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Abstract

A software package is presented that computes locally epsaiutions to low-rank approximation problems
with the following features:

e mosaic Hankel structureonstraint on the approximating matrix,

weighted 2-nornapproximation criterion,

fixed elements the approximating matrix,

missing elements the data matrix, and

linear constrainton an approximating matrix’s left kernel basis.

It implements a variable projection type algorithm andwafidhe user to choose standard local optimization meth-
ods for the solution of the parameter optimization problBor.anm x n data matrix, wittm > m, the computational
complexity of the cost function and derivative evaluatie®{n?n). The package is suitable for applications with
n>> m. In statistical estimation and data modeling—the main iappibn areas of the packagex+= m corre-
sponds to modeling of large amount of data by a low-compleritdel. Performance results on benchmark system
identification problems from the database DAISY and appnaté common divisor problems are presented.

Keywords: mosaic Hankel matrix, low-rank approximation, total lesgtiares, system identification, deconvolu-
tion, variable projection.

1 Introduction
Structured low-rank approximation is defined as low-ranragimation
minimize overD |[D—DJ| subjectto rankD)<r

with the additional constraint that the approximating ixal) has the same structure as the data mariA typical
example where a rank deficient structured matrix arises snwvehsequence = (ps,..., pn,) satisfies a difference
equation with lag < [ny/2], i.e,,

Ropt + Ripri1+ -+ Reprr =0, fort=1,...,np—¢. (DE)

The system of equations (DE) is linear in the vector of patam® := [Ro R, - Rg], so that it can be written
asR#j1n,-¢(P) =0, wheres#1n,-¢(p) is a Hankel matrix constructed from This shows that, foR # O, the
fact thatp satisfies a difference equation (DE) is equivalent to rarficideicy of a Hankel matrix?7 1 n, ¢(p).-

Many problems in machine learning, system theory, signatgssing, and computer algebra can be posed and
solved as structured low-rank approximation problem fdiedint types of structures and different approximation
criteria (see Section 5 and [21, 22]). In identification armtlel reduction of linear time-invariant dynamical systems
the structure is block-Hankel. In the computation of appr@te greatest common divisor of two polynomials, the
structure is Sylvester. In machine learning, the data maroften unstructured but the approximation criterion is a
weighted 2-norm (or semi-norm, in the case of missing data).

Despite the academic popularity and numerous applicatbtise structured low-rank approximation problem,
the only efficient publicly available software package foustured low-rank approximation is the one of [26]. The



Feature Old version New version

matrix structure block-Hankel/Toeplitz  matrix mosaic-Hankel
cost function 2-norm weighted 2-norm
exact data whole blocks arbitrary elements
missing data not allowed arbitrary elements
constraints on the unconstrained linear constraints
optimization variable

interface Matlab Matlab, Octave, R

Table 1: Comparison of the old and new versions of the soéwar

package presented in this paper is a significantly extendesion of the software in [26]. The main extensions are
summarized in Table 1 and are described in more details itiodBez.

The paper is organized as follows. Section 3 defines the deresi weighted structured low-rank approximation
and presents Matlab/Octave and R interfaces for callingutiderlying C++ solver. Section 4 gives details about
the solution method for solving the resulting parametemaigation problem. Implementation and software design
issues are extracted in Appendix A. Section 5 lists apptinatof the package and describes in more details an appli-
cation for solving scalar autonomous linear time-invaridentification and approximate common divisor problems.
Appendix B lists extra options of the software for choosing optimization method.

2 Main features of the software

1. Matrix structure specification
The software package supports matrix structures of the form

y(p) = q)a%ﬁmm(p% (y)
where® is a full row rank matrix and’zy n is amosaic Hankestructure [14]j.e., aq x N block matrix

‘%ﬂml,nl(p(ln) %ml,nN(p(lN))

Hmy - mg) [y - o] (P) = : : ’ (Hm.n)
jfnh’nl(p(ql)) %nh’nN(p(qN))
with scalarHankelblocks
[P P2 Pz - Pn ]
P2 ps - Pn+1
Fan(P) == P3 ) : e R™". ()
LPm Pmy1 - Pmt-n-1]

(% n) is more general than the block-Hankel and “flexible strieegpecification”, used in the old version of
the software (see Section 3 in [26]). In fact, the “flexibleusture specification” is equivalent t&f, n with
equaln;’s. Mosaic Hankel matrices with blocks of different columimeénsion allow us to solve, for example,
system identification problems with multiple trajectora@slifferent lengths.

The matrix® further extends the class of mosaic Hankel matrices to (itpkkankel-like matrices. A trivial
example is the Toeplitz structure achieved by
1
O=1Jn:= eR™M™ and Hmn(p) = Hnn(p).



(Empty spaces in a matrix denote zeros.) A more interestiagngle is theToeplitz-plus-Hankestructure,
achieved by

1 1

" o D
P=lm Jn] = €R™2™ and Hnn(p) = [%ﬂ::gg(z)g] : (T + )

. Cost function

In the old version of the package, the approximation coteis the 2-norm (unweighted low-rank approxima-
tion). In the new version, the approximation criterion is theighted 2-norm. Weights are needed for example
when the accuracy of the elements piary, see [42]. Weights can be used also to replace the ptgame
2-norm with the Frobenius matrix norm of the error mat&i p— p). As explained in Note 2, the weighted
approximation criterion can be viewed alternatively as aification of the data matrix structure.

