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Abstract: Data-driven control is an alternative to the classical model-based control paradigm. The main
idea is that a model of the plant is not explicitly identified prior to designing the control signal. Two
recently proposed methods for data-driven control—a method based on correlation analysis and a method
based on structured matrix low-rank approximation and completion—solve identical control problems.
The aim of this paper is to compare the methods, both theoretically and via a numerical case study. The
main conclusion of the comparison is that there is no universally best method: the two approaches have
complementary advantages and disadvantages. Future work will aim to combine the two methods into a
more effective unified approach for data-driven output tracking.
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1. INTRODUCTION

In the last 25 years, the system identification community has
been searching for rigorous solutions to the issue of the inter-
play of identification and model-based design by asking the
question: what is the best model for control? This research
direction is aiming to fix the shortcoming of the model-based
approach that the model is not tailored for its intended use.

Data-driven methods take a different approach: they solve
the design problem without splitting it into identification and
model-based design. The issue of developing identification
methods aimed at their intended usage is considered by the
system identification community in an area of research known
as identification for control, see Ljung (2002); Gevers (2005).
The identified model is tuned for optimal performance of the
closed-loop system, i.e., the identification criterion is linked
with the control objective. The interplay between identification
and control is central also in dual adaptive control (Åström and
Wittenmark (2008)), where the modeling and control tasks are
solved simultaneously, in real-time. Both identification for con-
trol and adaptive control, however, are model-based methods:
they aim at a model as an intermediate step towards control.
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An alternative to the model-based approach is to design a con-
troller directly from data without first identifying a model. This
approach, known as model-free or direct data-driven control,
has its roots in classical heuristics for PID controller tuning
such as the Ziegler-Nichols method in Ziegler and Nichols
(1942). Rigorous data-driven control methods, however, ap-
peared only since the late 90’s. Traditionally, they fall into the
following three main approaches.

(1) Adaptive control like Direct Model Reference Adaptive
Control (Direct MRAC, see Landau et al. (1998)) and Unfal-
sified control (see Safonov and Tsao (1997) and related works).
The former is a reformulation of classical MRAC, where the
controller parameters are directly taken into account. The latter
is an adaptive approach, where the controller is viewed as an
exclusion rule (see Willems (1986, 1987)) and the main idea is
to reject (falsify) controllers using previously collected experi-
mental data from the plant.

(2) Off-line iterative design, like Iterative Feedback Tuning in
Hjalmarsson et al. (1998) or Iterative Correlation-based Tuning
in Karimi et al. (2004), optimizes the controller parameters by
a gradient type algorithm that uses the control objective. The
key feature of this approach is that the control objective and its
gradient are evaluated using only measured data, obtained from
special experiments.

(3) Off-line noniterative design, like Virtual Reference Feed-
back Tuning (VRFT, see Campi et al. (2002)) or noniterative
unfalsified control (see Battistelli et al. (2017)), are one-shot
approaches that optimize the parameters of a fixed-structure
controller directly from a set of input/output data. Recently, an
approach based on missing data estimation and a correlation-
based method were proposed (see, respectively, Markovsky
(2017b) and Van Heusden et al. (2011)).



The aim of this paper is to make a comparison between the
missing data estimation and correlation approaches. The former
problem is posed and solved in the structured low-rank approxi-
mation setting of Markovsky (2008). The resulting methods are
implemented in Markovsky and Usevich (2014).

The paper is organized as follows. The control problem is
formally stated in Section 2. Section 3 briefly recalls the ap-
proaches of Markovsky (2017b) and Van Heusden et al. (2011).
A theoretical and numerical comparison are given in Section
4 and Section 5, respectively. The paper is ended by some
concluding remarks.

2. PROBLEM STATEMENT

We use the behavioral language of Willems (1986, 1987). A
discrete-time dynamical system B with q external variables
(inputs and outputs) is a subset of the signal space (Rq)N. The
set of natural numbers N is the time-axis, so that a trajectory w
of B is a vector time series w=

(
w(1),w(2), . . .

