
i

i

i

i

Exact and Approximate Modeling
of Linear Systems:

A Behavioral Approach

1

1 2
2
3
3 4

4
5

5

66

7
7

88

9
9

1010

Ivan Markovsky Jan C. Willems

Sabine Van Huffel Bart De Moor

Leuven, December 29, 2005

i

i

i

i

i

i

i

i

Preface

The behavioral approach, put forward in the three part paperby J. C. Willems [Wil87],
includes a rigorous framework for deriving mathematical models, a field called system
identification. By the mid 80’s there was a well developed stochastic theory for linear
time-invariant system identification—the prediction errorapproach of L. Ljung—which has
numerous “success stories”. Nevertheless, the rationale for using the stochastic framework,
the question of what is meant by an optimal (approximate) model, and even more basically
what is meant by a mathematical model remained to some extentunclear.

A synergy of the classical stochastic framework (linear system driven by white noise)
and a key result of [Wil87] that shows how a state sequence of the system can be obtained di-
rectly from observed data led to the very successful subspace identification methods [VD96].
Now the subspace methods together with the prediction errormethods are the classical ap-
proaches for system identification.

Another follow-up of [Wil87] is the global total least squares approach due to Roorda
and Heij. In a remarkable paper [RH95], Roorda and Heij address an approximate iden-
tification problem truly in the behavioral framework, i.e.,in a representation free setting.
Their results lead to practical algorithms that are similarin structure to the prediction error
methods: double minimization problems, of which the inner minimization is a smoothing
problem and the outer minimization is a nonlinear least squares problem. Unfortunately,
the global total least squares method has gained little attention in the system identification
community and the algorithms of [RH95, Roo95] did not find their way to robust numerical
implementation and consequently to practical applications.

The aim of this book is to present and popularize the behavioral approach to mathe-
matical modeling among theoreticians and practitioners. The framework we adopt applies
to static as well as dynamic and to linear as well as nonlinearproblems. In the linear static
case, the approximate modeling problem considered specializes to the total least squares
method, which is classically viewed as a generalization of the least squares method to fitting
problemsAx ≈ b, in which there are errors in both the vectorb and the matrixA. In the
quadratic static case, the behavioral approach leads to theorthogonal regression method for
fitting data to ellipses. In the first part of the book we examine static approximation prob-
lems: weighted and structured total least squares problemsand estimation of bilinear and
quadratic models, and in the second part of the book we examine dynamic approximation
problems: exact and approximate system identification. Theexact identification problem
falls in the field of subspace identification and the approximate identification problem is the
global total least squares problem of Roorda and Heij.

i

i

i

i

i

ii Preface

Most of the problems in the book are presented in a deterministic setting, although
one can give a stochastic interpretation to the methods derived. The appropriate stochastic
model for this aim is the errors-in-variables model, where all observed variables are assumed
inexact due to measurement errors added on “true data” generated by a “true model”. The
assumption of the existence of a true model and the additional stochastic ones about the
measurement errors, however, are rarely verifiable in practice.

Except for the chapters on estimation of bilinear and quadratic models, we consider
total least squares-type problems. The unifying frameworkfor approximate modeling put
forward in the book is calledmisfit approach. In philosophy it differs essentially from the
classical approach, calledlatency approach, where the model is augmented with unobserved
latent variables. A topic of current research is to clarify how the misfit and latency approaches
compare and complement each other.

We do not treat in the book advanced topics like statistical and numerical robustness
of the methods and algorithms. On the one hand, these topics are currently less developed
in the misfit setting than in the latency setting and, on the another hand, they go beyond
the scope of a short monograph. Our hope is that robustness aswell as recursivity, further
applications, and connections with other methods will be explored and presented elsewhere
in the literature.

The prerequisites for reading the book are modest. We assumean undergraduate
level linear algebra and systems theory knowledge. Familiarity with system identification
is helpful but is not necessary. Sections with more specialized or technical material are
marked with∗. They can be skipped without loss of continuity on a first reading.

This book is accompanied by a software implementation of thedescribed algorithms.
The software is callable from MATLAB and most of it is writtenin MATLAB ® code. This
allows readers who have access to and knowledge of MATLAB to try out the examples,
modify the simulation setting, and apply the methods on their own data.

The book is based on the first author’s Ph.D. thesis at the Department of Electrical
Engineering of the Katholieke Universiteit Leuven, Belgium. This work would be impos-
sible without the help of sponsoring organizations and individuals. We acknowledge the
financial support received from the Research Council of K.U.Leuven and the Belgian Pro-
gramme on Interuniversity Attraction Poles, projects IUAPIV–02 (1996–2001) and IUAP
V–22 (2002–2006). The work presented in the first part of the book is done in collaboration
with Alexander Kukush from the National Taras Shevchenko University, Kiev, Ukraine, and
the work presented in the second part is done in collaboration with Paolo Rapisarda from
the University of Maastricht, The Netherlands. We would like to thank Diana Sima and Rik
Pintelon for useful discussions and proofreading the drafts of the manuscript.

Ivan Markovsky
Jan C. Willems

Sabine Van Huffel
Bart De Moor

Leuven, Belgium
December 29, 2005

i

i

i

i

Contents

Preface i

1 Introduction 1
1.1 Latency and misfit . 1
1.2 Data fitting examples . 2
1.3 Classical vs. behavioral and stochastic vs. deterministic modeling 9
1.4 Chapter-by-chapter overview∗ . 10

2 Approximate Modeling via Misfit Minimization 15
2.1 Data, model, model class, and exact modeling 15
2.2 Misfit and approximate modeling .. 17
2.3 Model representation and parameterization 18
2.4 Linear static models and total least squares 19
2.5 Nonlinear static models and ellipsoid fitting 21
2.6 Dynamic models and global total least squares 23
2.7 Structured total least squares 24
2.8 Algorithms . 25

I Static Problems 27

3 Weighted Total Least Squares 29
3.1 Introduction . 29
3.2 Kernel, image, and input/output representations 33
3.3 Special cases with closed form solutions 35
3.4 Misfit computation . 38
3.5 Misfit minimization∗ . 40
3.6 Simulation examples . 46
3.7 Conclusions . 47

4 Structured Total Least Squares 49
4.1 Overview of the literature .. 49
4.2 The structured total least squares problem 51
4.3 Properties of the weight matrix∗ . 54
4.4 Stochastic interpretation∗ . 58
4.5 Efficient cost function and first derivative evaluation∗ 60

iii

i

i

i

i

iv Contents

4.6 Simulation examples . 64
4.7 Conclusions . 68

5 Bilinear Errors-in-Variables Model 71
5.1 Introduction . 71
5.2 Adjusted least squares estimation of a bilinear model 72
5.3 Properties of the adjusted least squares estimator 75
5.4 Simulation examples . 76
5.5 Fundamental matrix estimation .. . 78
5.6 Adjusted least squares estimation of the fundamental matrix 80
5.7 Properties of the fundamental matrix estimator∗ 81
5.8 Simulation examples . 82
5.9 Conclusions . 84

6 Ellipsoid Fitting 85
6.1 Introduction . 85
6.2 Quadratic errors-in-variables model 87
6.3 Ordinary least squares estimation 88
6.4 Adjusted least squares estimation 90
6.5 Ellipsoid estimation .93
6.6 Algorithm for adjusted least squares estimation∗ 94
6.7 Simulation examples . 96
6.8 Conclusions . 98

