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Abstract

We consider low-rank approximation of affinely structured matrices with missing elements. The method pro-

posed is based on reformulation of the problem as inner and outer optimization. The inner minimization is a

singular linear least-norm problem and admits an analytic solution. The outer problem is a nonlinear least squares

problem and is solved by local optimization methods: minimization subject to quadratic equality constraints and

unconstrained minimization with regularized cost function. The method is generalized to weighted low-rank ap-

proximation with missing values and is illustrated on approximate low-rank matrix completion, system identifica-

tion, and data-driven simulation problems. An extended version of the paper is a literate program, implementing

the method and reproducing the presented results.
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1 Introduction

The paper describes a solution method for matrix structured low-rank approximation, i.e., approximation of a given

matrix by another matrix whose elements satisfy certain predefined relations (matrix structure) and whose rank is less

than or equal to a predefined value. The combination of matrix and low-rank structure makes structured low-rank

approximation a tool for data modeling. Low-rank property of a matrix is equivalent to existence of an exact low-

complexity linear model for the data. Moreover, the rank of the matrix is related to the complexity of the model.

The structure, imposed on the approximation, is related to properties of the model. For example, Hankel structure

corresponds to time-invariance of a linear dynamical model for the data. A tutorial exposition of the subject with an

emphasis on applications in systems theory, control, and signal processing, is given in [12, 14].

A novel feature of the low-rank approximation problem, considered in this paper, is that elements of the data

matrix can be missing (not specified). Missing data may occur in practical applications due to malfunctioning of

measurement device, communication channel, or storing device. In such cases, the most common strategy is to collect

a complete data record by repeating the data collection experiment. In other applications, however, the missing data

problem is intrinsic and can not be avoided by repeated experiments. Two such applications reviewed in Subsection 1.2

and further illustrated by numerical examples in Section 5 are recommender systems and data-driven simulation.

Although structured low-rank approximation and approximate low-rank matrix completion (missing data estima-

tion in low-rank matrices) are independently active research topics, the combined problem of missing data estimation

in affine structured low-rank matrices has not been considered before. Both the structured low-rank approximation

and approximate matrix completion problems are nonconvex optimization problems that in general admit no analytic

solution, see [8]. Therefore, in both domains local optimization and convex relaxation heuristics are used as solution

techniques. In this paper, we use the local optimization approach.

Structured low-rank approximation has been studied in the literature from different viewpoints: numerical al-

gorithm for computing locally optimal or suboptimal solutions, statistical properties of the resulting estimators, and

applications. From a numerical point of view, the main challenge is to achieve fast and robust computational meth-

ods that can deal effectively with large data sets. From a statistical point of view, the main challenge is to establish

conditions for consistency and efficiency of the methods. Our objective in this paper is different: we aim to unify as
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many data modeling applications as possible and derive a single algorithm that solves them. Of course, this goal can

be achieved by brute force optimization. The challenge is to discover and use effectively the structure of the problem.

In the general problem considered, this structure is a separation of variable with analytic solution over one set of

variables. This approach is related to the variable projection method [9] used in [18].

The solution method proposed in the paper has computational complexity O(n3) per iteration, where n is the

number of columns of the data matrix. It is applicable to general affine structured matrices with missing data, however,

it is unsuitable for large scale applications. In special cases, such as unstructured matrices with missing data or

mosaic-Hankel structured matrices without missing data, there are efficient O(n) methods. We conjecture that an

efficient O(n) implementation of the algorithms in the paper is possible in the case of mosaic-Hankel matrices with

missing data.

1.1 Problem formulation

We denote missing data values by the symbol NaN (“not a number”). The considered low-rank approximation prob-

lem is: Given a data vector p ∈ (R∪{NaN})np ,

minimize over p̂ ∈ R
np ∑

{ i | pi 6=NaN}
(pi − p̂i)

2

subject to rank
(
S (p̂)

)
≤ r,

(SLRA)

where

S : Rnp → R
m×n, defined by S (p̂) = S0 +

np

∑
i=1

Si p̂i, (S )

is the matrix structure—an affine function from the structure parameter space R
np to the set of matrices Rm×n. With G

denoting the vector of indices of the given values { i | pi 6= NaN} and pG denoting the subvector of p with indices

in G , the approximation criterion can be written as

∑
i∈G

(pi − p̂i)
2 = ‖pG − p̂G ‖2

2.

