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Summary

Research shows that, in learning science and engineer-
ing, guided project work leads to deeper understanding

of theoretical concepts (as well as acquisition of hands-on
skills) than the classical approach of textbook reading and
attending lectures. In an approach to education based on
project work, the role of the teacher is to create a stimulating
learning environment and to supervise the students in ac-
complishing their objectives. The main challenge is to come
up with projects that are engaging, diverse, and feasible in
view of limited time and resources. In this paper, we describe
such a signal processing project. The task is to improve
the speed and accuracy characteristics of a sensor by real-
time signal processing. It turns out that this is an application
of Kalman filtering however the students need to identify a
model of the sensor and implement the Kalman filter on a
DSP. The project consists of three main tasks: 1) mathemat-
ical formalization of the problem, 2) development of solution
methods, and 3) implementation and testing of the methods.
The testing is done on an inexpensive laboratory setup,
using the Lego Mindstorms educational kit in combination
with a temperature sensor. The learning outcomes are un-
derstanding of model representations, system identification,
and state estimation, as well as implementation in Matlab
and C of real-time signal processing algorithms. Possible
extensions are adaptive signal processing, multiple sensors
data fusion, and non-constant measured value estimation.

“Success in the rapidly changing world of the future
depends on being able to do well what you were not
taught to do.” Seymor Papert [1]

Moore method in mathematics is to let students rediscover the
theory that they are learning [2]. This is done individually or in

small groups, where every student has personal contribution. The
teacher’s role is to supervise the work of the students, suggesting
where needed possible ways of overcoming difficulties. The sug-
gestions are hints that are just enough to direct the students into
making the discovery on their own. Moore method is developed
and used for teaching of advanced mathematics courses. The
idea of learning through self-discovery, however, is generally
applicable in education starting from early childhood [1].

Applied to science and engineering, Moore method implies
working on open-ended projects. They should be challenging but
feasible for the students, stimulating them to apply knowledge
that they have already learned in a classical lecture-based course
or need to discover by doing the projects. Apart from application
of already known theory and methods and learning new ones,
the objective is to encourage free exploration, critical thinking,
and creativity. This necessarily implies having less structure
than in traditional education, see Sidebars “Structure vs free-
exploration” and “Results-driven vs process-driven mindset”.

The topics of the projects are irrelevant as long as they are
motivated by and have connection to real-life applications. The
connection to applications makes the projects meaningful for
the students. Seeing the practical usefulness of their work, the
students are more likely to become engaged with the projects [3].

The motto of self-discovery by free exploration is at the core
of the program for learning systems theory presented in [4].
It consists of a set of open ended curiosity-driven questions
related to the free-fall dynamics. The key step the students need
to accomplish is translation of the open ended questions into
well-defined mathematical problems. Problem formulation is an
important but often neglected skill. Like any other skill, however,
it can be developed by deliberate practice [5]. As a positive side-
effect, the freedom of exploring different problem formulations
makes the students more involved, because they feel ownership
of the problems that they solve. This higher level of involvement
in turn leads to gaining deeper and longer-lasting knowledge.
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STRUCTURE VS FREE-EXPLORATION

The project is motivated by and aims at solving a nontrivial
real-life problem. Following Moore method, the students

are expected to work independently (individually or in small
groups), freely explore, and solve the problem on their own.
They are guided implicitly by being given a sequence of open-
ended problems to solve. Through discussions with peers and
supervisors, the students receive feedback, pointers for self-
study, and directions for further work, but no help with technical
difficulties. Thus, the students are fully responsible. However,
they also fully own the results—they are truly their achievement.

From a pedagogical perspective, working on challenging but
feasible open-ended problems, the students gradually build the
necessary experience and confidence to solve the ultimate real-
life problem. Depending on their background and experience,
they may need to search for and learn new theory and tools. In
comparison with traditional teaching, which first offers lectures
on theoretical material and then lets students use this theory
in projects, the free expiration approach is unstructured. The
structure imposed by the traditional approach, however, is con-
straining, leaving little room for creativity. Typically, problems are
well-defined and students receive a sequence of steps to follow.

Switching teacher’s / student’s mindset about teaching / learning
from "tell / being told what to do" to "ask / answer questions"

is the hallmark of the proposed project-based teaching.

RESULTS-DRIVEN VS PROCESS-DRIVEN MINDSET

A free-exploration project is never complete: there is always
next "What if . . . ?" question inspiring further investigation.