)
, where w(t)∈

Rq, for all t ∈ N. The notation Bt is used for the restriction of
the behavior on the interval [1, t], i.e.,

Bt := {wp ∈ (Rq)t | there is wf, such that wp∧wf ∈B },
where wp ∧wf denotes the concatenation of the trajectories wp
and wf. Thus, w∈Bt is a finite trajectory

(
w(1), . . .w(t)

)
of the

system B.

The number of inputs m and the number of outputs p of a
system B ∈ (Rm+p)N are invariant of the representation. After
permutation of the variables, a trajectory w of the system B can
be partition as

w = (u,y) = [u
y ] ,

where u is an input, i.e., it is free, and y is an output, i.e., it is
determined by the input, the system, and the initial condition.

Problem 1 (Model based output tracking). Given a linear time-
invariant system B, initial conditions wp and an output yf
generated according to a desired dynamics BM , find a control
input signal ûf that

minimize ‖yf− ŷf‖
subject to wini∧ (ûf, ŷf) ∈B,

(CTR)

i.e., applying ûf on the system B under initial conditions wp,
the resulting output ŷf is closest to yf in the 2-norm sense.

Note that the signal uf is the open-loop optimal control signal.
In practice, such a signal can be used in a model predictive con-
trol setting, which will implicitly create a closed loop and make
the overall control scheme robust to disturbances, measurement
noise and uncertainty on model or initial conditions.

We denote by L q the class of linear time-invariant finite di-
mensional systems with q variables. L q

m,` denotes the subclass
of L q with bounded complexity: at most m inputs and lag
(observability index) at most `. The most powerful unfalsified
model, defined in Willems (1986), is denoted by Bmpum(wd).
Bmpum(wd) is the linear time-invariant system B of minimal
complexity that is exact for the data, i.e., wd ∈B.

Problem 2 (Data-driven output tracking). Given a complexity
specification (m, `), a trajectory wd of an unknown system B ∈
Lm,`, initial conditions wp and an output yf generated according
to a desired dynamics BM , find a signal ûf that

minimize ‖yf− ŷf‖
subject to wini∧ (ûf, ŷf) ∈Bmpum(wd) ∈Lm,`.

(DD CTR)

In the data-driven control problem formulation, we assume
that the trajectory wd is exact and satisfies the identifiability
conditions of Willems et al. (2005). In case of noisy data, the
problem should include also approximation of wd, e.g., if the
data is generated in the errors-in-variables setting with white
Gaussian noise of equal variance on all variables, the maximum
likelihood estimator is defined by

minimize ‖wd− ŵd‖2
2 +‖yf− ŷf‖2

2
subject to wini∧ (ûf, ŷf) ∈Bmpum(wd) ∈Lm,`.

(DD CTR’)

3. THE METHODS

3.1 Method based on structured low-rank approximation

In Markovsky (2017b), it is shown that the data-driven control
problem can be posed and solved as a structured weighted low-
rank matrix approximation problem. The key result, presented
first, is a link between a trajectory of a linear time-invariant
system and rank deficiency of a mosaic-Hankel matrix. Then,
we present a method based on the variable projections principle
in Golub and Pereyra (2003).

Link to element-wise weighted mosaic-Hankel structured low-
rank approximation. In order to solve (DD CTR), we use
the equivalence of trajectories of a linear time-invariant system
with bounded complexity and rank deficiency of a matrix con-
structed from the trajectories.

Lemma 3 (Markovsky (2013)). Let m, p, and ` be, respectively,
the number of inputs, the number of outputs, and the lag of a
linear time-invariant system B. Then,

w1,w2 ∈B ⇐⇒
rank

([
H (w1) H (w2)

])
≤ (m+p)`+m,

where H (·) is a block-Hankel matrix

H (w) :=


w(1) w(2) · · · w(T − `)
w(2) w(3) · · · w(T − `+1)
w(3) w(4) · · · w(T − `+2)
...

...
...

w(`+1) w(`+2) · · · w(T )

 .

Using Lemma 3, it can be shown that the data-driven control
problem (DD CTR’) is equivalent to the structured weighted
low-rank approximation problem

minimize over p̂ ‖p− p̂‖2
v

subject to rank
(
S (p̂)

)
≤ r,

(WSLRA)

with

• data vector p = (wd,w),
• structure S (p̂) = [H (ŵd) H (ŵ)],
• rank constraint r = (m+p)`+m, and
• element-wise weighted semi-norm

‖p− p̂‖v := ‖wd− ŵd‖2
2 +‖yf− ŷf‖2

2.

