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Computing the distance to uncontrollability:

the SISO case

Nicola Guglielmi and Ivan Markovsky

Abstract

In this paper, the problem of computing the distance from a given linear time-invariant system to

the nearest uncontrollable system is posed and solved in the behavioral setting. In the case of a system

with two external variables, the problem is restated as a Sylvester structured distance to singularity

problem. The structured distance to singularity problem is then solved by integrating a system of ordinary

differential equations which describes the gradient associated to the cost functional. An advantage of

the method with respect to other approaches is in its capability to include further constraints. Numerical

simulations also show that the method is more robust to the initial approximation than the Newton-type

methods.

Index Terms

Sylvester matrix, structured pseudospectrum, structured low-rank approximation, ODEs on matrix

manifolds, structured distance to singularity, distance to uncontrollability, behavioral approach.

I. INTRODUCTION

Consider a linear time-invariant system B with a state space representation

B = B(A,B,C,D)

:= {w = (u, y) | σx = Ax+Bu, y = Cx+Du },
(1)
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where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and D ∈ R

p×m are parameters of B; and σ is the shift

operator (in discrete-time) or the derivative operator (in continuous-time)

(σx)(t) = x(t + 1) or σx = dx/dt. (2)

We adopt the behavioral setting [1], i.e., a system is viewed as a set of trajectories (behavior).

For a given system B, the parameters A, B, and C of the state space representation (1) of B
are not unique due to a change of basis x′ = V x of the state space. For any nonsingular n× n

matrix V , B(V AV −1, V B, CV −1, D) is the same model as B(A,B,C,D), i.e.,

B(A,B,C,D) = B(V AV −1, V B, CV −1, D).

In addition, the parameters A, B, and C are not unique due to nonminimality of the state

dimension; for example

B(A,B,C,D) = B




 A A12

A21 A22


 ,


B

0


 ,
(
C 0

)
, D


 , (3)

for any A12 ∈ Rn×∆n, A21 ∈ R∆n×n, and A22 ∈ R∆n×∆n.

A state space representation with parameters A and B is state controllable if and only if the

matrix

C(A,B) :=
(
A AB · · · An−1B

)

is full rank. Note that this classical notion of controllability is a property of the pair of matrices

(A,B) and is not a property of a system B = B(A,B,C,D) due to the nonuniqueness of a

state space representation. The question of whether a given state space representation is state

controllable is a rank test problem for the structured matrix C(A,B). A corresponding quantitative

measure is the distance of C(A,B) to rank deficiency, i.e., the smallest (∆A,∆B), such that

C(Â, B̂) := C(A,B) + C(∆A,∆B)

is rank deficient.

Motivated by the issues of computing the numerical rank of a matrix, C. Paige defined in [2]

the following measure for distance to uncontrollability

dU(A,B) :=minimize over Â, B̂
∥∥∥
(
A B

)
−
(
Â B̂

)∥∥∥
F

subject to (Â, B̂) is uncontrollable.
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This problem falls into a broader category of distance problems [3], such as distance to instability,

distance to positive definiteness, etc. There is a big volume of literature devoted on the problem of

computing the distance to uncontrollability dU(A,B), see, e.g., [4], [5], [6], [7], [8], [9], [10]. The

measure dU(A,B), however, is not invariant of the state space representation because it depends

on the choice of basis. This issue is resolved in the behavioral setting, where controllability is

defined as a property of the system rather then a property of a particular representation.

Definition 1 (Definition V.1 in [11]). A time-invariant dynamical system B is controllable if

for any two trajectories wp, wf ∈ B, there is a ∆t > 0 and a trajectory wc ∈ B, such that

wp(t) = wc(t), for all t < 0, and wf(t) = wf(t), for all t ≥ ∆t.

Checking the controllability property in practice is done by performing a numerical test on

the parameters of a specific representation of the system. For example, a linear time-invariant

system with a kernel representation

B(R) := {w | R0w +R1σw + · · ·+Rℓσ
ℓw = 0 } (4)

is controllable if and only if the polynomial matrix

R(z) := R0 +R1z + · · ·+Rℓz
ℓ (5)

is left prime, i.e., R(z) is full row rank for all z ∈ C.

Theorem 1 (Theorem 5.2.10 in [1]). The system B defined by R(σ) = 0 is controllable if and

only if the rank of the matrix R(z) is the same for all z ∈ C.

In the case of two external variables,

R =
(
q −p

)
,

with p, q ∈ R[z], assuming that det(p) 6= 0 and deg(p) ≥ deg(q), the system B = ker(R(σ)) is

represented by the familiar input/output representation

B = B(p, q) = {w = (u, y) : p(σ)y = q(σ)u }. (6)

In this case, by Theorem 1, B is controllable if and only if p and q have no common factors of

degree one or more.
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Corollary 1 (Corollary 5.2.11 in [1]). Consider the polynomials p(z) and q(z) and let the degree

of p be higher than or equal to the degree of q. The single-input single-output (SISO) system

defined by p(σ)y = q(σ)u is controllable if and only if p and q are co-prime.

Let Lc be the set of uncontrollable linear time-invariant systems (in the sense of Definition 1)

Lc = {B | B is LTI and uncontrollable}

and

dist
(
B(p, q),B(p̂, q̂)

)
:=

∥∥∥∥∥∥


q

p


−


q̂

p̂



∥∥∥∥∥∥
,

where ‖ · ‖ is the Euclidean norm. The notion of distance to uncontrollability considered in the

paper is defined as follows.

Problem 1. Given a controllable system B(p, q), find

dU(B) := min
B̂∈Lc

dist(B, B̂). (7)

We refer to dU(B) as the uncontrollability radius.

Alternative approaches and contributions

Problem (7) is a nonconvex optimization problem and can be approached by global optimiza-

tion, local optimization, and convex relaxation methods. The methods based on global optimiza-

tion, such as the branch and bound method [12], are too expensive for most real-life problems.

In this paper, we consider the local optimization approach [13]. Our main contribution is a new

optimization method based on integration of a system of ordinary differential equations, which

describes the gradient associated to the cost functional. The method is globally convergent to a

locally optimal solution. Simulation results show that it is more robust to the initial approximation

than the Newton-type methods. In addition, we incorporate the additional constraint of exactly

known coefficients of the polynomials p and q into the method.

Alternative methods for solving problem (7) based on local optimization are developed in the

structured low-rank approximation setting [14]. In particular, the method of [15] using kernel

representation of the rank constraint and variable projections as well as the method of [16] using

image representation of the rank constraint and homotopy can be used to compute locally optimal
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solution of problem (7). In all numerical examples shown in Section VI, the proposed method

finds a solution with the same or smaller value of the cost function than the one found by the

method of [15]. In this sense, the proposed method is more robust to poor initial approximation.