Without loss of generality, we assume throughout the paper that r < m ≤ n. Using the kernel representation of the

rank constraint

rank
(
S (p̂)

)
≤ r ⇐⇒ there is R ∈ R

(m−r)×m, such that RS (p̂) = 0 and R has full row rank, (KER)

the following equivalent problem to (SLRA) is obtained

minimize over p̂ ∈ R
np and R ∈ R

(m−r)×m ‖pG − p̂G ‖2
2

subject to RS (p̂) = 0 and R has full row rank.
(SLRAR)

Problem (SLRAR) is a double minimization over the parameters R and p̂

minimize over R ∈ R
(m−r)×m M(R) subject to R has full row rank, (SLRA′

R)

where

M(R) := min
p̂

‖pG − p̂G ‖2
2 subject to RS (p̂) = 0. (INNER)

The evaluation of the cost function M, i.e., solving (INNER) for a given value of R, is refered to as the inner mini-

mization problem. This problem is solved analytically in Section 2. The remaining problem of minimizing M over R

is refered to as the outer minimization problem. It is a nonlinear least-squares problem, which, in general, admits no

analytic solution. General purpose local optimization methods are used in Section 3 for its numerical solution. In

Section 4, the approach is generalized to weighted 2-norm approximation criteria with missing values. Numerical

examples of solving approximation problems with missing data by the proposed methods are shown in Section 5.
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1.2 Applications

1.2.1 Linear static modeling with missing data: An approximate low-rank matrix completion problem

Consider a set of vectors D = {d1, . . . ,dN } in R
q. A linear model B for the data D is a subspace of the data space Rq,

and the dimension of B is a measure of the model’s complexity. Linear static modeling is the problem of finding a

low-complexity model (low-dimensional subspaces) that fits the data as close as possible. Existence of an exact linear

model B for the data D , i.e., D ⊂ B, with complexity at most r is equivalent to the data matrix D =
[
d1 · · · dN

]

having rank at most r. Therefore, measuring the fit between the data point di and the model B by the orthogonal

distance

dist(di,B) = min
d̂i∈B

‖di − d̂i‖2,

the approximate fitting problem becomes a rank r matrix approximation problem (SLRA) with unstructured data

matrix S (p) = D.

Suppose now that some elements di j, (i, j) ∈ Imissing of the data matrix are missing. Equivalently, only the

elements di j, (i, j) ∈ Igiven of D are specified. The exact linear static modeling problem becomes a low-rank matrix

completion problem [6]:

find D̂ such that rank(D̂)≤ r and D̂Igiven
= DIgiven

.

Here DI denotes the vector of elements of D with indices in I . In the context of approximate data fitting by linear

static model and missing data values, the relevant problem is approximate low-rank matrix completion [5]:

minimize over D̂ ‖D̂Igiven
−DIgiven

‖2
2 subject to rank(D̂)≤ r. (AMC)

The approximate low-rank matrix completion problem (AMC) is used for building recommender systems. In

recommender system applications, there is a set of users and a set of products. Some users rate some products. The

goal is to predict the user ratings on products that they have not rated. The underlying assumption that makes the

solution of this problem possible is that the full user-ratings matrix is low-rank. The low-rank property is observed

empirically and can be explained intuitively as existence of a small number of groups of users with the same “taste”

(i.e., users that like or dislike the same products). In practice, the low-rank assumption is satisfied only approximately,

which makes the approximation aspect of the problem essential.

The main issue in building real-life recommender systems is the high dimensionality and sparsity of the data

matrix. Additional important issues in building practical recommender systems is the fact that the given and missing

ratings are discrete and that apart from the users’ ratings, there is demographic information about the users. Taking

into account this prior information may improve significantly the accuracy of the missing values estimation. These

issues, however, are outside the scope of the present paper.

1.2.2 System identification with missing data: An approximate block-Hankel structured low-rank matrix

completion problem

A discrete-time linear time-invariant dynamical model is a set of time series

B(R) :=
{

w | R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0, for all t
}

(B)

that satisfy a constant coefficients difference equation. The matrices R0,R1, . . . ,Rℓ ∈ R
p×q are parameters specifying

the model. Note that the linear static model is a special case of a linear time-invariant dynamical model when the lag ℓ
of the difference equation representing the system is equal to zero.

A finite time series

w =
(
w(1), . . . ,w(T )

)
, where w(t) ∈ R

q,

3



is an exact trajectory of the system defined in (B) if the following matrix equation is satisfied

[
R0 R1 · · · Rℓ

]
︸ ︷︷ ︸

R




w(1) w(2) w(3) · · · w(T − ℓ)

w(2) w(3) . .
.

w(T − ℓ+1)

w(3) . .
. ...

...
w(ℓ+1) w(ℓ+2) · · · w(T )




︸ ︷︷ ︸
Hℓ+1(w)

= 0.

Without loss of generality, we assume that the parameter matrix R has full row rank p, which implies that

rank
(
Hℓ+1(w)

)
≤ q(ℓ+1)−p.

We showed above that the data w is an exact trajectory of a system B(R), if the block-Hankel matrix Hℓ+1(w) is

rank deficient. Therefore, as in the static case, approximate modeling by a linear time-invariant system is a low-rank

approximation problem

minimize over ŵ ‖w− ŵ‖2
2 subject to rank

(
Hℓ+1(ŵ)

)
≤ q(ℓ+1)−p. (SYSID)

Note, however, that the linear time-invariant model class imposes a block-Hankel structure constraint on the approxi-

mation matrix.