At any stage, success is measured by the extent to which
students are engaged and stimulated to think creatively, not
by accomplishment of predefined objectives. It is normal, even
expected, for students to define, work on, and solve different
problems. They are free to use any theory, solution approach,
and tools (e.g., programming languages). Although there are
no constraints in the exploration stage, the ultimate test for the
solutions found is the real-life testbed, see Section "Implemen-
tation and validation of the results". Thus, the performance on

the application is the final criterion for judging the results. The
pros and cons of the approaches followed by the students are
then compared and discussed in a group session.

The learning outcome is the experience gained from the ex-
ploration rather than the result. A method not performing "well"
is not a failure. It is a part of the learning process. Students
learned more in "unsuccessful" attempts to develop their own
methods than in "successful" reproduction of an established
methods following step-by-step instructions. Switching teacher’s
/ student’s mindset about teaching / learning from "tell / being
told what to do" to "ask / answer questions" is the hallmark of
the proposed project-based approach to teaching.

This paper presents a project for learning systems theory
and signal processing motivated by Moore method, learning by
exploration, and the importance of real-life applications. The
high-level problem considered in the project is

Dynamic measurement: improve the speed and accu-
racy of a sensor by real-time signal processing.

The project goes gradually from simple to complex, making
first simplifying assumptions that are relaxed later on, see Side-
bar “From simple to complex”. Section “Dynamic Temperature
Measurement” presents a project of temperature measurement.
It starts with a motivating exercise which is a simplified version
of the problem in the project and thus prepares the students for
tackled the coming difficulties. Section “Extensions” presents
follow-up projects of weight measurement, fusing measurements
of multiple sensors, and measurement of a non-constant quantity.
The follow-up projects can be solved by generalizations of the

Kalman filter. The assumption that the sensor dynamics is a priori
known, however, is unrealistic in these scenarios. Therefore,
an alternative direct data-driven approach, which estimates the
quantity of interest directly from the measured data is developed
[6]. The alternative approach is a data-driven version of the
Kalman filter, which does not require a priori given model [7].

DYNAMIC TEMPERATURE MEASUREMENT
The sample project presented in this section illustrates the motto
of the paper—learning by exploration. It is split into three steps.

1) Understand the high-level problem statement “improve the
speed and accuracy characteristics of sensor by real-time
signal processing” and formalize it by formulating a well
defined mathematical problem.

2) Develop a method for solving the mathematical problem.
3) Implement and validate the method in practice.
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Problem formulation is an important but often ignored skill.
Like any other skill it can be developed by deliberate practice.

FROM SIMPLE TO COMPLEX

A sequence of open-ended problems serves as an implicit
guide for the students’ work. The problems reveal essential

features of the general problem and build on each other. There
are several aspects of the high-level dynamic measurement
problem that allow us to go gradually form simple to complex.

Model of the sensor’s dynamics
A basic assumption made from the start of the project is that the
sensor’s dynamics is linear time-invariant. Still, there are three
important aspects to be considered.

Is the model given? Assuming that a model is given,
significantly simplifies the problem. The key observation is that
the dynamic measurement problem is equivalent then to a state
estimation problem for an autonomous system. Dealing with
unknown sensor’s dynamics requires model identification or
direct data-driven methods.

Model order The project starts with an example of a first
order process—temperature measurement—which has an ex-
ponential response. As another physical example the students
may be presented with a weight measurement process, which is
second order. Seeing concrete physical examples helps building
intuition for the abstract general case of an nth order system.

Scalar or multivariable? Another aspect of the sensor’s
dynamics that allows transition from simple to complex is the
number of variables. Initially, the problem is aimed at measure-
ment of one variable via one sensor. Later on students may
consider a generalization to measurement of multiple variables
using multiple sensors, which in the metrology application has
a "data fusion" interpretation.

Measured data
Exact or noisy? The students are instructed to solve the
problem first under the simplifying assumption that the data
is exact. Although this is unrealistic assumption in practice, it
leads to a solution method that can be used later on for solving
the problem with noisy data. It turns out that the modification
needed is solving a least-squares approximation problem in-
stead of a system of linear equations—a relatively minor step.

Sampling and quantization Apart from being noisy, in prac-
tice the data will be sampled and quantized. The students
should abstract from these issues initially by considering real-
valued discrete-time process, i.e., the sampling is already done
and there are not quantization errors. The choice of the sam-
pling frequency and the effect of the quantization errors will be
considered, however, at the stage of the practical implementa-
tion and testing of the method.

Off-line or real-time data processing? The goal of dynamic
measurement is real-time data processing. Initially, however, the
students should solve the problem assuming that all the data is
given in batch (off-line processing). Then, they should consider
the problem of making the batch method recursive, so that it can
be used for real-time data processing.