Notation

• σ — shift or derivative operator (2)

• L — set of linear time-invariant systems

• Lc/Lc — controllable/uncontrollable LTI systems

• B(A,B,C,D) — state space representation (1)

• B(R) — kernel representation (4)

• B(p, q) — SISO representation (6)

• C(A,B) — controllability matrix

• dr(A) — distance to unstructured rank-r matrices

• dU(A,B) — distance of B(A,B,C,D) to state uncontrollability

• dU
(
B(p, q)

)
— distance of B(p, q) to uncontrollability

• µ(S) — inner spectral radius of S

• ΛS
ε (S) — structured ε-pseudospectrum

• µε(S) — inner ε-pseudospectral radius of S

• Λ(S) — spectrum of S

• Syl(p, q) — Sylvester matrix (9)

• S — set of Sylvester structured matrices

• ‖ · ‖F — Frobenius norm

• Id — identity matrix

• 1 = (1 1 . . . 1)T

• 〈A,B〉 = trace(A∗B) — Frobenius inner product

II. PRELIMINARIES

Consider the polynomials

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0

(8)
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with real coefficients {ai} and {bi} and with m ≤ n. We often set an = 1 (a monic). Also, by

setting bm+1 = · · · = bn = 0, we can consider the case m = n. The polynomials p and q are

coprime if and only if the associated Sylvester matrix of dimension 2n× 2n,

S = Syl(p, q) :=



an an−1 . . . a1 a0 0 . . . 0

0 an an−1 . . . a1 a0 . . . 0
... 0

. . .
. . .

. . .
. . .

. . .
...

0 . . . . . . an an−1 . . . a1 a0

0 bm . . . b1 b0 0 . . . 0

0 0 bm . . . b1 b0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 0 bm . . . b1 b0




(9)

is nonsingular. Then, we have the following result.

Theorem 2. A SISO system defined by p(σ)y = q(σ)u is controllable if and only if the Sylvester

matrix Syl(p, q) given by (9) is nonsingular.

As a consequence problem (7) can be restated as

dU
(
B(p, q)

)
= sup{ ε : (p+ δp, q + δq) is controllable

∀ δp ∈ R
s, δq ∈ R

m+1, such that ‖
(
δpT δqT

)T ‖2 < ε} (10)

where s = n if p+δp is constrained to be monic and s = n+1 otherwise. We mainly consider two

different distances to uncontrollability: one with p monic and one without this constraint. Another

interesting case is when only a few coefficients of the polynomials are subject to perturbations;

for an extension to this case see Section IV-E.

Remark II.1. Generically, the smallest perturbations which make a SISO system uncontrollable,

creates either one real common root or a pair of complex conjugate common roots. It is well-

known that in the first case the co-rank of the associated Sylvester matrix is one, while in the

second case it is two.
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III. STRUCTURED ε-PSEUDOSPECTRUM

The inner spectral radius of a matrix A is defined as

µ(A) = min{|λ| | λ ∈ Λ(A)},

where Λ(A) is the spectrum of A. If µ(A) = 0 then A is singular and therefore rank-deficient.

The basic observation used to calculate the distance to uncontrollability dU
(
B(p, q)

)
is that

(10) is equivalent to the following problem

dU
(
B(p, q)

)
=

1√
n
inf
{
ε : µ (Syl(p, q) + εE) > 0,

for all E ∈ S, ‖E‖F ≤ 1
}
, (11)

where

S = {Syl(p, q) : p ∈ R
n+1, q ∈ R

m+1} ⊂ R
2n×2n (12)

is the set of real Sylvester matrices (see (9)).

Denote by

ΛS
ε (S) = { λ ∈ Λ(S + εE) : E ∈ S, ‖E‖F ≤ 1}.

the structured ε-pseudospectrum (see [17]). Note that S is a smooth linear manifold which

implies that

S + εE ∈ S, if E ∈ S.

Example: Consider the two polynomials of degree 3,

p(z) = z3 + 2z2 + 2z + 1

q(z) = 2z3 + z − 2

where p is constrained to be monic. The corresponding Sylvester matrix is given by

Syl(p, q) =




1 2 2 2 0 0

0 1 2 2 2 0

0 0 1 2 2 2

2 0 1 −2 0 0

0 2 0 1 −2 0

0 0 2 0 1 −2




(13)
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Fig. 1. The approximated structured ε-pseudospectrum for ε = 1

2
for Example (13) is filled with blue; the boundary of the

unstructured ε-pseudospectrum is plotted in black.

The set ΛS
ε (S) for ε = 1

2
is approximated by dense sampling on the set of admissible

perturbations and is plotted in blue in Figure 1. The black curve represents the boundary of the

corresponding unstructured ε-pseudospectrum, which means that arbitrary complex perturbations

of norm bounded by 1
2

are considered.

Next, we define µε(S), the inner ε-pseudospectral radius of S, which is the minimum of the

modulus of the elements of the structured ε-pseudospectrum (the case ε = 0, reduces µε(S) to

the inner spectral radius µ(S)). This gives

µε(S) = min{|λ| : λ ∈ ΛS
ε (S)}. (14)

With this notation we characterize the distance to controllability as

dU
(
B(p, q)

)
=

1√
n
argmin

ε>0
{µε(S) = 0}.

If S is associated to a controllable system, we have that

µε(S) > 0 ⇐⇒ dU
(
B(p, q)

)
> ε.

A. A 2-level methodology

In order to find the distance to uncontrollability we have to solve the equation (w.r.t. ε),

µε(S) = 0. We propose a two-level algorithm: at the first level, for any fixed ε we compute a

(local) minimizer of

min{|λ| : λ ∈ ΛS
ε (S)}, (15)

which we denote by λ(ε) ∈ ∂ΛS
ε (S). If λ(ε) is a global minimizer then |λ(ε)| = µε(S).

The (inner) algorithm we propose finds local optima of problem (15) by determining the

stationary point of a system of ODEs. In general there is no assurance that these are global
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minimizers, although this seems to be the case in all our experiments of small dimension (where

we performed a statistical investigation on a very large number of samples).

At the next level, we consider a continuous branch of minimizers and vary ε by an interpolation

based iteration (outer algorithm) which exploits the knowledge of the exact derivative of λ(ε)

with respect to ε and exhibits superlinear convergence (a similar methodology has been exploited

for different structures, see [18], and also for computing the H∞ norm of a linear dynamical

system [19] and the distance to instability of real matrices, see [20]).

Concerning the outer iteration, we indicate by

λ(ε) = arg min
λ∈ΛS

ε (S)
|λ|

a continuous branch of minimizers (if λ(ε) is not real then also its conjugate is a mimizer and

we conventionally select the one with positive real part). Then we aim to compute

ε⋆ = argmin
ε>0

{λ(ε) = 0}.

