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Abstract

A software package is presented that computes locally optimal solutions to low-rank approximation problems
with the following features:

• mosaic Hankel structureconstraint on the approximating matrix,

• weighted 2-normapproximation criterion,

• fixed elementsin the approximating matrix,

• missing elementsin the data matrix, and

• linear constraintson an approximating matrix’s left kernel basis.

It implements a variable projection type algorithm and allows the user to choose standard local optimization meth-
ods for the solution of the parameter optimization problem.For anm×n data matrix, withn>m, the computational
complexity of the cost function and derivative evaluation is O(m2n). The package is suitable for applications with
n ≫ m. In statistical estimation and data modeling—the main application areas of the package—n ≫ m corre-
sponds to modeling of large amount of data by a low-complexity model. Performance results on benchmark system
identification problems from the database DAISY and approximate common divisor problems are presented.

Keywords: mosaic Hankel matrix, low-rank approximation, total leastsquares, system identification, deconvolu-
tion, variable projection.

1 Introduction

Structured low-rank approximation is defined as low-rank approximation

minimize overD̂ ‖D− D̂‖ subject to rank(D̂)≤ r

with the additional constraint that the approximating matrix D̂ has the same structure as the data matrixD. A typical
example where a rank deficient structured matrix arises is when a sequencep = (p1, . . . , pnp) satisfies a difference
equation with lagℓ < ⌈np/2⌉, i.e.,

R0pt +R1pt+1+ · · ·+Rℓpt+ℓ = 0, for t = 1, . . . ,np− ℓ. (DE)

The system of equations (DE) is linear in the vector of parametersR :=
[
R0 R1 · · · Rℓ

]
, so that it can be written

asRHℓ+1,np−ℓ(p) = 0, whereHℓ+1,np−ℓ(p) is a Hankel matrix constructed fromp. This shows that, forR 6= 0, the
fact thatp satisfies a difference equation (DE) is equivalent to rank deficiency of a Hankel matrixHℓ+1,np−ℓ(p).

Many problems in machine learning, system theory, signal processing, and computer algebra can be posed and
solved as structured low-rank approximation problem for different types of structures and different approximation
criteria (see Section 5 and [21, 22]). In identification and model reduction of linear time-invariant dynamical systems,
the structure is block-Hankel. In the computation of approximate greatest common divisor of two polynomials, the
structure is Sylvester. In machine learning, the data matrix is often unstructured but the approximation criterion is a
weighted 2-norm (or semi-norm, in the case of missing data).

Despite the academic popularity and numerous applicationsof the structured low-rank approximation problem,
the only efficient publicly available software package for structured low-rank approximation is the one of [26]. The
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Feature Old version New version

matrix structure block-Hankel/Toeplitz matrix× mosaic-Hankel
cost function 2-norm weighted 2-norm
exact data whole blocks arbitrary elements
missing data not allowed arbitrary elements
constraints on the unconstrained linear constraints
optimization variable
interface Matlab Matlab, Octave, R

Table 1: Comparison of the old and new versions of the software.

package presented in this paper is a significantly extended version of the software in [26]. The main extensions are
summarized in Table 1 and are described in more details in Section 2.

The paper is organized as follows. Section 3 defines the considered weighted structured low-rank approximation
and presents Matlab/Octave and R interfaces for calling theunderlying C++ solver. Section 4 gives details about
the solution method for solving the resulting parameter optimization problem. Implementation and software design
issues are extracted in Appendix A. Section 5 lists applications of the package and describes in more details an appli-
cation for solving scalar autonomous linear time-invariant identification and approximate common divisor problems.
Appendix B lists extra options of the software for choosing the optimization method.

2 Main features of the software

1. Matrix structure specification

The software package supports matrix structures of the form

S (p) := ΦHm,n(p), (S )

whereΦ is a full row rank matrix andHm,n is amosaic Hankelstructure [14],i.e., aq×N block matrix

H[m1 ··· mq ],[n1 ··· nN ](p) =




Hm1,n1(p
(11)) · · · Hm1,nN(p

(1N))
...

...

Hmq,n1(p
(q1)) · · · Hmq,nN(p

(qN))


 , (Hm,n)

with scalarHankelblocks

Hm,n(p) :=




p1 p2 p3 · · · pn

p2 p3 . .
.

pn+1

p3 . .
. ...

...
pm pm+1 · · · pm+n−1




∈ R
m×n. (Hm,n)

(Hm,n) is more general than the block-Hankel and “flexible structure specification”, used in the old version of
the software (see Section 3 in [26]). In fact, the “flexible structure specification” is equivalent toHm,n with
equalni ’s. Mosaic Hankel matrices with blocks of different column dimension allow us to solve, for example,
system identification problems with multiple trajectoriesof different lengths.

The matrixΦ further extends the class of mosaic Hankel matrices to (mosaic) Hankel-like matrices. A trivial
example is the Toeplitz structure achieved by

Φ = Jm :=




1

. .
.

1


 ∈R

m×m and Hm,n(p) = Hm,n(p).
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(Empty spaces in a matrix denote zeros.) A more interesting example is theToeplitz-plus-Hankelstructure,
achieved by

Φ =
[
Im Jm

]
=




1 1
. . . . .

.

1 1


 ∈ R

m×2m and Hm,n(p) =

[
Hm,n(p(1))
Hm,n(p(2))

]
. (T +H )

2. Cost function

In the old version of the package, the approximation criterion is the 2-norm (unweighted low-rank approxima-
tion). In the new version, the approximation criterion is the weighted 2-norm. Weights are needed for example
when the accuracy of the elements ofp vary, see [42]. Weights can be used also to replace the parameter
2-norm with the Frobenius matrix norm of the error matrixS (p− p̂). As explained in Note 2, the weighted
approximation criterion can be viewed alternatively as a modification of the data matrix structure.