Constant or non-constant measured variable? The starting
assumption is that the to-be-measured variable is constant in
time. The generalization to a non-constant measured variable
can be done later on in two different ways. First, assuming a
known model of the time variation, e.g., linear, the problem is
again reduced to a state estimation problem of an augmented
system that includes the the model of the time-variation and the
sensor dynamics. Second, without prior knowledge of the time-
variation, adaptive data-driven methods are used.

Problem understanding
As a motivating exercise, the students are presented with the
following problem from [8, Page 53]:

“A thermometer reading 21◦C, which has been inside
a house for a long time, is taken outside. After one
minute the thermometer reads 15◦C; after two min-
utes it reads 11◦C. What is the outside temperature?
(According to Newton’s law of cooling, an object of
higher temperature than its environment cools at a rate
that is proportional to the difference in temperature.)”

The exercise is a simplified version of the project and shows the
underlying idea that a “slow” processes can be made faster by
data processing. In the project, the students explore a generaliza-

tion of the exercise and its solution to higher order multivariable
processes, noisy data, and real-time data acquisition.

The first task of the students is to understand the problem.
They should be able to answer the questions:

» What is the given data and what is to be found?
» How are the data and to-be-found quantity related?

In the dynamic measurement setup, the given data is the sensor
reading. In practice, the sensor reading is sampled in time,
quantized, and collected in real-time. Initially, the students may
and should abstract from the complications resulting from the
quantization and the real-time data collection. However, they will
be addressed later; in particular, the real-time signal processing
is an essential aspect in the implementation of the method.
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The to-be-found variable is the measured quantity. In metrol-
ogy, it is natural to assume that it is constant over the mea-
surement time. Students who are interested in relaxing this
assumptions, i.e., consider tracking of a time-varying quantity,
may explore this in a follow-up project. Since the measurement
process starts at an initial moment of time, there is a step
change in the measured quantity. This step change initiates a
transient. The transient is the essential object that is analyzed
in the dynamic measurement problem. The connection between
the data and the measured variable is the sensor dynamics.
The sensor is based on a physical process, e.g., heat exchange
between the environment and the thermometer in the temperature
measurement. This is a link between engineering and physics,
which leads to modeling using the underlying physical laws.

Once the problem is understood, the students are given time
to work on the solution. This is important irrespective of whether
or not they succeed. Even unsuccessful attempts lead to deeper
understanding. After the students have spend sufficient time
on independent work, the instructor summarizes the proposed
solutions and attempted ideas in a group session. This is an
opportunity for the instructor to demonstrate in practice that the
best way to come up with a “good” solution is to come up
with many solutions. A good solution is conceptually simple (a
proxy of simplicity is conciseness) and has the potential to be
generalized. The generalizations of interest for the project are:

» higher order dynamical processes,
» more measurements, which may be perturbed by noise,
» computational methods that are suitable for real-time im-

plementation.
Sidebar “Sample solution to the motivating exercise” presents an
unsuccessful solution attempt, which exposes the difficulty of the
problem and leads to an insight for a successful approach. The
latter uses an idea of differencing the measurements, which is
used later on in the project.

Mathematical formalization of the problem
The link between the problem at hand—dynamic measurement—
and systems theory is done by modeling the sensor as a dynam-
ical system. Students familiar with the input/output framework
of systems theory may think of the sensor as a map that takes
as an input the measured variable and produce as an output the
sensor’s reading, see Figure 1.

The input/output framework imposes a cause-and-effect
relation—the input causes the output. This is an opportunity for
the instructor to call for critical thinking. The actual process be-
hind the temperature measurement is the heat exchange between
the environment and the thermometer defined by Newton’s law
of cooling. It does not have a cause-and-effect relation. Thus,
the input/output model does not faithfully reflect the physical
reality—it adds a causal relation that does not exist.

The classical approach forces us to choose an input/output
partitioning. An alternative approach that does not a priori
impose an input/output structure of the model is the behavioral

approach [9]. It defines the model as a set of trajectories

B :=
{

y | d
d t y(t) = α

(
ūs−y(t)

)}
. (DE)

The notation y ∈B expresses the fact that y is a trajectory of B.
If y is a finite trajectory of length T, we use the notation y∈B|T ,
where B|T is the restriction of B to the interval [1,T].