For ε in a left neighbourhood of ε⋆ we expect generically one of the following situations:

(i) There is a unique real minimizer λ(ε). This means that there exists a matrix E(ε) ∈ S of unit

norm such that λ(ε) is a real simple eigenvalue of S+εE(ε). This implies that S+ε⋆E(ε⋆)

has co-rank equal to 1 and the two perturbed polynomials associated to S + ε⋆E(ε⋆) have

a common root.

(ii) There is a unique pair of complex conjugate minimizers λ(ε) and λ(ε). This means that

there exists a matrix E(ε) ∈ S of unit norm such that λ(ε), λ(ε) is a pair of complex

conjugate eigenvalues of S + εE(ε). This implies that S + ε⋆E(ε⋆) has co-rank equal to 2

and the two perturbed polynomials associated to S + ε⋆E(ε⋆) have two complex conjugate

common roots.

This means that—contrarily to the case of unstructured perturbations—we expect that

as ε −→ ε⋆ we have to expect a non-defective coalescence of two complex conjugate

eigenvalues in zero.

IV. COMPUTATION OF THE INNER ε-PSEUDOSPECTRAL RADIUS

In order to approximate µε(S), we construct a family of matrices S + εE(t) where E(t) ∈ S
and ‖E(t)‖F = 1 such that limt→∞ E(t) = E∞ and an eigenvalue λ(t) of S + εE∞ is a point

of ΛS
ε (S) with locally minimum modulus.
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We will use the convention that when an eigenvalue of minimum modulus λ(t) is not real,

which means it appears pairwise with λ(t), then we select the eigenvalue with positive imaginary

part.

The derivative Ė(t) is chosen in the direction that gives the maximum possible decrease of

|λ(t)| for the minimum modulus eigenvalue λ(t) of S + εE(t) along the manifold

S1 = S ∩ {E ∈ R
2n×2n : ‖E‖F = 1}. (16)

To fulfill the norm constraint ‖E(t)‖F = 1, we have to impose 〈E, Ė〉 = 0 where 〈A,B〉 =
trace(ATB) denotes the usual Frobenius inner product of the real matrices A and B.

The following result is necessary to the subsequent discussion (for Toeplitz matrices similar

results are discussed in [21] and [22]).

Lemma 1. Let S ⊂ R2n×2n be the manifold of Sylvester matrices of dimension 2n and B ∈
C

2n×2n. The orthogonal projection (with respect to the Frobenius inner product 〈·, ·〉) PS(B) of

B onto S is given by

B⊥ = PS(B) = Syl(α, β) (17)

where

αn−k =
1

n

n∑

l=1

Re (Bl,l+k) , k = k0, . . . , n

βm−k =
1

n

n∑

l=1

Re (Bn+l,n−m+l+k) , k = 0, . . . , m

k0 = 1 if p is constrained to be monic, and k0 = 0 otherwise (and αn = 0).

Proof: We have to find B⊥ ∈ S such that

B⊥ = argmin
S∈S

‖B − S‖F .

The result follows directly from the property that for a complex vector x ∈ Cn,

ν∗ = argmin
ν∈R

‖x− ν1‖F =
1

n

n∑

i=1

Re(xi),

being 1 = (1 1 . . . 1)T.

Being S a manifold of real matrices, Note the obvious property PS(B) = PS (Re(B)).
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A. Steepest descent direction

Our aim is to find an optimal variation Z of E such that ‖E + Z‖F = 1 and the eigenvalue

of smallest modulus |λ| of S + ε(E + Z) is characterized (locally) by the maximal possible

decrease. We follow an approach which extends to structured pseudospectra the ideas developed

in [23], [24], [25] and use of the following standard perturbation result for eigenvalues see, e.g.,

[26, Section II.1.1]. Here and in the following, we denote ˙ = d/dt.

Lemma 2. Consider the differentiable matrix valued function C(t) for t in a neighborhood of

0. Let λ(t) be an eigenvalue of C(t) converging to a simple eigenvalue λ0 of C0 = C(0) as

t → 0. Let y0 and x0 be left and right eigenvectors, respectively, of C0 corresponding to λ0,

that is, (C0 − λ0I)x0 = 0 and y∗0(C0 − λ0I) = 0. Then, y∗0x0 6= 0 and λ(t) is differentiable near

t = 0 with

λ̇(0) =
y∗0Ċ(0)x0

y∗0x0
.

Next observe that for a simple eigenvalue λ(t) = r(t)eiθ(t) (r(t) denotes the modulus and θ(t)

the phase) of the matrix-valued function S + εE(t), with associated left and right eigenvectors

y(t) and x(t) respectively, we have (omitting the dependence on t)

d

dt
|λ|2 = 2Re(λλ̇) = 2Re

(
λ ε

y∗Ėx

y∗x

)

= 2εRe
((λy)∗Ėx

y∗x

)
= 2εrRe

( y∗Ėx

eiθy∗x

)
. (18)

In the sequel of the paper we shall always impose the following scaling to the eigenvectors y

and x,

‖y‖ = ‖x‖ = 1, y∗x = |y∗x|e−iθ (19)

which makes the denominator of (18) real and positive (|y∗x| 6= 0 since λ is assumed to be

simple).

Let λ = reiθ 6= 0 be the eigenvalue of minimum modulus of S+εE. Then the optimal steepest

descent direction for |λ|2 (see (18) and (19)), with Z = Ė ∈ S, is given by:

Z∗ =argmin
Z∈S

Re (y∗Zx)

subject to 〈E,Z〉 = 0 and ‖Z‖F = 1.

(20)

The solution to (20) is given in the following lemma.
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Lemma 3. Let E ∈ S be a 2n×2n real matrix of unit Frobenius norm, and y, x ∈ C
2n be non-

zero complex vectors. Assume that PS (yx
∗) 6= 0. Then the solution of the optimization problem

(20) is given by

νZ∗ = − PS (yx
∗) +

〈
E, PS (yx

∗)
〉
E (21)

where PS(B) is the orthogonal projection of B onto S and ν is the Frobenius norm of the matrix

on the right hand side.

Proof: By the equality

Re (y∗Zx) = 〈Z,Re (yx∗)〉

and the fact that the inner product with a given vector is minimized over a subspace by

orthogonally projecting the vector onto that subspace, the expression in (21) is the orthogonal

projection of the complex matrix yx∗ to the vector subspace S1 ∩ {Z : 〈E,Z〉 = 0}.

The following result assures that the condition PS (yx
∗) 6= 0 considered in Lemma 3 is always

fulfilled in the problem we analyze. In order to distinguish the case where p is unconstrained from

the case where p is constrained to be monic, we introduce the set S∗ which is the submanifold

of Sylvester matrices (9) given by an = 0.