. Exact data

Structure parameters can be fixed to predefined values. €lolthversion of the package only subblocks of
the structured matrix could be specified as fixed.) This feaallows us to solve problems, such as system
identification under exactly known initial conditions, whethe upper-left triangles of the Hankel blocks are
fixed, and approximate common divisor computation, wheesupper-left and lower-right triangles or the
Hankel blocks are fixed.

. Missing dat&

A new feature of the software is the ability to deal with migsdata. Due to specific experiment design or data
corruption, the data may be incomplete in real-life appiaces. A well known example from machine learning
is prediction of user ratings (recommender system), egg,[3]. A possibility to specify missing values in
Hankel low-rank approximation problems allows us to soly&em identification problems with incomplete or
irregularly sampled data.

. Total least squares and low-rank approximation

In the old version of the package, the optimization variabline X matrix in the problem of solving approxi-
mately an overdetermined system of linear equati®Xs= B. This problem may be viewed as a restriction of
the low-rank approximation problem to a subclass of matriCeo preserve backward compatibility, the new
version of the software can also solve the structured tetatisquares problems, see Note 6.

. Constraints on the optimization variables

The new version of the package uses as optimization vareabiatrix R whose rows form a basis for the left
kernel of the approximatio® and allows specification of linear structure constraintsRonAn application
where such a constraint is needed is multivariate systemtifibation with fixed observability indices [12].
Other applications are given in Section 5.

. Interfaces to scientific computing environments

The package provides interface for calling the underlyingr Golver from Matlab, Octave, and R, which are
among the most often used computing environments for ssier@nd engineers.

An advantage of unifying structured and weighted low-rapfraximation with missing and fixed values and

constraints on the optimization variable is that a singggathm and a piece of software solves a large variety of
problems. Section 5 lists special cases of the generic gmolblved by the software package. Each special case is
motivated by applications, which are considered in theditere and specialized algorithms are developed for their
solution. Only a few of the algorithms reported in the litera, however, are implemented in publicly available
software.

ICurrently (July 29, 2013), this feature is implemented dnlgn experimental Matlab version of the software. It canibeutated in the
C++ solver by assigning “small” weights to the missing pagters and replacing the missing values with zeros.
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Fixed values in the approximating matrix can be viewed asx&ere case of weighted low-rank approximation
with large weights corresponding to the fixed parametemil&ily, the missing data case can be viewed as weighted
low-rank approximation with small weights correspondinghe missing parameters. Both cases are equivalent to a
single singular (zero or infinite weights) weighted lowkapproximation problem and can be solved with the same
algorithm.

The generality of the algorithm is not compromised by its patational efficiency. Eliminating the approxima-
tion D and exploiting the structure in the resulting nonlineastesgjuares problem, the cost function and derivative
evaluation is done i®(n?n) floating point operations [39] for weighted norm without siigy values.

The software is written in C++ with Matlab/Octave and R ifdees and contains also the experimental Matlab
code, presented in [23]. The latter supports general liggacture and missing values, but is inefficient and can be
used only for small size matrices (say,< n < 100). In Matlab, the C++ solver can be called directly via tiex
functionsl| r a_mex_obj or via the wrapper function, presented in the paper. The paafunction calls optionally
the experimental versiosl r a_ext . The source code of the package is hosted at the followingeadd

http://github.comslral/slra
Pre-compiled mex-files are available from:

http://honepages. vub. ac. be/ ~i mar kovs/ sl ra/ sof t war e. ht m

3 Problem formulation

We denote missing data values by the synfi®N (“not anumber”) and define the extended set of real numiRars
as the union of the set of the real numbRrand the symboNaN:

The considered structured low-rank approximation probkedefined as follows.

Problem 1. Given:
e structure specificatiory”,
e vector of structure parametepsc RQ”,

e nonnegative vector € (R U{ })"™, defining a weighted (semi-)norm

Iplle:== 5  wpf, and
(i | p7nan)

e desired rank,

A

find a structure parameter vectgrsuch that the corresponding matri(p) has rank at most, and is as
close as possible tpin the sense of the weighted semi-nojri|y, i.e.,

minimize overpe R™ ||p—p||2 subject to rank.7(p)) <r. (SLRA)

Without loss of generality, it is assumed timak n. An infinite weightw; = c imposes the equality constraipt= p;
on the optimization problem (SLRA).

Problem (SLRA) is in general honconvex. In the software pgek it is solved numerically by local optimization
methods. The Matlab wrapper function for low-rank appraadiion is defined as follows:

(sl r a function definition in Matlab/octav# = (?0—1)
function [ph, info] = slra(p, s, r, opt)



The compulsory input argumenps s, andr of thesl r a function correspond to the vector of parametgrthe
problem structure, and the rankrespectively, and are described in the subsequent secfldre optional parameter
opt contains options for the optimization method and is describ Appendix B.

The output argumengh of thesl r a function is a locally optimal solutiof of (SLRA) andi nf o is a structure
containing additional information about the computed sofu

e i nfo. Rhisan(m—r) x r full row rank matrixR, such thaR ¥ (p) = 0 (low-rank certificate),
e i nfo. fm nisthe cost function valugp — || at the computed solution,

e i nfo.iter isthe number of iterations performed by the optimizatiolweso

e i nfo.tineisthe execution time, and

e i nf 0. Vh covariance matrix of the optimization variables (s&2 ¢ X), Appendix A.1, and Section 5.1 for
an example of its usage for computation of confidence eilijs30

Next we describe the required input paramegers, andr .