Problem (WSLRA) is a nonconvex optimization problem. It
can be solved by convex relaxation, using the nuclear norm
heuristic, subspace methods and local optimization methods.
Next, we describe a local optimization method, based on the
variable projections principle.



Solution method based on the variable projections. Let S (p)
be an m× n matrix. First, we express the rank constraint in
(WSLRA) as a condition on the dimension of the left kernel

rank
(
S (p̂)

)
≤ r ⇐⇒ ∃ full row rank R ∈ R(m−r)×m,

such that RS (p̂) = 0.
(rankR)

Then, using (rankR), we rewrite (WSLRA) in the following
equivalent form

minimize over p̂, R ∈ R(m−r)×m ‖p− p̂‖v

subject to RS (p̂) = 0
and R is full row rank.

(WSLRAR)

The variable p̂ can be eliminated by representing (WSLRAR)
as a double minimization problem:

minimize over full row rank R ∈ R(m−r)×m M(R),
(OUTER)

where
M(R) := min

p̂
‖p− p̂‖2

2 subject to RS (p̂) = 0.

(INNER)
Solution of (INNER), i.e., evaluation of M(R) for given R, is
refered to as the inner minimization. Solution of (OUTER),
i.e., optimization of M over R, is referred to as the outer
minimization.

The inner minimization (INNER) is a generalized linear least
squares problem (see Paige (1979a,b); Lawson and Han-
son (1987)) and admits an analytic solution, as indicated in
Markovsky and Usevich (2013).

The main advantage in the reformulation of (WSLRAR) as
(OUTER) is the elimination of the optimization variable p̂. In
control applications, ŵd and ŵ are high dimensional and R is
small dimensional. Therefore, the elimination of ŵd and ŵ leads
to a big reduction in the number of the optimization variables.
The approach described above for solving (WSLRAR) is similar
to the variable projection method of Golub and Pereyra (2003)
for the solution of separable unconstrained non-linear least
squares problems.

In (OUTER), the cost function M is minimized over the set
of full row rank matrices R. (INNER) of M(R) depends only
on the space spanned by the rows of R, i.e., M(R) = M(UR),
for all nonsingular U ∈ R(m−r)×(m−r). Therefore, (OUTER) is
a minimization problem on the Grassmann manifold of all r-
dimensional subspaces of Rm. In order to find a minimum of
M, the search space in (OUTER) can be replaced by a set
of matrices R ∈ Rp×q(`+1) that represent all subspaces of the
Grassmann manifold, e.g., all matrices satisfying the constraint
RR> = Im−r.

A software package for solving weighted mosaic-Hankel struc-
tured low-rank approximation problems (WSLRA), based on
the variable projections approach, is developed in Markovsky
and Usevich (2014). This package is used for solution of linear
time-invariant system identification problems (see Markovsky
(2013)). The main functions of this latter package are ident,
which solves problem (DD CTR’) and misfit, which solves
the inner minimization problem (INNER). The software is
available online at http://slra.github.io/

3.2 Noniterative correlation-based tuning method

The objective of noniterative correlation-based tuning is to de-
sign a suitable control signal ûf as a feedback signal. There-

fore, the optimization variable here is not the signal but the
controller producing ûf when fed by the mismatch between the
reference signal and the measured output. More specifically,
a linear, fixed-order controller K(q−1,ρ), linearly parameter-
ized through ρ ∈ Rn, is considered. Formally, the controller
parameterization is K(q−1,ρ) = β T (q−1)ρ , where β (q−1) is a
vector of n linear discrete-time transfer operators and q−1 is the
backward shift operator. The key assumption is again that an
open-loop collection of input-output (I/O) data wd, with output
affected by additive stationary noise, is available.