3. Exact data

Structure parameters can be fixed to predefined values. (In the old version of the package only subblocks of
the structured matrix could be specified as fixed.) This feature allows us to solve problems, such as system
identification under exactly known initial conditions, where the upper-left triangles of the Hankel blocks are
fixed, and approximate common divisor computation, where the upper-left and lower-right triangles or the
Hankel blocks are fixed.

4. Missing data1

A new feature of the software is the ability to deal with missing data. Due to specific experiment design or data
corruption, the data may be incomplete in real-life applications. A well known example from machine learning
is prediction of user ratings (recommender system), see,e.g., [3]. A possibility to specify missing values in
Hankel low-rank approximation problems allows us to solve system identification problems with incomplete or
irregularly sampled data.

5. Total least squares and low-rank approximation

In the old version of the package, the optimization variableis theX matrix in the problem of solving approxi-
mately an overdetermined system of linear equationsAX ≈ B. This problem may be viewed as a restriction of
the low-rank approximation problem to a subclass of matrices. To preserve backward compatibility, the new
version of the software can also solve the structured total least-squares problems, see Note 6.

6. Constraints on the optimization variables

The new version of the package uses as optimization variablea matrixR whose rows form a basis for the left
kernel of the approximation̂D and allows specification of linear structure constraints onR. An application
where such a constraint is needed is multivariate system identification with fixed observability indices [12].
Other applications are given in Section 5.

7. Interfaces to scientific computing environments

The package provides interface for calling the underlying C++ solver from Matlab, Octave, and R, which are
among the most often used computing environments for scientists and engineers.

An advantage of unifying structured and weighted low-rank approximation with missing and fixed values and
constraints on the optimization variable is that a single algorithm and a piece of software solves a large variety of
problems. Section 5 lists special cases of the generic problem solved by the software package. Each special case is
motivated by applications, which are considered in the literature and specialized algorithms are developed for their
solution. Only a few of the algorithms reported in the literature, however, are implemented in publicly available
software.

1Currently (July 29, 2013), this feature is implemented onlyin an experimental Matlab version of the software. It can be simulated in the
C++ solver by assigning “small” weights to the missing parameters and replacing the missing values with zeros.
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Fixed values in the approximating matrix can be viewed as an extreme case of weighted low-rank approximation
with large weights corresponding to the fixed parameters. Similarly, the missing data case can be viewed as weighted
low-rank approximation with small weights corresponding to the missing parameters. Both cases are equivalent to a
single singular (zero or infinite weights) weighted low-rank approximation problem and can be solved with the same
algorithm.

The generality of the algorithm is not compromised by its computational efficiency. Eliminating the approxima-
tion D̂ and exploiting the structure in the resulting nonlinear least squares problem, the cost function and derivative
evaluation is done inO(m2n) floating point operations [39] for weighted norm without missing values.

The software is written in C++ with Matlab/Octave and R interfaces and contains also the experimental Matlab
code, presented in [23]. The latter supports general linearstructure and missing values, but is inefficient and can be
used only for small size matrices (say,m≤ n< 100). In Matlab, the C++ solver can be called directly via themex
functionslra_mex_obj or via the wrapper function, presented in the paper. The wrapper function calls optionally
the experimental versionslra_ext. The source code of the package is hosted at the following address:

http://github.com/slra/slra

Pre-compiled mex-files are available from:

http://homepages.vub.ac.be/~imarkovs/slra/software.html

3 Problem formulation

We denote missing data values by the symbolNaN (“not anumber”) and define the extended set of real numbersRe

as the union of the set of the real numbersR and the symbolNaN:

Re := R∪{NaN}.

The considered structured low-rank approximation problemis defined as follows.

Problem 1. Given:

• structure specificationS ,

• vector of structure parametersp∈ R
np
e ,

• nonnegative vectorw∈ (R+∪{∞})np, defining a weighted (semi-)norm

‖p‖2
w := ∑

{ i | pi 6=NaN}
wi p

2
i , and

• desired rankr,

find a structure parameter vectorp̂, such that the corresponding matrixS (p̂) has rank at mostr, and is as
close as possible top in the sense of the weighted semi-norm‖ · ‖w, i.e.,

minimize overp̂∈ R
np ‖p− p̂‖2

w subject to rank
(
S (p̂)

)
≤ r. (SLRA)

Without loss of generality, it is assumed thatm≤ n. An infinite weightwi = ∞ imposes the equality constraintp̂i = pi

on the optimization problem (SLRA).
Problem (SLRA) is in general nonconvex. In the software package, it is solved numerically by local optimization

methods. The Matlab wrapper function for low-rank approximation is defined as follows:
4 〈slra function definition in Matlab/octave4〉≡ (? 0—1)

function [ph, info] = slra(p, s, r, opt)
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The compulsory input argumentsp, s, andr of theslra function correspond to the vector of parametersp, the
problem structure, and the rankr, respectively, and are described in the subsequent sections. The optional parameter
opt contains options for the optimization method and is described in Appendix B.

The output argumentph of theslra function is a locally optimal solution̂p of (SLRA) andinfo is a structure
containing additional information about the computed solution:

• info.Rh is an(m− r)× r full row rank matrixR̂, such that̂RS (p̂) = 0 (low-rank certificate),

• info.fmin is the cost function value‖p− p̂‖2
w at the computed solution,

• info.iter is the number of iterations performed by the optimization solver,

• info.time is the execution time, and

• info.Vh covariance matrix of the optimization variables (see, (Θ ↔ X), Appendix A.1, and Section 5.1 for
an example of its usage for computation of confidence ellipsoids).