Matrix structure specification
The structure.f) is specified by the two vectors

m=[my - mq]TeNq and  n:i=[ng - nN]TeNN (m,n)

q
m = ';m.

The parametes should be a structure with a fieldand, optionally, a fielah, containing the vectorsi,n). If
s. nis skipped, by defaull = 1 and

and the matrix® € R™™  where

n=n= Mp—3iam +1.
q
Optionally, s can have a fielghi , containing the matrixp € R™™ . The default value fofb is the identity matrix
of sizem=m.
The vectorp is composed of the structure parameter vectors of all sé&dakel blocks in ¢4, ), ordered first
top to bottom and then left to righite.,

p=(pY,...,p . pIN) . plan).

PR

Weight specification, fixed and missing parameter values

The weight vectow is passed to thel r a function by the fieldwv of s. If wis not specified, its default value is the
vector of all ones, corresponding to unweighted low-raniragimation. The parametesr. wcan be

e np-dimensional nonnegative vector, in which case s.w,

e g x N nonnegative matrix, in which case the weights correspanttirnthe structure parameters of thej)th
Hankel block in (77, 1) are all equal tav;j, or

e g-dimensional nonnegative vector, in which case the weigbiteesponding to the structure parameters of the
(i, j)th Hankel block in &7 ) are all equal tav;, for all j.

The second and third options of specifyiagw evoke a more efficient computational method but are supghaméy
by the C++ solver.

Settingw; to e has the effect of specifying the paramepeias exactj.e., the approximation problem (SLRA) is
solved with the additional constraint thgtis equal to the given parameter valpe(and the weighted normh- ||w
is evaluated over the parameters with finite weights onlgttiggw; to 0 has the effect of ignoring the value of the
parameterp; in the solution of the approximation problem. Alternatiyegnored parameter values may be specified
by the symboNaNin p. From a practical point of view, ignored structure paramestues are “missing data”.
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Note2 (Incorporating the weight& into the matrix structure#’). A weighted structured problem (SLRA) can be
solved as an equivalent unweighted problem (SLRA), with weightsw; = 1 for all i, and a modified structure
specifications” : R" — R™" defined by

S ((P1s---+ Pny)) = (( witpy, .., Wﬁplpnp)).
This fact shows that the weighted norm specification canésed equivalently as a modification of ttiatastructure.

Note3 (R interface) Calling the C++ solver from R is done by an R functishr a with the same parameters as in
the Matlab mex function, except that in R lists are used auwbstaf structures, and the list elements are accessed by
<l i st >$<el enent >instead of by<st r uct ur e>. <el enent >. The computed result is returned in a list with
fieldsph andi nf o, which contain, respectively and the nf o variable defined above. Optional logical parameters
conput e. ph andconput e. Rh can be used to disable the computatiorpaindR. By default, pis not computed.
Examples of using the R interface can be found in the dirgdteist _r of the package distribution.

4 Solution method

This section outlines the method used in the package foingpilie structured low-rank approximation problem (SLRA).
Letd be the rank reduction
di=m-r.

The rank constraint is represented in a kernel form

rank(.(p)) <r = there is full row rankR € R9*™, such thaR ¥ (p) =0, (KER)

i.e, the left kernel of(p) is parameterized by the linearly independent rows of the matiX Then (SLRA) is
equivalent to the following double minimization problem

minimize over full row rankR e R*™  f(R), (SLRAR)
where
f(R) := (AmIRi{pp |lp—pl|2 subjectto R¥(P)= 0) . (f(R))
pe

(SLRAR) is refered to as the outer minimization anf{R)) as the inner minimization. The inner minimization
problem is a (generalized) linear least-norm problem amdbeasolved analytically for giveR, resulting in a closed
form expression of the cost functiohin the outer minimization problem. The derivative biwith respect to the
elements oR can also be computed analytically. Fast methods for evatuaff f and its derivatives are presented
in [39] and implemented in C++. The general case is a gegerhleast norm problem and is solved in [23].

In data modeling—the main application area of the softwareean be interpreted as a model parameter. For
example, in system identificatioR is related to a difference equation (DE) representatiomefslystem. Typically,

a large amount of data is fitted by a simple model, which inspliet the dimension dR is small compared to the
dimension ofp. Problem ¢ (R)) is bilinear in the variableR and p, which makes possible the elimination pfor a
fixedR. Many estimation problems have similar bilinear structamd their solution methods are based on elimination
of the large dimensional optimization variable.

The elimination ofp in the analytic solution of {(R)) is similar to the projection step in the variable projectio
method [10] for solving separable nonlinear least squaresSl@ms. Note, however, that the standard variable pro-
jection method was invented as a solution methoduftwonstrainedptimization problems, where the cost function
is explicitly given. The structured low-rank approximatiproblem (SLRA) in contrast is a constrained optimization
problem and the parameterization (KER) is an implicit fimctof the optimization variables. As discussed next,
(SLRA) is an optimization problem over a Grassmann manjfaldich makes it rather different from the standard
setup, for the variable projection method.