Lemma 4. Let S ∈ S and either E ∈ S or E ∈ S∗ of unit Frobenius norm, and ε > 0. If λ 6= 0

is a simple eigenvalue of S + εE, with left and right eigenvectors y and x scaled according to

(19), then

PS (yx
∗) 6= 0. (22)

Proof: We analyze first the case where p is not constrained to be monic.

Let y and x be the left and right eigenvectors of S + εE associated to λ = reiθ. Assume —

by contradiction — that PS (yx
∗) = 0; this would imply

0 =
〈
PS (yx

∗) , S + εE
〉
=
〈
yx∗, S + εE

〉

=
〈
Re(yx∗), S + εE

〉
. (23)

November 5, 2014 DRAFT



13

Observing that

〈
Re(yx∗), S + εE

〉
= Re

〈
yx∗, S + εE

〉

= Re (y∗ (S + εE)x)

= Re
(
reiθy∗x

)
,

and exploiting the normalization (19), we obtain

〈
Re(yx∗), S + εE

〉
= r|y∗x| > 0 (24)

where positivity follows by the simplicity assumption for λ. This would contradict (23) and

consequently (22) holds true.

Second we consider the case where p is constrained to be monic. If we assume that PS∗ (yx∗) =

0, where the projection PS∗ — which is given by (17) by imposing αn = 0 — is relevant to the

monic case and is used here to distinguish it from PS , we get

PS (yx
∗) =


βI 0

0 0


 (25)

where PS is the usual projection on the manifold S to which belongs S (which now contains

the submanifold S∗ to which belongs E) and

β =
1

n

n∑

i=1

Re (yixi) .

Now, consider the matrix C = S + εE − Id, where Id is the identity matrix, and define the

matrix

S̃ := Id+ γC

which preserves the structure of S and also the eigenvectors x and y associated to the shifted

eigenvalue λ.

First — by (25) — we obtain (recall that an = 1 in (9))

〈
Re(yx∗), S̃

〉
= nβ = Re

(
n∑

i=1

yixi

)

which has modulus smaller than 1.

Second, exploiting
〈
Re(yx∗), S̃

〉
= Re

(
y∗S̃x

)
, we get

〈
Re(yx∗), S̃

〉
= r̃(γ) (26)
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where |r̃(γ)| can be chosen arbitrarily large if |γ| is chosen large enough.

This leads to a contradiction. As a consequence we have that PS∗(yx∗) 6= 0.

B. The associated gradient system

Lemma 3 and formula (18) suggest to consider the following differential equation on the

manifold S1 (see (16)),

Ė =
(
−PS (yx

∗) +
〈
E, PS (yx

∗)
〉
E
)
|λ| (27)

where y(t), x(t) are left and right eigenvectors of unit norm respectively to a simple eigenvalue

λ(t) of S+εE(t), and with y∗x = |y∗x|e−iθ, where ε is fixed. Observe that the multiplication by

|λ| in the right-hand side of (27) assures that E is an equilibrium of the ODE in the occurrence

λ = 0.

We are in the position to prove the monotonic decrease of |λ(t)| along every solution of (27).

Theorem 3. Let E(t) of unit Frobenius norm satisfy the differential equation (27). If λ(t) is a

simple eigenvalue of S + εE(t), then

d

dt
|λ(t)| ≤ 0. (28)

Proof: Note that

Re
(
y∗PS (yx

∗)x
)

= Re
〈
yx∗, PS (yx

∗)
〉

=
〈
PS (yx

∗) , PS (yx
∗)
〉

= ‖PS (yx
∗) ‖2F ,

and (since E ∈ S)

Re (y∗Ex) = 〈E, PS (yx
∗)〉 .

By the Cauchy–Schwarz inequality,

|〈E, PS (yx
∗)〉| ≤ ‖E‖F‖PS (Reyx∗) ‖F

= ‖PS (Reyx∗) ‖F .
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Finally, by (27),

Re(y∗Ėx) =
(
−‖PS (yx

∗) ‖2F

+ 〈E, PS (yx
∗)〉2
)
|λ| ≤ 0, (29)

implying (28) by Lemma 2.

Remark IV.1. If at some t̄ it holds λ(t̄) = 0 then obviously E(t) is a stationary point of the

ODE (27). If λ(t) is real for t < t̄ then we generically expect it is a simple eigenvalue of

S + εE(t̄). However if λ(t) is not real for t < t̄ then we would have that λ(t) and its conjugate

λ(t) coalesce in z = 0 at t = t̄ and we expect generically that λ = 0 is a semi-simple double

eigenvalue.

⋄

Since we are interested to minimize |λ| we address our attention to the stationary points of

(27).

C. Stationary points

Since stationary points of (27) are potential minimizers for the computation of µε(S), we give

the following result for their characterization.

Theorem 4. Assume that λ 6= 0. The following are equivalent on solutions of (27):

(1).
d

dt
|λ| = 0;

(2). Ė = 0;

(3). E is a real multiple of PS (yx
∗).

Proof: The proof follows directly by applying Theorem 3 and Lemma 4.

The following result characterizes the local minimizers.

Theorem 5. Let E∗ ∈ S with ‖E∗‖F = 1. Let λ∗ = reiθ 6= 0 be a simple eigenvalue of S + εE∗

with minimum modulus, with left and right eigenvectors y and x, respectively, both of unit norm

and with the normalization y∗x = |y∗x|e−iθ. Then the following two statements are equivalent:
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(i) Every differentiable path (E(t), λ(t)) (for small t ≥ 0) such that ‖E(t)‖F ≤ 1 and λ(t) is

an eigenvalue of S + εE(t), with E(0) = E∗ and λ(0) = λ∗, has

d

dt
|λ(t)|

∣∣∣
t=0

≥ 0.

(ii) E∗ is a negative multiple of PS (yx
∗).

Proof: Assume that (i) does not hold true. Then there is some path E(t) through E∗ such

that d
dt
|λ(t)|

∣∣
t=0

< 0; thus the minimization property established by Lemma 3 together with

Lemma 2 shows that also the solution path of (27) passing through E∗ is such a path. Hence

E∗ is not a stationary point of (27), and Theorem 4 then yields that E∗ is not a real multiple of

PS (yx
∗). This implies that also (ii) does not hold true.

Vice versa, if E∗ is not a real multiple of PS (yx
∗), then E∗ is not a stationary point of (27),

and Theorems 4 and 3 yield that d
dt
|λ(t)|

∣∣
t=0

< 0 along the solution path of (27). Moreover,

using a similar argument to [24, Theorem 2.2], if

E∗ = γPS (yx
∗) , with γ > 0,

then along the path E(t) = (1− t)E∗, t ∈ [0, 2], we have that

Re(y∗Ė(0)x) = −γ‖PS (yx
∗) ‖2F < 0

and hence, by exploiting Lemma 2, d
dt
|λ(t)|

∣∣
t=0

< 0, which contradicts (i).