Identification from a trajectory with missing elements is therefore a block-Hankel structured low-rank matrix

completion problem. A special system identification problems for the class of auto-regressive exogenous systems with

missing data is considered in [10] and a method based on frequency domain techniques is proposed in [24]. These

papers do not link the system identification problem to the block-Hankel low-rank approximation problem (SYSID),

so that their approaches are different from ours. The method developed in this paper, when specialized to block-Hankel

structure can be used for general multivariable system identification in the time domain.

1.2.3 Data-driven simulation and control

Bu y

wp

The trajectory w of a dynamical system can be partitioned into inputs u, i.e., free

variables, and outputs y, i.e., variables that are determined by the inputs, initial

conditions, and the model. Let w = (u,y) be such a partition. The output y =(
y(1), . . . ,y(T )

)
of B is uniquely determined by the input u =

(
u(1), . . . ,u(T )

)

and the initial conditions

wp =
(
w(−ℓ+1),w(−ℓ+2), . . . ,w(0)

)
.

This gives a “signal processor” interpretation of a dynamical system.

The simulation problem aims to find the output yf of a system B, corresponding to a given input uf and initial

conditions wp, i.e.,

find yf such that wp ∧ (uf,yf) ∈ B.

(wp ∧wf denotes the concatenation of wp and wf.) This is a classic problem in system theory and numerical linear

algebra, for which many solutions exist, e.g., for systems with no inputs, the problem is related to the computation of

the matrix exponential [22]. The classical simulation methods require a representation (state space, transfer function,

convolution kernel, etc.) of the model. Such a representation is often obtained from data by system identification. The

question occurs of solving the simulation problem directly from the data without identifying a model representation

as a byproduct and using it in a model based solution. We call the direct problem data-driven simulation [15].

The data-driven simulation problem is a mosaic-Hankel structured low-rank approximation problem with fixed

(exact) and missing data. To see this, let w′ denotes the data that implicitly specifies the model and w′′ = w′′
p ∧ (u′′f ,y

′′
f )

be the to-be-simulated trajectory. We express the condition that w′ and w′′ are trajectories of a linear time-invariant

system with lag ℓ in matrix language as

rank
([

Hℓ+1(w
′) Hℓ+1(w

′′)
])

≤ q(ℓ+1)−p.
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This is a model-free description of the simulation problem—the existence of a model is implicit in the rank constraint.

The fixed data are the initial conditions w′′
p and the input u′′f and the missing data are the to-be computed response y′′p .

When the data w′ is not an exact trajectory of the model, the matrix Hℓ+1(w
′) is generically full rank, so that an

approximation is needed. The resulting data-driven simulation problem is a mosaic-Hankel structured low-rank ap-

proximation with missing data:

minimize over ŵ′ and ŵ′′ ‖w′− ŵ′‖2
2

subject to rank
([

Hℓ+1(ŵ
′) Hℓ+1

(
ŵ′′)])≤ q(ℓ−1)−p,

ŵ′′
p = w′′

p , and û′′f = u′′f .

(DDSIM)

Notation

In the rest of the paper, we use the following notation.

• AI ,J is the submatrix of A with rows in I and columns in J . The row/column index can be replaced by the

symbol “:”, in which case all rows/columns are selected.

• M / G is the vector of indices of p that are missing / given, and nm / ng is the number of missing / given

elements.

• A+ is the pseudo inverse of A and A⊥ is a matrix which rows form a basis for the left null space of A.

• vec(·) is the column-wise vectorization operator.

2 Analytical solution of the inner minimization problem

In this section, we consider the inner minimization problem (INNER).

Problem 1. Given affine structure S , structure parameter vector p ∈ {R∪{NaN}}np , and a kernel parameter R ∈
R
(m−r)×m, evaluate the cost function M(R), defined in (INNER), and find a point p̂ that attains the minimum.

For a given structure S and R ∈ R
(m−r)×m, we define the matrix

G :=
[
vec(RS1) · · · vec(RSnp

)
]
∈ R

(m−r)n×np. (G)

Theorem 2. Under the following assumptions:

1. G:,M is full column rank,

2. 1 ≤ (m− r)n−nm ≤ ng, and

3. Ḡ := G⊥
:,M G:,G is full row rank,

Problem 1 has a unique global minimum

p̂G = pG − Ḡ⊤(ḠḠ⊤)−1
s and p̂M =−G+

:,M (vec(RS0)+G:,G p̂G ), (p̂)

with objective function value

M(R) = s⊤
(
ḠḠ⊤)−1

s, where s := ḠpG +G⊥
:,M vec(RS0). (M)

Proof. Defining

∆pG := pG − p̂G

and using the identity

RS (p̂) = 0 ⇐⇒ Gp̂ =−vec(RS0),
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we have

RS (p̂) = 0 ⇐⇒
[
G:,G G:,M

][pG −∆pG

p̂M

]
=−vec(RS0).