II Dynamic Problems 99

7 Introduction to Dynamical Models 101
7.1 Linear time-invariant systems 101
7.2 Kernel representation .103
7.3 Inputs, outputs, and input/output representation 105
7.4 Latent variables, state variables, and state space representations 106
7.5 Autonomous and controllable systems 108
7.6 Representations for controllable systems 108
7.7 Representation theorem .110
7.8 Parameterization of a trajectory 111
7.9 Complexity of a linear time-invariant system 113
7.10 The module of annihilators of the behavior∗ 113

8 Exact Identification 115
8.1 Introduction . 115
8.2 The most powerful unfalsified model 117
8.3 Identifiability . 119
8.4 Conditions for identifiability 120
8.5 Algorithms for exact identification 122
8.6 Computation of the impulse response from data 126
8.7 Realization theory and algorithms 130
8.8 Computation of free responses .. 132

i

i

i

i

Contents v

8.9 Relation to subspace identification methods∗ 133
8.10 Simulation examples . 136
8.11 Conclusions . 139

9 Balanced Model Identification 141
9.1 Introduction . 141
9.2 Algorithm for balanced identification 144
9.3 Alternative algorithms .145
9.4 Splitting of the data into “past” and “future”∗ 146
9.5 Simulation examples . 147
9.6 Conclusions . 149

10 Errors-in-Variables Smoothing and Filtering 151
10.1 Introduction . 151
10.2 Problem formulation . 152
10.3 Solution of the smoothing problem 153
10.4 Solution of the filtering problem 155
10.5 Simulation examples . 157
10.6 Conclusions . 158

11 Approximate System Identification 159
11.1 Approximate modeling problems .. . 159
11.2 Approximate identification by structured total least squares 162
11.3 Modifications of the basic problem 165
11.4 Special problems . 167
11.5 Performance on real-life data sets 171
11.6 Conclusions . 174

12 Conclusions 177

A Proofs 179
A.1 Weighted total least squares cost function gradient 179
A.2 Structured total least squares cost function gradient 180
A.3 Fundamental lemma . 181
A.4 Recursive errors-in-variables smoothing 182

B Software 185
B.1 Weighted total least squares .. . 185
B.2 Structured total least sqaures 188
B.3 Balanced model identification .. 192
B.4 Approximate identification .. 192

Bibliography 199

Index 205

i

i

i

i

i

i

i

i

Chapter 1

Introduction

The topic of this book is fitting models to data. We would like the model to fit the data
exactly; however, in practice often the best that can be achieved is only an approximate fit.
A fundamental question in approximate modeling is how to quantify the lack of fit between
the data and the model. In this chapter, we explain and illustrate two different approaches
for answering this question.

The first one, calledlatency, augments the model with additional unobserved variables
that allow the augmented model to fit the data exactly. Many classical approximate mod-
eling techniques such as the least squares and autoregressive moving average exogenous
(ARMAX) system identification methods are latency orientedmethods. The statistical tool
corresponding to the latency approach isregression.

An alternative approach, calledmisfit, resolves the data–model mismatch by correcting
the data, so that it fits the model exactly. The main example ofthe misfit approach is the total
least squares method and the corresponding statistical tool is errors-in-variables regression.

1.1 Latency and Misfit
Classically a model is defined as a set of equations involvingthe data variables, and the lack
of fit between the data and the model is defined as a norm of theequation error, or residual,
obtained when the data is substituted in the equations. Consider, for example, the familiar
linear static model, represented by an overdetermined system of equationsAX ≈ B, where
A, B are given measurements, and the classical least squares (LS) method, which minimizes
the Frobenius norm of the residualE := AX − B, i.e.,

min
E,X

‖E‖F subject to AX = B + E.

The residualE in the LS problem formulation can be viewed as an unobserved,latent
variable that allows us to resolve the data–model mismatch.An approximate model for
the data is obtained by minimizing some norm (e.g., the Frobenius norm) ofE. This cost
function is calledlatency, and equation error based methods are called latency oriented.

A fundamentally different approach is to find the smallest correction on the data that
makes the corrected data compatible with the model (i.e., resulting in a zero equation error).

1

i

i

i

i

2 Chapter 1. Introduction

Then the quantitative measure, calledmisfit, for the lack of fit between the data and the model
is taken to be a norm of the correction. Applied to the linear static model, represented by
the equationAX ≈ B, the misfit approach leads to the classical total least squares (TLS)
method [GV80, VV91]:

min
∆A,∆B,X

∥
∥
[
∆A ∆B

]∥
∥

F
subject to (A + ∆A)X = B + ∆B.

Here∆A, ∆B are corrections on the dataA, B; andX is a model parameter.

The latency approach corrects the model in order to make it match the data. The
misfit approach corrects the data in order to make it match themodel. Both ap-
proaches reduce the approximate modeling problem to exact modeling problems.

When the model fits the data exactly, both the misfit and the latency are zero, but when the
model does not fit the data exactly, in general, the misfit and the latency differ.

Optimal approximate modeling aims to minimize some measureof the data–model
mismatch over all models in a given model class. The latency and the misfit are two
candidate measures for approximate modeling. The classical LS and TLS approximation
methods minimize, respectively, the latency and the misfit for a linear static model class,
represented by the equationAX ≈ B. Similarly, the algebraic and geometric methods for
ellipsoid fitting minimize the latency and the misfit for a quadratic static model class. For
the linear time-invariant (LTI) dynamic model class, the latency and the misfit approaches
lead to, respectively, the ARMAX and errors-in-variables (EIV) identification methods.

In the next section we illustrate via examples the misfit and latency approaches for
data fitting by linear static, quadratic static, and LTI dynamic models.

1.2 Data Fitting Examples
Consider a data setD = { d1, . . . , dN } consisting of2 real variables, denoted byaandb, i.e.,

di =

[
ai

bi

]

=: col(ai, bi) ∈ R
2,

andN = 10 data points. This data is visualized in the plane; see Figure1.1. The order of
the data points is irrelevant for fitting by a static model. For fitting by a dynamic model,
however, the data is viewed as atime series, and therefore the order of the data points is
important.

Line Fitting

First, we consider the problem of fitting the data by a line passing through the origin(0, 0).
This problem is a special case of modeling the data by a linearstatic model. The classical
LS and TLS methods are linear static approximation methods and are applied next to the
line fitting problem in the example.

i

i

i

i

1.2. Data fitting examples 3

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

a

b
(0, 0)

d1

Figure 1.1. The dataD consists of2 variables and10 data points (◦). (•—point(0, 0).)

Least Squares Method

If the data pointsd1, . . . , d10 were on a line, then they would satisfy a linear equation

aix = bi, for i = 1, . . . , 10 and for somex ∈ R.

The unknownx is aparameterof the fitting line (which from the modeling point of view is
the linear static model). In the example, the parameterx has a simple geometric meaning: it
is the tangent of the angle between the fitting line and the horizontal axis. Therefore, exact
fitting of a (nonvertical) line through the data boils down tochoosingx ∈ R.

However, unless the data points were on a line to begin with, exact fit would not be
possible. For example, when the data is obtained from a complicated phenomenon or is
measured with additive noise, an exact fit is not possible. Inpractice most probably both
the complexity of the data generating phenomenon and the measurement errors contribute
to the fact that the data is not exact.

The latency approach introduces an equation errore = col(e1, . . . , e10), so that there
exists a corresponding parameterx̂ ∈ R, satisfying the modified equation

aix̂ = bi + ei, for i = 1, . . . , 10.

For any given data setD and a parameter̂x ∈ R, there is a correspondinge, defined by
the above equation, so that indeed the latency terme allows us to resolve the data–model
discrepancy.