The Correlation-based Tuning (CbT) rationale is as follows.
Let G(q−1) and M(q−1) be the transfer operators of B and
BM , respectively, and consider the closed-loop model matching
error in the 2-norm sense

Jmm(ρ) =

∥∥∥∥M− GK(ρ)

1+GK(ρ)

∥∥∥∥ , (CLMM)

as a function of ρ . Under the assumption that BM is achievable,
it can be shown that the minimizer of (CLMM) is the same of
J(ρ) = ‖∆(ρ)‖, where

∆ = M− (1−M)GK(ρ), (DELTA)
since, in the minimum, the sensitivity function coincides with
the ideal one, i.e., 1−M.

The most important observation at the basis of the CbT ap-
proach is that, in the noiseless setting, the closed-loop model
matching error ε(t,ρ) can be directly minimized from data. In
fact, consider the output ε(t,ρ) of ∆(ρ) fed by r(t):

ε(t,ρ) = Mr(t)− (1−M)K(ρ)Gr(t).
It can be shown that such an output can be computed without
the need of the knowledge of G, in case the available data are
used r(t) = uf(t). In fact, the error εf(t,ρ) corresponding to the
use of wd reads

εf(t,ρ) = Muf(t)− (1−M))K(ρ)yf(t),
since yf is the output of G when fed by uf. Then, the minimizer
of the L2-norm of εf(t,ρ) corresponds exactly to Ko(q−1),
provided that uf has a flat spectrum.

When data are collected in a noisy environment, the method
resorts to the correlation approach to identify the controller.
Specifically, an extended instrumental variable ζ (t) correlated
with uf(t) and uncorrelated with the output disturbance is
introduced to decorrelate the error signal ε(t) and uf(t). ζ (t)
is defined as ζ (t) = [uf(t + l), . . . ,uf(t), . . . ,uf(t− l)]T , where l
is a sufficiently large integer. The correlation function is defined
as

fN,l(ρ) =
1
N

N

∑
t=1

ζ (t)ε(t,ρ) (CF)

and the correlation criterion as
JN,l(ρ) = f T

N,l(ρ) fN,l(ρ). (CC)
In Van Heusden et al. (2011), it has been proven that

lim
N,l→∞,l/N→0

JN,l(ρ) = Jmm(ρ),

for any input sequence, if the reference behaviour is achievable
and the data in ζ (t) are prefiltered by L(q−1), defined as

L(e− jω) =
1−M(e− jω)

Φu(ω)
, (L)

where Φu(ω) denotes the spectral density of uf(t). Notice that
such a prefilter may be non-causal but it can be implemented
off-line. For further details about the performance of CbT, see
also Formentin et al. (2013); Formentin and Karimi (2014).



4. A THEORETICAL COMPARISON

Both the SLRA and CbT methods, presented in the previous
section, aim at solving the output tracking Problem 2; however,
they use rather different approaches. Also, the literature where
they have been developed is disjoint. Because of this, it is not
clear how the methods compare and in particular what their
advantages and disadvantages are. This section compares the
two approaches. An overview of the comparison is shown in
Table 1.

The CbT method was originally conceived for single-input
single-output linear time-invariant systems. Since the derivation
of the CbT formulas is based on the commutation of controller
and plant blocks, CbT cannot be straightforwardly extended
to multivariable or nonlinear plants. The SLRA method is
instead applicable to multi-input multi-output systems linear
time-invariant systems. There are also preliminary results on
the generalization of the SLRA approach to the class of non-
linear systems defined by a polynomial difference equation, see
Markovsky (2017a).

Main assumptions.

A1 Persistency of excitation: The input must be persistently
exciting of a sufficiently high order, see Willems et al.
(2005).

A2 Bounded complexity model class: An upper bound of the
model order is given.

Assumption A1 is a standard one. Assumption A2 might be a
mild hypothesis in some applications, but may also be quite
critical elsewhere.

Being data-driven methods, the main input taken by the design
functions is the set of I/O points. Based on such data, as already
pointed out in the previous section, CbT is aimed to follow a
desired reference model, whereas SLRA has the goal to track a
desired reference signal.

A second input for the design function can therefore be either a
model or a signal. In the former case, the SLRA method needs
a reference signal. Such a signal is generated by the reference
model. In the latter case, the CbT method needs a reference
model. Such a model is obtained by analysis of the spectrum of
the tracking signal.