Therefore, (INNER) is equivalent to

M(R) := min
∆pG ∈Rng , p̂M∈Rnm

‖∆pG ‖2
2 subject to

[
G:,G G:,M

][ ∆pG

− p̂M

]
= G:,G pG +vec(RS0),

which is a generalized linear least norm problem. The solution follows from Lemma 4.

Note 3. In the case of unstructured matrix, condition 2 of Theorem 2 reduces to nm < (m− r)n.

Generalized least norm problem

Lemma 4. Consider the generalized linear least norm problem

f = min
x,y

‖x‖2
2 subject to Ax+By = c, (GLN)

with A ∈ R
m×nx , B ∈ R

m×ny , and c ∈R
m. Under the following assumptions:

1. B is full column rank,

2. 1 ≤ m−ny ≤ nx, and

3. Ā := B⊥A is full row rank,

problem (GLN) has a unique solution

f = c⊤(B⊥)⊤
(
ĀĀ⊤)−1

B⊥c,

x = Ā⊤(ĀĀ⊤)−1
B⊥c and y = B+(c−Ax).

(SOL)

Proof. Under assumption 1, B has a nontrivial left kernel of dimension m−ny. Therefore for the nonsingular matrix

T =
[

B+

B⊥

]
∈R

m×m

T B =

[
B+

B⊥

]
B =

[
B+B

B⊥B

]
=

[
Iny

0

]
.

Pre-multiplying both sides of the constraint of (GLN) by T , we have the following equivalent constraint

[
B+Ax

B⊥Ax

]
+

[
y

0

]
=

[
B+c

B⊥c

]
.

The first equation

y = B+(c−Ax)

uniquely determines y, given x. The second equation

B⊥Ax = B⊥c (∗)

defines a linear constraint for x only. By assumption 2, it is an underdetermined system of linear equations. Therefore,

(GLN) is equivalent to the following standard least norm problem

f = min
x

‖x‖2
2 subject to B⊥Ax = B⊥c. (GLN’)

By assumption 3 the solution is unique and is given by (SOL).
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Note 5 (About assumptions 1–3). Assumption 1 is a necessary condition for uniqueness of the solution. Relaxing

assumption 1 implies that any vector in the affine space

Y = B+(c−Ax)+null(B)

is a solution to (GLN). Assumption 2 ensures that the problem is a least norm problem and has a nontrivial solution.

In the case m = ny, the problem has a trivial solution f = 0. In the case m− ny > nx, the problem generically has

no solution because the constraint (∗) is an overdetermined system of equations. Assumption 3 is also required for

uniqueness of the solution. It can also be relaxed, making y nonunique.

Note 6 (Link to weighted least norm problems with singular weight matrix). Consider the weighted least norm prob-

lem

min
z

z⊤W z subject to Dz = c,

with singular positive semidefinite weight matrix W . Using a change of variables z̄ = T−1z, where T is a nonsingular

matrix, we obtain the equivalent problem

min
z̄

z̄⊤T⊤W T z̄ subject to DT z̄ = c.

There exists a nonsingular matrix T , such that

T⊤W T =

[
Inx

0

]
.

Partitioning z̄ and D̄ := DT−1 conformably as

z̄ =

[
x

y

]
and D̄ =

[
A B

]

we obtain problem (GLN).

3 Outer minimization problem

The outer minimization problem (SLRAR) is a nonlinear least-squares problem, which we solve by general purpose

local optimization methods. In order to apply standard optimization methods, however, we need first to replace the

rank constraint with equivalent equality or inequality constraints.

The full row rank constraint on R is equivalent to and can be enforced in the parameter optimization method by

the equality constraint

RR⊤ = Im−r. (f.r.r. R)

Then, the outer minimization problem becomes a constrained nonlinear least squares problems

minimize over R ∈ R
(m−r)×m M(R) subject to RR⊤− Im−r = 0. (SLRA′

R)

(SLRA′
R) is an optimization problem on a Stiefel manifold [1] and can be solved by specialized methods, e.g., the

GenRTR package [2], or by general purpose penalty methods for constrained optimization [23]. Next, we consider

a penalty method, i.e., reformulation of (SLRA′
R) as a regularized unconstrained nonlinear least squares problem by

adding the regularization term γ‖RR⊤− Im−r‖2
F, where ‖ · ‖F is the Frobenius norm, to the cost function

minimize over R ∈ R
(m−r)×m M(R)+ γ‖RR⊤− Im−r‖2

F. (SLRA′′
R)

The parameter γ should be chosen “large enough” in order to enforce the constraint (f.r.r. R). A corollary of the

following theorem shows that γ = ‖pG ‖2
2 is sufficiently large for linear structures.