As a consequence, if in Theorem 4 λ 6= 0 is locally minimal (in modulus),

E = E∗ = −PS (yx
∗) /‖PS (yx

∗) ‖F

that is the projection onto S of a real matrix of either rank 1 (if λ, x and y are real) or rank 2

(if λ is non real, and consequently also y and x).

D. The system of ODEs

We can write (27) in a compact form for the coefficients {δai} and {δbi} of E,

E = Syl(δa, δb) (30)

that is

δ̇ak = (αk − η δak) |λ|, k = k0, . . . , n

δ̇bk = (βk − η δbk) |λ|, k = 0, . . . , m,
(31)
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where k0 = 1 if p is constrained to be monic, k0 = 0 otherwise, αk and βk are the elements of

PS (yx
∗) (see (17)) and

η =
〈
E, PS (yx

∗)
〉
.

This means we have to solve a system of (m+ 1)(n+ 1− k0) ordinary differential equations.

E. A natural extension to constrained systems

Assume that only certain subsets of the coefficients {ai}, {bj} are allowed to be perturbed in

order to find a close-by uncontrollable pair. Then the method has the same structure and only

the projection changes. In fact, if {ai} does not vary for i 6∈ I and the same holds for {bj} for

j 6∈ J , where I ⊆ {0, 1, . . . , n} and J ⊆ {0, 1, . . . , m} are the sets of indeces corresponding

to the coefficients of the polynomials which are allowed to be perturbed, we have simply to

consider in (27) the new projection for B ∈ C2n×2n is PS(I,J )(B) given by (17) with

αn−k =





1

n

n∑

l=1

Re (Bl,l+k) k ∈ I

0 k 6∈ I

βm−k =





1

n

n∑

l=1

Re (Bn+l,n−m+l+k) k ∈ J

0 k 6∈ J .

Note that the proof that the PS(I,J ) (yx
∗) 6= 0 is not obtained as a direct extension of Lemma

4.

The system of ODEs we have to solve is still (31) but now the number of ordinary differential

equations is |I| · |J |.

F. Numerical integration

Given Eℓ ≈ E(tℓ) of unit Frobenius norm, and given yℓ and xℓ left and right eigenvectors

of S + εEℓ associated with its eigenvalue λℓ of minimum modulus (if λℓ is not real we choose

λℓ = rℓe
iθℓ with positive imaginary part), with y∗ℓxℓ = |y∗ℓxℓ|e−iθℓ,

α(ℓ) = {α(ℓ)
k }nk=k0

, β(ℓ) = {β(ℓ)
k }mk=0

November 5, 2014 DRAFT



18

and

δa(ℓ) = {δa(ℓ)k }nk=k0
, δb(ℓ) = {δb(ℓ)k }mk=0,

we determine all numerical approximations (see Algorithm 1) at time tℓ+1 = tℓ+hℓ by applying

a step of the Euler method with step-size hℓ to (27).

In order to control the step size we simply require that the monotonicity property of the exact

flow, that is |λ(tℓ+1)| < |λ(tℓ)| is preserved by the numerical solution |λℓ+1| < |λℓ|. Since we

are only interested in stationary points we can neglect the classical error control estimate on the

solution, that is we do not estimate ‖E(tℓ+1)− Eℓ+1‖.

V. A SUPERLINEARLY CONVERGENT OUTER ITERATION FOR APPROXIMATING dU
(
B(p, q)

)

In this section, we discuss the outer algorithm. In order to compute the distance to uncontrol-

lability we should consider equation µε(S) = 0 and minimize its solution.

As a surrogate of this problem, which is of global optimization, we try to compute a value,

say ε⋆, such that the boundary of the corresponding ε-pseudospectrum, ∂ΛS
ε⋆(S), crosses the

origin.

This would provide an upper bound for the distance; repeating such a search over different

regions of the ε-pseudospectrum would increase the probability of computing the exact distance,

and hence the robustness of the method.

In order to proceed we indicate by

λ(ε) = arg min
λ∈ΛS

ε (S)
|λ|

a branch of (local) minimizers computed by determining the stationary point of the system of

ODEs (27) (or equivalently (31)) which we denote by E(ε). We make the following generic

assumption.

Assumption V.1. Let λ(ε) 6= 0 be a point of locally minimum modulus of ΛS
ε (S) (with ε fixed),

that is an eigenvalue with minimum modulus of the matrix S + εE(ε) (where E(ε) denotes the

corresponding (local) minimizer). Then λ(ε) is simple.

Moreover we assume that E(ε) and λ(ε) are smooth with respect to ε.

⋄
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Algorithm 1: Euler step applied to the ODEs (31) with step-size control

Data: α(ℓ), β(ℓ), λℓ, yℓ, xℓ and h̃ℓ (step size predicted by the previous step).

Result: Eℓ+1, yℓ+1, xℓ+1, λℓ+1 and h̃ℓ+1.

begin

1 Set h = h̃ℓ.

2 Compute Zℓ = PS (yℓx
∗
ℓ) := S

(
δa(ℓ), δb(ℓ)

)
and ηℓ = 〈Eℓ, Zℓ〉.

3 Compute

α
(ℓ+1)
k = (1 + h)α

(ℓ)
k − h ηℓ δa

(ℓ)
k , k = k0, . . . , n

β
(ℓ+1)
k = (1 + h) β

(ℓ)
k − h ηℓ δb

(ℓ)
k , k = 0, . . . , m.

4 Compute σℓ+1 = n ·
√

n∑
k=k0

(
α
(ℓ+1)
k

)2
+

m∑
k=0

(
β
(ℓ+1)
k

)2
.

5 Normalize as

α
(ℓ+1)
k = α

(ℓ+1)
k /σℓ+1, β

(ℓ+1)
k = β

(ℓ+1)
k /σℓ+1.

6 Set Eℓ+1 = S
(
α(ℓ+1), β(ℓ+1)

)
.

7 Compute the eigenvalue of minimum modulus λ̂ of S + εEℓ+1, and the left and right

eigenvectors ŷ, x̂.

8 if |λ̂| ≥ |λℓ| then

reject the step, reduce the step size as h := h/γ and repeat from 3;

else

accept the step: set hℓ+1 = h, λℓ+1 = λ̂, yℓ+1 = ŷ and xℓ+1 = x̂.

9 if hℓ+1 = h̃ℓ then

increase the step-size as h̃ℓ+1 := γh̃ℓ;

else

set h̃ℓ+1 = h̃ℓ.

