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The Set of Linear Time-Invariant Unfalsified
Models with Bounded Complexity is Affine

Vikas Kumar Mishra and Ivan Markovsky

Abstract—We consider exact system identification in the be-
havioral setting: given an exact (noise-free) finite time series,
find the set of bounded complexity linear time-invariant systems
that fit the data exactly. First, we modify the notion of the most
powerful unfalsified model for the case of finite data by fixing
the number of inputs and minimizing the order. Then, we give
necessary and sufficient identifiability conditions, i.e., conditions
under which the true data generating system coincides with the
most powerful unfalsified model. Finally, we show that the set of
bounded complexity exact models is affine: every exact model is
a sum of the most powerful unfalsified model and an autonomous
model with bounded complexity.

Index Terms—Behaviors, exact system identification, Hankel
matrix, most powerful unfalsified model, persistency of excitation.

I. INTRODUCTION

Exact system identification refers to the problem of identify-
ing the true data generating system from an observed trajectory
of the system. This problem is formalized by the notion of
the most powerful unfalsified model (MPUM), which is the
least complicated model explaining the data [1]. The MPUM
is originally defined for infinite time series and linear time-
invariant (LTI) systems. In this case, the complexity of the
model is measured by the ordered pair: (number of inputs,
order). Moreover, the MPUM always exists and is unique [1].
Under suitable conditions, called identifiability conditions, the
MPUM coincides with the data generating system. Therefore,
the MPUM is the solution to the exact identification problem.
Sufficient identifiability conditions are given in [2].

The problem of exact system identification for LTI be-
haviors with polynomial-exponential time series has been
considered in [3] and later a generalization of the problem to
multidimensional behaviors has been investigated in [4]. The
problem of minimal partial realization has been considered
as an instance of identification problem in the context of
exact modeling [5]. Also, the notion of the MPUM led to
the development of the subspace identification methods, see
for example [6, Chapter 2].
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For finite time series the notion of MPUM needs an adapta-
tion because minimization of model complexity subject to the
constraint that the model is exact yields an autonomous system
[7]. A possible adaptation allowing identification of open
systems, i.e., systems with inputs, is restriction of model’s
complexity. In the paper, we assume that the number of inputs
is a priori given and minimize the order. The resulting MPUM
exist and is unique (Lemma 1).

The notion of the MPUM is fundamental also in data-
driven simulation and control, see, e.g., [8]–[11]. In [11], the
authors study properties of the true data generating system and
existence of stabilizing controllers that can be inferred from
data that is not informative enough for identifiability of the
true data generating system. In case of non-informative data,
there are infinitely many exact models. We prove that the set of
exact models has affine structure. More specifically, any exact
model is a sum of the MPUM and an autonomous model, i.e.,
every exact model must include the MPUM.

The contributions of the paper are: (i) modification of the
definition of the MPUM for finite time series; (ii) necessary
and sufficient identifiability conditions; (iii) characterization
of the set of exact LTI models of bounded complexity for a
given finite time series.

In the following section, we recall some notions and con-
cepts from behavioral systems theory that are used in the
rest of the paper. (For an overview of behavioral systems
theory, we refer the reader to [12].) Then, a modification of
the notion of the MPUM for finite time series is given in
Section III. In Section IV, we consider the special case of
autonomous systems. The general case of open systems is
developed in Section V. The results are illustrated on examples
in Section VI.

II. LINEAR TIME-INVARIANT BEHAVIORS

A dynamical system (also called a model or just a system)
is defined by the triplet (T,W,B), where T ⊆ R is the time
axis, W⊆Rq is the signal space, and B⊆WT is the behavior
with WT the set of all functions w :T→W. Note that once we
have the behavior, the other two components of the model are
already specified. So, in this note we interchangeably use the
terms behavior, model, and system. Also, this work considers
discrete-time behaviors, so that T ⊆ N. By L q, we denote
the set of LTI behaviors with q variables that are closed in the
topology of point-wise convergence. The sum of two behaviors
Bi ∈L q, i = 1,2 is a behavior defined as

B1 +B2 := {w : w = w1 +w2,w1 ∈B1,w2 ∈B2}.
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The order (also called state cardinality) and the number of
inputs (also called input cardinality) of a system B ∈L q are
denoted by, respectively, n(B) and m(B). The ordered pair

c(B) :=
(
m(B),n(B)

)
is a measure of B’s complexity. The set of LTI systems with q
variables and complexity bound (m,n) is denoted by L q,n

m .
Any finite-dimensional LTI system B ∈L q admits a kernel

representation B = {w : R(σ)w = 0}, where R ∈ Rg×q[ξ ]
is a polynomial matrix and σ : WT →WT is the backward
shift operator (σw)(t) := w(t + 1). The minimal degree of R
in a kernel representation of the system is invariant of the
representation. It is called the lag of the system and is denoted
as l(B). The lag and the order are related by the inequalities
l(B)< n≤ pl(B), where p is the number of outputs.