Theorem 7. Let M : R(m−r)×m → R+ be a homogeneous function, i.e., M(R) = M(T R), for any R and a nonsingular

m×m matrix T . Assume that γ satisfies

γ > min
{R | rank(R)=m−r}

M(R). (γ)

Then, the optimal solutions of problem (SLRA′′
R) coincide with the optimal solutions of (SLRA′

R).
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Proof. We call a set R ⊂ R
d×m a “homogeneous set” if for all R ∈ R and for all nonsingular matrices T ∈ R

d×d ,

T R ∈ R. Let R be a solution to (SLRA′′
R) with the constraint R ∈ R, where R is a homogeneous set. We will show

that

‖RR⊤− Im−r‖2
F = m− r− rank(R). (∗)

There exists an orthogonal matrix U diagonalizing RR⊤. We have,

‖RR⊤− Im−r‖2
F = ‖URR⊤U⊤− Im−r‖2

F

= ‖diag(a1, . . . ,arank(R),0, . . . ,0)− Im−r‖2
F, where ai > 0

=
rank(R)

∑
i=1

(ai −1)2 +m− r− rank(R).

Suppose that ai 6= 1 for some i. The matrix

R′ = diag(1, . . . ,1,1/
√

ai,1, . . . ,1)R

has the same row span and rank as R, so that by the homogeneity property of M, M(R) = M(R′). However, we have

‖RR⊤− Im−r‖2
F > ‖R′R′⊤− Im−r‖2

F,

so that R′ ∈ R achieves smaller value of the cost function of (SLRA′′
R) than R. This is a contradiction. Therefore,

ai = 1 for all i. This concludes the proof of (∗).

So far we showed that minimization of the cost function in (SLRA′′
R) on homogeneous sets is equivalent to mini-

mization of

M(R)+ γ
(
m− r− rank(R)

)
. (M′′)

The set of full row rank matrices

R f := {R ∈ R
(m−r)×m | rank(R) = m− r}

and the set of rank-deficient matrices

Rd := {R ∈ R
(m−r)×m | rank(R)< m− r}

are homogeneous. Denote the solutions of (SLRA′′
R) on these sets as

M∗
f := inf

R∈R f

M(R)+ γ ‖RR⊤− Im−r‖2
F

(∗)
= inf

R∈R f

M(R)< γ ,

M∗
d := inf

R∈Rd

M(R)+ γ ‖RR⊤− Im−r‖2
F

(∗)
= inf

R∈Rd

M(R)︸ ︷︷ ︸
≥0

+γ
(
m− r− rank(R)

)
︸ ︷︷ ︸

≥γ

.

Then, M∗
f < γ ≤ M∗

d and

M∗ := inf
R∈R(m−r)×m

M(R)+ γ ‖RR⊤− Im−r‖2
F = M∗

f .

In addition, the minimum of (SLRA′
R) coincides with M∗

f by the homogeneity of M. Therefore, the solutions

of (SLRA′′
R) and (SLRA′

R) coincide if one of them exists.

Note 8 (Choice of γ). γ = maxR∈R f
M(R) always satisfies condition (γ). In particular, for a linear structure S , it is

sufficient to take γ = ‖pG ‖2
2, because S (0) has zero rank, and RS (0) = 0 holds for any R.

Note 9 (Initial approximation). Solving the outer minimization problem by local minimization requires an initial

approximation for the parameter R, i.e., a suboptimal solution of the structured low-rank approximation problem.

Such a solution can be computed from a heuristic that ignores the data matrix structure S and fills in the missing

values with initial estimates. Rigorous analysis of the missing values imputation question is done in [11]. Theorem 1.1

of [11] gives theoretical justification for the zero imputation in the case of unstructured S . The resulting unstructured

low-rank approximation problem can then be solved analytically in terms of the singular value decomposition.

Note 10 (Efficient software implementation). Efficient methods for evaluation of the cost function and its derivatives

in the special case of mosaic-Hankel matrix structure is presented in a companion paper [26]. The method, presented

in this paper (general affine structure) and the efficient methods of [26] are implemented in Matlab (using Optimiza-

tion Toolbox) and in C++ (using the Levenberg-Marquardt algorithm [20] from the GNU Scientific Library [7]),

respectively. Description of the software and overview of its applications is given in [16].
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4 Weighted approximation

Problem (SLRA) is generalized in this section to the weighted structured low-rank approximation problem

minimize over p̂ ∈ R
np (pG − p̂G )

⊤Wg(pG − p̂G )

subject to rank
(
S (p̂)

)
≤ r,

(WSLRA)

where Wg is a positive definite matrix.

In case of a diagonal weight matrix

Wg = diag(wg) = diag(w1, . . . ,wng
), (wg)

the weights can be specified by a positive vector wg.