10 Proceed to next step
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Since λ(ε) can be computed by the inner algorithm, we may think to approach from the left-

side the value ε⋆ such that λ(ε⋆) = 0, by following a branch λ(ε) 6= 0 such that lim
εրε⋆

λ(ε) = 0.

Assumption V.1 states that the eigenvalue λ(ε) of minimum modulus of S+εE(ε) is a smooth

function of ε in a left neighbourhood of ε⋆.

This property is exploited by the following result, which provides us an explicit and easily

computable expression for the derivative of |λ(ε)| (and thus also µε(S)) w.r.t. ε.

Theorem 6. Assume the following:

1) ε ∈ (0, ε⋆) such that µε(S) > 0,

2) λ(ε) be a branch of points of (locally) minimum modulus of ΛS
ε (S),

3) Assumption V.1 holds, i.e. λ(ε) and E(ε) are smooth w.r.t. ε,

and let y(ε) and x(ε) be corresponding left and right eigenvectors of S + εE(ε) (where E(ε)

is a local minimizer), scaled according to (19), with ‖E(ε)‖F = 1 for all ε. Then

d|λ(ε)|
dε

= − ‖PS (y(ε)x(ε)
∗) ‖F

|y(ε)∗x(ε)| < 0, for all ε.

Proof: Note that

d

dε
|λ(ε)| =

1

2|λ(ε)|
d

dε
|λ(ε)|2

=
1

|λ(ε)|Re

(
λ(ε)

d

dε
λ(ε)

)
. (32)

Now use the derivative formula

d

dε
λ(ε) =

y(ε)∗(E(ε) + εE ′(ε))x(ε)

y(ε)∗x(ε)
,

where ′ = d/dε. Formula (32) yields

d

dε
|λ(ε)| = 1

|λ(ε)|Re

(
λ(ε)

y(ε)∗(E(ε) + εE ′(ε))x(ε)

y(ε)∗x(ε)

)

=
1

|λ(ε)|Re

(
y(ε)∗(E(ε) + εE ′(ε))x(ε)

|y(ε)∗x(ε)|e−iθ(ε)
|λ(ε)|e−iθ(ε)

)

= Re

(〈y(ε)x(ε)∗, E(ε) + εE ′(ε)〉
|y(ε)∗x(ε)|

)
.

The main point is to prove that

Re (y(ε)∗E ′(ε)x(ε)) = 0. (33)
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The minimality property of the modulus of the eigenvalue λ(ε) of S+εE(ε) yields Re (y(ε)∗E ′(ε)x(ε)) ≥
0. Now suppose that for some ε0, this inequality would actually be a strict inequality. Consider

Ẽ(ε) of unit norm such that Ẽ(ε0) = E(ε0) and Ẽ ′(ε0) = −E ′(ε0). Then, for all ε sufficiently

close to ε0, we would have that the corresponding eigenvalue λ̃(ε) of S + εẼ(ε) satisfies

|λ̃(ε)| < |λ(ε)|. This, however, contradicts the extremality of E(ε) and hence (33) holds true.

Finally note that

Re

(〈y(ε)x(ε)∗, E(ε)〉
|y(ε)∗x(ε)|

)
= − ‖PS (y(ε)x(ε)

∗) ‖F
|y(ε)∗x(ε)|

which concludes the proof.

A. The numerical method

As a consequence the function ε → |λ(ε)| is smooth for ε < ε⋆ (where |λ(ε)| > 0); applying

a Newton’s iterate yields, for εk < ε⋆:

εk+1 = εk −
(‖PS (y(εk)x(εk)

∗) ‖F
|y(εk)∗x(εk)|

)−1

|λ(εk)| (34)

where λ(εk) is the rightmost eigenvalue of S + εkE(εk), E(εk) being the minimizer computed

by the inner method, which integrates numerically the ODE (27). Likely the value εk+1 will be

closer to ε⋆ than εk but might lie on the right of ε⋆, where the function |λ(ε)| is identically zero;

hence it needs a correction to provide a lower bound to ε⋆. This would certainly occur when the

function λ(ε) is concave for ε < ε⋆ (as in the example illustrated in the following Figure 5).

An alternative, which allows to obtain a sequence of lower bounds which is more rapidly

convergent to ε⋆, is that of interpolating pairs (εk−1, |λ(εk−1)|), (εk, |λ(εk)|) for values εk−1, εk <

ε⋆, implying |λ(εk−1)|, |λ(εk)| > tol, tol being a suitable tolerance. Setting dk(ε) the cubic

Hermite polynomial, such that

dk(εℓ) = |λ(εℓ)|, ℓ = k − 1, k

d′k(εℓ) =
‖PS (y(εℓ)x(εℓ)

∗) ‖F
|y(εℓ)∗x(εℓ)|

, ℓ = k − 1, k
(35)

we define ε̂k+1 as the solution of dk(ε) = 0. Then, if |λ (ε̂k+1) | > tol we set εk+1 = ε̂k+1,

otherwise a bisection technique defines εk+1.
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Algorithm 2: Basic algorithm for computing ε⋆

Data: tol > 0 and ε0, ε1, εu (such that |λ(ε0)| > |λ(ε1)| > tol, and |λ(εu)| < tol).

Result: εf (approximation of ε⋆).

begin

1 Set Reject = False and k = 1.

2 while |εk − εu| ≥ tol do

3 if Reject = False. then

Store εk and λ(εk) into the memory.

4 Compute the polynomial dk(ε) (see (35)).

5 Compute ε̃k+1 the real root of dk(ε) closest to εk.

6 if ε̃k+1 > εu then

Set ε̃k+1 = (εu + εk)/2.

else

Set ε̃k+1 = (εu + εk)/2.

7 Compute λ(ε̃k+1) by integrating (31) (equivalently (27)) with initial datum E(εk)

(i.e., the previously computed minimizer).

8 if |λ(ε̃k+1)| < tol then

Set Reject = True.

Set εu = ε̃k+1.

else

Set Reject = False.

9 Set εk+1 = ε̃k+1.

10 Order the array {εj}k+1
j=0 in ascending order, εj+1 > εj .

11 Set k = k + 1.

12 Set εf = εk.
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B. Approximation of ε⋆

We present now the algorithm for approximating ε⋆.

We make use of an upper bound εu which is located in the region where the function

λ(ε) is identically zero and construct a sequence {εk} in the region where |λ(εk)| is strictly

monotonically decreasing, by successively finding zeros of the polynomials dk(ε), k = 1, 2, . . .

A natural upper bound is εu =
√
n‖p − q‖F , a lower bound ε0 = σmin (Syl(p, q)), where

σmin(·) indicates the smallest singular value, i.e. the unconstrained distance to singularity of the

Sylvester matrix Syl(p, q).