The Hankel matrix with L ∈N block-rows for a time series

wd :=
(
wd(1),wd(2), . . . ,wd(T )

)
∈ (Rq)T

is defined as follows:

HL(wd) :=


wd(1) wd(2) · · · wd(T −L+1)
wd(2) wd(3) · · · wd(T −L+2)

...
...

. . .
...

wd(L) wd(L+1) · · · wd(T )

 .
Throughout the paper, L is a user defined parameter, which

has the meaning of time-horizon or window-length. The per-
sistency of excitation order of a time series wd ∈ (Rq)T is the
maximum L, for which HL(wd) has full row rank. An upper
bound of the persistency of excitation order of wd ∈ (Rq)T is

L∗ :=
⌈

T +1
q+1

⌉
.

(For L > L∗, HL(wd) has more rows than columns.)
The restriction of the behavior B to the interval [1,L] is

defined as follows:

B|L := {w ∈ (Rq)L | there is v ∈B,

such that w(t) = v(t) for all 1≤ t ≤ L}.

Summary of Notation:

B / B|L behavior / restriction of behavior to [1,L]
L q set of all LTI models with q variables
L q

m set of models in L q with at most m inputs
L q,n

m set of models in L q with complexity
bounded by (m,n)

n(B) / l(B) order / lag of B
m(B) / c(B) number of inputs / complexity of B
span span of the columns of a matrix or

span of a set of vectors
HL Hankel matrix with L block-rows
σ backward shift (σw)(t) := w(t +1)
Σm,n(wd) {B : wd ∈B|T ,B ∈L q,n

m }
MPUM(wd) arg minB∈L q,wd∈B c(B)

MPUMm(wd) arg minB∈L q
m,wd∈B|T n(B)

III. MOST POWERFUL UNFALSIFIED MODEL

The original definition [1, Definition 4] of the MPUM is for
an infinite time series wd ∈ (Rq)N in the model class L q:

MPUM(wd) := arg minB∈L q,wd∈B c(B). (1)

In this case, MPUM(wd) exists and is unique. It is given by
the span of wd and all its shifts:

MPUM(wd) = span{wd,σwd, . . . ,σ
twd, . . .}.

In case of a finite data wd ∈ (Rq)T , however, MPUM(wd) is
always an autonomous system. The reason for this is that in
the definition of LTI system’s complexity c(B) the ordering
is lexicographic (number of inputs m(B) has precedence over
the order n(B)), however, every finite time series can be
fitted exactly by a finite dimensional autonomous LTI system.
Therefore, there are exact autonomous models B ∈L q that
are by definition less complex than any open model.

One approach to resolve this issue is to assume that the
number of inputs is a priori known and define the MPUM as
minimization of the order:

MPUMm(wd) := arg minB∈L q
m,wd∈B|T n(B). (2)

Lemma 1. For any finite time series wd ∈ (Rq)T ,
MPUMm(wd) exists and is unique.

Proof. Existence follows from the facts that wd is finite and the
model class L q

m allows arbitrary high model order. Uniqueness
follows from the facts that MPUMm(wd) is equal to the
intersection of all exact models for wd in L q

m and L q
m is

closed.

Remark 1 (Detecting the number of inputs from data). The
number of inputs can be found from data by computing
the rank of Hankel matrices HL(wd) for different values
of L. Indeed, under the identifiability conditions of [2], for
sufficiently large L (larger than the lag of the system), we
have that

rankHL(wd) = m(B)L+n(B).

Therefore, m(B) and n(B) can be computed from two
values of the rank of the Hankel matrix: rankHL1(wd) and
rankHL2(wd) with L1 6= L2 and L1,L2 > l(B).

An exact model in a model class of bounded complexity
may not exist or be nonunique (see Section V). We define the
set of exact models of bounded complexity as

Σm,n(wd) = {B : wd ∈B|T ,B ∈L q,n
m }. (3)

Our goal is to characterize the set Σm,n(wd). We prove (see
Theorem 5) that

Σm,n(wd) = MPUMm(wd)+L q,n−k
0 ,

where k = n
(

MPUMm(wd)
)
. (4)

That is, the set of models explaining the data wd is the sum
of the MPUM and the set of autonomous models of order
n−n

(
MPUMm(wd)

)
.
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IV. AUTONOMOUS BEHAVIORS

A. The Scalar Case

First, we consider the scalar case q = 1.

Lemma 2. Let wd ∈ RT be a given time series that is
generated by B ∈ L 1,n

0 . Then the order of MPUM0(wd) is
equal to the persistency of excitation order of wd.