In addition to not enforcing an input/output partitioning, the
behavioral approach separates the model from its numerous
representations by equations. Indeed, a model B can be defined
by different representations. For example, the model (DE) can
be defined also by the state-space representation

B =
{

y = [ 0 1 ]x | d
d t x(t) =

[
0 0
α −α

]
x(t)

for all t≥ 0 and x(0) =
[

ū
y(0)

] }
. (SS)

The choice of the representation is important for derivation
of solution methods but should not play a role in problem
formulations. The problem should be expressed in terms of the
set B (the behavior) and be separated from subsequent solution
methods. For example, the statement y ∈B is independent of
how B is defined and how y ∈B can be checked in practice.

Although the input/output map view of the model is inade-
quate for modeling the temperature measurement process, using
the state-space representation (SS) allows us to employ methods
developed in the classical setting for solving the dynamic mea-
surement problem. The solution presented applies to a class of
measurement processes satisfying the following assumptions.

1) LTI sensor dynamics: The sensor dynamics is linear time-
invariant, i.e., it is defined by an nth order linear con-
stant coefficients differential equation. Equivalently, the
model B is a shift-invariant subspace.

2) Constant to-be-measured quantity: The to-be-measured
variable ū is constant during the measurement period.

3) Calibrated sensor: In steady-state, i.e., when y is a con-
stant, y = Gū, where G is a priori known.

The link to systems theory allows us to access generic methods
that apply for a larger class of sensors. By assumptions 1–3,
y = Gū + y′, where the transient y′ is a sum of polynomials
times damped exponentials signal. It can be written as

y′(t) = CAt−1xini,

for some C ∈ R1×n, A ∈ Rn×n that depend on the sensor and
some xini ∈Rn×1 that depends on the initial conditions and ū.
The measurements then are given by

y(1)
y(2)
...

y(T)

=


G
G
...

G


︸︷︷︸

G

ū+


C

CA
...

CAT−1


︸ ︷︷ ︸

O

xini. (SE)

Like (∗), (SE) is a system of linear equations for ū. With known
sensor’s model, i.e., A and C known, (SE) can be solved in
closed form using the pseudo-inverse (·)†[

û
x̂ini

]
=
[
G O

]†
y. (SOL)
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SAMPLE SOLUTION OF THE MOTIVATING EXERCISE

Let y (t ) be the thermometer’s reading at time t and ū the en-
vironmental temperature. The cooling process is described

by the first order constant coefficient differential equation

d
d t

y (t ) = α
(
ūs−y (t )

)
, for t ≥ 0,

where s is the unit step function and α > 0 is unknown constant.

Unsuccessful first attempt
The general solution of the cooling process differential equation

y (t ) = ū +
(
y (0)− ū

)
e−αt︸ ︷︷ ︸

transient

, for t ≥ 0,

leads to a system of equations for ū and a := e−α

y (1) = ay (0)+ (1−a)ū

y (2) = a2y (0)+ (1−a2)ū.
(∗)

This system, however, is nonlinear, hence difficult to solve.
At this point one may consider using iterative methods for

solving systems of nonlinear equations, however, we are look-
ing instead for a closed form analytical solution. Although (∗)
doesn’t lead to such a solution, it leads to an important insight.

The problem is hard due to the unknown constant α.
With α known, (∗) becomes linear in ū.

Successful idea: difference the data
The difference operation ∆y (t ) := y (t )−y (t −1) eliminates the
constant ū. Thus, the difference signal ∆y satisfies the homo-
geneous first order constant coefficients differential equation

d
d t

∆y (t ) = α∆y (t ), for t ≥ 0,

which discrete-time version is

∆y (t +1) = a∆y (t ) for t = 0,1, . . . (∗∗)

Using the data, we find ∆y (0) = −6 and ∆y (1) = −4. Then,
from (∗∗), we find a = 2/3. Finally, using (∗), we have ū = 3◦C.

Potential for generalization
With more data

(
y (0),y (1), . . . ,y (T )

)
, (∗) becomes overdeter-

mined. If the data is also noisy, least-squares approximate so-
lution of (∗) allows us to estimate ū. The least-squares method
is also suitable for real-time implementation. Thus, the solution
of the exercise is directly generalizable to more data, noisy
measurements, and real-time algorithms.

For processes defined by higher-order linear constant coeffi-
cients differential equations, a closed-form solution is still avail-
able (sum-of-damped-exponentials), however, the estimation of
the model parameters (frequencies and dampings) becomes
more involved. The key challenge in tackling higher-order pro-
cesses is again the model parameters estimation.

to-be-measured value ū
(constant during measurement)

measured value y
(exhibits transient response)

sensor

FIGURE 1 The classical approach to systems theory suggests modeling the measurement process as an input-output map, where the
input is the to-be-measured variable and the output is the value measured by the sensor.