A third compulsory input for the SLRA method is the bound
on the model order. Notice also that, although CbT does not
assume anything on the system dynamics, the controller struc-
ture needs to be fixed a-priori. This is not a strong requirement
in many applications, e.g., in PID control, but may become a
limitation in complex engineering tasks.

The output of the design will be a transfer function in the CbT
case and the actual optimal control law in the SLRA method.
This highlights a fundamental difference between the methods.
The fact that the control law in SLRA is a function only of
the identification dataset makes SLRA a feedforward control
strategy, unlike CbT.

Tuning parameters/hyper-parameters. The fact that the two
approaches are not bound to a particular model parameteri-
zation does not mean that they do not require tuning. The
tuning parameters involved are sometimes referred to as hyper-
parameters. The hyper-parameters have impact on the quality
of the estimate of the optimal controller.

For the CbT method, the only hyper-parameter is the length
of the instrumental variable ζ (t), i.e., l. Since l determines
the size of the matrix describing the correlation between the
matching error and the input, the higher the matrix the better the
minimization process. Unfortunately, it has also been shown in
Van Heusden et al. (2011) that the same parameter modulates
the bias of the cost function. In other words, the lower l the
lower the bias on the controller estimate. It follows that the
choice of the best value of l is not a trivial task. In some
papers, e.g. Formentin et al. (2014), it has been shown that a
reasonable choice might be the length of the impulse response
of M. Indeed, there is no formal proof for this statement.

For the SLRA method, the hyper-parameter is the order of the
model. Overestimating the model order might lead to over-
fitting. In practice, however, the knowledge of an upper bound
of the order is much less critical to obtain than an accurate
parametric model of the system.

Applications. Since CbT needs to set the controller structure
a-priori, such a method is suitable for applications where the
controller parameterization is known (maybe because some
controller is already running, e.g. in process control or ser-
vomechanisms) and one only needs a rapid (re-)calibration to
optimize the parameters. This is useful for rapid prototyping or
to compensate for aging effects in existing systems.

The intrinsic feedforward nature of the SLRA method makes it
instead suitable for the open-loop generation of optimal refer-
ences, e.g. in trajectory planning or model predictive control.

Pros and cons. The above comparison shows that the pros
and cons of the methods are different, which means that the
approaches should not be seen as competitors but as comple-
mentary methods.

First of all, when the parameterization of the controller is
linear, CbT can be shown to be convex (see again the cost
function to minimize (CC)). This is not the case for SLRA in
any case of practical interest. On the other hand, in the SLRA
method the controller does not need to be parameterized at
all, as the controller output uf (with no restrictions) is directly
generated by the algorithm. As a side advantage, the controller
corresponding to such an action could even be noncausal (thus
not implementable following the other approach).

Another important feature of CbT is that the solution is inde-
pendent of the reference signal. This means that the optimal
controller will make the output follow the desired trajectory
whatever it is. Instead, two different references would require
two optimization runs in the SLRA method.

Concerning stability, the feedforward control obtained by the
SLRA method obviously works only with systems that are
already stable. However there is no risk to destabilize them.
Instead, a bad choice of controller could even lead to system
destabilization in CbT. To avoid such an issue, the data-driven
stability constraint in Van Heusden et al. (2011) could be em-
bedded within the CbT framework. Such a constraint allows
one to guarantee the stability of the closed-loop system, but
only asymptotically with the number of samples in the identi-
fication dataset. Since the size of a dataset is always limited,
conservative choices are needed, sometimes leading to poor
performance.

Finally, notice that, when the stability constraint is not needed,
the minimizer of (CC) can be analytically found through least



Table 1. Overview of the comparison between noniterative CbT and structured low-rank approximation.