The LS solution̂xls :=
(∑10

i=1 biai

)
/
(∑10

i=1 a2
i

)
minimizes the latency,

latency:= ‖e‖,

over all x ∈ R. The line corresponding to the parameterx̂ls is the optimal fitting line
according to the latency criterion. It is plotted in the leftplot of Figure 1.2.

The LS method can also be given an interpretation of correcting the data in order to
make it match the model. The equation errore can be viewed as a correction on the second

i

i

i

i

4 Chapter 1. Introduction

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

Latency approach

a

b

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

a

b

Misfit approach

Figure 1.2. Optimal fitting lines (—) and data corrections (- - -).

coordinateb. The first coordinatea, however, is not corrected, so that the LS corrected
data is

âls,i := ai and b̂ls,i := bi + ei, for i = 1, . . . , 10.

By construction the corrected data lies on the line given by the parameter̂xls, i.e.,

âls,ix̂ls = b̂ls,i, for i = 1, . . . , 10.

The LS corrections∆dls,i := col(0, ei) are vertical lines in the data space (see the dashed
lines in Figure 1.2, left).

Geometrically, the latency is the sum of the squared vertical distances from the
data points to the fitting line.

Total Least Squares Method

The misfit approach corrects both coordinatesa andb in order to make the corrected data
exact. It seeks corrections∆d1, . . . ,∆d10, such that the corrected data

d̂i := di + ∆di

lies on a line; i.e., withcol(âi, b̂i) := d̂, there is an̂x ∈ R, such that

âix̂ = b̂i, for i = 1, . . . , 10.

For a given parameter̂x ∈ R, let ∆D = {∆d1, . . . ,∆d10 } be the smallest in the Frobe-
nius norm correction of the data that achieves an exact fit. The misfit between the line
corresponding tôx and the data is defined as

misfit :=
∥
∥
[
∆d1 · · · ∆d10

]∥
∥

F
.

i

i

i

i

1.2. Data fitting examples 5

Geometrically, the misfit is the sum of the squared orthogonal distances from the
data points to the fitting line.

The optimal fitting line according to the misfit criterion andthe corresponding data correc-
tions are shown in the right plot of Figure 1.2.

Ellipsoid Fitting

Next, we consider fitting an ellipse to the data. This problemis a special case of modeling
the data by a quadratic static model. We show the latency and misfit optimal fitting ellipses.
The misfit has the geometric interpretation of finding the orthogonal projections of the data
points on the ellipse. The latency, however, has no meaningful geometric interpretation in
the ellipsoid fitting case.

Algebraic Fitting Method

If the data pointsd1, . . . , d10 were on an ellipse, then they would satisfy a quadratic equation

d⊤i Adi + β⊤di + c = 0, for i = 1, . . . , 10 and

for someA ∈ R
2×2, A = A⊤, A > 0, β ∈ R

2, c ∈ R.

The symmetric matrixA, the vectorβ, and the scalarc areparametersof the ellipse (which
from the modeling point of view is the quadratic static model). As in the line fitting example,
generically the data does not lie on an ellipse.

The latency approach leads to what is called thealgebraic fitting method. It looks for
equation errorse1, . . . , e10 and parameterŝA ∈ R

2×2, β̂ ∈ R
2, ĉ ∈ R, such that

d⊤i Âdi + β̂⊤di + ĉ = ei, for i = 1, . . . , 10.

Clearly, for anyÂ ∈ R
2×2, β̂ ∈ R

2, ĉ ∈ R, i.e., for any chosen second order surface (in
particular an ellipse), there is a corresponding equation error e := col(e1, . . . , e10) defined
by the above equation. Therefore, the latency terme again allows us to resolve the data–
model discrepancy. The 2-norm ofe is by definition the latency of the surface corresponding
to the parameterŝA, β̂, ĉ and the data. The left plot of Figure 1.3 shows the latency optimal
ellipse for the data in the example.

Geometric Fitting Method

The misfit approach leads to what is called the geometric fitting method. In this case, the
aim is to find the minimal corrections in a Frobenius norm sense∆d1, . . . ,∆d10, such that
the corrected datâd1, . . . , d̂10 lies on a second order surface; i.e., there existÂ ∈ R

2×2,
β̂ ∈ R

2, ĉ ∈ R, for which

d̂⊤i Âd̂i + β̂⊤d̂i + ĉ = 0, for i = 1, . . . , 10.

For a given ellipse, the Frobenius norm of the smallest data corrections that make the data
exact for that ellipse is by definition the misfit between the ellipse and the data. The norm
of the correction∆di is the orthogonal distance from the data pointdi to the ellipse. The
misfit optimal ellipse is shown in the right plot of Figure 1.3.

i

i

i

i

6 Chapter 1. Introduction

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

Latency approach

a

b

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

a

b

Misfit approach

Figure 1.3. Optimal fitting ellipses (—) and data corrections (- - -) for the misfit approach.
(×—centers of the ellipses.)

Linear Time-Invariant System Identification

Next, we consider fitting the data by a dynamic model. In this case the dataD is viewed
as a vector time series. Figure 1.4 shows the data in the plane(as in the static case) but
with numbers indicating the data point index, viewed now as atime index. The dynamics
is expressed in a motion (see the arrow lines in the figure) starting from data point 1, going
to data point 2, then to data point 3 (for the same period of time), and so on, until the last
data point 10.

The considered model class consists of LTI systems with one input and one time lag.

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

1

2

3

4 5

6

7

8

9

10

a

b

Figure 1.4. The dataD viewed as a time series. The numbers show the data point index,
or, equivalently, the time index. The arrow lines show the dynamics of the model: motion
through the consecutive data points.

i

i

i

i

1.2. Data fitting examples 7

a bLTI system

Figure 1.5. Signal processor interpretation of an LTI system.

Models of this type admit a difference equation representation

R0di + R1di+1 = 0, whereR0, R1 ∈ R
1×2.

The vectorsR0 andR1 are parameters of the model.
Let Ri =:

[
Qi −Pi

]
, i = 1, 2, and suppose thatP1 6= 0. Then the variablea acts

as an input (free variable) and the variableb acts as an output (bound variable). This gives
an input/output separation of the variables

Q0ai + Q1ai+1 = P0bi + P1bi+1

and corresponds to the classical notion of a dynamical system as a signal processor, accepting
inputs and producing outputs; see Figure 1.5.

Autoregressive Moving Average Exogenous and Output Error I dentification

If the dataD were an exact trajectory of an LTI model in the considered model class, then
there would exist vectorsR0, R1 ∈ R

1×2 (parameters of the model) andd11 ∈ R
2 (initial

condition), such that
R0di + R1di+1 = 0, for i = 1, . . . , 10.

However, generically this is not the case, so that an approximation is needed. The latency
approach modifies the model equation by adding an equation error e

R̂0di + R̂1di+1 = ei, for i = 1, . . . , 10.

The residuale can be considered to be an unobserved (latent) variable; seeFigure 1.6.
From this point of view it is natural to further modify the system equation by allowing

for a time lag in the latent variable (as in the other variables)

Q0ai + Q1ai+1 − P0bi − P1bi+1 = M0ei + M1ei+1. (∗)

The real numbersM0 andM1 are additional parameters of the model.
An interesting special case of the latent variable equation(∗), calledoutput error

identificationmodel, is obtained whenM0 = P0 andM1 = P1. Then the latent variablee

e

a
bLTI system

Figure 1.6. LTI system with a latent variablee.

i

i

i

i

8 Chapter 1. Introduction

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

1

1
2
2 3

3 4
4

5
5

66

7
7

88

9

9

10
10

Latency (output error) approach

a

b

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

1

1 2
2
3
3 4

4
5

5

66

7
7

88

9
9

1010

a

b

Misfit approach

Figure 1.7. DataD (—), optimal fitting trajectorŷDoe (- - -), and data corrections (· · ·).

acts like a correction on the output. The input, however, is not corrected, so that the corrected
data by the output error model is

âoe,i := ai, and b̂oe,i := bi + ei, for i = 1, . . . , 10.