Next we describe the required input parametersp, s, andr.

Matrix structure specification

The structure (S ) is specified by the two vectors

m :=
[
m1 · · · mq

]⊤ ∈ N
q and n :=

[
n1 · · · nN

]⊤ ∈ N
N (m,n)

and the matrixΦ ∈ R
m×m′

, where

m′ :=
q

∑
i=1

mi.

The parameters should be a structure with a fieldm and, optionally, a fieldn, containing the vectors (m,n). If
s.n is skipped, by defaultN = 1 and

n = n=
np−∑q

i=1mi

q
+1.

Optionally,s can have a fieldphi, containing the matrixΦ ∈ R
m×m′

. The default value forΦ is the identity matrix
of sizem= m′.

The vectorp is composed of the structure parameter vectors of all scalarHankel blocks in (Hm,n), ordered first
top to bottom and then left to right,i.e.,

p= (p(11), . . . , p(q1), . . . , p(1N), . . . , p(qN)).

Weight specification, fixed and missing parameter values

The weight vectorw is passed to theslra function by the fieldw of s. If w is not specified, its default value is the
vector of all ones, corresponding to unweighted low-rank approximation. The parameters.w can be

• np-dimensional nonnegative vector, in which casew= s.w,

• q×N nonnegative matrix, in which case the weights corresponding to the structure parameters of the(i, j)th
Hankel block in (Hm,n) are all equal towi j , or

• q-dimensional nonnegative vector, in which case the weightscorresponding to the structure parameters of the
(i, j)th Hankel block in (Hm,n) are all equal towi, for all j.

The second and third options of specifyings.w evoke a more efficient computational method but are supported only
by the C++ solver.

Settingwi to ∞ has the effect of specifying the parameterpi as exact,i.e., the approximation problem (SLRA) is
solved with the additional constraint thatp̂i is equal to the given parameter valuepi (and the weighted norm‖ · ‖w

is evaluated over the parameters with finite weights only). Settingwi to 0 has the effect of ignoring the value of the
parameterpi in the solution of the approximation problem. Alternatively, ignored parameter values may be specified
by the symbolNaN in p. From a practical point of view, ignored structure parameter values are “missing data”.
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Note2 (Incorporating the weightsw into the matrix structureS ). A weighted structured problem (SLRA) can be
solved as an equivalent unweighted problem (SLRA),i.e., with weightswi = 1 for all i, and a modified structure
specificationS ′ : Rnp → R

m×n, defined by

S
′((p1, . . . , pnp)

)
= S

(
(
√

w−1
1 p1, . . . ,

√
w−1

np pnp)
)
.

This fact shows that the weighted norm specification can be viewed equivalently as a modification of thedatastructure.

Note3 (R interface). Calling the C++ solver from R is done by an R functionslra with the same parameters as in
the Matlab mex function, except that in R lists are used instead of structures, and the list elements are accessed by
<list>$<element> instead of by<structure>.<element>. The computed result is returned in a list with
fieldsph andinfo, which contain, respectively,̂p and theinfo variable defined above. Optional logical parameters
compute.ph andcompute.Rh can be used to disable the computation ofp̂ andR̂. By default,p̂ is not computed.
Examples of using the R interface can be found in the directory test_r of the package distribution.

4 Solution method

This section outlines the method used in the package for solving the structured low-rank approximation problem (SLRA).
Let d be the rank reduction

d := m− r.

The rank constraint is represented in a kernel form

rank
(
S (p̂)

)
≤ r ⇐⇒ there is full row rankR∈ R

d×m, such thatRS (p̂) = 0, (KER)

i.e., the left kernel ofS (p̂) is parameterized by thed linearly independent rows of the matrixR. Then (SLRA) is
equivalent to the following double minimization problem

minimize over full row rankR∈R
d×m f (R), (SLRAR)

where

f (R) :=

(
min

p̂∈Rnp
‖p− p̂‖2

w subject to RS (p̂) = 0

)
. ( f (R))

(SLRAR) is refered to as the outer minimization and (f (R)) as the inner minimization. The inner minimization
problem is a (generalized) linear least-norm problem and can be solved analytically for givenR, resulting in a closed
form expression of the cost functionf in the outer minimization problem. The derivative off with respect to the
elements ofR can also be computed analytically. Fast methods for evaluation of f and its derivatives are presented
in [39] and implemented in C++. The general case is a generalized least norm problem and is solved in [23].

In data modeling—the main application area of the software—R can be interpreted as a model parameter. For
example, in system identification,R is related to a difference equation (DE) representation of the system. Typically,
a large amount of data is fitted by a simple model, which implies that the dimension ofR is small compared to the
dimension ofp̂. Problem (f (R)) is bilinear in the variablesR and p̂, which makes possible the elimination ofp̂ for a
fixedR. Many estimation problems have similar bilinear structureand their solution methods are based on elimination
of the large dimensional optimization variable.

The elimination ofp̂ in the analytic solution of (f (R)) is similar to the projection step in the variable projection
method [10] for solving separable nonlinear least squares problems. Note, however, that the standard variable pro-
jection method was invented as a solution method forunconstrainedoptimization problems, where the cost function
is explicitly given. The structured low-rank approximation problem (SLRA) in contrast is a constrained optimization
problem and the parameterization (KER) is an implicit function of the optimization variables. As discussed next,
(SLRA) is an optimization problem over a Grassmann manifold, which makes it rather different from the standard
setup, for the variable projection method.

