption? The answer
depends on the application. For example, in temperature and mass measurement the
assumptions are satisfied. In more complicated measurement processes, such as the
ones in bio-chemical reactors, they are not.
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The sub-field of metrology that takes into account the dynamical properties of
the measurement devices is called dynamic measurement. A system theoretic way
of viewing the dynamic measurements problem is as a problem of designing a com-
pensator that reduces the transient process of the sensor. Then, the procedure is: 1)
design off-line a dynamical system—the compensator—so that the series connection
of the measurement process with the compensator behaves as close as possible to a
static gain, 2) process on-line the measurements of the sensor by the compensator.

Note 1 (Link to deadbeat control). The question of making the transient response as
short as possible occurs also in control. It turns out that a reachable discrete-time
system can be steered to a steady-state in a finite number of samples. Moreover, the
number of samples is less than or equal to the order of the system. The corresponding
control is called deadbeat. The equivalent of the reference signal in control is the
measured value in metrology and the equivalent of the controller is a compensator
that implements the prediction method.

Despite the apparent similarity between deadbeat control and dynamic mea-
surement, however, there are important differences: 1) the reference signal is known,
while the measured value is not, 2) the controller is typically implemented in feed-
back, while the compensator can be applied only in open-loop, 3) in control, the
plant’s dynamics is typically assumed known, while in metrology it is often unknown.
These differences suggest that if deadbeat control methods are used in metrology,
they have to be open-loop and adaptive.

Literature review
Most authors assume that a linear time-invariant model of the measurement process
is a priori given. In this case, the problem of designing a compensator reduces to
the classical problem of designing an inverse system [1]. In the presence of noise,
however, compensators that take into account the noise are needed. A theoretically
optimal solution in the case of Gaussian noise is given in [2]. It is shown that in this
case, the problem reduces to a state estimation problem for a suitably defined au-
tonomous linear time-invariant system. As a consequence the maximum likelihood
solution is given by the Kalman filter.

The design problem is more complicated in the case of unknown measurement
process dynamics. In this case, adaptive filtering methods are used [3, 4], i.e., the
compensator is tuned on-line by a parameter estimation algorithm. The solutions
proposed in [3, 4], however, are tailored to the mass measurement problem, which is
a second order process.

In this paper, we present two methods that bypass the real-time model identi-
fication step done in adaptive filtering methods. The first method is a maximum-
likelihood method that requires nonconvex optimization. The second one belongs to
the class of the subspace methods [5] and is computationally simple to implement,
however, it is not statistically optimal in the maximum-likelihood sense.
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1.2 Problem setup

The sensor is a dynamical system with input the unknown to-be-measured value and
output the sensor’s reading, corrupted by additive noise. We assume that

1. the sensor dynamics is linear time-invariant;
2. the order n is known;
3. the input u is a step function u = ūs, where ū is the to-be-measured value;
4. the measurement noise is zero mean, white, Gaussian, with variance σ2; and
5. in steady-state, ū can be determined from y.

The linear time-invariance assumption, is essential for the methods considered. The
know order assumption can be relaxed. Order selection can be done, for example,
by the methods presented in [6]. The assumption that the input is a step function
implies that after an initial moment of time (start of the measurement process), the
to-be-measured value is constant. This is a common assumption in metrology that is
satisfied in many practical situations due to a “short” measurement time and the fact
that the measurement process does not affect “significantly” the environment. The
assumption that the output is corrupted by additive noise that is zero mean, white,
Gaussian (output error setup) is appropriate for applications in metrology, where the
mismatch between the observed data and the model is due to measurement noise
rather than process noise and model uncertainty. Finally, assumption 5. implies that
the DC-gain G of the sensor is known. The known DC-gain assumption means in
practice that the sensor is calibrated.

Under the assumption that the input is a step function, the corresponding output
is of the form

yd = y+ e = Gū+ y0 + e. (1.1)

Here yd is the observed noisy output, y is the noise-free output signal, e is the mea-
surement noise,

Gū is the steady-state value of y, and
y0 is the transient response of the sensor that we aim to eliminate by the compen-

sator.

The assumption that the process is linear time-invariant implies that there are matri-
ces A ∈ Rn×n, c ∈ R1×n, and a vector x0 ∈ Rn, such that

x(t +1) = Ax(t), x(0) = x0

y0(t) = cx(t).
(1.2)

Therefore, the sensor’s output is given by
yd(1)
yd(2)
...

yd(T )


︸ ︷︷ ︸

yd

=


G
G
...
G


︸︷︷︸

G

ū+


c

cA
...

cAT−1


︸ ︷︷ ︸

O

x0 +


e(1)
e(2)
...

e(T )


︸ ︷︷ ︸

e

. (1.3)
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1.3 Model-based vs data-driven approaches

The model-based estimation procedure requires solving approximately the over de-
termined system of equations[

G O
][ û

x̂0

]
≈ yd.