By construction the corrected time seriesd̂oe := col(âoe, b̂oe) satisfies the equation

Q0âoe,i + Q1âoe,i+1 = −P0b̂oe,i − P1b̂oe,i+1.

The optimal output error fitting datâDoe := { d̂oe,1, . . . , d̂oe,10 } over the parametersPi,
Qi (i.e., over all models with one input and one time lag) is visualized in the left plot of
Figure 1.7.

Note the similarity between the output error identificationmethod and the classical
LS method. Indeed,

output error identification can be viewed as a “dynamic LS method”.

Errors-in-Variables Identification

The misfit approach leads to what is called the global total least squares method. It is a
generalization of the TLS method for approximate modeling by an LTI dynamic model. In
this case the given time series is modified by the smallest corrections∆d1, . . . ,∆d10, in a
Frobenius norm sense, such that the corrected time seriesd̂i := di + ∆di, i = 1, . . . , 10
is a trajectory of a model in the model class. Therefore, there are parameters of the model
R̂0, R̂1 ∈ R

1×2 and an initial condition̂d11 ∈ R
2, such that

R̂0d̂i + R̂1d̂i+1 = 0, for i = 1, . . . , 10.

The right plot of Figure 1.7 shows the misfit optimal fitting data D̂ .

i

i

i

i

1.3. Classical vs. behavioral and stochastic vs. deterministic modeling 9

1.3 Classical vs. Behavioral and Stochastic vs.
Deterministic Modeling

In what sense can the examples of Section 1.2 be viewed asdata modeling? In other words,
what are themodelsin these examples? In the line fitting case, clearly the modelis a line.
The data is a collection of points inR2 and the model is a subset of the same space. In the
ellipsoid fitting case, the model is an ellipse, which is again a subset of the data spaceR

2.
A line and an ellipse are static models in the sense that they describe the data points without
relations among them. In particular, their order is not important for static modeling.

In the system identification examples, the data setD is viewed as an entity—a finite
vector time series. A dynamical model is again a subset, however, consisting of time series.
The geometric interpretation of the dynamic models is more subtle than the one of the static
models due to the time series structure of the data space. In the static examples of Section 1.2
the data space is 2-dimensional while in the dynamic examples it is 20-dimensional.

The point of view of the model as a subset of the data space is inspired by the
behavioral approach to system theory.

This point of view has a number of important advantages over the classical point of view of
a model as a set of equations. In the behavioral approach an equation is arepresentationof
its solution set (which is the model itself). A model has infinitely many representations, so
that a particular representation is not an intrinsic characteristic of the model.

Consider, for example, a linear static modelB that is a one-dimensional subspace
of R

2. Perhaps the most commonly used way to defineB is via the representation

B = { d := col(a, b) | ax = b }.

However, the same model can be represented as the kernel of a1 × 2 matrixR, i.e.,

B = ker(R) := { d | Rd = 0 },

or as the image of a2 × 1 matrixP , i.e.,

B = col span(P) := { d | there isl, such thatd = Pl }.

Moreover, the parametersR andP of a kernel and an image representation are not unique.
Which particular representation one is going to choose is a matter of convenience. Therefore,
an approximate modeling problem formulation in terms of a particular representation is
unnecessarily restrictive. Note that the representationax = b does not exist for all one-
dimensional subspaces ofR

2. (Consider the vertical linecol span(col(0, 1)).)
Another feature in which the presentation in this book differs from most of the ex-

isting literature on approximate modeling is the use of deterministic instead of stochastic
assumptions and techniques. It is well known that the classical LS method has deterministic
as well as stochastic interpretations. The same duality exists (and is very much part of the
literature) for other modeling methods. For example, the TLS method, introduced by Golub
and Van Loan [GV80] in the numerical linear algebra literature as a tool for approximate
solution of an overdetermined linear system of equations, can be viewed as a consistent
estimator in the linear EIV model, under suitable statistical assumptions.

i

i

i

i

10 Chapter 1. Introduction

One and the same modeling method can be derived and “justified” in deterministic
as well as stochastic setting.

Both approaches are useful and contribute to a deeper understanding of the methods. In
our opinion, however, the stochastic paradigm is overused and sometimes misused. Often
the conceptual simplicity of the deterministic approach isan important advantage (certainly
so from the pedagogical point of view). Unlike the stochastic approach, the deterministic
one makes no unverifiable assumptions about the data generating phenomenon. As a con-
sequence, however, fewer properties can be proven in the deterministic setting than in the
stochastic one.

Most of the problems in the book are posed in the behavioral setting and use the
misfit approach. This new paradigm and related theory are still under development and are
currently far less mature than the classical stochastic latency oriented approach. Our aim is
to popularize and stimulate interest in the presented alternative approaches for approximate
modeling.

1.4 Chapter-by-Chapter Overview ∗

The introduction in Sections 1.1–1.3 is informal. Chapter 2gives an in-depth introduction to
the particular problems considered in the book. The main themes—exact and misfit optimal
approximate modeling—are introduced in Sections 2.1 and 2.2. Then we elaborate on
the model representation issue. An important observation is that the misfit optimal model
is independent of the particular representation chosen, but the latency optimal model in
general depends on the type of representation. In Sections 2.4–2.6 we specify the misfit
approximation problem for the linear static, bilinear and quadratic static, and LTI dynamic
model classes. An approximate modeling problem, called structured total least squares
(STLS), which can treat various static and dynamic linear misfit approximation problems,
is introduced in Section 2.7. Chapter 2 ends with an overviewof the adopted solution
methods.

The book is divided into two parts:

Part I deals with static models and

Part II deals with dynamic models.

Optional sections (like this section) are marked with∗. The material in the optimal sections
is more technical and is not essential for the understandingof what follows.

Chapter 3: Weighted Total Least Squares The weighted total least squares (WTLS)
problem is a misfit based approximate modeling problem for linear static models. The WTLS
misfit is defined as a weighted projection of the dataD on a modelB. The choice of the
weight matrices for the projection is discussed in Section 3.1, where two possibilities are
described. The first one leads to a problem, called relative error total least squares, and the
second one leads to the problem of maximum likelihood estimation in the EIV model.

The kernel, image, and input/output representations of a linear static model are pre-
sented in Section 3.2. We believe that these representations and the links among them are
prerequisites for the proper understanding of all static approximation problems.

i

i

i

i

1.4. Chapter-by-chapter overview∗ 11

In Section 3.3, we solve the TLS and the generalized TLS problems, which are special
cases of the WTLS problem. They are treated separately because a closed form solution in
terms of the singular value decomposition (SVD) exists. Theingredients for the solution
are

1. the equivalence between data consistent with a linear static model and a low-rank
matrix, and

2. the Eckart–Young–Mirsky low-rank approximation lemma,which shows how an op-
timal (in the sense of the Frobenius norm) low-rank approximation of a given matrix
can be computed via SVD.

The solution of the TLS problem is given in terms of the SVD of the data matrix and the
solution of the GTLS problem is given in a similar way in termsof the SVD of a modified
data matrix.

The WTLS problem is a double minimization problem. In Section3.4, we solve
in closed form the inner minimization, which is the misfit computation subproblem. The
results are given in terms of kernel and image representations, which lead to, respectively,
least norm and least squares problems.