Proof. Let k be the persistency of excitation order of wd, i.e.,
rankHk(wd)= k and rankHk+1(wd)= k. We need to show that
n
(

MPUM0(wd)
)
= k. By the rank deficiency of Hk+1(wd),

there exists P =
[
P0 P1 · · · Pk

]
6= 0, such that

PHk+1(wd) = 0. (5)

Note that Pk 6= 0 otherwise rankHk(wd)< k. From (5), define
a behavior B whose kernel representation is given by P(ξ ) =
Σk

i=0Piξ
i. Clearly, n(B) = degP(ξ ) = k. Since wd ∈B|T and

B ∈L 1,n
0 , B is an exact model for the data.

Next, we need to prove that the behavior B is the most
powerful, i.e., there is no other exact model of lower order
than k. This follows from the fact that if there exists a
model of order less than k, then rankHk(wd) < k, which is
a contradiction. Hence, B is the MPUM.

The following theorem characterizes the set of all exact
models in the scalar case.

Theorem 1. The set of exact autonomous models of complexity
bounded by n for a scalar time series wd is given as

Σ0,n(wd) = MPUM0(wd)+L 1,n−k
0 ,

where k = n
(

MPUM0(wd)
)
. (6)

Proof. The proof is similar to the one of Theorem 3 and is
skipped.

Theorem 1 indicates that every exact model must include
the MPUM. In the special case k = n, the model class L q,0

0
contains only the trivial behavior B = {0}, and thus

Σ0,n(wd) = MPUM0(wd)+{0}= MPUM0(wd).

Corollary 1. There is a unique exact model Σ0,n(wd) =
MPUM0(wd) if and only if wd is persistently exciting of
order n.

B. The Multivariable Case

It turns out that Lemma 2 does not hold true in the case of
multivariable (q > 1) autonomous systems. However, we have
the following theorem for the multivariable case.

Theorem 2. Let wd ∈ (Rq)T be a time series that is generated
by B ∈L q,n

0 , i.e., wd ∈B|T . Then,

MPUM0(wd) = B and spanHL(wd) = B|L, for L≤ L∗

if and only if rankHL∗(wd) = n(B). Further,

n
(

MPUM0(wd)
)
= rankHL∗(wd). (7)

Proof. Clearly, spanHL∗(wd) ⊆B|L∗ . By the rank condition
rankHL∗(wd) = n(B), it follows that L∗ ≥ l(B) and

dim
(
spanHL∗(wd)

)
= rankHL∗(wd) = n(B) = dim(B|L∗).

Hence, spanHL∗(wd) = B|L∗ and therefore spanHL(wd) =
B|L, for all L≤ L∗.

Next, we prove that MPUM0(wd) = B. Since B ∈ L q,n
0

and wd ∈B|T , it remains to show that B is most powerful.
Let there be another exact model B̄ ∈L q,n

0 , such that n(B̄)<
n(B). Then, rankHL∗(wd)< n(B), which is a contradiction.
Hence, MPUM0(wd) = B.

Conversely, MPUM0(wd) = B implies wd ∈ B|T . Next,
spanHL∗(wd) = B|L∗ implies rankHL∗(wd) = dim(B|L∗) =
n(B). Therefore, (7) holds.

Next, we state and prove a generalization of Theorem 1 to
multivariable autonomous systems.

Theorem 3. The set of exact autonomous models of complexity
bounded by n for a time series wd ∈ (Rq)T is given as

Σ0,n(wd) = MPUM0(wd)+L q,n−k
0 ,

where k = n
(

MPUM0(wd)
)
. (8)

Proof. Clearly,

MPUM0(wd)+L q,n−k
0 ⊆ Σ0,n(wd).

Next, we prove the reverse inclusion. Let B ∈ Σ0,n(wd) and

n
(

MPUM0(wd)
)
= k ≤ n(B)≤ n.

Then, MPUM0(wd)⊆B. Thus,

B = MPUM0(wd)+B′, where B′ ∈L q,n−k
0 ,

and hence (8) holds.

V. OPEN BEHAVIORS

Analogous to Theorem 2, a theorem for open systems is
stated below.

Theorem 4. Let wd ∈ (Rq)T be a given time series that is
generated by a linear time-invariant system B ∈ L q,n

m with
m(B) = m inputs, i.e., wd ∈B|T . Then

MPUMm(wd) = B and spanHL(wd) = B|L, for L≤ L∗

if and only if rankHL∗(wd) = n(B)+mL∗. Further,

n
(

MPUMm(wd)
)
= rankHL∗(wd)−mL∗. (9)

Proof. The proof is similar to the one of Theorem 2, taking
into account that dim(B|L) = n(B)+mL, for L≥ l(B).

Analogous to Theorem 3, we have the following theorem
that provides a characterization of the set of exact models in
case of open systems.