Under assumption 4., the maximum-likelihood estimator for ū in (1.3) is defined by
the standard least-squares problem

minimize over ŷ, û, x̂0 ‖yd− ŷ‖

subject to
[
G O

][ û
x̂0

]
= ŷ,

(1.4)

where ‖ · ‖ is the 2-norm. Correspondingly, cov(û) = σ2V11, where

V =
([

G O
]> [

G O
])−1

.

The covariance matrix of û does not depend on the data yd. However, it depends on
the noise variance σ2, which affects the data. If σ2 is unknown, it can be estimated as

σ̂
2 =

1
T

∥∥∥yd−
[
G O

]> [ û
x̂0

]∥∥∥2
.

The matrix O depends on the model parameters A and c, so that the dynamic
measurement method based on (1.4) requires a priori given model. The data-driven
model-free approach considered next is based on the observation that, in the noise
free case, under an additional assumption (persistency of excitation), the matrix O
can be replaced by a matrix that depends on the observed data only.

The difference signal

∆y(t) := y(t)− y(t−1) = y0(t)− y0(t−1)

satisfies the same dynamics as y0, i.e., there is an initial condition ∆x ∈Rn, such that

x(t +1) = Ax(t), x(0) = ∆x

∆y(t) = cx(t).

Let

H (∆y) :=


∆y(1) ∆y(2) · · · ∆y(n)
∆y(2) ∆y(3) · · · ∆y(n+1)
∆y(3) ∆y(4) · · · ∆y(n+2)

...
...

...
∆y(T −n) ∆y(T −n) · · · ∆y(T −1)

 , (1.5)

be the Hankel matrix with n columns, constructed from ∆y and let

y|t :=
[
y(1) · · · y(t)

]>
.



“sensor-uncer” — 2018/4/11 — 14:26 — page 5 — #5

Dynamic measurement 5

Under the assumption that ∆y is persistently exciting of order n [7], we have that

image




c
cA
...

cAT−n−1


= image

(
H (∆y)

)
.

Therefore, for noise free data, there is a vector ` ∈ Rn, such that[
G H (∆y)

][ū
`

]
= y|T−n. (1.6)

As long as (1, . . . ,1) 6∈ image
(
H (∆y)

)
, the solution of (1.6) is unique. Therefore,

solving (1.2) allows us to estimate ū directly from the observed exact data y (without
knowing the model).

With noisy data yd, the data-driven estimation procedure aims at an approximate
solution of the system of equations[

G H (∆yd)
][û

`

]
≈ yd|T−n. (1.7)

The noise e affects both the left-hand-side of (1.7) (through ∆yd) as well as the right-
hand-side of (1.7) (through yd), i.e., solving (1.7) is a total least squares problem [8].
Moreover, ∆yd enters in a structured way in the left-hand-side of the equation, so
that the maximum-likelihood estimator for the parameter ū is the structured total
least-squares problem

minimize over ŷ, û, x̂0 ‖yd− ŷ‖

subject to
[
G H (∆ŷ)

][û̂̀]= ŷ|T−n.
(1.8)

The uncertainty cov(û) of the estimate û is given by the the Jacobian matrix and the
optimal value of the cost function [9]. The Jacobian matrix and the cost function
value are computed as byproducts of the local optimization solution method [10].

1.4 Maximum-likelihood data-driven estimation method

As shown in Section 1.3, the maximum-likelihood model based estimation problem
(1.4) is an ordinary least squares problem. A special feature of the problem however
is the “shift structure” of the matrix

[
G O

]
. Taking into account this structure in

an efficient real-time algorithm leads to the Kalman filter [11].
The maximum-likelihood model based estimation problem (1.8) is a nonconvex

optimization problem. Existing solution methods [8, 12] use local optimization al-
gorithms. Such algorithms require an initial approximation and are susceptible to
convergence to a local minimum.

The initial approximation for the local optimization method can be computed
by a convex relaxation of (1.8). This yields a method that is of independent interest.
One approach of “convexifying” the problem is to ignore the structure of the matrix
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G H (∆ŷ)

]
, which turns the structured total least squares problem into an ordinary

total linear squares problem. The latter admits an analytical solution in terms of
the singular value decomposition. Moreover, there are algorithms that recursively
update the singular value decomposition [13, 14]. These algorithms allows real-time
implementation of the data-driven input estimation method.

Another approach of relaxing the structured total least squares problem (1.8) is
to substitute the optimization variable ŷ in

[
G H (∆ŷ)

]
with the observed data yd,

which results in an ordinary least squares problem (similar to the maximum-likelihood
model based estimation problem (1.4)). This solution approach leads to the subspace
method of [2, 15].