Note4 (Feasibility of the minimization problem ovg). In the analytic solution of f{(R)), it is assumed that the
problem is feasible for anRRin the search space. A necessary condition for this to hdlthisthe number of structure
parameters is sufficiently large:

np > dn. ©
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Condition (C) imposes restrictions on the class of probléms can be solved by the approach implemented in the
package. For example, in scalar Hankel low-rank approxangiroblems the rank reductiahcan be at most one.
Interestingly, in applications of problem (SLRA) to appiroate realization, system identification, and approximate
common divisor computation constraint (C) can always bisfszd.

4.1 Parametrization of the search space and constraints

Problem (SLRA) is an optimization problem on @rassmann manifol&r(d,m) (set ofd-dimensional subspaces
of R™M). Indeed, f(R;) = f(Ry) if the rows of R; and R, span the same subspace. In the package, we map the
optimization on Gfd, m) to an optimization problem on an Euclidean space, see [3Bg pgroblem is turned into
optimization of f over the set of full row rank matriceR € R9™ that represent all (or a generic part) of ttie
dimensional subspaces.

In some applications, it is necessary to impose linear caing$ onR, which can also be incorporated into the
parametrization of the search space.

e The experimental Matlab solver uses a general linear @instonR
R=%'(0) =veg'(6W),  where 6¢cR"™, 6—R

defined by a matrix € R"*9M_ (Here ve¢-) is the column-wise vectorization operator and V&) is its
inverse.) The rank constraint éhis imposed by

RR' = Iq. (f.rr.R)

e The C++ solver uses a matrix-product constraint on the mBtri
R=%(0):=0¥, where @R, (©—R)
defined by a matrix¥ € R™ <™. The rank constraint oR is imposed by

O=[X -lg], forsomeX e R~ (O X)

The W matrix is passed to thel r a function by an optimization optionpt . psi . The default value o® is I,
for the C++ version andy, for the Matlab version. Th& matrices—¥¢ for the C++ versions an&y, for the
Matlab versions—are generally different. They coincidanf only if the rank reduction is onee., d = 1. The
constraint @ — R) is more general and includes the constra@t-{ R) by choosing

Wy =We®ly and 6 =veqO).

The rank constraint (f.r.R) parametrizes Gd, m), and turns the structured low-rank approximation probleto i
an optimization problem o™ with a quadratic constraint. The rank constrai®t« X) parametrizes a generic
part of Gi(d,m). Its main advantage is that the structured low-rank appration problem problem is turned into an
unconstrained optimization problem &4™ 99,

Note5 (On parametrization of the whole @& m) in the C++ version) The whole Gfd, m) can be covered by taking
different W (see [38]) or changing’ during the optimization, which is done in the optimizatidgaaithms of [20].
Currently, in the C++ versiort is a fixed parameter.

Note6 (Solution of structured total least squares probelms)[26¢ttingW¥ = |4 in the C++ version is equivalent to
solving (SLRA) with the constrairR = [X —Id} , whereX e R9*(Mm-0) js the optimization variable. This problem is
called a structured total least squares problem.



4.2 Local optimization methods

Due to the elimination of, for n > m, the computation time of the search direction by the opt@tnin method is
negligible in comparison with the computation time for thwstcfunction and derivative evaluations. Therefore, we
use standard local optimization methods to minimize the feostion f.

The default optimization method for the C++ solver is the dverg-Marquardt algorithm [30, 6], implemented
in the GSL library. Other options are to use the Nead-Meldethad for minimization without derivatives, which is
slow but robust, or the BFGS quasi-Newton method. The costtion gradient is computed analytically by

df(RH)=2y"ds(RH)-y'dr' (RH)y, where y:=T"'sR).

It can be shown that the gradient evaluation has computdtimmplexity of the same order as the one of the cost
function evaluation. For details see [39].

In our experience the Levenberg-Marquardt algorithm isclty faster and more robust in practice than the
alternative optimization methods. The JacobiarCof' s, whereC is the Cholesky factor of is replaced by the
pseudo-Jacobian [13], which computation is of the orde®@fPn).

The package provides an interface to the cost function argatiges evaluation, so that any optimization method
can be used (See Appendix A for details). More details adwmiCt++ interface can be found in Appendix A. The
experimental Matlab solver uses the functiani ncon for constrained nonlinear minimization from the Optimieat
Toolbox of Matlab. In this case, the derivatives are apprated numerically.

All local optimization methods require an initial approxation. By default, unstructured ramkapproxima-
tion I3|ra of the data matribD = .7 (p) is used,i.e, the initial value for the parametét is a full row rank matrix
Rra € RM such thaRaDyra = 0. The default value can be overwritten by an optional arguropt . Ri ni .

In order to obtain thé or © parameter fronfR, the equationZ(6) ~ Ry, is solved in the least-squares sense. For
the C++ solver, the obtained mati&is then converted tX by

X:=-P'Q  where@=:[Q P|, QeR™M-d and pecRrI

The result of thes| r a function—a locally optimal value of the parameRis returned in the variablenf 0. R.
The corresponding locally optimal approximatipris computed by solving the inner minimization probleftR)).

The solution is given by
-1

P(R)=p+G(R)(N(R))
whereG(R) is a linear function in the elements Bf defined by

s(R),

vec(RZ(p)) = G(R)p.