When the observed data y is measured with additive noise ỹ, i.e.,
y = y+ ỹ, where y is the noise free trajectory, (SOL) gives the
least-squares estimate of ū, which is a solution to the problem

minimize over û and x̂ini

∥∥∥∥∥y−
[
G O

][ û
x̂ini

]∥∥∥∥∥ . (LS)

Assuming moreover that the noise ỹ is zero-mean, white, Gaus-
sian, (SOL) is statistically optimal (maximum-likelihood).

A method for solving the problem
The solution (SOL) gives us a block method for the estimation
of ū. A recursive method can be derived or found in the
literature [10]. For the special case of temperature measurement,
however, (SOL) becomes[

û
x̂ini

]
=

[
TG>G G>∑

T−1
τ=0 CAτ

∑
T−1
τ=0 (A

>)τ C>G ∑
T−1
τ=0 (A

>)τ C>CAτ

]−1

[
G>∑

T−1
τ=0 y(τ)

∑
T−1
τ=0 (A

>)τ C>y(τ)

]
,

which is suitable for recursive implementation as it requires up-
dating five running sums. The recursive least-squares algorithm
is the Kalman filter, see Sidebar “The Kalman filter/smoother”.

Although at this point we have an algorithm for computing û,
the problem is not solved, because the algorithm requires knowl-
edge of the model’s parameters A and C. The next step is to
estimate them. In the special case of temperature measurement,
the sensor dynamics is described by Newton’s law of cooling.
Identifying the model is equivalent to determining the coefficient
a using measurements of y. For the model identification, the data
is available off-line. The identification of the model can be done
then with existing methods, see Sidebar “Model identification”.

Implementation and validation of the results
Once the students have derived a real-time solution method, they
can proceed with its implementation and testing in practice. They
should first implement the method in a high-level programming
language, such as Matlab, where bug fixes are faster and easier.
Then, they can proceed by testing it on data simulated according
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THE KALMAN FILTER/SMOOTHER

The Kalman filter is one of the most important inventions of
the 20th century. It provides an efficient real-time solution

to the Wiener filtering problem, i.e., the problem of separating
signal from noise. The first attempts to solve the problem by
Wiener and others resulted in solutions that are not suitable for
on-line implementation. The success of Kalman’s approach is
due to the use of the new at the time state-space representation
of the system. An alternative view of the Kalman filter is as an
optimal state estimator for a linear stochastic system.

Dynamic measurement by Kalman filtering
A state-space representation of the measurement process is

x ′(t +1) =

[
1

A

]
︸ ︷︷ ︸

A′

x ′(t ), x ′(0) =

[
ū

xini

]

y (t ) =
[
G C

]
︸ ︷︷ ︸

C ′

x ′(t )+ ỹ .

(SS’)

Assuming that the measurement noise ỹ is a zero-mean, white,
Gaussian with covariance V , the Kalman filter solving the least-
squares estimation problem (SOL) in real-time is given by [S1,

Theorem 9.2.1]:

K (t ) =
(
A′P(t )C ′>

)(
V +C ′P(t )C ′>

)−1,

x̂ ′(t +1) = A′x̂ ′(t )+K (t )
(
y (t )−C ′x ′(t )

)
,

P(t +1) = A′P(t )A′>−K (t )
(
V +C ′P(t )C ′>

)
K>(t ).

The estimate û of ū is obtained from the first component of x̂ ′.

A deterministic interpretation of the Kalman smoother
In filtering, only past data is used. In smoothing, both future as
well as past data is used. The optimal smoothing problem is
solved recursively by a variant of the Kalman filtering algorithm,
called the Kalman smoother. The smoothing problem has a
deterministic interpretation as a projection on the behavior:

dist(y ,B) := min
ŷ∈B|T

‖y − ŷ‖. (dist)

The minimizer ŷ or, equivalently, the projection of y on B is the
smoothed signal. The Kalman smoother is thus an efficient algo-
rithm for solving the least-squares minimization problem (dist).

REFERENCES
[S1] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Prentice
Hall, 2000.

to the hypothesis of a first order linear time-invariant dynamics
and zero mean, white Gaussian measurement noise.

With the testing on simulated data successfully completed,
the students can proceed with a low-level implementation of the
algorithm and its testing on the experimental setup (see Figure 2).
For the DSP implementation we recommend the C-like language,
called NXC (Not eXactly C) [11]. It is simple to use and comes
with a convenient GUI development environment.