Note4 (Feasibility of the minimization problem over̂p). In the analytic solution of (f (R)), it is assumed that the
problem is feasible for anyR in the search space. A necessary condition for this to hold isthat the number of structure
parameters is sufficiently large:

np ≥ dn. (C)
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Condition (C) imposes restrictions on the class of problemsthat can be solved by the approach implemented in the
package. For example, in scalar Hankel low-rank approximation problems the rank reductiond can be at most one.
Interestingly, in applications of problem (SLRA) to approximate realization, system identification, and approximate
common divisor computation constraint (C) can always be satisfied.

4.1 Parametrization of the search space and constraints

Problem (SLRAR) is an optimization problem on aGrassmann manifoldGr(d,m) (set ofd-dimensional subspaces
of Rm). Indeed, f (R1) = f (R2) if the rows of R1 and R2 span the same subspace. In the package, we map the
optimization on Gr(d,m) to an optimization problem on an Euclidean space, see [38]. The problem is turned into
optimization of f over the set of full row rank matricesR∈ R

d×m that represent all (or a generic part) of thed-
dimensional subspaces.

In some applications, it is necessary to impose linear constraints onR, which can also be incorporated into the
parametrization of the search space.

• The experimental Matlab solver uses a general linear constraint onR

R= R
′(θ) := vec−1

d (θΨ), where θ ∈ R
np, (θ 7→ R)

defined by a matrixΨ ∈ R
nθ×dm. (Here vec(·) is the column-wise vectorization operator and vec−1(·) is its

inverse.) The rank constraint onR is imposed by

RR⊤ = Id. (f.r.r. R)

• The C++ solver uses a matrix-product constraint on the matrix R

R= R(Θ) := ΘΨ, where Θ ∈ R
d×m′′

, (Θ 7→ R)

defined by a matrixΨ ∈R
m′′×m. The rank constraint onR is imposed by

Θ =
[
X −Id

]
, for someX ∈ R

d×(m′′−d). (Θ ↔ X)

TheΨ matrix is passed to theslra function by an optimization optionopt.psi. The default value ofΨ is Im
for the C++ version andIdm for the Matlab version. TheΨ matrices—ΨC for the C++ versions andΨM for the
Matlab versions—are generally different. They coincide ifand only if the rank reduction is one,i.e., d = 1. The
constraint (θ 7→ R) is more general and includes the constraint (Θ 7→ R) by choosing

ΨM = ΨC⊗ Id and θ = vec(Θ).

The rank constraint (f.r.r.R) parametrizes Gr(d,m), and turns the structured low-rank approximation problem into
an optimization problem onRmd with a quadratic constraint. The rank constraint (Θ ↔ X) parametrizes a generic
part of Gr(d,m). Its main advantage is that the structured low-rank approximation problem problem is turned into an
unconstrained optimization problem onR(m′′−d)d.

Note5 (On parametrization of the whole Gr(d,m) in the C++ version). The whole Gr(d,m) can be covered by taking
different Ψ (see [38]) or changingΨ during the optimization, which is done in the optimization algorithms of [20].
Currently, in the C++ version,Ψ is a fixed parameter.

Note6 (Solution of structured total least squares probelms [26]). SettingΨ = Id in the C++ version is equivalent to
solving (SLRA) with the constraint̂R=

[
X −Id

]
, whereX ∈R

d×(m−d) is the optimization variable. This problem is
called a structured total least squares problem.
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4.2 Local optimization methods

Due to the elimination of̂p, for n≫ m, the computation time of the search direction by the optimization method is
negligible in comparison with the computation time for the cost function and derivative evaluations. Therefore, we
use standard local optimization methods to minimize the cost function f .

The default optimization method for the C++ solver is the Levenberg-Marquardt algorithm [30, 6], implemented
in the GSL library. Other options are to use the Nead-Melder method for minimization without derivatives, which is
slow but robust, or the BFGS quasi-Newton method. The cost function gradient is computed analytically by

d f (R,H) = 2y⊤ds(R,H)−y⊤dΓ(R,H)y, where y := Γ−1s(R).

It can be shown that the gradient evaluation has computational complexity of the same order as the one of the cost
function evaluation. For details see [39].

In our experience the Levenberg-Marquardt algorithm is typically faster and more robust in practice than the
alternative optimization methods. The Jacobian ofC−⊤s, whereC is the Cholesky factor ofΓ is replaced by the
pseudo-Jacobian [13], which computation is of the order ofO(m2n).

The package provides an interface to the cost function and derivatives evaluation, so that any optimization method
can be used (See Appendix A for details). More details about the C++ interface can be found in Appendix A. The
experimental Matlab solver uses the functionfmincon for constrained nonlinear minimization from the Optimization
Toolbox of Matlab. In this case, the derivatives are approximated numerically.

All local optimization methods require an initial approximation. By default, unstructured rank-r approxima-
tion D̂lra of the data matrixD = S (p) is used,i.e., the initial value for the parameterR is a full row rank matrix
Rlra ∈R

d×m, such thatRlraD̂lra = 0. The default value can be overwritten by an optional argument opt.Rini.
In order to obtain theθ or Θ parameter fromR, the equationR(θ)≈ Rlra is solved in the least-squares sense. For

the C++ solver, the obtained matrixΘ is then converted toX by

X :=−P−1Q, whereΘ =:
[
Q P

]
, Q∈R

d×(m′′−d), and P∈ R
d×d.

The result of theslra function—a locally optimal value of the parameterR—is returned in the variableinfo.R.
The corresponding locally optimal approximationp̂ is computed by solving the inner minimization problem (f (R)).
The solution is given by

p̂(R) = p+G(R)
(
Γ(R)

)−1
s(R),

whereG(R) is a linear function in the elements ofR, defined by

vec
(
RS (p)

)
= G(R)p.