Independent of the approach being used to compute the initial approximation,
the initial estimate can be improved by local optimization. The methods developed
in [16, 17] can be used for this purpose, however, they operate off-line. Development
of recursive methods, suitable for online solution of the maximum-likelihood model
based estimation problem (1.8) is a topic of current research.

1.5 Examples

As an illustration of the methods presented in the paper, we consider temperature
and mass measurement, where the process dynamics is linear time-invariant first and
second order, respectively. The data is simulated and the methods are implemented
in Matlab. We show the actual code used to generate the numerical results in a literate
programming style [18], using the no-web syntax [19] and the org-babel system [20].
This makes the results reproducible in the sense of [21]. The code is available from

http://homepages.vub.ac.be/∼imarkovs/software/sensor-uncer.tar

Methods and evaluation criterion
The methods compared are:

• yd/G — the estimate obtained directly from the scaled raw measurements,
• stepid kf — model-based maximum-likelihood method, solving (1.4) using

the Kalman filter [2],
• stepid ml — data-driven maximum-likelihood method, solving (1.8) using

the SLRA package [17],
• stepid dd— data-driven subspace method, using recursive least squares [15].

The estimates are computed for ne repetitions of the experiment with indepen-
dent noise realizations (Monte-Carlo simulation):
% mc simulation
ne = 1000;
G = dcgain(sys);
[a, b, c, d] = ssdata(sys);
n = size(sys, ’order’);
for i = 1:ne

<<noisy-output>>
uh_nv(:, i) = yd / G;
[uh_dd(:, i), V_dd] = stepid_dd(yd, G, n);
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[uh_ml(i), V_ml] = stepid_ml(yd, G, n);
[uh_kf(:, i), V_kf] = stepid_kf(yd, a, b, c, d, sigmaˆ2);

end

Let ûk be the estimate computed in the k-th repetitions of the experiment. The results
reported are the empirical bias 1

ne ∑
ne
k=1 ū− ûk, the empirical variance 1

ne ∑
ne
k=1(ū− ûk)2,

and the theoretically computed variance by the methods.
% show results
[mean(ub - uh_nv(T, :)) var(uh_nv(T, :)) sigmaˆ2
mean(ub - uh_dd(T, :)) var(uh_dd(T, :)) sigmaˆ2 * V_dd
mean(ub - uh_ml(:)) var(uh_ml(:)) sigmaˆ2 * V_ml
mean(ub - uh_kf(T, :)) var(uh_kf(T, :)) V_kf ]

Example of temperature measurement
The setup of the temperature measurement problem is as follows. A thermometer is
placed in an environment with temperature ū. The measured temperature y satisfies
the Newton’s law of cooling

d
d t

y = a
(
y− ū

)
. (1.9)

Here a is a negative constant that depends on the thermometer and the environment.
The differential equation (1.9) defines a first order linear time-invariant system with
input the environmental temperature ū and output the thermometer’s reading y. The
system is described by an input/state/output model

d
d t

x = Ax+Bu, y =Cx+Dx,

where

A =−a, B = a, C = 1, and D = 0.
% temperature measurement process parameters
a = 0.4; A = -a; B = a; C = 1; D = 0;

The input is a step function u = ūs and the initial condition is x(0) = xini

ub = 1; xini = 0.1;

The continuous-time model is discretized using the input zero-order hold method
with a sampling period =ts=. The data

yd =
(
yd(1), . . . ,yd(T )

)
is generated in the output-error setup, using the discrete-time model and zero-mean,
white, Gaussian noise with noise-to-signal ratio s
ts = 0.4; T = 10; s = 0.02;

% true system and true output
sys = c2d(ss(A, B, C, D), ts);
u = ub * ones(T, 1);
y = lsim(sys, u, [], xini);

% noisy output
yt = randn(T, 1);
sigma = s * norm(y) / norm(yt);
yd = y + sigma * yt;
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Example of mass measurement
The setup of the mass measurement problem is as follows. An object with mass M
is placed on a scale with mass m. At the time of placing the object, the scale is in a
specified (in general nonzero) initial condition. The object placement has the effect
of a step input as well as a step change of the total mass of the system—scale and
object. The sensor is the scale. It is modeled as a mass, spring, damper system

(M+m)
d2

dt2 y =−ky−d
d
d t

y−Mg, (1.10)

where y is the scale’s reading, g is the gravitational constant, k is the elasticity con-
stant, and d is the damping constant. In this case, the sensor is a second order linear
time-invariant dynamical system with input the measured mass M.
% mass measurement process parameters
m = 1; M = 5; k = 1; d = 1; g = 9.81;
A = [0, 1; -k / (m + M), -d / (m + M)];
B = [0; -g / (m + M)]; C = [1, 0]; D = 0;
T = 50; ts = 1; s = 0.05; ub = M; xini = 0.1 * [1; 1];

Results
From theoretical considerations—use of prior knowledge about the true data generat-
ing system and the optimal vs suboptimal nature of the methods—we expect that the
model-based maximum likelihood estimation method stepid kf achieves the best
performance (smallest bias and variance); the data-driven maximum likelihood esti-
mation method stepid ml, the second best; and the data-driven subspace method
stepid dd has the worst performance of the three methods, which, however is still
better than the one of the naive estimator yd / G. This conjecture is confirmed by
the simulation results shown in Table 1.1 for the temperature measurement setup and
Table 1.2 for the mass measurement setup.