VI. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the performance of the proposed method on synthetic and real-

life examples. Section VI-A illustrates the case when a simple eigenvalue vanishes. Section

VI-B illustrates the case when a complex conjugated pair of eigenvalues coalescence at z = 0.

Finally Section VI-C presents an application of the method on a real-life example of a weakly

controllable mechanical system.

In all examples we made intense sampling of the parameter space in order to accurately

approximate the structured ε-pseudospectrum so that we can state that what we compute is indeed

the distance and not only an upper-bound. Hence the figures illustrate the effective behavior of

µε(S) as a function of ε and the first intersection to the horizontal axis provides the value ε⋆

which determines the distance dU(B(p, q)).

A. The real case: a simple eigenvalue vanishes

In the case where a real eigenvalue determines µε(S) for ε → ε⋆ we expect generically that

S + ε⋆E has a simple zero eigenvalue and hence has rank 2n − 1. This is illustrated by the

following examples.

1) Example: Consider the polynomials (8) of degree 5 with coefficients

a5 = 1 a4 = 0 a3 = 1 a2 = 0 a1 = 2 a0 = 1

b5 = −2 b4 = 1 b3 = 1 b2 = −1 b1 = 0 b0 = 1.

Note that the p polynomial is monic. This property will be preserved in the approximation p̂.
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Fig. 2. The function ε → µε(S) for Example VI-A1.

The computed matrix S + ε⋆E(ε⋆) has rank-2n − 1 due to a simple zero eigenvalue. The

perturbed polynomials’ p̂ = p+ δp, q̂ = q + δq coefficients are shown (with five digit accuracy)

in Table I. The common zero of p̂, q̂ is

TABLE I

COEFFICIENTS OF THE PERTURBED POLYNOMIALS p̂ = p+ δp, q̂ = q + δq IN THE EXAMPLE OF VI-A1.

â5 = 1 â4 = 0.0144 â3 = 0.9729 â2 = 0.0510 â1 = 1.9039 â0 = 1.1811

b̂5 = −1.9778 b̂4 = 0.9583 b̂3 = 1.0787 b̂2 = −1.1483 b̂1 = 0.2795 b̂0 = 0.4732

z1 = −0.530278660.

The value ε⋆ and the estimated distance to uncontrollability are

ε⋆ = 1.468981057767730

dU
(
B(p, q)

)
= 0.656948300565638

The function ε 7→ µε(S) is shown in Figure 2.

2) Example: Consider again Example VI-A1 but now assume that the only coefficients that

can be perturbed are a0, a2, a4 and b0, b2 and b4; this corresponds to setting I = {0, 2, 4} and

J = {0, 2, 4} in the projection PS(I,J ) considered in Section IV-E.

The computed matrix S+ε⋆E(ε⋆) turns out to have rank-2n−1 due to a simple zero eigenvalue.

The coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q+ δq are given in Table II. Their
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TABLE II

COEFFICIENTS OF THE PERTURBED POLYNOMIALS p̂ = p+ δp, q̂ = q + δq IN THE EXAMPLE OF VI-A2.

â5 = 0.9175 â4 = 0 â3 = 0.7629 â2 = 0 â1 = 1.3186 â0 = 1

b̂5 = −1.8715 b̂4 = 1 b̂3 = 1.3691 b̂2 = −1 b̂1 = 1.0607 b̂0 = 1

common zero is

z = −0.5899110938.

The value ε⋆ and the estimated distance to uncontrollability are

ε⋆ = 3.004405111510952

dU
(
B(p, q)

)
= 1.343610812257265.

3) Example: We consider the two polynomials of degree 9 with coefficients given in Table

III. First, we consider the case where p̂ is constrained to be monic.

TABLE III

COEFFICIENTS OF THE POLYNOMIALS p AND q IN THE EXAMPLE OF VI-A3.

a9 = 1 a8 = 0 a7 = 1 a6 = 0 a5 = 2 a4 = 1 a3 = 2 a2 = 1 a1 = 2 a0 = 0

b9 = 0 b8 = 0 b7 = 1 b6 = 0 b5 = 1 b4 = 4 b3 = 1 b2 = 0 b1 = 1 b0 = −1.

The computed matrix S + ε⋆E(ε⋆) has rank-2n − 1 due to a simple zero eigenvalue. The

coefficients of the perturbed polynomials p̂ = p + δp, q̂ = q + δq are given in Table IV. They

TABLE IV

COEFFICIENTS OF THE PERTURBED POLYNOMIALS p̂ AND q̂ IN THE EXAMPLE OF VI-A3.

â9 = 1 â8 = 0.0000 â7 = 1.0000 â6 = 0.0000 â5 = 1.9999

â4 = 0.9995 â3 = 1.9971 â2 = 0.9850 â1 = 1.9209 â0 = −0.4163

b̂9 = 0.0000 b̂8 = 0.0000 b̂7 = 1.0000 b̂6 = 0.0000 b̂5 = 1.0002

b̂4 = 4.0010 b̂3 = 1.0053 b̂2 = 0.0278 b̂1 = 1.1461 b̂0 = −0.2313

are not anymore coprime; their common zero equals to

z1 = 0.0001901146.
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The value ε⋆ and the estimated distance to uncontrollability are

ε⋆ = 2.671323516044883

dU
(
B(p, q)

)
= 0.890441086796000.

B. The complex case: coalescence of two eigenvalues in z = 0

We consider here the case of coalescence of two complex conjugate eigenvalues in zero. As we

expect the coalescence gives rise to a semi-simple double eigenvalue that determines a Sylvester

matrix of co-rank equal to two, i.e. dimker (S + ε⋆E(ε⋆)) = 2.

1) Example: We consider the two polynomials of degree 3 with coefficients

a3 = 1 a2 = 2 a1 = 2 a0 = 2

b3 = 2 b2 = 0 b1 = 1 b0 = −2

where p is constrained to be monic.
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Fig. 3. The function ε → µε(S) for Example VI-B1.

The perturbed polynomials p̂ = p+ δp, q̂ = q + δq have coefficients

â3 = 1 â2 = 2.1680 â1 = 2.2569 â0 = 1.6991

b̂3 = 1.9637 b̂2 = −0.1619 b̂1 = 1.1315 b̂0 = −1.9469.

They are not anymore coprime; in fact they both have the common zeros equal to

z1,2 = −0.373421293± 1.0276668040i.
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The value ε⋆ and the estimated distance to uncontrollability are

ε⋆ = 0.835047606282059

dU
(
B(p, q)

)
= 0.482114960273099.