The change of variables

p′G =W
1/2
g pG and p̂′G =W

1/2
g p̂G (p 7→ p′)

reduces Problem (WSLRA) to an equivalent unweighted problem (SLRA). We have

S (p̂) = S0 +vec−1(S p̂), where S :=
[
vec(S1) · · · vec(Snp

)
]
∈ R

mn×np . (S)

The structure S ′ of the equivalent problem is defined by the matrices S0 and

S′ =
[
vec(S′1) · · · vec(S′np

)
]
, where S′

:,G = S:,G W
−1/2
g and S′

:,M = S:,M . (S 7→ S ′)

We showed that problem (WSLRA) is solved by:

1. preprocessing the data p and the structure S , as in (p 7→ p′) and (S 7→ S ′),

2. solving the equivalent unweighted problem with structure parameter vector p′, structure specification S ′, and

rank specification r, and

3. postprocessing the solution p̂′, obtained in step 2, in order to obtain the solution p̂G =W
−1/2
g p̂′G of the original

problem.

Using the transformation (p 7→ p′), (S 7→ S ′) and the solution (M) of (SLRA), we obtain the following explicit

expression for the cost function of (WSLRA)

M(R) =
(
ḠpG −G⊥

:,M vec(RS0)
)⊤

W−1
g Ḡ⊤(ḠW−1

g Ḡ⊤)−1
ḠW−1

g

(
ḠpG −G⊥

:,M vec(RS0)
)
, (MW )

where Ḡ = G⊥
:,M G:,G and G is defined in (G).

Note 11 (Specification of fixed parameter values by infinite weights). In the case of a diagonal weight matrix (wg),

an infinite weight w j = ∞ specifies a fixed parameter value p̂ j = p j. A problem with infinite weights is equivalent

to a regular structured low-rank approximation problem with fixed parameters assigned to the constant term S0 of the

structure specification. Let If be the set of indices of the fixed structure parameters and I f its complement

If = { j ∈ {1, . . . ,np } | p̂ j = p j } and I f = { j ∈ {1, . . . ,np } | j 6∈ If }.

The equivalent problem has structure, defined by

S ′(p̂′) = S0 + ∑
i∈If

Si pi

︸ ︷︷ ︸
S′0

+ ∑
i∈I f

Si p̂i, where p̂′ := p̂|I f
.

The estimated vector p̂ is recovered from the parameter vector p̂′ of the equivalent problem by

p̂|I f
= p̂′ and p̂|If

= p|If
.
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Note 12 (Solving (SLRA) as weighted unstructured problem). Consider an instance of problem (SLRA), refered to as

problem P1, with structure S = S1 and an instance of problem (WSLRA), refer to as problem P2, with unstructured

correction (S2 = vec−1, np2
= mn) and weight matrix

W−1
2 = S1S1

⊤. (S1 7→W2)

It can be verified by inspection that the cost functions (M) and (MW ) of problems P1 and P2, respectively, coincide.

The weight matrix W2 ∈ R
mn×mn, defined in (S1 7→ W2), however is singular (rank(W2) is equal to the number of

structure parameters of problem P1, which is less than mn). In the derivation of the cost function (MW ) it is assumed

that Wg is positive definite, so that minimization of (MW ) is not equivalent to problem P2.

5 Numerical examples

In this section, we present numerical examples with the three problems covered in the introduction:

• unstructured noisy matrix completion,

• system identification with missing data, and

• data-driven simulation.

The correctness of the results and the effectiveness of the methods in the paper is validated by comparison with alter-

native methods, specifically developed for these applications. All simulations are done in Matlab and are reproducible

in the sense of [4]. An extended version [17] of this paper is a literate program (in noweb format [25]), implementing

the methods in the paper and generating the presented numerical results. The necessary m-files can be downloaded

from

http://homepages.vub.ac.be/~imarkovs/publications.html

5.1 Approximate matrix completion

In the approximate matrix completion problem (AMC) of Section 1.2.1, the methods in the paper are compared with

the following alternative methods:

wlra — the alternating projections method of [13],

optspace — a method based on spectral techniques and manifold optimization [11],

lmafit — the successive over-relaxation algorithm of [27], and

rtrmc — the Riemannian trust-region method of [3].

These methods use an image representation

D̂ = S (p̂) = PL, where P ∈R
m×r and L ∈ R

r×n,

of the unstructured m× n rank r matrix D̂. The number of optimization variables in the image representation is

r(m+n) (rm in the case of rtrmc), so that the methods are suitable for problems with small rank r. The above cited

methods are developed for recommender system applications, where the data matrix is sparse in the given elements

and this sparsity is effectively used in the computations.

In contrast, the kernel representation (KER) has m(m− r) variables, so that it is suitable for problems with small

co-rank m− r. The implementation [17] of the methods in the paper is applicable for relatively small size problems

(say, m < n < 100, and m− r < 3). For larger problems, the efficient C implementation [16] (denoted by slra-c

below), of the variable projection approach without missing values, can be used by setting the missing values to zeros

and the corresponding weights to a small number (10−6 in the simulation examples). The In the reported results,

slra-m corresponds to (SLRA′
R) and slra-r corresponds to (SLRA′′

R) with γ = ‖pG ‖2
2 (see Note 8).