Sample results on data obtained from human temperature
measurement and the corresponding optimal fit by the identified
model are shown in Figure 3. The real-time prediction on the
same data, obtained with the Kalman filter designed for the
identified model, is shown in Figure 4. It converges to the
measured temperature faster than the natural response of the
sensor. This demonstrates the sensor speed-up by the method.

Since the prediction of the Kalman filter is tested on the data
that was used for identification, the results are not representative
for the actual performance of the method. In Figure 5 we verify
the robustness of the Kalman filter, by applying it on new data—
the temperature of another subject. The results show similar
performance as on the identification data.

The project has theoretical as well as practical implemen-
tation aspects. In particular, the implementation of the method
requires programming in high-level languages, such as MAT-
LAB, for validation on simulation examples, and low-level
languages, such as C, for the implementation on the digital signal
processor. Writing a well documented computer code is therefore
important for the successful completion of the project. Software
implementation and reproducibility of computational results is

an increasingly important issue that needs special attention in
teaching systems and control. The code development in the
context of a scientific project is tightly linked with the associate
theoretical development. The classical approaches for code de-
velopment and documentation are not well suited for this sort of
integration with a theoretical report. A solution to this dilemma
is provided by the literate programming style, which integrates
code and explanation into one document, see Sidebar “Literate
programming and reproducibility of computational results”.

EXTENSIONS
The sample project presented in Section “Dynamic Temperature
Measurement” is a starting point for follow-up projects on
adaptive signal processing, direct data-driven methods, nonlinear
and time-varying systems theory. A limitation of the Kalman
filter solution is that a model of the sensor must be known a
priori. Such a model can be identified off-line from measured
data. However, in some cases, e.g., the mass measurement setup
described in Section “Dynamic weighing”, the model depends
on the unknown measured parameter, so that knowing it is
unrealistic. One can use instead adaptive filtering, i.e., identify
the model on-line while collecting and filtering the measured
data. Alternatively, one can use direct data-driven methods [7].
Adaptive and direct data-driven methods are also needed in
situations where the measured value is non-constant and thus
the measurement process dynamics becomes time-varying.

The approach based on systems theory yields a method
that is directly applicable to higher-order multivariate processes.
The possibility to deal with multivariate processes implies that
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MODEL IDENTIFICATION

Identification is the problem of obtaining a model from data.
First, we consider the exact identification problem when the

data is generated by a system in a specified class of systems.
For well-posedness of the exact identification problem, i.e.,

in order to guarantee uniqueness of the solution, the data must
satisfy conditions, called identifiability conditions. Intuitively, the
identifiability conditions ensure that the data fully specify the
data-generating system. For linear time-invariant systems, a
necessary and sufficient identifiability condition, is the so called
generalized persistency of excitation [S1, Theorem 17]. It is a
rank condition of a Hankel matrix

HL(y ) :=


y (1) y (2) · · · y (T −L+1)
y (2) y (3) · · · y (T +L+2)
...

...
...

y (L) y (L+1) · · · y (T )

 (H )

constructed from the given data y . Applied to the problem in dy-
namic measurement, the generalized persistency of excitation
condition is

rankHn+2(y ) = n+1.

In order to develop a method for exact identification, we need
to select a model representation. The method then implements
the map from y to the model parameters. In dynamic mea-
surements problem, choosing a state-space representation, the
model parameters are (A,C). The problem y 7→ (A,C) is called
realization [S2] and can be solved by Kung’s method [S3].

1) Compute a rank-revealing factorization Hn+2(y ) =OC of
the Hankel matrix.

2) Solve the so called shift equation OA = O , where O is O

with last row removed and O is O with first row removed.
3) Define C as the first row of O.
In case of inexact data, e.g., exact data corrupted by

measurement noise y = y + ỹ , approximation is needed and
exact recovery of the data-generating system is in general
not possible. An approximate identification problem can be
formulated as follows: Find the nearest system B̂ in a given
class of systems M to the data y . We take M as the class of
bounded complexity linearity time-invariant systems L q

n , where
the complexity is measured by the order n. (In the tempera-
ture measurement, this is indeed the given prior information—
Newton’s cooling law defines a first order LTI model class.)
Choosing as an approximation criterion the distance measure
dist(y ,B), the approximate identification problem becomes

min
B̂∈L q

n

dist(y ,B̂). (SYSID)

Problem (SYSID) is nonconvex, so that iterative optimization
methods are needed for solving it [S4].