The theoretical variance of the estimators is based on asymptotic results that are
not satisfied in the present measurement setups (transient response with T = 10 and
T = 50 samples respectively). Moreover, the theoretical variance of the stepid dd
estimator is based on results for the ordinary least squares method, i.e.classical re-
gression, while the actual setup in the application of dynamic measurements leads a
structured total least squares problem, i.e., errors-in-variables regression. These con-
siderations put doubt on how useful the theoretical variance formulas will be in prac-
tice. The simulation results, however, show that for the maximum-likelihood meth-
ods stepid kf and stepid ml the theoretical variance give reasonably good pre-
diction of the empirical variances. For the subspace method stepid dd, the match
between the theoretical and empirical variance is good in the case of mass measure-
ment but wrong in the case of temperature measurement. A more rigorous approach
to the uncertainty analysis of the subspace method is done in [22].
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Table 1.1 The results for the temperature measurement Monte-Carlo simulation
empirically confirm that the model-based maximum likelihood
estimation method (stepid kf) gives the best results in the sense of
smallest bias and variance. The data-driven maximum likelihood
estimation method (stepid ml) leads to some loss of performance due
to the weaker prior knowledge used (model class instead of a model).
The data-driven subspace method (stepid dd) incurs further loss of
performance in comparison with stepid ml due to its heuristic nature
(solving the structured total least squares problem as an ordinary least
squares problem). The theoretical variances predict of the stepid kf
and stepid ml estimators well the empirical variances.

empirical theoretical
bias variance variance

naive 0.2129 0.0001 0.0001
stepid dd 0.0920 0.0016 0.0001
stepid ml -0.0055 0.0017 0.0012
stepid kf 0.0001 0.0001 0.0001

Table 1.2 The same observations as the ones for temperature measurement
(Table 1.1) hold true for the mass measurement example. In this case,
the difference in performance between model-based maximum likelihood
estimation method (stepid kf) and the data-driven maximum
likelihood estimation method (stepid ml) is less significant. Also, the
prediction of the empirical variance of the data-driven subspace
estimator (stepid dd) by the theoretical variance is good.

empirical theoretical
bias variance variance

naive 0.0790 0.0636 0.0636
stepid dd -0.0265 0.0014 0.0016
stepid ml 0.0006 0.0013 0.0016
stepid kf 0.0005 0.0013 0.0015

1.6 Conclusions and discussion

Metrology aims at producing faster and more accurate measurement devices. This
can be done by development of new measurement principles and corresponding sen-
sors or by improvement of existing ones with signal processing. In this paper, we
considered the latter approach: improvement of existing sensors by building a com-
putational layer, typically implemented in a digital signal processor, which processes
the raw signal obtained from the sensor.

The signal processing goal is to improve the given sensor’s speed and accu-
racy characteristics. We presented both model-based and data-driven suboptimal
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and optimal in the maximum-likelihood sense methods for dynamic measurements.
The model based-method is a classical least-squares problem, which efficient imple-
mentation is the Kalman filter. In the data-driven case, the problem is a structured
total-least squares, which is a nonconvex optimization problem. Off-line solution
methods performing nonlinear optimization exist, however, their recursive real-time
implementation is a topic of current research. A computationally cheap alternative
to the data-driven maximum likelihood method is a subspace method that can also
be viewed as a convex relaxation of the structured total-least squares problem.

The full parameter vectors (ū,x0) or (ū, `) of the model-based and data-driven
estimation problems, respectively, can not be estimated consistently. This is due to
the transient nature of the process (asymptotically decaying true signal). We conjec-
ture that the parameter of interest û can nevertheless be estimated consistently, due to
the special structure of the regressors matrix: constant block G corresponding to û.

The bias of the maximum likelihood estimators, viewed as a function of the
number of samples T , is the transient response of the compensated system, i.e., the
bias is the remaining transient response. The subspace method introduces an addi-
tional bias, which is quantified in [22]. The variance of the maximum likelihood
estimators is obtained as a byproduct of the estimation algorithms: Kalman filter
in the model-based case and the structured total-least squares algorithm in the data-
driven case. The variance of the subspace method is quantified in [22].
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