The data matrices, used in the simulation examples, are generated as random rank r matrices S (p̄) plus noise,

where the noise matrix is zero mean Gaussian with independent identically distributed elements. A fraction of ran-

domly selected elements of the data matrix are missing. The simulation parameters for the experiments are:

10



• matrix dimensions and rank, defined by variables m, n, and r, respectively;

• noise level, defined by a variable nl, and

• fraction of given elements, defined by a variable eps.

The relative approximation errors

eg =
‖pG − p̂G ‖2

‖pG ‖2

and em =
‖p̄M − p̂M ‖2

‖p̄M ‖2

(rows eg and em) and execution time (row t) are shown below for the methods compared in three simulation prob-

lems. In a problem with exact 10×100 matrix of rank 8 with 8 missing values (exact matrix completion problem):

11a 〈AMC, example 1 11a〉≡ (? 0—1)

ex = ’amc-ex1’; m = 10; n = 100; r = 8; nl = 0; eps = 0.995; test_amc

the methods in the paper, wlra, and rtrmc recover exactly the missing values:

slra-m slra-r slra-c wlra optspace lmafit rtrmc

eg 2×10−16 2×10−16 1.2410×10−4 5×10−11 0.0213 2.5156×10−4 2×10−12

em 1×10−14 1×10−14 0.0013 3×10−9 0.9204 0.1923 2×10−10

time, sec 1.3632 3.5105 0.2710 0.1614 0.2992 0.0440 0.2823

For the same setup with 10% noise (approximate matrix completion):

11b 〈AMC, example 2 11b〉≡ (? 0—1)

ex = ’amc-ex2’; m = 10; n = 100; r = 8; nl = 0.1; eps = .995; test_amc

the methods in the paper, wlra, and rtrmc obtain the same approximation error (around 8% for the missing values).

slra-m slra-r slra-c wlra optspace lmafit rtrmc

eg 0.0117 0.0117 0.0154 0.0117 0.0231 0.0118 0.0117

em 0.0796 0.0797 0.1439 0.0803 0.9376 0.1233 0.0796

time, sec 10.0445 36.9907 0.2400 0.0968 0.3364 0.0465 0.2638

As illustrated by the following example, increasing the number of missing values eventually makes the solution of the

exact matrix completion problem nonunique:

11c 〈AMC, example 3 11c〉≡ (? 0—1)

ex = ’amc-ex3’; m = 10; n = 100; r = 8; nl = 0; eps = 0.8; test_amc

slra-m slra-r slra-c wlra optspace lmafit rtrmc

eg 5×10−17 5×10−17 0.0052 0.0086 0.0509 0.0079 3×10−10

em 0.5374 0.5374 1.1876 9.5087 0.6133 0.7648 0.5374

time, sec 0.7271 3.1331 0.2497 0.3473 0.3229 0.1185 0.4272

Note that, again the methods in the paper and rtrmc find the same solution, which in the example fits the given data

exactly.

For a problem with 10×1000 matrix of rank 9 with 101 missing values and 5% noise

11d 〈AMC, example 4 11d〉≡
ex = ’amc-ex4’; m = 10; n = 1000; r = 9; nl = 0.05; eps = .99; test_amc

slra-m and slra-r are not applicable (they require too much time and memory). However, the C implementation

slra-c is competitive with the alternative methods in terms of execution time and obtains the same approximation

error as rtrmc. In this example, lmafit achieves the smallest error and is also the fastest of all compared methods.

slra-m slra-r slra-c wlra optspace lmafit rtrmc

eg NaN NaN 0.0041 0.0062 0.0209 0.0041 0.0041

em NaN NaN 0.2633 86.1488 0.9021 0.2116 0.2634

time, sec NaN NaN 0.0732 1.5501 1.5773 0.1047 0.2978
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5.2 System identification with missing data

Consider the system identification problem (SYSID), described in Section 1.2.2. The data w is a noisy T = 100

samples long random trajectory of a single-input single-output linear time-invariant system B(R̄) with lag ℓ = 2.

Samples w(t), for t ∈ Tm, are missing. The noise is zero mean white Gaussian process with covariance matrix σ 2Iq,

i.e., both the inputs u = w1 and the outputs y= w2 are perturbed and the input and the output noise variances are equal.

The true model parameters

R̄0 =
[
−1 0.81

]
, R̄1 =

[
1 −1.456

]
, R̄2 =

[
Q̄2 P̄2

]
=

[
−1 1

]
(∗)

are normalized with P̄2 = 1 and the same normalization is used for the identified model parameter R̂. This ensures that

the parameters are unique and the systems B(R̄) and B(R̂) can be compared by the relative parameter error

eR =
‖R̄− R̂‖2

‖R̄‖2

.

The identification problem is solved by the methods slra-m and slra-r, developed in the paper; the efficient

software slra-c of [16] (with zero weights substituted by small constants); and the method sysid of [24].