An alternative approach for approximate identification is
to use subspace identification methods [S5]. Applied to the
approximate identification problem in dynamic measurements,
a subspace identification method is Kung’s method, where the
rank-revealing factorization is computed approximately by the
singular value decomposition of the Hankel matrix and the shift
equation is solved approximately in the least-squares sense.
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FIGURE 2 The experimental setup consists of the Lego NXT brick
(the DSP) and a digital Lego temperature sensor.

the method can use measurements of multiple sensors. This is
explored in section “Fusing data from multiple sensors”, which
poses the questions of how to build an accurate sensors using
inaccurate sensors and what the limit of achievable performance
is. The improvements obtained by using measurements from
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FIGURE 3 The model’s output (dashed line) fits the data (solid line).

multiple sensors is not on the level of the hardware (measurement
technique) but on the level of the data processing algorithm, so
that the method is applicable for any type of sensor.
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FIGURE 4 The prediction of the Kalman filter (dashed line) con-
verges to the measured temperature (dotted line) faster than the
natural response of the sensor (solid line).
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FIGURE 5 Prediction of the Kalman filter (dashed line) on different
data than the one used for identification still converges to the mea-
sured temperature (dotted line) faster than the natural response
of the sensor (solid line). This demonstrates the robustness of the
method to model uncertainty.

Dynamic weighing
In weight measurement the sensor is a scale, the to-be-estimated
parameter is the mass M, and the scale’s reading y is the position,
see Figure 6. The scale is modeled as a mass-spring-damper
system, which has second order linear time-invariant dynamics

(M+m)
d2

dt2 y = −ky−d
d
d t

y−Mg.

In dynamic weighing the assumption that the process dynam-
ics is known is unrealistic because it depends on the unknown
mass M. In order to deal with the issue of the unknown process
dynamics, an adaptive method that performs simultaneously on-
line model identification and filtering is used in [12]. Another
approach for dealing with unknown process dynamics is based
on a data-driven representation of the model [6], [7], [13].

The main idea of the data-driven method is to replace the
extended observability matrix O in (LS) with the Hankel matrix
HT−n(∆y) (see (H )), constructed from the difference signal

∆y(t) := y(t)−y(t−1).

This substitution is possible because under a persistency of
excitation assumption

rankHT−n(∆y) = n, (PE)

the image of the Hankel matrix coincides with the image of the
extended observability matrix

image O = image HT−n(∆y).

The resulting equation

[
G HT−n(∆y)

][ū
`

]
=

 y(1)
...

y(T−n)

 (DD-SOL)

does not involve model parameters and can be solved for
the parameter of interest ū. The corresponding algorithm is a
recursive least-squares, which is a data-driven version of the
Kalman filter, see Sidebar “Data-driven Kalman smoother”.

Fusing data from multiple sensors
Consider measuring temperature by two thermometers. The
question occurs of how to combine the two measurements
into one that is more accurate than either of the individual
measurements. The simple idea of averaging (point-wise in time)
is problematic. First, the thermometers may start measuring at
different moments of time, which means that their transients
are not synchronized in time. Second, the initial conditions
(i.e., thermometers’ initial temperatures) may not be the same,
which again leads to a synchronization problem. Finally, the time
constants of the thermometers may be different.

Consider for example measuring temperature by a thermome-
ter that is slow but accurate and another thermometer that
is fast but inaccurate. The questions of how to combine the
two measurements in an optimal way and how to compute
the estimate efficiently in real-time are nontrivial. As another
example, consider a closed container with constant volume. By
Boyle’s law, the pressure and the temperature in the container are
related. This means that we can fuse data from a thermometer
and a pressure sensor.

Assuming that the noise is zero-mean white Gaussian, the
solution (SOL) presented in Section “Dynamic Temperature
Measurement” gives optimal (in a statistical sense) fusion of the
measurements. The data-driven subspace method, described in
Section “Dynamic weighing” is not optimal because (DD-SOL)
is a structured errors-in-variables problem which maximum-
likelihood solution is given by structured total least squares
method [14]. For computational reasons, however, we use re-
cursive ordinary least squares method, which gives suboptimal
solution. This makes the scaling of the Kalman filtering and
data-driven subspace methods to a large number of sensors
computationally feasible.

Non-constant measured value
In Section “Dynamic Temperature Measurement” we assumed
that the parameter of interest ū is a constant. The method
described then augments the sensor’s model with a model of
a constant x′1(t+ 1) = x′1(t), see (SS’). The constant value is
encoded in the initial condition x′1(0) and is estimated by the
Kalman filter.
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LITERATE PROGRAMMING

Literate programming was conceived by Don Knuth during his
work on the TeX project [S1].