In the optional Section 3.5, we consider the remaining subproblem—minimization
with respect to the model parameters. It is a nonconvex optimization problem that in
general has no closed form solution. For this reason, numerical optimization methods are
employed. We present three heuristic algorithms: alternating least squares, an algorithm
due to Premoli and Rastello, and an algorithm based on standard local optimization methods.

Chapter 4: Structured Total Least Squares The STLS problem is a flexible tool that
covers various misfit minimization problems for linear models. We review its origin and
development in Section 4.1. There are numerous (equivalent) formulations that differ in the
representation of the model and the optimization algorithmused for the numerical solution of
the problem. The proposed methods, however, have high computational complexity and/or
assume a special type of structure that limit their applicability in real-life applications. Our
motivation is to overcome as much as possible these limitations and propose a practically
useful solution.

In Section 4.2, we define the considered STLS problem. The data matrix is parti-
tioned into blocks and each of the blocks is block-Toeplitz/Hankel structured, unstructured,
or exact. As shown in Section 4.6, this formulation is general enough to cover many struc-
tured approximation problems and at the same time allows efficient solution methods. Our
solution approach is based on the derivation of a closed formexpression for an equivalent
unconstrained problem, in which a large number of decision variables are eliminated. This
step corresponds to the misfit computation in the misfit approximation problems.

The remaining problem is a nonlinear least squares problem and is solved numerically
via local optimization methods. The cost function and its first derivative evaluation, how-
ever, are performed efficiently by exploiting the structurein the problem. In the optional
Section 4.3, we prove that as a consequence of the structure in the data matrix, the equiv-
alent optimization problem has block-Toeplitz and block-banded structure. In Section 4.4,
a stochastic interpretation of the Toeplitz and banded structure of the equivalent problem is
given.

i

i

i

i

12 Chapter 1. Introduction

A numerical algorithm for solving the STLS problem is described in Section 4.5.
It is implemented in the software package described in Appendix B.2. In Section 4.6, we
show simulation examples that demonstrate the performanceof the proposed STLS solution
method on standard approximation problems. The performance of the STLS package is
compared with that of alternative methods on LS, TLS, mixed LS-TLS, Hankel low-rank
approximation, deconvolution, and system identification problems.

Chapter 5: Bilinear Errors-in-Variables Model In Chapter 5, we consider approxi-
mations by a bilinear model. The presentation is motivated from the statistical point of view
of deriving a consistent estimator for the parameters of thetrue model in the EIV setup. The
misfit approach yields an inconsistent estimator in this case, so that an alternative approach
based on the adjustment of the LS approximation is adapted.

An adjusted least squares (ALS) estimator, which is in principle a latency oriented
method, is derived in Section 5.2, and its statistical properties are stated in the optional Sec-
tion 5.3. Under suitable conditions, it is strongly consistent and asymptotically normal. In
Section 5.4, we show simulation examples illustrating the consistency of the ALS estimator.

In Section 5.5, we consider a different approximation problem by a static bilinear
model. It is motivated from an application in computer vision, called fundamental matrix
estimation. The approach is closely related to the one of Section 5.2.

Chapter 6: Ellipsoid Fitting The ALS approach of Chapter 5 is further applied for
approximation by a quadratic model. The motivation for considering the quadratic model is
the ellipsoid fitting problem. In Section 6.1, we introduce the ellipsoid fitting problem and
review the literature. As in Chapter 5, we consider the EIV model and note that the misfit
approach, although intuitively attractive and geometrically meaningful, yields a statistically
inconsistent estimator. This motivates the application ofthe ALS approach.

In Section 6.2, we define the quadratic EIV model. The LS and the ALS estimators
are presented, respectively, in Sections 6.3 and 6.4. The ALS estimator is derived from the
LS estimator by properly adjusting its cost function. Undersuitable conditions the ALS
estimator yields a consistent estimate of the parameters ofthe true model. In the optional
Section 6.6, we present an algorithm for the computation of the ALS estimator. Simulation
examples comparing the ALS and alternative estimators on benchmark problems from the
literature are shown in Section 6.7.

Chapter 7: Introduction to Dynamical Models Chapter 7 is an introduction to Part II
of the book. The main emphasis is on the representation of an LTI system. Different
representations are suitable for different problems, so that familiarity with a large number
of alternative representations is instrumental for solving the problems. First, we give a high
level characterization of an LTI system: its behavior is linear, shift-invariant, and closed
in the topology of pointwise convergence. Then we consider akernel representation of an
LTI system, i.e., difference equation representation. However, we use polynomial matrix
notation. A sequence of equivalence operations on the difference equations is represented by
premultiplication of a polynomial operator by a unimodularmatrix. Also, certain properties
of the representation such as minimality of the number of equations is translated to equivalent
properties of polynomial matrices. Special forms of the polynomial matrix display important

i

i

i

i

1.4. Chapter-by-chapter overview∗ 13

invariants of the system such as the number of inputs and the minimal state dimension.
We discuss the question of what inputs and outputs of the system are and show repre-

sentations that display the input/output structure. The classical input/state/output represen-
tation of an LTI system is obtained by introducing, in addition, latent variables with special
properties. The controllability property of a system is introduced and a test for it is shown in
terms of a kernel representation. Any system allows a decomposition into an autonomous
subsystem and a controllable subsystem. A controllable system can be represented by a
transfer function or a convolution operator or as the image of a polynomial operator. Finally,
the latent variable and driving input state space representation are presented.

The introduction of the various system representations is summarized by a represen-
tation theorem that states their equivalence. The chapter continues with the related question
of parameterizing a trajectory of the system. The most convenient representation for this
purpose is the input/state/output representation that displays explicitly both the input and
the initial conditions.

Chapter 8: Exact Identification The simplest and most basic system identification
problem is considered first: given a trajectory of an LTI system, find a representation of
that system. The data is an exact trajectory and the system has to be recovered exactly. The
problem can be viewed as a representation question: pass from a sufficiently informative
trajectory to a desirable representation of the system.

We answer the question of when a trajectory is sufficiently informative in order to
allow exact identification. This key result is repeatedly used and is called thefundamental
lemma.

The exact identification problem is closely related to the construction of what is called
the most powerful unfalsified model (MPUM). Under the condition of the fundamental
lemma, the MPUM is equal to the data generating system, so that one can look for algorithms
that obtain specific representations of that system from thedata. We review algorithms for
passing from a trajectory to kernel, convolution, and input/state/output representations.
Relationships to classical deterministic subspace identification algorithms are given.

Our results show alternative system theoretic derivationsof the classical subspace
identification methods. In particular, the orthogonal and oblique projections from the
MOESP and N4SID subspace identification methods are interpreted. It is shown that the
orthogonal projection computes free responses and the oblique projection computes sequen-
tial free responses, i.e., free responses of which the initial conditions form a state sequence.
From this perspective, we answer the long-standing question in subspace identification of
how to partition the data into “past” and “future”. The “past” is used to set the initial
condition for a response computed in the “future”.

The system theoretic interpretation of the orthogonal and oblique projections reveals
their inefficiency for the purpose of exact identification. We present alternative algorithms
that correct this deficiency and show simulation results that illustrate the performance of
various algorithms for exact identification.

Chapter 9: Balanced Model Identification Balancing is often used as a tool for model
reduction. In Chapter 9, we consider algorithms for obtaining a balanced representation of
the MPUM directly from data. This is a special exact identification problem.

i

i

i

i

14 Chapter 1. Introduction

Two algorithms were previously proposed in the setting of the deterministic subspace
identification methods. We analyze their similarity and differences and show that they fall
under the same basic outline, where the impulse response andsequential zero input responses
are obtained from data. We propose alternative algorithms that need weaker assumptions
on the available data. In addition, the proposed algorithmsare computationally more effi-
cient since the block-Hankel structure of certain matricesappearing in the computations is
explicitly taken into account.