Theorem 5. The set of exact open models of complexity
bounded by n for a given time series wd ∈ (Rq)T is given as

Σm,n(wd) = MPUMm(wd)+L q,n−k
0 ,

where k = n
(

MPUMm(wd)
)
. (10)

We can distinguish three cases:
1) if n < n

(
MPUMm(wd)

)
, there is no exact model, i.e.,

Σm,n(wd) = /0,
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2) if n = n
(

MPUMm(wd)
)
, there is a unique exact model,

i.e., Σm,n(wd) = MPUMm(wd), and
3) if n > n

(
MPUMm(wd)

)
, there are infinitely many exact

models (10).
Note that, in case of nonunique exact model (10), except
possibly for the MPUM, all exact models are uncontrollable.

VI. EXAMPLES

Example 1 (Scalar autonomous behavior). Let wd ∈ RT be
a trajectory of a k-th order scalar autonomous LTI sys-
tem B. Assuming that wd is persistently exciting of order k,
by Lemma 2, the MPUM of wd coincides with the data
generating system B. Also, the Hankel matrix Hk+1(wd) has
one dimensional left kernel. Let P =

[
P0 P1 · · · Pk

]
, be

a nonzero vector, such that PHk+1(wd) = 0. The polynomial
P(ξ ) = Σk

i=0Piξ
i, defined by the vector P, yields a kernel

representation of MPUM0(wd).
Since we are interested in exact models of order n, we

consider the extended Hankel matrix Hn+1(wd) with n + 1
rows. The set of nonzero vectors in the left kernel of Hn+1(wd)
identify the set of exact scalar autonomous LTI models for wd
of order at most n. Define the (n−k+1)×(n+1) generalized
Sylvester matrix of P

S (P) :=


P0 P1 · · · Pk

P0 P1 · · · Pk
. . .

. . .
. . .

. . .
P0 P1 · · · Pk

 .
By the definition of P and the Hankel structure, we have that

S (P)Hn+1(wd) = 0.

Moreover, since the left kernel of Hn+1(wd) has dimension
n− k+1, the rows of S (P) define a basis. Therefore, any P̂
such that P̂Hn+1(wd) = 0, can be written as

P̂ = zS (P), for some z ∈ Rn−k+1, (11)

i.e., any exact model for wd in the model class L 1,n
0 has a

kernel representation with the structure (11).
The structure (11) of the left kernel implies that the polyno-

mial P̂(ξ ) = ∑
n
i=0 P̂iξ

i defined by the vector P̂ has k “fixed”
roots coinciding with the roots of P(ξ ) and n− k “spurious”
roots determined by z. The fixed roots are the roots of the
MPUM while the spurious roots correspond to the roots of
an n− k-th order autonomous system. This result about the
left kernel of the Hankel matrix of the data corresponds to
Theorem 1 (see (6)).

Example 2 (SISO system). Consider a controllable single-
input single-output system B ∈ L 2,k

1 defined by the in-
put/output representation: P(σ)y = Q(σ)u, where P,Q, with
det P 6= 0, are scalar polynomials. Equivalently,[

−Q(σ) P(σ)
]︸ ︷︷ ︸

R(σ)

[
u
y

]
= 0,

is a kernel representation of B. Let wd :=
[ud

yd

]
∈ (R2)T be a

trajectory of B that satisfies the identifiability conditions of

[2]. Then, we have that Hk+1(wd) has one-dimensional left
kernel and RHk+1(wd) = 0.

As in the scalar case, the Hankel matrix with n+1 block-
rows Hn+1(wd) has n−k+1 dimensional left kernel. A basis
for the left kernel of Hn+1(wd) is given by the rows of the
generalized Sylvester matrix S (R). Any R̂ in the left kernel of
Hn+1(wd) is given by R̂ = zS (R), where z ∈ Rn−k+1. Since
R̂ correspond to an exact model for wd in L 2,n

1 , we have
again special structure of the set of exact models due to the
special structure of the left kernel of Hn+1(wd). Note that, with
R̂ =:

[
−Q̂ P̂

]
, P̂ and Q̂ are such that P̂ = zP and Q̂ = zQ.

This corresponds to Theorem 5 (see (10)): the k “fixed” poles
and zeros are the ones of the MPUM and the n−k “spurious”
ones are common for the P̂ and Q̂. In particular, this shows
that, except for the MPUM, the exact models for wd in L 2,n

1
are uncontrollable.

VII. CONCLUSIONS

We have investigated the problem of exact system identifi-
cation for a given finite time series. It has been proven that
any exact model must include the MPUM. We have modified
the notion of the MPUM for a finite time series assuming that
the number of inputs is given and proved a new identifiability
result with the modified MPUM. Our approach is algebraic
and utilizes concepts from the behavioral systems theory. Most
of the results have been related to computing the rank of
the Hankel matrix constructed from the given time series. It
is notable that the work does not require a partition of the
input/output variables. Examples are given to illustrate the
developed results.
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