5 Applications

We list below examples of low-rank approximation problenghwlifferent matrix structure®.#;, ,,, approximation
criteria || - [|w, and constraints on a basis of the approximating matrixtskiernel. Each example is motivated by
applications. (SYSID stands for system identification ai@DGtands for greatest common divisor.)

example application(s) reference
1 unstructured factor analysis [11]
uniform weights subspace methods [28, Ch. 7]
latent semantic analysis[7]
2 element-wise weights chemometrics [42]
3 scalar Hankel model reduction [2]

autonomous SYSID [28, Ch. 11]



linear prediction [19]

shape from moments [31, 9]

4 Hankel with structured kernel spectral estimation [37]
(palindromic)
5 Toeplitz + Hankel isospectral flow [34]
6 Hankel with structured kernel  SYSID with some [7]
(fixed poles) predefined poles
7 gx 1block Hankel multivariable SYSID [29]
8 Hankel with structured kernel  SYSID with [12]
(fixed obsrv. indices) fixed obsrv. indices
9 qgx N block Hankel SYSID from multiple [29]
time seriesT=T)
10 Hankel blocks SYSID from multiple [33]
next to each other time series
11 Hankel with output error SYSID [29]
fixed variables
12 Unstructured beneath deconvolution [21]
Hankel block
13 Hankel with first SYSID with fixed [36]
¢ elements fixed initial conditions
14 Sylvester approximate GCD of [16]
two polynomials
15 generalized Sylvester approximate GCD of15]
N polynomials
16 unstructured with recommender [35]
missing elements systems
17 Hankel with SYSID with [33]
missing elements missing data
18 missing and matrix completion  [4]

fixed elements

In the rest of the section, we illustrate the performancéeftructured low-rank approximation package on a few
examples from the list. Section 5.1 shows a deconvoluti@ablpm (example 12) in the errors-in-variables setting.
Section 5.2 demonstrates the efficiency of the package ochbmark system identification problems (example 7)
from the database DAISY [32]. Section 5.3 shows numericahg{es of computing approximate common divisors
of two polynomials (example 14), using Sylvester struaumv-rank approximation.

5.1 Errors-in-variables deconvolution

The convolutionhx u of the sequences

u(T))

is a sequencyg, defined by the convolution sum

u=(u(1),... and  h=(h(0),h(1),...,h(n—1))

n

z h(t)u(t — 1),

=0

for t=nn+1,...,T. (CONV)

With some abuse of notation, we denotelpy, andy both the sequences and the corresponding vectors:

h(0) y(n)
. € RT7n+1'

h(n—1) y(T)



10a

10b

10c

Using the Toeplitz matrix

un)  u(n—1) u(2) u(l)
y( ) _ u(n+ 1) u(.n) U(Z) c R(Tfthl)xn7
UT)  UT—1) - uT-n+2) uT—n+1)

the convolution sum (CONV) can be written as a matrix-veptaduct
y= 7 (uh. (CONV)
Consider the errors-in-variables data generating mo@a! [1
u=u+0 and y=y+Yy, (EIV)

where(u,y) is the measured datéy,y) is its “true value”, andu,y) is the measurement noise. The true data satisfy
the relationy = .7 (u)h, for some “true parameter” vectar The goal in the errors-in-variables problem is to estimate
consistently and efficientlig from the noisy data.

The true parameter vector, however, is not identifiable [atism is not unique) unless there is prior knowledge
about the measurement noise. We assume that the measureisentlementd(t) andy(t) are zero mean, indepen-
dent, and identically distributed, but the noise variarscgnknown. It is proven in [18] that in this case the struaure
total least squares approximate solution of the overdéteirsystem of linear equations (CONV’) yields a consistent
estimator. If in addition, the noise distribution is norirgals a maximum likelihood estimator and is asymptotically
normal.

The structured total least squares problem is equivaldotwtaank approximation of the matriW (u) y] i (see
Note 6). The structure is mosaic-Hankel-like

1
() Wl | A I e Rt (]

(0]

Therefore, the maximum likelihood estimator focan be computed with th& r a function

(call sl ra 10g= (?0—1)
[uyh, info] =slra([u; y], s, n);

using the structure specification

(structure specification for deconvolutiagb) = (?0—1)
s.m=[n 1]; s.phi = blkdiag(fliplr(eye(n)), 1);

The estimaté is obtained from the parameter vect%(see (KER)) by normalization:

R:=—R/Ry1, h(1)=R,,; fort=01,..,n—1

Indeed,
~, T 0 ~
R [QVT(“)} 0 —  Z@h=y
(R—h10d= (?0—1)
hh = - info.Rh(1:n)’ / info.Rh(n + 1);

Note7 (Identification of a finite impulse response systemm)system theory and signal processing, (CONV) defines
a finite impulse response linear time-invariant dynamigatem. The sequendeis a parameten is the input, ang/

is the output of the system. The deconvolution problem iscsfioee a system identification problem: estimate the true
data generating system from noisy data.
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Numerical example

We illustrate empirically the consistency of the structli@tal least squares estimator. A true parameter véaod a
true input sequenagare randomly generated. The corresponding true oytisutomputed by convolution dfandu.
Zero mean independent and normally distributed noise is@dal the true data according to the errors-in-variables
model (EIV) and thes| r a function is evoked for the computation of the estimate.