Chapter 10: Errors-in-Variables Smoothing and Filtering The approximate sys-
tem identification problem, based on the misfit approach, hasas a subproblem the computa-
tion of the closest trajectory in the behavior of a given model to a given time series. This is a
smoothing problem whose solution is available in closed form. However, efficient recursive
algorithms are of interest. Moreover, the filtering problem, in which the approximation is
performed in real time, is of independent interest.

Deterministic smoothing and filtering in the behavioral setting are closely related
to smoothing and filtering in the EIV setting. We solve the latter problems for systems
given in an input/state/output representation. The optimal filter is shown to be equivalent
to the classical Kalman filter derived for a related stochastic system. The result shows
that smoothing and filtering in the EIV setting are not fundamentally different from the
classical smoothing and Kalman filtering for systems drivenby white noise input and with
measurement noise on the output.

Chapter 11: Approximate System Identification The approximate identification
problem, treated in Chapter 11, is the global total least squares (GlTLS) problem, i.e., the
misfit minimization problem for an LTI model class of boundedcomplexity. This problem
is a natural generalization of the exact identification problem of Chapter 8 for the case when
the MPUM does not exist.

Because of the close connection with the STLS problem and because in Part I of the
book numerical solution methods are developed for the STLS problem, our goal in this
chapter is to link the GlTLS problem to the STLS problem. Thisis done in Section 11.2,
where conditions under which the equivalence holds are given. The most restrictive of these
conditions is the condition on the order of the identified system: it should be a multiple of
the number of outputs. Another condition is that the optimalapproximation allows a fixed
input/output partition, which is conjectured to hold generically.

In Section 11.3, we discuss several extensions of the GlTLS problem: treating exact
and latent variables and using multiple time series for the approximation. In Section 11.4,
the problem is specialized to what is called the approximaterealization problem, where the
given data is considered to be a perturbed version of an impulse response, the related problem
of autonomous system identification, and the problem of finite timeℓ2 model reduction.

In Section 11.5, we present simulation examples with data sets from the data base
for system identification DAISY. The results show that the proposed solution method is
effective and efficient for a variety of identification problems.

i

i

i

i

Chapter 2

Approximate Modeling
via Misfit Minimization

This chapter gives a more in-depth introduction to the problems considered in the book:
data fitting by linear, bilinear, and quadraticstaticas well as linear time-invariantdynamic
models. In the linear case, the discrepancy between the dataand the approximate model is
measured by themisfit. In the nonlinear case, the approximation is defined as a quadratically
constrained least squares problem, called adjusted least squares.

The main notions are data, model, and misfit. Optimal exact modeling aims to fit the
data and as little else as possible by a model in a given model class. The model obtained
is called the most powerful unfalsified model (MPUM). The MPUM may not exist in a
specified model class. In this case we accept a falsified modelthat fits optimally the data
according to the misfit approximation criterion. The total least squares (TLS) problem
and its variations, generalized total least squares (GTLS)and weighted total least squares
(WTLS), are special cases of the general misfit minimization problem for the linear static
model. In the dynamic case, the misfit minimization problem is called the global total least
squares (GlTLS) problem.

An overview of the solution methods that are used is given. The misfit minimization
problem has a quadratic cost function and a bilinear equality constraint. This is a nonconvex
optimization problem, for whose solution we employ local optimization methods. The
bilinear structure of the constraint, however, allows us tosolve the optimization problem
partially. This turns the constrained optimization problem into an equivalent nonlinear
least squares problem. The adjusted least squares method, on the other hand, leads to a
generalized eigenvalue problem.

2.1 Data, Model, Model Class, and Exact Modeling
Consider a phenomenon to be described by a mathematical model. Certain variables, related
to the phenomenon, are observable, and the observed data from one or more experiments is
recorded. Using prior knowledge about the phenomenon, a model class of candidate models
is selected. Then the model is chosen from the model class that in a certain specified sense
most adequately describes the available data.

15

i

i

i

i

16 Chapter 2. Approximate Modeling via Misfit Minimization

We now formalize this modeling procedure. Call a data point recorded from an ex-
periment anoutcomeand letU be the universum of possible outcomes from an experiment.
The observed dataD is collected from experiments, so that it is a subsetD ⊂ U of the
universum.

Following the behavioral approach to system theory [PW98],

we define a modelB to be a set of outcomes, i.e.,B ⊆ U .

Actually, for the purpose, of modeling this definition is a bit restrictive. Often the outcomes
are functions of the to-be-modeled variables, i.e., the variables that we aim to describe by the
model. By postulating the model to be a subset of the universum of outcomes, we implicitly
assume that the observed variables are the to-be-modeled variables.

If for a particular experiment an observed outcomed ∈ U is such thatd ∈ B, then
we say that “B explainsd” or “ B is unfalsified byd”. In this case the model fits the data
exactly. If d 6∈ B, we say that the outcomed falsifiesB. In this case the model may fit the
data onlyapproximately.

Let B1 andB2 be two models such thatB1 ⊆ B2. We say thatB1 is simpler (less
complex) thanB2. “Simpler” means allowing fewer outcomes. IfU is a vector space
and we consider models that are (finite dimensional) subspaces, “simpler” means a lower
dimensional subspace. Note that our notion of simplicity does not refer to a simplicity of a
representation ofB.

Simpler models are to be preferred over more complicated ones. Consider the two
statementsd ∈ B1 andd ∈ B2 with B1 ⊆ B2. The first one is stronger and therefore
more useful than the second one. In this sense,B1 is a morepowerfulmodel thanB2.

On the other hand, the a priori probability that a given outcomed ∈ U falsifies the
modelB1 is higher than it is for the modelB2. This shows a trade-off in choosing an
exact model. The extreme cases are the modelU that explains every outcome but “says”
nothing about an outcome and the model{ d } that explains only one outcome but completely
describes the outcome.

Next, we introduce the notion of a model class. The set of all subsets ofU is denoted
by 2U . In our setting,2U is the set of all models. A model classM ⊆ 2U is a set of
candidate models for a solution of the modeling problem. In theory, an arbitrary model
class can be chosen. In practice, however, the choice of the model class is crucial in order
to be able to obtain a meaningful solution. The choice of the model class is dictated by
the prior knowledge about the modeled phenomenon and by the difficulty of solving the
resulting approximation problem. We aim at general model classes that still lead to tractable
problems.

The most reasonable exact modeling problem is to find the model Bmpum ∈ M

that explains the dataD and as little else as possible. The modelBmpum is called
the most powerful unfalsified model (MPUM) for the dataD in the model classM .

The MPUM need not exist, but if it exists, it is unique.
Suppose that the dataD is actually generated by a modelB ∈ M ; i.e.,d ∈ B for all

d ∈ D . A fundamental question that we address is, Under what conditions can the unknown
modelB be recovered exactly from the data? Without any other a priori knowledge (apart
from the given dataD and model classM), this question is equivalent to the question,
Under what conditions doesBmpum = B?

i

i

i

i

2.2. Misfit and approximate modeling 17

2.2 Misfit and Approximate Modeling
The MPUM may not exist for a given data and model class. In fact, for “rough data”, e.g.,
data collected from a real-life experiment, if the MPUM exists, it tends to beBmpum = U .
Therefore, the exact modeling problem has either no solution or a trivial one. Although the
concept of the MPUM is an important theoretical tool, the computation of the MPUM is not
a practical modeling algorithm. What enables the modeling procedure to “work with rough
data” is approximation.