5 Applications

We list below examples of low-rank approximation problems with different matrix structuresΦHm,n, approximation
criteria ‖ · ‖w, and constraints on a basis of the approximating matrix’s left kernel. Each example is motivated by
applications. (SYSID stands for system identification and GCD stands for greatest common divisor.)

# example application(s) reference

1 unstructured factor analysis [11]
uniform weights subspace methods [28, Ch. 7]

latent semantic analysis[7]

2 element-wise weights chemometrics [42]

3 scalar Hankel model reduction [2]
autonomous SYSID [28, Ch. 11]
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linear prediction [19]
shape from moments [31, 9]

4 Hankel with structured kernel spectral estimation [37]
(palindromic)

5 Toeplitz + Hankel isospectral flow [34]

6 Hankel with structured kernel SYSID with some [?]
(fixed poles) predefined poles

7 q×1 block Hankel multivariable SYSID [29]

8 Hankel with structured kernel SYSID with [12]
(fixed obsrv. indices) fixed obsrv. indices

9 q×N block Hankel SYSID from multiple [29]
time series (Ti = T)

10 Hankel blocks SYSID from multiple [33]
next to each other time series

11 Hankel with output error SYSID [29]
fixed variables

12 Unstructured beneath deconvolution [21]
Hankel block

13 Hankel with first SYSID with fixed [36]
ℓ elements fixed initial conditions

14 Sylvester approximate GCD of [16]
two polynomials

15 generalized Sylvester approximate GCD of[15]
N polynomials

16 unstructured with recommender [35]
missing elements systems

17 Hankel with SYSID with [33]
missing elements missing data

18 missing and matrix completion [4]
fixed elements

In the rest of the section, we illustrate the performance of the structured low-rank approximation package on a few
examples from the list. Section 5.1 shows a deconvolution problem (example 12) in the errors-in-variables setting.
Section 5.2 demonstrates the efficiency of the package on benchmark system identification problems (example 7)
from the database DAISY [32]. Section 5.3 shows numerical examples of computing approximate common divisors
of two polynomials (example 14), using Sylvester structured low-rank approximation.

5.1 Errors-in-variables deconvolution

The convolutionh⋆u of the sequences

u=
(
u(1), . . . ,u(T)

)
and h=

(
h(0),h(1), . . . ,h(n−1)

)

is a sequencey, defined by the convolution sum

y(t) :=
n

∑
τ=0

h(τ)u(t − τ), for t = n,n+1, . . . ,T. (CONV)

With some abuse of notation, we denote byu, h, andy both the sequences and the corresponding vectors:

u :=




u(1)
...

u(T)


 ∈R

T , h :=




h(0)
...

h(n−1)


 ∈ R

n, y :=




y(n)
...

y(T)


 ∈ R

T−n+1.
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Using the Toeplitz matrix

T (u) =




u(n) u(n−1) · · · u(2) u(1)

u(n+1) u(n)
. . .

. . . u(2)
...

...
. . .

. . .
...

u(T) u(T −1) · · · u(T −n+2) u(T −n+1)



∈ R

(T−n+1)×n,

the convolution sum (CONV) can be written as a matrix-vectorproduct

y= T (u)h. (CONV’)

Consider the errors-in-variables data generating model [18]:

u= ū+ ũ and y= ȳ+ ỹ, (EIV)

where(u,y) is the measured data,(ū, ȳ) is its “true value”, and(ũ, ỹ) is the measurement noise. The true data satisfy
the relation ¯y= T (ū)h̄, for some “true parameter” vector̄h. The goal in the errors-in-variables problem is to estimate
consistently and efficientlȳh from the noisy data.

The true parameter vector, however, is not identifiable (a solution is not unique) unless there is prior knowledge
about the measurement noise. We assume that the measurementnoise elements̃u(t) andỹ(t) are zero mean, indepen-
dent, and identically distributed, but the noise variance is unknown. It is proven in [18] that in this case the structured
total least squares approximate solution of the overdetermined system of linear equations (CONV’) yields a consistent
estimator. If in addition, the noise distribution is normal, it is a maximum likelihood estimator and is asymptotically
normal.

The structured total least squares problem is equivalent tolow-rank approximation of the matrix
[
T (u) y

]⊤
(see

Note 6). The structure is mosaic-Hankel-like

S

([
u
y

])
=

[
T ⊤(u)

y⊤

]
=







1

. .
.

1




1




︸ ︷︷ ︸
Φ

[
Hn,T−n+1(u)
H1,T−n+1(y)

]
= ΦH[n 1],T−n+1

([
u
y

])
.

Therefore, the maximum likelihood estimator forh̄ can be computed with theslra function
10a 〈call slra 10a〉≡ (? 0—1)

[uyh, info] = slra([u; y], s, n);

using the structure specification
10b 〈structure specification for deconvolution10b〉≡ (? 0—1)

s.m = [n 1]; s.phi = blkdiag(fliplr(eye(n)), 1);

The estimatêh is obtained from the parameter vectorR̂ (see (KER)) by normalization:

R̂′ :=−R̂/R̂n+1, ĥ(τ) = R̂′
τ+1, for τ = 0,1, . . . ,n−1.

Indeed,

R̂′
[
T ⊤(û)

ŷ⊤

]
= 0 ⇐⇒ T (û)ĥ= ŷ.