The experiment is repeatéd= 500 times with independent noise realizations (but fixed waiues). Leh® be
the total least squares solution obtained initheepetition. Figure 1, left, shows the root-mean-squarer e

\/1 K -
eim /23 Ih—F0)
< 2,1

as a function of the sample siZe Theoretically, the maximum likelihood estimation errongerges to zero at a rate
that is proportional to the inverse square root of the samsipke(1/+/T convergence). The simulation results confirm
the theoretical convergence rate. _ R

Figure 1, right, shows the true parameter vaftuged crosk the 500 estimateb’) (blue dot3, and the 95%
confidence ellipsoid, computed from the covariance matriko. Vh, corresponding t?5%9 and translated tb.
(Note that we do not plot the confidence ellipsoid around esstimate of the parameter in order to simplify the
picture.) The fact that about 475 estimates have the true\althe parameter in the confidence region is an empirical
confirmation that the confidence regions are correct.

——empirical ||. 0.8}
e theoretical
0.04} —
0.79}
0.03} »
(¢)] =
0.78}
0.02
0.77}
0.01} :
500 1000 1500 2000 048 049 05 051 052
T ho

Figure 1: Left: empirical (solid line) and theoretical (tit line) root-mean-square estimation eeas a function of
the sample siz&; Right: 95% confidence ellipsoid.

5.2 Performance comparison with the old version of the packge

In [24] and [27], the performance of the old version of thekaame is tested on benchmark system identification
problems from the database DAISY [32]. The problems invalgetor time-series and the model class consists of
multiple-inputs multiple-outputs linear time-invariasystems. The identification problem in this case is equitale
to block-Hankel low-rank approximation, which is also agpkcase of the mosaic Hankel low-rank approximation
problem (SLRA). For a description of the test examples, Vierithe reader to [24].

In Table 2, the execution time of the new and the old versiath@fpackage are compared for the same setting of
the experiment as in [24]. In all examples, the approximateti®ns computed by the two versions of the software are
the same. The results show that the efficiency of the neworersithe package is improved by an average of 40%.
Note that the speedup is achieved by software improvemesgité of the fact that the new version treats a more
general problem.
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# Data set name T m p /¢ thew  foid At
(sec) (sec) (%
1 Data of a simulation of the western basin of Lake Efie 57 5 2 1| 0.01 0.01 0
2 Data of ethane-ethylene distillation column 90 5 3 1| 0.02 0.03 33
3 Heating system 801 1 1 2| 0.01 0.02 50
4 Data from an industrial dryer (Cambridge Control Ltd)867 3 3 1| 0.16 0.25 36
5 Data of a laboratory setup acting like a hairdryer | 1000 1 1 5| 0.02 0.04 50
6 Data of the ball-and-beam setup in SISTA 1000 1 1 2| 0.01 0.02 50
7 Wing flutter data 1024 1 1 5| 0.02 0.04 50
8 Data from a flexible robot arm 1024 1 1 4| 0.01 o0.01 0
9 Data of a glass furnace (Philips) 1247 3 6 1| 288 441 35
10 Heat flow density through a two layer wall 1680 2 1 2| 0.09 0.22 59
11 Simulation data of a pH neutralization process 2001 2 1 6/ 0.03 0.06 50
12 Data of a CD-player arm 2048 2 2 1) 0.09 0.23 61
13 Data from a test setup of an industrial winding proce2600 5 2 2| 0.64 0.92 30
14 Liquid-saturated steam heat exchanger 4000 1 1 2| 0.03 0.07 57
15 Data from an industrial evaporator 6305 3 3 1| 136 222 39
16 Continuous stirred tank reactor 7500 1 2 1] 024 0.75 68
17 Model of a steam generator at Abbott Power Plant | 9600 4 4 1| 13.10 15.77 17

Table 2: Performance test on examples from DAIS¥-number of data points—number of inputsp—number of
outputs,/—Ilag of the identified modelyey andtyg execution times in seconds for the new and old versions of the
package, respectivelt—percentage speedup, achieved by the new version of thagack

5.3 Approximate greatest common divisor of two polynomials

Consider the polynomialg® and p? of degreesd; andd,, respectively, and a positive integer min(dy,d,). The
Sylvester matrix op® and p? with parameter is a

(di+dp—20+42) x (dp+dy— £+ 1)
mosaic Hankel matrix with upper-left and lower-right trigess of the block-elements fixed to zero:

Po Pr - Pdy

1
S(ph,p?) = [S"“(pz)} . where Su(p)i= | | eREDEEI (syly)
s:il—f(p )
Po P1 - Pdp
The degree of the greatest common divisopband p? is equal to
degreg(ged(p', p?)) = dy + dp — rank(So(p*, p?)) - (%)

The considered approximate common divisor problem is defasefollows: given polynomialg® and p? and a
lower bound? > 0 on the degree of the common divisor, modifyand p?, as little as possible, so that the modified
polynomialsp* and p? have a greatest common divisor of degree at l&dss.,

_ pt 2l
minimize overp' € R4+ andp? e R%*1 ” [pz] - [ﬁz}

5 (ACD)
subjectto  degregged(p', p%)) > /.
The approximate common divisor for the polynomiglsand p? is the exact greatest common divisorfdfand p?.