In an approximate modeling problem, the model is required toexplain the data only
approximately; i.e., it could be falsified by the data. Next,we define an approximation
criterion called misfit. The misfit between an outcomed ∈ U and a modelB ⊆ U is
a measure for the distance from the pointd to the setB. As usual, this is defined as the
distance fromd to the pointd̂∗ in B that is closest tod. (The “hat” notation, as in̂d, means
“an approximation of”.) For example, ifU is an inner product space andB is a closed
subspace, then̂d∗ is the projection ofd onB.

Underlying the definition of the misfit is a distance onU . LetU be a normed vector
space with a norm‖ · ‖U and define the distance (induced by the norm‖ · ‖U) between two
outcomesd, d̂ ∈ U as‖d − d̂‖U .

The misfit between an outcomed and a modelB (with respect to the norm‖ · ‖U)
is defined as

M(d,B) := inf
d̂∈B

‖d − d̂‖U .

It measures the extent to which the modelB fails to explain the outcomed.

A global minimum pointd̂∗ is the best (according to the distance measure‖d − d̂‖U)
approximation ofd in B. Alternatively,M(d,B) is the minimal distance betweend and
an approximation̂d compatible with the modelB.

For data consisting of multiple outcomesD = { d1 . . . , dN }, we chooseN norms
‖ · ‖i in U and defineMi(di,B) to be the misfit with respect to the norm‖ · ‖i. Then the
misfit between the dataD and the modelB is defined as

M
(
{ d1 . . . , dN },B

)
:=

∥
∥ col

(
M1(d1,B), . . . ,MN (dN ,B)

) ∥
∥ . (M)

In the context of exact modeling, there is a fundamental trade-off between the power
and complexity of the model. A similar issue occurs in approximate modeling: an arbitrary
small misfit can be achieved by selecting a complicated model. The trade-off now is between
the worst achievable misfit and the complexity of the model. The issue can be resolved,
for example, by fixing a maximal allowed complexity. With a constraint on the complexity
(incorporated in the definition of the model class), the aim is to minimize the misfit.

For a chosen misfitM and model classM , the misfit minimization problem aims
to find a modelB̂ in the model class that is least falsified by the data, i.e.,

B̂ := arg min
B∈M

M(D ,B). (APR)

i

i

i

i

18 Chapter 2. Approximate Modeling via Misfit Minimization

The approximation problem (APR) can be interpreted in termsof the MPUM as follows:

Modify the data as little as possible, so that the MPUMB̂ for the modified datâD
is in a specified model classM .

Next, we describe the important issue of a representation ofa model and specify misfit
minimization problems for particular model classes in terms of particular representations.

2.3 Model Representation and Parameterization
The definition of the model as a set of outcomes is general and powerful. It allows us to
consider linear and nonlinear, and static and dynamic, stationary and nonstationary models
in the same conceptual setting. For analysis, however, it istoo abstract. It is often more
convenient to work with particular representations of the model in terms of equations that
capture the essential properties of the model.

For a given modelB ⊆ U , an equationf(d) = 0 with solution set equal toB, i.e.,

B = { d ∈ U | f(d) = 0 }, (REPR)

is called a representation ofB.

The functionf : U → R
g that describes the modelB is defined in terms of parameters.

Consider, for example, a real vector spaceU = R
nθ and a linear functionfθ(d) = θ⊤d.

The vectorθ ∈ R
nθ parameterizesfθ and via (REPR) alsoB.

Let fθ(d) = 0 be a representation with a parameter vectorθ ∈ R
nθ . Different

values ofθ result in different modelsB(θ). We can view the representation byfθ as a
mappingB : R

nθ → 2U from the parameter space to the set of models. A given set
of parametersΘ ⊆ R

nθ corresponds to the set of modelsB(Θ) ⊆ 2U , i.e., to a model
class. Assume that for a given representationfθ and a given model classM , there is a
corresponding parameter setΘ ⊆ R

nθ , such thatM = B(Θ).

In terms of the representationfθ, the misfit minimization problem (APR) becomes
the following parameter optimization problem:

θ̂ := arg min
θ∈Θ

M
(
D ,B(θ)

)
. (APR’)

The numerical implementation of the algorithms depend on the particular representation
chosen. From the point of view of the abstract formulation (APR), however, the represen-
tation issue is not essential. This is in contrast with approximation methods that minimize
an equation error criterion.

Consider a modelB ⊆ U with representation (REPR). An outcomed ∈ U that
is not consistent with the modelB may not satisfy the equation, yieldinge(θ) := fθ(d),
calledequation error. The equation error for a givend is a functione : R

nθ → R
g of the

parameterθ and therefore it depends on the modelB(θ). Since

fθ(d) = e(θ) = 0 ⇐⇒ d ∈ B(θ),

i

i

i

i

2.4. Linear static models and total least squares 19

we define “equation misfit” (lack of fit in terms of equations representing the model)

Meqn(d, θ) := ‖fθ(d)‖eqn,

where‖ · ‖eqn is a norm defined inRg. The equation misfit depends on the representation.
In contrast, the “behavioral misfit”M is representation independent.

Note 2.1 (Latency) The equation errore can be viewed as an unobserved, latent variable.
From this alternative point of view the equation misfitMeqn is the latency of Chapter 1.

As before, for multiple observed outcomesD = { d1 . . . , dN }, we define the equation
misfitsMeqn,i(di, θ) in terms of the norms‖ · ‖i in R

g, and

Meqn
(
{ d1 . . . , dN }, θ

)
:=

∥
∥ col

(
Meqn,1(d1, θ), . . . ,Meqn,N (dN , θ)

) ∥
∥ . (Meqn)

Given a model classM , represented in the parameter space by the parameter setΘ, an
approximation problem that minimizes the equation misfit is

θ̂eqn := arg min
θ∈Θ

Meqn(D , θ). (APReqn)

Solving (APReqn) is often easier than solving (APR’), but the main disadvantage is that the
obtained approximation is representation dependent.

2.4 Linear Static Models and Total Least Squares
In the rest of this chapter we consider real valued data. For static problems, the universum
setU is defined to beRd. The available dataD consists ofN outcomesd1, . . . , dN ∈ R

d.
We define the data matrixD :=

[
d1 · · · dN

]
∈ R

d×N and the shorthand notation
[
d1 · · · dN

]
∈ B ⊆ U : ⇐⇒ di ∈ B, for i = 1, . . . , N.

A linear static modelB is a linear subspace ofU = R
d.

Let m := dim(B) be the dimension of the modelB and letL d
m,0 be the set of all linear

static models withd variables of dimensionat mostm. (The 0 in the notationL d
m,0 indicates

that the models in this model class are static.) The complexity of the modelB is related
to its dimensionm: the model is simpler, and therefore more powerful, when it has smaller
dimension.

The modelB imposes linear lawsr⊤i d = 0, ri ∈ R
d on the outcomes. IfB is defined

byg linear lawsr1, . . . , rg, thend ∈ B if and only ifRd = 0, whereR :=
[
r1 · · · rg

]⊤
.

Therefore,B = ker(R). The representation ofB := ker(R) by the equationRd = 0 is
called a kernel representation ofB. Any linear modelB admits a kernel representation
with a parameterR of full row rank.

The MPUM for the dataD in the model classL d
m,0 exists if and only ifrank(D) ≤ m.