Fig. 4. Approximated structured ε-pseudospectrum for ε = ε⋆ for Example VI-B1. The origin lies on the boundary of ΛS
ε (S)

Figure 4 illustrates that the structured ε-pseudospectrum has the origin on its boundary, which

implies that the compute value ε⋆ truly determines the distance to uncontrollability dU(B(p, q)).
The computed matrix S + ε⋆E(ε⋆) turns out to have rank-2n− 2. Its generalized null space

decomposition (the generalized null space decomposition has been computed by the recent

method presented in [27]) is

S + ε⋆E(ε⋆) = Syl(p̂, q̂) = V Z V −1 (36)

with Z and V given in Table V. This implies that the perturbed polynomials p̂ = p + δp,

q̂ = q + δq have a common pair of complex conjugate roots.

2) Example: Consider again Example VI-B1. However, now we assume that the only coef-

ficients that can be perturbed are a1, a2, b0 and b2; this corresponds to setting I = {1, 2} and

J = {0, 2} in the projection PS(I,J ) considered in Section IV-E.

We obtain the perturbed polynomials p̂ = p+ δp, q̂ = q + δq with coefficients

â3 = 1 â2 = 2.4826 â1 = 2.4336 â0 = 2

b̂3 = 2 b̂2 = −0.2763 b̂1 = 1 b̂0 = −2.0081
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TABLE V

THE Z AND V MATRICES IN (36).

Z =



























0 0 −0.6805 −2.9805 0.4357 0.6448

0 0 1.9959 −0.6704 −0.9545 −1.1616

0 0 0.0518 2.4565 3.2313 2.4130

0 0 1.2700 −0.7316 2.5831 1.7297

0 0 0.3544 1.4105 −0.7703 2.5334

0 0 1.4969 0.7212 1.8223 −1.3906



























, V =



























−0.4206 0.4970 0.7590 0 0 0

−0.3831 −0.5799 0.1674 0.6993 0 0

0.5911 −0.0534 0.3625 0.1927 0.6922 0

−0.0489 0.5184 −0.3665 0.4909 0.1370 0.5786

−0.4639 −0.2792 −0.0743 −0.4679 0.5438 0.4321

0.3307 −0.2592 0.3530 −0.1183 −0.4543 0.6917



























having common zeros equal to

z1,2 = −0.3688968610± 1.0050720997i.

Naturally the distance to uncontrollability, which is computed as the solution of an optimization

problem on a submanifold of S is now increased with respect to the previous case. We obtain

ε⋆ = 1.221408473917948

dU
(
B(p, q)

)
= 0.705180511207017

Interestingly, in this case, the code described in [28] fails to compute an approximation of

dU
(
B(p, q)

)
.

3) Example: We consider the two polynomials of degree 9 with coefficients given in Table

VI. p is constrained to be monic.

TABLE VI

COEFFICIENTS OF THE POLYNOMIALS p AND q IN THE EXAMPLE OF VI-B3.

a9 = 1 a8 = 0 a7 = 1 a6 = 1 a5 = 0 a4 = 0 a3 = 1 a2 = 2 a1 = 1 a0 = 2

b9 = 0 b8 = 0 b7 = −1 b6 = 1 b5 = −1 b4 = 1 b3 = 1 b2 = 0 b1 = 2 b0 = 0
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Fig. 5. The function ε → µε(S) for Example VI-B3. It appears that the left derivative of µε(S) does not vanish at the (local)

minimizer ε = ε⋆ = 0.91 . . . such that µε(S) = 0

The computed matrix S+ ε⋆E(ε⋆) turns out to have rank-2n− 2 due to a semi-simple double

zero eigenvalue.

This gives the perturbed polynomials p̂ = p+ δp, q̂ = q + δq with coefficients given in Table

VII, having a common pair of complex conjugate roots. The common zeros of p̂ and q̂ equals

TABLE VII

COEFFICIENTS OF THE PERTURBED POLYNOMIALS p̂ AND q̂ IN THE EXAMPLE OF VI-B3.

â9 = 1 â8 = −0.0166 â7 = 0.9775 â6 = 1.0007 â5 = 0.0131

â4 = 0.0048 â3 = 0.9943 â2 = 1.9951 â1 = 1.0013 â0 = 2.0033

b̂9 = −0.1182 b̂8 = 0.1949 b̂7 = −0.8561 b̂6 = 0.9449 b̂5 = −1.1039

b̂4 = 0.9908 b̂3 = 1.0558 b̂2 = 0.0271 b̂1 = 1.9787 b̂0 = −0.0239

z1,2 = 0.338366068607± 1.27830048225i.

The value ε⋆ and the estimated distance to uncontrollability are

ε⋆ = 0.912373286589228

dU
(
B(p, q)

)
= 0.304124428863076.

C. A real-life example

In this section, we apply the proposed method on the model-reduction benchmark of [29,

Section 5.1] — a mechanical system consisting of N point masses connected in a chain by ideal
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springs and ideal dampers. The input is the force applied on the first mass and the output is

the position of the N th mass. For fixed values of the other parameters, the longer the chain

of masses is, i.e., the bigger N is, the ”more difficult” to control the system is. This physical

intuition is verified by computing the distance to uncontrollability for increasing values of N ,

see Figure 6.

2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

N

d
U

( B
(p
,q
))

Fig. 6. Distance to uncontrollability as a function of the number of masses N .

VII. DISCUSSION AND OUTLOOK

We defined the distance to uncontrollability dU(B) for a linear time-invariant system B
with two external variables in the behavioral setting. The main advantage of the “behavioral”

formulation over the classical one dU(A,B), where A and B are state space parameters of the

system, is that dU(B) is invariant of the model representation while dU(A,B) is not. Using the

input output representation B(p, q) of the system B, the problem of computing dU(B(p, q)) is

equivalently expressed as a computation of an approximate common divisor of the polynomials

p and q.

We presented a local optimization method for computing dU(B(p, q)) based on integration of

a system of ordinary differential equations, which describes the gradient associated to the cost

functional. The method allows specification of exactly known coefficients of the polynomials

p and q. The presented numerical examples show the robustness of the method to the initial

approximation.

The generalization of the results presented in the paper to the multi-input multi-output (MIMO)

case, i.e., considering the distance to uncontrollability problem (7) for the class of multivariable
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linear time-invariant dynamical system, is a topic of future research. According to Theorem 1,

the (exact) controllability property can be checked in the MIMO case by testing the left primness

property of the polynomial matrix R(z) (see (5)). This can be done by polynomial algebraic

methods, see [30, Chapter 6]. The problem of computing the distance of R(z) to the set of left

prime matrices, however, is an open problem.

Another interesting modification of the problem considered in the paper is to replace the

distance measure
∥∥ [ qp ]−

[
q̂
p̂

] ∥∥ with ∠(B, B̂), where ∠ is the gap metric [31].
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