10c 〈R̂ 7→ ĥ 10c〉≡ (? 0—1)
hh = - info.Rh(1:n)’ / info.Rh(n + 1);

Note7 (Identification of a finite impulse response system). In system theory and signal processing, (CONV) defines
a finite impulse response linear time-invariant dynamical system. The sequenceh is a parameter,u is the input, andy
is the output of the system. The deconvolution problem is therefore a system identification problem: estimate the true
data generating system from noisy data.
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Numerical example

We illustrate empirically the consistency of the structured total least squares estimator. A true parameter vectorh̄ and a
true input sequence ¯u are randomly generated. The corresponding true output ¯y is computed by convolution of̄h andū.
Zero mean independent and normally distributed noise is added to the true data according to the errors-in-variables
model (EIV) and theslra function is evoked for the computation of the estimate.

The experiment is repeatedK = 500 times with independent noise realizations (but fixed true values). Let̂h(i) be
the total least squares solution obtained in theith repetition. Figure 1, left, shows the root-mean-square error

e :=

√
1
K

K

∑
i=1

‖h− ĥ(i)‖2
2

as a function of the sample sizeT. Theoretically, the maximum likelihood estimation error converges to zero at a rate
that is proportional to the inverse square root of the samplesize (1/

√
T convergence). The simulation results confirm

the theoretical convergence rate.
Figure 1, right, shows the true parameter valueh̄ (red cross), the 500 estimateŝh(i) (blue dots), and the 95%

confidence ellipsoid, computed from the covariance matrixinfo.Vh, corresponding tôh(500) and translated tōh.
(Note that we do not plot the confidence ellipsoid around eachestimate of the parameter in order to simplify the
picture.) The fact that about 475 estimates have the true value of the parameter in the confidence region is an empirical
confirmation that the confidence regions are correct.

500 1000 1500 2000

0.01

0.02

0.03

0.04

 

 

empirical      .
theoretical

T

e

0.48 0.49 0.5 0.51 0.52

0.77

0.78

0.79

0.8

h0

h 1

Figure 1: Left: empirical (solid line) and theoretical (dotted line) root-mean-square estimation erroreas a function of
the sample sizeT; Right: 95% confidence ellipsoid.

5.2 Performance comparison with the old version of the package

In [24] and [27], the performance of the old version of the package is tested on benchmark system identification
problems from the database DAISY [32]. The problems involvevector time-series and the model class consists of
multiple-inputs multiple-outputs linear time-invariantsystems. The identification problem in this case is equivalent
to block-Hankel low-rank approximation, which is also a special case of the mosaic Hankel low-rank approximation
problem (SLRA). For a description of the test examples, we refer the reader to [24].

In Table 2, the execution time of the new and the old version ofthe package are compared for the same setting of
the experiment as in [24]. In all examples, the approximate solutions computed by the two versions of the software are
the same. The results show that the efficiency of the new version of the package is improved by an average of 40%.
Note that the speedup is achieved by software improvements despite of the fact that the new version treats a more
general problem.
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# Data set name T m p ℓ tnew told ∆t
(sec) (sec) (%)

1 Data of a simulation of the western basin of Lake Erie 57 5 2 1 0.01 0.01 0
2 Data of ethane-ethylene distillation column 90 5 3 1 0.02 0.03 33
3 Heating system 801 1 1 2 0.01 0.02 50
4 Data from an industrial dryer (Cambridge Control Ltd)867 3 3 1 0.16 0.25 36
5 Data of a laboratory setup acting like a hair dryer 1000 1 1 5 0.02 0.04 50
6 Data of the ball-and-beam setup in SISTA 1000 1 1 2 0.01 0.02 50
7 Wing flutter data 1024 1 1 5 0.02 0.04 50
8 Data from a flexible robot arm 1024 1 1 4 0.01 0.01 0
9 Data of a glass furnace (Philips) 1247 3 6 1 2.88 4.41 35

10 Heat flow density through a two layer wall 1680 2 1 2 0.09 0.22 59
11 Simulation data of a pH neutralization process 2001 2 1 6 0.03 0.06 50
12 Data of a CD-player arm 2048 2 2 1 0.09 0.23 61
13 Data from a test setup of an industrial winding process2500 5 2 2 0.64 0.92 30
14 Liquid-saturated steam heat exchanger 4000 1 1 2 0.03 0.07 57
15 Data from an industrial evaporator 6305 3 3 1 1.36 2.22 39
16 Continuous stirred tank reactor 7500 1 2 1 0.24 0.75 68
17 Model of a steam generator at Abbott Power Plant 9600 4 4 1 13.10 15.77 17

Table 2: Performance test on examples from DAISY:T—number of data points,m—number of inputs,p—number of
outputs,ℓ—lag of the identified model,tnew andtold execution times in seconds for the new and old versions of the
package, respectively,∆t—percentage speedup, achieved by the new version of the package.

5.3 Approximate greatest common divisor of two polynomials

Consider the polynomialsp1 and p2 of degreesd1 andd2, respectively, and a positive integerℓ < min(d1,d2). The
Sylvester matrix ofp1 andp2 with parameterℓ is a

(d1+d2−2ℓ+2)× (d1+d2− ℓ+1)

mosaic Hankel matrix with upper-left and lower-right triangles of the block-elements fixed to zero:

Sℓ(p
1, p2) :=

[
Sd2−ℓ(p1)
Sd1−ℓ(p2)

]
, where Sd(p) :=




p0 p1 · · · pdp

. .
.

. .
.

. .
.

p0 p1 · · · pdp


 ∈ R

(d+1)×(d+dp+1). (SYLV)

The degree of the greatest common divisor ofp1 andp2 is equal to

degree
(
gcd(p1, p2)

)
= d1+d2− rank

(
S0(p

1, p2)
)
. (∗)

The considered approximate common divisor problem is defined as follows: given polynomialsp1 and p2 and a
lower boundℓ > 0 on the degree of the common divisor, modifyp1 andp2, as little as possible, so that the modified
polynomialsp̂1 and p̂2 have a greatest common divisor of degree at leastℓ, i.e.,

minimize overp̂1 ∈ R
d1+1 and p̂2 ∈ R

d2+1

∥∥∥∥
[

p1

p2

]
−
[

p̂1

p̂2

]∥∥∥∥
2

2

subject to degree
(
gcd(p̂1, p̂2)

)
≥ ℓ.