CbT SLRA
Assumptions - LTI system - LTI system

- PE input - PE input
- upper bound of the model order is known

Features - feedback control - feedforward control

Inputs: Inputs:
- I/O data - I/O data
- reference model - desired output
- controller structure - bound on the model order
Hyper-parameters: Hyper-parameters:
length of IV bound on the model order
Output: Output:
- controller transfer operator - control signal

Applications - servo mechanisms - trajectory planning
- process control - MPC

Pros - convex problem - no restrictions on the control signal
- solution is independent of the reference signal - no need to parameterize the controller a-priori
- stability guarantee for the closed-loop system - non causal control

Cons - linear controller parameterization - nonconvex problem
- causal controller - re-computation for new reference signal
- only asymptotic stability guarantees - batch method
- hard bounds on the control signal not allowed - non efficient computational methods

squares formulas. In the more general case, convex optimiza-
tion tools can be used to return the solution (being both the
cost function and the constraints convex functions of ρ). The
computational burden of the SLRA method is instead higher,
hence the method is not efficient if the number of parameters
is high. We should stress however that such an increase in
the computational load is due to a more flexible choice of the
control action.

5. A NUMERICAL COMPARISON

The benchmark example of Landau et al. (1995) is used to
compare the performance of the two methods. The plant is

G(q−1) =
0.28261q−3 +0.50666q−4

A(z)
, (1)

where
A(z)= 1−1.41833z−1+1.58939z−2−1.31608z−3+0.88642z−4.

Consider the feedback controller

Ko(q−1) =

5
∑

k=0
ρ0kq−k

1−q−1 , (2)

where ρo = [0.2045 0.2715 0.2931 0.1643 0.0084]T and the
reference model

M(q−1) =
G(q−1)Ko(q−1)

1+G(q−1)Ko(q−1)
. (3)

The objective of CbT is to design a controller of the form

K(q−1) =

5
∑

k=0
ρkq−k

1−q−1 . (4)

Notice that it is possible to realize in closed-loop the model
reference M by a controller (4) (the optimal controller (2) is in
fact included in this system class). The objective of the SLRA
method is instead to design directly the input uf. The validation
is done by evaluating the (normalized) output tracking error

e := ‖yf− ŷf‖/‖yf‖
achieved by the control methods on the true plant.

In the simulation we use an output error setup with white
noise and signal-to-noise ratio SNR = var(y0)/σ2 (with σ as
a simulation parameter). The simulation horizon is N = 500
samples and 500 Monte Carlo experiments are run with the
same input u and different realizations of the noise. For SLRA
design, we use an initial approximation obtained from the
unstructured low-rank approximation computed by the singular
value decomposition. The tracking error for different values of
σ2 (and then for different SNR) is shown in Figure 1.
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Fig. 1. In a Monte Carlo simulation (500 runs), the CbT method
statistically outperforms the SLRA method.

Both in terms of mean tracking error and the variability of the
results, the CbT method statistically outperforms the SLRA
method. However, in the proposed example, the optimal con-
troller belongs to the controller set, which is a strong assump-
tion in real applications. If the set of controllers, or equivalently
the reference model, is changed so that the selected controller
class is not allowed to achieve a perfect closed-loop matching,
the comparison gives less intuitive results.

Consider, e.g., the case where



M(q−1) =
0.1548q−3

1−1.213q−1 +0.3679q−2 , (5)

which is unachievable for any choice of ρ in (4), as already
shown in Campi et al. (2002). In such a case, the tracking error
generated with the noiseless estimate (corresponding to a bias
error, as the variability with respect to the noise realization is
zero) is higher in the CbT case, as indicated in Table 2.

Table 2. Error e in case of zero noise and M in (5).

CbT SLRA
0.7672 ·10−3 0.0064 ·10−3

When also the effect of noise is added (and the variance error
overcomes the bias one), the trend becomes again that of Figure
1. However, the above observations highlight that CbT might
not be the best choice when the SNR is high and the controller
class is too simple compared to the dynamics of the process to
control and the desired behaviour.

6. CONCLUSIONS

This paper compared the structured low-rank approximation
and the correlation approaches for data-driven output tracking
control. The main conclusion is that the two approaches are
complementary, thus pros and cons depend on the problem at
hand. For instance, the feedforward SLRA should be preferred
when there are no stability issues, an upper bound on the
model order is given, and there is little knowledge about the
achievable performance in terms of output tracking. On the
other hand, CbT is the right choice for unstable plants, online
implementation, low SNR. Future work will compare the two
approaches with other methods and investigate a possible way
to merge them into a more effective unified approach to data-
driven output tracking.
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