The simulation parameters in the experiments are the

• number of samples T,

• set of missing values Tm, specified by a variable Tm, and

• noise variance interval, specified by a vector NL.

The reported results show the estimation error eR for the compared methods and for the different noise levels specified

in NL. In the case of uniformly distributed missing data samples:

12a 〈SYSID example 1 12a〉≡ (? 0—1)

ex = ’sysid-ex1’; T = 100; N = 8; NL = linspace(0, 0.1, N); Tm = 30:3:70; test_sysid

the developed methods perform slightly better than the alternative method for small noise level and slightly worse for

high noise level:

σ 0 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857 0.1000

slra-m 1.5624×10−15 0.0085 0.0134 0.0390 0.0325 0.0693 0.0347 0.0778

slra-r 1.5624×10−15 0.0085 0.0134 0.0390 0.0325 0.0693 0.0347 0.0778

slra-c 2.9202×10−6 0.0085 0.0134 0.0390 0.0325 0.0693 0.0347 0.0778

sysid 5.6315×10−15 0.0096 0.0148 0.0434 0.0356 0.0697 0.0322 0.0758

Similar results are obtained in the case of consecutive missing samples:

12b 〈SYSID example 2 12b〉≡ (? 0—1)

ex = ’sysid-ex2’; T = 100; N = 8; NL = linspace(0, 0.1, N); Tm = 40:60; test_sysid

σ 0 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857 0.1000

slra-m 1.6123×10−15 0.0063 0.0142 0.0366 0.0529 0.0738 0.0410 0.0850

slra-r 1.6123×10−15 0.0063 0.0142 0.0366 0.0529 0.0738 0.0411 0.0851

slra-c 6.5227×10−7 0.0063 0.0142 0.0366 0.0529 0.0738 0.0411 0.0851

sysid 3.3311×10−16 0.0080 0.0191 0.0431 0.0578 0.0766 0.0417 0.0829

This latter problem can be solved also by treating the data as two independent trajectories without missing data.
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5.3 Data-driven simulation

Consider the data-driven simulation problem (DDSIM), described in Section 1.2.3. The to-be-simulated system is

B̄ = B(R̄), with parameter R̄ given in (∗) and with an input/output partition w = (u,y) of the variables. The given

trajectory w′ = (u′,y′) ∈ (R2)T ′
is a noise corrupted random trajectory of B̄ (the same simulation setup as in Sec-

tion 5.2) and the to-be-simulated trajectory w′′ = (u′′,y′′) ∈ (R2)T ′′
is the impulse response h̄ of B̄, i.e., the response

of B̄ to pulse input under zero initial conditions:

u′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,0, . . . ,0︸ ︷︷ ︸
pulse input

) and y′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

, ĥ(0), ĥ(1), . . . , ĥ(T2 − ℓ−1)︸ ︷︷ ︸
impulse response

).

The methods in the paper are compared with an alternative subspace-type method ddsim [19, 15] in terms of the

relative approximation error

eh =
‖h̄− ĥ‖2

‖h̄‖2

.

Subspace methods are multi stage methods, i.e., they split the nonconvex optimization problem in several steps that

are individually convex, but do not guarantee global or local optimally with respect to the overall problem. In general,

subspace-type methods are more efficient but less accurate than local optimization-based methods. The results for

T ′ = 30, T ′′ = 52, and noise level in the range 0–40%:

13 〈DDSIM example 13〉≡ (? 0—1)

T1 = 30; T2 = 52; N = 6; NL = linspace(0, 0.1, N); test_ddsim

confirm this rule of thumb:

σ 0 0.0200 0.0400 0.0600 0.0800 0.1000

slra-m 1.8920×10−15 0.0451 0.1149 0.1652 0.2678 0.2301

slra-r 1.8920×10−15 0.0451 0.1150 0.1652 0.2679 0.2298

slra-c 1.0123×10−5 0.0451 0.1149 0.1652 0.2679 0.2298

ddsim 3.2215×10−15 0.0572 0.1727 0.2772 0.3012 0.5311

The true impulse response and the approximations for the 40% noise run are plotted in Figure 1.
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Figure 1: Data-driven simulation of impulse response: true impulse response — solid line, approximation by the

methods in the paper — dashed line, approximation by the methods of [15] — dashed-dotted line.

6 Conclusions

A variable-projection-like method for structured low-rank approximation with missing data was developed. The ap-

proach was furthermore generalized to weighted structured low-rank approximation with missing values. After elimi-
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nation of the approximation p̂, the remaining nonlinear least-squares problem subject to quadratic equality constraints

was solved as an equivalent regularized unconstrained optimization problem.

The problem and solution methods developed have applications in matrix completion (unstructured problems),

system identification with missing data, and data-driven simulation and control (mosaic-Hankel structured problems).

The performance of the methods in the paper was illustrated on small-size simulation examples and was compared

with the performance of problem specific methods. Efficient implementation for large scale problems appearing in

applications such as recommender systems and system identification is a topic of future research.
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