(ACD)

The approximate common divisor for the polynomialsp1 andp2 is the exact greatest common divisor ofp̂1 and p̂2.
It can be shown [25] that the approximate common divisor problem (ACD) is equivalent to a Sylvester low-rank

approximation problem

minimize overp̂1 ∈ R
d1+1 and p̂2 ∈ R

d2+1

∥∥∥∥
[

p1

p2

]
−
[

p̂1

p̂2

]∥∥∥∥
2

2

subject to rank
(
Sℓ(p

1, p2)
)
≤ d1+d2−2ℓ+1.
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13a 〈slra arguments for approximate GCD of 2 polynomials13a〉≡ (13)
s.m = [d2 - ell + 1; d1 - ell + 1];
s.n = d1 + d2 - ell + 1;
z1 = zeros(d2 - ell, 1); z2 = zeros(d1 - ell, 1);
p = [z1; p1(:); z1; z2; p2(:); z2];
s.w = 1 ./ p; s.w(~isinf(s.w)) = 1;
r = d1 + d2 - 2 * ell + 1;

Numerical examples

Our first example is Example 4.1 from [43]. The given polynomials are

p1(z) = (4+2z+z2)(5+2z)+0.05+0.03z+0.04z2

p2(z) = (4+2z+z2)(5+ z)+0.04+0.02z+0.01z2

and an approximate common divisor of degreeℓ= 2 is sought.

13b 〈example GCD13b〉≡ 13c⊲
clear all; d1 = 3; d2 = 3; ell = 2;
p1 = conv([4 2 1], [5 2]) + [0.05 0.03 0.04 0];
p2 = conv([4 2 1], [5 1]) + [0.04 0.02 0.01 0];
〈slra arguments for approximate GCD of 2 polynomials13a〉
[ph, info] = slra(p, s, r);

The solution computed by theslra function
13c 〈example GCD13b〉+≡ ⊳13b 13d⊲

ph1 = ph(2:5), ph2 = ph(8:11), r_ph1 = roots(ph1), r_ph2 = roots(ph2)

ph1 =
20.0500
18.0332
9.0337
2.0000

ph2 =
20.0392
14.0179
7.0176
0.9933

r_ph1 =
-0.2510 + 0.4336i
-0.2510 - 0.4336i
-0.3973

r_ph2 =
-0.2510 + 0.4336i
-0.2510 - 0.4336i
-0.1974

coincides (up to errors due to the numerical precision) withthe one reported in [43].
The second example is Example 4.2, case 1, from [43] (originally given in [17]). The given polynomials are

p1(ξ ) = (1−ξ )(5−ξ ) = 5−6ξ +ξ 2

p2(ξ ) = (1.1−ξ )(5.2−ξ ) = 5.72−6.3ξ +ξ 2

and an approximate common divisor of degreeℓ= 1 (a common root) is sought.

13d 〈example GCD13b〉+≡ ⊳13c 13e⊲
d1 = 2; d2 = 2; ell = 1;
p1 = conv([1 -1], [5 -1]);
p2 = conv([1.1 -1], [5.2 -1]);
〈slra arguments for approximate GCD of 2 polynomials13a〉
[ph, info] = slra(p, s, r);

Again, the solution computed by theslra function
13e 〈example GCD13b〉+≡ ⊳13d

ph1 = ph(2:4), ph2 = ph(7:9), r_ph1 = roots(ph1), r_ph2 = roots(ph2)

ph1 =
4.9994

-6.0029
0.9850

ph2 =
5.7206

-6.2971
1.0150

r_ph1 =
1.0046
0.1961

r_ph2 =
0.9047
0.1961
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coincides (up to numerical computation errors) with the onereported in the literature.

6 Conclusions

The developed software package is a generic tool for data modeling and has numerous applications in system theory
and identification, signal processing, machine learning, chemometrics, and computer algebra. Its functionality gener-
alized the one of the software of [26] by allowing specification of element-wise weights, arbitrary fixed and missing
elements, linear constraints on the parameter matrix, and by generalizing the structure of the approximating matrix to
the class of mosaic Hankel-like matrices. Planned extensions of the package are

• multiple rank constraints,

• mosaic Hankel matrices with repeated Hankel blocks (i.e., structure parameters common to two or more blocks),

• linear equality constraints on the structure parameter vector,

• nonlinear structure of the kernel parameterR.

On the practical side, we plan to experiment with different optimization strategies,e.g., methods for optimization on
a Grassmann manifold [1, 5], and compare the performance of the package with state-of-the-art problem dependent
methods for different applications. Preliminary results on using optimization methods on a Grassmann manifold are
reported in [38].
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A Implementation details

The structured low-rank approximation solver is written inC++ language and the implementation uses object-oriented
style. The software implementation in the C++ version is synchronized with the description of the algorithms in [39].
The LAPACK and BLAS libraries are used for the matrix computations and the GNU scientific library (GSL) [8]
is used for vector-matrix multiplications and for nonlinear optimization. The key computational step—Cholesky
factorization of theΓ matrix—is done by the LAPACK’s functionDPBTRF, which exploits the banded structure of
the matrix. In case of block-wise weights (see Section 3), the package can optionally use theMB02GD function from
the SLICOT library [41], which exploits both the banded and Toeplitz structure ofΓ. (In our test examplesMB02GD
gives no advantage in terms of computation time.)