It can be shown [25] that the approximate common divisor j@mmb(ACD) is equivalent to a Sylvester low-rank
approximation problem

ptl [P
minimize overp' € R4 andp? € R%*? H [pz] — [ﬁz}

2
subjectto  rankS,(pt,p?)) < di+d— 20+ 1.

12



13a

13b

13c

13d

13e

(sl r a arguments for approximate GCD of 2 polynomiats) = (13)

s.m=1[d2 - ell +1; dl - ell + 1];

s.n =dl +d2 - ell + 1;

z1 = zeros(d2 - ell, 1); z2 = zeros(dl - ell, 1);
p = [z1; pl(:); z1; z2; p2(:); z2];

s.w=1./ p; s.w~isinf(s.w)) =1,

r =dl +d2 - 2~ ell +1

Numerical examples

Our first example is Example 4.1 from [43]. The given polynalniare

p(2) = (4+ 22+ 2)(5+ 22) + 0.05+ 0.03z+ 0.047
p*(2) = (4+22+2)(5+ 2) +0.04+0.02z+ 0.017

and an approximate common divisor of degfee 2 is sought.

(example GCOL3b) = 13c>
clear all; d1 =3; d2 = 3; ell = 2;
pl = conv([4 2 1], [5 2]) + [0.05 0.03 0.04 0];
p2 = conv([4 2 1], [5 1]) + [0.04 0.02 0.01 0];
(sl r a arguments for approximate GCD of 2 polynomizbs)
[ph, info] = slra(p, s, r);

The solution computed by thed r a function

(example GC3b) += <13b 13d-
phl = ph(2:5), ph2 = ph(8:11), r_phl = roots(phl), r_ph2 = roots(ph2)

phl = ph2 = r phl = r ph2 =
20. 0500 20. 0392 -0. 2510 + 0. 4336i -0. 2510 + 0. 4336i
18. 0332 14. 0179 -0.2510 - 0.4336i -0.2510 - 0.4336i
9. 0337 7.0176 -0.3973 -0.1974
2. 0000 0.9933

coincides (up to errors due to the numerical precision) wighone reported in [43].
The second example is Example 4.2, case 1, from [43] (ofligigaven in [17]). The given polynomials are

pl(&)=(1—&)(5— &) =5—6& + &2
PP(&)=(11-&)(52— &) =572-638 +¢&°

and an approximate common divisor of degfee 1 (a common root) is sought.

(example GCOL3b)+= <13c 13e
dl = 2; d2 =2; ell = 1;
pl = conv([1 -1], [5 -11);

p2 conv([1.1 -1], [5.2 -1]);
(sl r a arguments for approximate GCD of 2 polynomiabs)
[ph, info] = slra(p, s, r);

Again, the solution computed by tisé r a function

(example GC3b) += <13d
phl = ph(2:4), ph2 = ph(7:9), r_phl = roots(phl), r_ph2 = roots(ph2)

phl = ph2 = r _phl = r ph2 =
4.9994 5.7206 1. 0046 0. 9047
- 6. 0029 -6.2971 0. 1961 0.1961
0. 9850 1. 0150
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coincides (up to numerical computation errors) with the @ported in the literature.

6 Conclusions

The developed software package is a generic tool for datalimgdand has numerous applications in system theory
and identification, signal processing, machine learnihgnoometrics, and computer algebra. Its functionality gene
alized the one of the software of [26] by allowing specificatdf element-wise weights, arbitrary fixed and missing
elements, linear constraints on the parameter matrix, grggéberalizing the structure of the approximating matrix to
the class of mosaic Hankel-like matrices. Planned extassiéthe package are

e multiple rank constraints,

e mosaic Hankel matrices with repeated Hankel blocks 6tructure parameters common to two or more blocks),
e linear equality constraints on the structure parametetovec

e nonlinear structure of the kernel paramd®er

On the practical side, we plan to experiment with differgptirnization strategies.g, methods for optimization on

a Grassmann manifold [1, 5], and compare the performandeegbdckage with state-of-the-art problem dependent
methods for different applications. Preliminary resultsusing optimization methods on a Grassmann manifold are
reported in [38].
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A Implementation details

The structured low-rank approximation solver is writtetCint+ language and the implementation uses object-oriented
style. The software implementation in the C++ version ischyanized with the description of the algorithms in [39].
The LAPACK and BLAS libraries are used for the matrix compiotes and the GNU scientific library (GSL) [8]
is used for vector-matrix multiplications and for nonlinegptimization. The key computational step—Cholesky
factorization of thd™ matrix—is done by the LAPACK’s functioPBTRF, which exploits the banded structure of
the matrix. In case of block-wise weights (see Section &) pidickage can optionally use thB02GD function from
the SLICOT library [41], which exploits both the banded amflitz structure of . (In our test examplesB02GD
gives no advantage in terms of computation time.)

The package is divided into the following sub directoried fles:

cpp: C++ core classes and functiofs.

t est _r: demo files for R interface.

mex: source files for Matlab/Octave interface. test_c: demo files for C++ interface.

] ] doc: documentation and examples.
e Rsl| r a: source files for R interface.

i dent . m wrapper function for system identifica-
e t est _m demo files for Matlab/Octave interface. tion [?].