"At first, I thought programming was primarily anal-
ogous to musical composition—to the creation of
intricate patterns, which are meant to be performed.
But lately I have come to realize that a far better
analogy is available: Programming is best regarded
as the process of creating works of literature, which
are meant to be read." Don Knuth [S2]

It is build-in the org-mode of the Emacs text editor [S4]
and other programming environments or it can be used

as a stand-alone tool. The main advantage of using literate
programming is that it allows to integrate code into a scientific

report that includes text and formulas as well as figures and
numerical results of the execution of the code. The automation
of the process of including figures and numerical results in
a report is essential for making the results reproducible in
the sense of [S5]. Reproducibility is an important aspect of
computational science and engineering where the results are
based on computations rather than analytical proof.
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FIGURE 6 In dynamic weighing, i.e., weight measurement taking
into account the dynamic properties of the scale, the scale is
modeled as a mass-spring-damper system. The model is second
order linear time-invariant, however, the unknown mass M affects
the sensor’s dynamics. This implies that a model of the sensor is
not a priori known.

When ū is non-constant, we can use an an autonomous linear
time-invariant system as a model for its evolution. In particular,
autonomous linear time-invariant can describe linear trend and
periodic sine change of ū. In the formalization where ū is
modeled by an autonomous linear time-invariant system, the
model is given and fixed but the initial conditions that correspond
to ū are unknown. The dynamic measurement problem is then
solved again by a model-based or data-driven Kalman filter,
designed for the augmented system—sensor and ū models.
Alternatively, adaptive methods for tracking of a time-varying ū
can be used. An easy modification that makes the direct data-
driven method adaptive is to introduce in the solution of the
recursive least-squares problem windowing and forgetting factor.

CONCLUSIONS
The motivation for project-based teaching is the gap between
the classical university education and the need of hands-on
knowledge in solving practical problems. A major factor for the
existence of the gap is a lack of experience in translating the ill-
posed “real-life” problems into well defined mathematical ones.
This lack of experience is due to insufficient project oriented
work where students are presented with open-ended problems
and are encouraged to explore freely alternative solutions.

The project presented is motivated by the dynamic measure-
ment problem in metrology. It involves data modeling, state-
estimation, and Kalman filter theory and methods. It also requires
practical skills, such as implementation and validation of an
algorithm on simulated data in Matlab, C programming for
DSP implementation of the method. Nonstandard learning out-
comes are: ability to identify and critically analyze assumptions,
derivation of the Kalman filter using linear algebra only, and
testing hypothesis in practice by performing experiments. Pos-
sible extensions of the project are: using multiple sensors (data
fusion), dealing with unknown sensor dynamics and time-varying
measured quantity (adaptive signal processing), derivation of
confidence bounds (statistical analysis), and application of the
method to different types of sensors.
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DATA-DRIVEN KALMAN SMOOTHER

The interpretation of the Kalman smoother as a method for
computing the projection (dist) of the data on the system

suggests an alternative direct data-driven smoothing method.
Consider a linear time-invariant system B with m inputs

of order n. Given trajectories wd ∈ B|Td and w ∈ B|T of the
system, we aim to solve the smoothing problem

minimize over ŵ ‖w − ŵ‖ subject to ŵ ∈B|T . (S)

((S) is a generalization of (dist) for a general linear time-invariant
system.) In the "data-driven" version of the smoothing problem
(S), B is unknown and is implicitly specified by wd.

Under the generalized persistency of excitation condition

rankHT (wd) = dimB|T = Tm +n, (GPE)

the data-driven representation

B|T = imageHT (wd) (DD-REPR)

holds true, i.e., the finite-horizon behavior B|T of B is fully
specified by the data wd [S3, Theorem 17]. The representation
(DD-REPR) is inspired by the fundamental lemma [S1], which
gives alternative sufficient conditions for (DD-REPR) that are
suitable for input design [S2]. The conditions of the fundamental

lemma require 1) an input/output partitioning of the data, 2) con-
trollability of the data generating system B, and 3) persistency
of excitation of an input component of wd.

Using (DD-REPR), problem (dist) becomes

minimize over ŵ and g ‖w − ŵ‖

subject to ŵ = HT (wd)g .

The solution is then given by the pseudo-inverse:

ŵ = HT (wd)
(
HT (wd)

)†w ,

and involves only the given data wd and w . More generally,
problems involving a mixture of missing and noisy data can be
solved using the data-driven representation (DD-REPR) [S4].
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