The package is divided into the following sub directories and files:

• cpp: C++ core classes and functions.2

• mex: source files for Matlab/Octave interface.

• Rslra: source files for R interface.

• test_m: demo files for Matlab/Octave interface.

• test_r: demo files for R interface.

• test_c: demo files for C++ interface.

• doc: documentation and examples.

• ident.m: wrapper function for system identifica-
tion [?].

A.1 Main function

The solver is called in C via the functionslra, defined as follow:
16 〈slra function definition in C16〉≡

int slra( CostFun *costFun, OptimizationOptions *opt,
gsl_matrix *Rini, gsl_matrix *Psi,
gsl_vector *p_out, gsl_matrix *r_out, gsl_matrix *v_out );

• costFun: object of typeCostFunction con-
taining all information aboutf (R) (structureS , in-
put vectorp and rankr).

• opt: optimization options and output information.

• Rini: matrix of initial approximation.

• Psi: Ψ⊤ matrix (see (Θ 7→ R)).

• p_out: approximationp̂.

• R_out: low-rank certificatêR⊤.

• v_out: error covariance(J⊤J)−1 of vec(X).

Note8 (C row-major convention). In the C++ solver all matrices are transposed, due to the row-major order convention
of C/GSL.

2Type declarations and function prototypes are inslra_xxx.h files; the implementation is inslra_xxx.cpp files.
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A.2 Structure specification and object-oriented paradigm

TheCostFunction class represents the cost functionf (R) defined on a Grassmann manifold. It is constructed
with the help of the C++ constructor

17a 〈CostFunction constructor17a〉≡
CostFunction::CostFunction( const gsl_vector *p, Structure *s,

size_t d, gsl_matrix *Phi );

• p_in: input vectorp.

• s: object of typeStructure, see Section A.2.

• d: rank reduction.

• Phi: Φ⊤ matrix (see (S )).

TheStructure class represents the structure specificationS and the weights vectorw.
17b 〈definition of classStructure 17b〉≡

class Structure {
public:

virtual ~Structure() {}
virtual int getNp() const = 0;
virtual int getM() const = 0;
virtual int getN() const = 0;
virtual void fillMatrixFromP( gsl_matrix* c, const gsl_vector* p ) = 0;
virtual void correctP( gsl_vector* p, gsl_matrix *R, gsl_vector *yr,

long wdeg = 0 ) = 0;
virtual Cholesky *createCholesky( int D ) const = 0;
virtual DGamma *createDGamma( int D ) const = 0; };

The functionslra can deal with an arbitraryStructure object using the following methods:

• getNp(), getM() andgetN() returnnp, m andn, respectively.

• fillMatrixFromP() constructs the matrixS (p)⊤ from the vector of structure parametersp.

• correctP() constructs the correction vector∆p from R and precomputedyr := Γ−1(R)s(R).

• createCholesky()andcreateDGamma()create objects for Cholesky factorization and gradient/Jacobian
computation respectively.

The currently implemented structures are:

• LayeredHStructure: class for layered Hankel structure with block-wise weights,

• WLayeredHStructure: class for layered Hankel structure with element-wise weights, and

• MosaicHStructure andWMosaicHStructure: classes for mosaic Hankel structure, that are imple-
mented based on layered Hankel structure.

The object-oriented paradigm facilitates the memory management and software design. In particular, it allows the
user to add a new problem specification (for example, a new type of structure) by implementing a newStructure
subclass. Further details can be found in the manual for the C++ interface, which can be generated by running
doxygen [40] in thecpp directory.

The object-oriented paradigm is also used in the interaction of the Matlab wrapper function and the C++ solver.
This is performed through the mex-functionslra_mex_obj, which constructs an object for operations with the cost
function. This object is used for cost function and derivatives evaluation. Thus any optimization method implemented
in matlab can be used for structured low-rank approximation.

A.3 Installation instructions

The package is distributed in the form of source code and precompiled mex files for different platforms. The mex files
for Matlab/Octave and the R interface can be compiled by calling make in the root directory. In this case, the GSL,
BLAS, and LAPACK libraries have to be installed in advance. The SLICOT library can be used optionally.
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B Optional input arguments for the optimization method

The following optional input arguments of theslra function are related to the optimization solver, used for the
solution of the parameter optimization problem. The options are specified as fields of the input argumentopt.

• solver specifies the solver. The options are:

– c — efficient C++ solver (default), and

– m — general but inefficient solver, implemented in Matlab.

• method specifies the optimization method to be used with the C++ solver. The available options are all local
optimization methods in the GSL library (see the GSL manual [8] for more details):

– l — Levenberg–Marquardt methods for nonlinear least squares(default),

∗ ll — methodlmder (default),

∗ ls — methodlmsder,

– q — Quasi-Newton and conjugate gradient methods for nonlinear minimization with derivatives,

∗ qb — methodbfgs (default),

∗ q2 — methodbfgs2,

∗ qp — methodconjugate_pr,

∗ qf — methodconjugate_fr,

– n — methods for nonlinear minimization without derivatives,

∗ nn — methodnmsimplex (default),

∗ n2 — methodnmsimplex2, and

∗ nr — methodnmsimplex2rand.

• disp specifies the level of displayed information. The options are:

– iter — print progress information per iteration,

– notify — in case of lack of convergence only (default), or

– off — no display.

• The following arguments control the termination of the optimization:

– maxiter — maximum number of iterations,

– tol — tolerance for the change of the cost function value,

– epsrel andepsabs— relative and absolute tolerance for the element-wise change of the optimization
variables,

– epsgrad — tolerance for the norm of the gradient.
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