A.1 Main function

The solver is called in C via the functiai r a, defined as follow:

16 (sl r a function definition in CL6)=
int slra( CostFun *costFun, Optim zationOptions *opt,
gsl _matrix *Rini, gsl_matrix *=Psi,
gsl _vector *p_out, gsl _matrix *r_out, gsl _matrix *v_out );

e cost Fun: object of typeCost Funct i on con- e Psi: W' matrix (see ® — R)).
taining all information abouft (R) (structures, in-
put vectorp and rankr).

p_out : approximationp.
« opt : optimization options and output information. ® R_out : low-rank certificateR".

e Ri ni : matrix of initial approximation. e v_out : error covariancéJ'J)~! of veqX).

Note8 (C row-major convention)in the C++ solver all matrices are transposed, due to themajor order convention
of C/GSL.

2Type declarations and function prototypes arslima_xxx. h files; the implementation is isl r a_xxx. cpp files.
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17b

A.2 Structure specification and object-oriented paradigm

The Cost Funct i on class represents the cost functid(R) defined on a Grassmann manifold. It is constructed
with the help of the C++ constructor
(Cost Funct i on constructorl7g =
Cost Functi on: : Cost Function( const gsl _vector =*p, Structure =*s,
size_t d, gsl_matrix *=Phi );

e p_i n:input vectorp. e d: rank reduction.

e s: object of typeSt r uct ur e, see Section A.2. e Phi : ®" matrix (see {)).

TheSt r uct ur e class represents the structure specificatiéand the weights vectaw.

(definition of classSSt r uct ur e 17h=

class Structure {

publi c:
virtual ~Structure() {}
virtual int getNp() const = O;
virtual int getM) const = 0;
virtual int getN() const = 0;
virtual void fillMtrixFronP( gsl_matrix* c, const gsl_vectorx p ) = 0;
virtual void correctP( gsl _vector* p, gsl_matrix *R, gsl_vector =yr,

long wdeg = 0 ) = 0;

virtual Chol esky *createChol esky( int D) const = O;
virtual DGanma =*createDGanme( int D) const = 0; };

The functionsl! r a can deal with an arbitrar$t r uct ur e object using the following methods:

e get Np(),get M) andget N() returnn,, mandn, respectively.

e fill MatrixFronP() constructs the matri¥”(p)' from the vector of structure parameteus
e correct P() constructs the correction vectap from R and precomputey := I 1(R)s(R).

e creat eChol esky() andcr eat eDGanma( ) create objects for Cholesky factorization and gradiecttan
computation respectively.

The currently implemented structures are:
e Layer edHSt r uct ur e: class for layered Hankel structure with block-wise wegght
e W.ayer edHSt r uct ur e: class for layered Hankel structure with element-wise Wisigand

e Mosai cHSt ruct ur e andWvbsai cHSt ruct ur e: classes for mosaic Hankel structure, that are imple-
mented based on layered Hankel structure.

The object-oriented paradigm facilitates the memory mamamnt and software design. In particular, it allows the
user to add a new problem specification (for example, a new ¢fstructure) by implementing a neSt r uct ur e
subclass. Further details can be found in the manual for the iGterface, which can be generated by running
doxygen [40] in thecpp directory.

The object-oriented paradigm is also used in the interaaifdhe Matlab wrapper function and the C++ solver.
This is performed through the mex-functiehr a_nex_obj , which constructs an object for operations with the cost
function. This object is used for cost function and derixedievaluation. Thus any optimization method implemented
in matlab can be used for structured low-rank approximation

A.3 Installation instructions

The package is distributed in the form of source code andpnpied mex files for different platforms. The mex files
for Matlab/Octave and the R interface can be compiled byncafteke in the root directory. In this case, the GSL,
BLAS, and LAPACK libraries have to be installed in advancee SLICOT library can be used optionally.
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B Optional input arguments for the optimization method

The following optional input arguments of tied r a function are related to the optimization solver, used fa th
solution of the parameter optimization problem. The omiare specified as fields of the input argumept .

e sol ver specifies the solver. The options are:

— ¢ — efficient C++ solver (default), and
— m— general but inefficient solver, implemented in Matlab.

e et hod specifies the optimization method to be used with the C++esolVhe available options are all local
optimization methods in the GSL library (see the GSL man8gidr more details):

— | — Levenberg—Marquardt methods for nonlinear least squdefault),
x | | — methodl nder (default),
*+ | s — method nsder,
— q — Quasi-Newton and conjugate gradient methods for nonlim@aimization with derivatives,
x gb — methodbf gs (default),
x 2 — methodbf gs2,
gp — methodconj ugat e_pr,
x qf — methodconj ugate fr,

*

— n — methods for nonlinear minimization without derivatives,

x nn — methodnnsi npl ex (default),
x N2 — methodnnsi npl ex2, and
x nr — methodnnsi npl ex2r and.

e di sp specifies the level of displayed information. The optiores ar

— i t er — print progress information per iteration,
— not i fy —in case of lack of convergence only (default), or
— of f — no display.

e The following arguments control the termination of the ppgation:

— maxi t er — maximum number of iterations,
— t ol —tolerance for the change of the cost function value,

— epsr el andepsabs — relative and absolute tolerance for the element-wise gda the optimization
variables,

epsgr ad — tolerance for the norm of the gradient.
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