If the MPUM exists, it is unique and is given byBmpum = col span(D). For “rough” data
and withN > m, typically rank(D) = d, so that the MPUM either does not exist or is the
trivial modelBmpum = R

d. In such cases an approximation is needed.

i

i

i

i

20 Chapter 2. Approximate Modeling via Misfit Minimization

The misfit minimization problem (APR) with model classM = L d
m,0 and

2-norms‖ · ‖i,

B̂tls = arg min
B∈L d

m,0

(

min
D̂∈B

‖D − D̂‖F

)

, (TLS)

is called the total least squares (TLS) problem.

The squared TLS misfit
M2

tls(D,B) := min
D̂∈B

‖D − D̂‖2
F

is equal to the sum of the squared orthogonal distances from the outcomesd1, . . . , dN to
the subspaceB. For this reason, the TLS problem is also known as orthogonalregression.
In terms of a kernel representation, the TLS problem is equivalent to

R̂tls = arg min
RR⊤=I

(

min
D̂

‖D − D̂‖F subject to RD̂ = 0
)

. (TLSR)

Note 2.2 (Equation labels)(TLS) is the abstract, representation-free definition of the TLS
problem. Equivalent formulations such as (TLSR) are obtained when a particular repre-
sentation is chosen. We label frequently used equations with acronyms. Approximation
problems, derived from an abstract one, are labeled with theacronym of the abstract problem
with the standard variable used for the parameter in a subscript.

The variations of the TLS problem, called generalized totalleast squares (GTLS) and
weighted total least squares (WTLS), are misfit minimizationproblems (APR) for the model
classL d

m,0 and weighted norms‖·‖i: in the GTLS case,‖d‖i := ‖
√

Wd‖, and in the WTLS
case,‖d‖i := ‖

√
Wid‖, for certain positive definite weight matricesW andWi. Clearly,

the TLS problem is a special case of the GTLS problem and the GTLS problem is a special
case of the WTLS problem.

The motivation for the weighted norms in the GTLS and WTLS problems comes from
statistics. Assume that the dataD is generated according to the EIV model:

D = D̄ + D̃, where D̄ ∈ B̄ ∈ L
d
m,0. (EIV)

The modelB̄ is called the true model and̃D =:
[

d̃1 · · · d̃N

]
is called the measurement

error. The measurement error is modeled statistically as a zero mean random matrix. As-
suming in addition that the noisẽdi on theith outcome is independent of the noise on the
other outcomes and is normally distributed with covariances cov(d̃i) = σ2W−1

i , the max-
imum likelihood estimation principle leads to the WTLS problem. Therefore, the weight
matricesWi in the WTLS problem formulation correspond (up to the scalingfactorσ2) to
the inverse of the measurement error covariance matrices inthe EIV setup.

Note 2.3 (About the notation) We follow the system theoretic notation and terminology
that are adopted in the behavioral setting [PW98]. Translation of the ideas and the formulas to
other equivalent forms is straightforward. For example, the system of linear equationsAX =
B, which is often the starting point for parameter estimationproblems in the numerical linear
algebra literature, can be viewed as a special kernel representation

AX = B ⇐⇒
[
X⊤ −I

]
[
A⊤

B⊤

]

= 0 =⇒ : RD = 0.

i

i

i

i

2.5. Nonlinear static models and ellipsoid fitting 21

Therefore, the model represented by the equationAX = B is B(X) := ker(
[
X⊤ −I

]
),

so thatB(X) ∈ L d
m,0, with d = col dim(A) + col dim(B) andm = col dim(A). The

representationB(X) is what is called an input/output representation of a linearstatic model.
In terms of the representationAX = B, the TLS problem with a data matrixD =

[
A B

]⊤
is the following parameter optimization problem:

X̂tls = arg min
X

(

min
Â,B̂

∥
∥
[

A − Â B − B̂
]∥
∥

F
subject to ÂX = B̂

)

. (TLSX)

It is not equivalent to (TLS), but genericallyB(X̂tls) = ker(R̂tls), whereR̂tls is the solution
of (TLSR). The nongeneric cases when̂Xtls does not exist occur as a consequence of the
used fixed input/output partitioning of the variables in therepresentationB(X).

Note 2.4 (Quadratic cost function) Whenever‖ · ‖i are weighted 2-norms, thesquared
misfit M2 is a quadratic function of the decision variablêD. Squaring the cost function
results in an equivalent optimization problem (the optimumpoint is not changed), so that the
misfit minimization problem can equivalently be solved by minimizing the squared misfit.

The equation error minimization problem (APReqn) for the linear static model class
L d

m,0 with a kernel representationB = ker(R) and 2-norms‖ · ‖i is the quadratically
constrained least squares problem

R̂ls = arg min
RR⊤=I

‖RD‖F, (LSR)

which happens to be equivalent to the TLS problem.
The classical least squares problem

X̂ls = arg min
X

(

min
B̂

‖B − B̂‖F subject to AX = B̂

)

(LSX)

is an equation error minimization problem (APReqn) for the representationAX = B and
for 2-norms‖ · ‖i. In general,B(X̂ls) 6= ker(R̂ls), whereR̂ls is the solution of (LSR). It is
well known that the solution of (LSX) can be computed in a finite number of operations by
solving the system of normal equations. In contrast, the solution of (LSR) is given in terms
of the eigenvalue decomposition ofDD⊤ (or the singular value decomposition ofD), of
which the computation theoretically requires an infinite number of operations.

2.5 Nonlinear Static Models and Ellipsoid Fitting
An outcomed ∈ U = R

d, consistent with a linear static model, satisfies linear relations
Rd = 0. An outcomed ∈ U = R

d, consistent with a nonlinear static model, satisfies
nonlinear relationsf(d) = 0, wheref : R

d → R
g. We consider nonlinear models with

representations that are defined by a single bilinear or quadratic function.
The functionf : R

d → R is bilinear if f(d) = d⊤1 Xd2 − d3, for all d ∈ R
d and

for a certainX ∈ R
d1×d2 , whered =: col(d1, d2, d3) (with d1 ∈ R

d1 , d2 ∈ R
d2 , and

d3 ∈ R). For givend1 andd2, such thatd = d1 +d2 +1, a bilinear model with a parameter
X ∈ R

d1×d2 is defined as follows:

Bbln(X) :=
{

col(d1, d2, d3) ∈ R
d | d⊤1 Xd2 = d3

}
; (BLN)

i

i

i

i

22 Chapter 2. Approximate Modeling via Misfit Minimization

i.e., a bilinear model is a nonlinear model that allows the representationf(d) = 0, with f a
bilinear function. LetMbln be the set of all bilinear models of the form (BLN),

Mbln :=
{

Bbln(X) | X ∈ R
d1×d2

}
.

In terms of the parameterization (BLN), the misfit minimization problem (APR) for the
bilinear model classMbln with 2-norms‖ · ‖i is

min
X

(

min
D̂

‖D − D̂‖F subject to d̂⊤i,1Xd̂i,2 = d̂i,3, for i = 1, . . . , N

︸ ︷︷ ︸

M(D,Bbln(X))

)

. (BLNTLS)

The functionf : R
d → R is quadratic iff(d) = d⊤Ad + d⊤b + c for all d ∈ R

d and
for certainA ∈ R

d×d, b ∈ R
d, andc ∈ R. A quadratic model with parametersA, b, c is

defined as follows:

Bqd(A, b, c) :=
{

d ∈ R
d | d⊤Ad + d⊤b + c = 0

}
. (QD)

The set of outcomes consistent with the quadratic model are ellipsoids, paraboloids, hyper-
boloids, etc., inRd. Let Mqd be the set of all quadratic models,

Mqd :=

{

Bqd(A, b, c)
∣
∣
∣

[
A b
b⊤ c

]

is a symmetric(d + 1) × (d + 1) matrix

}

.

In terms of the parameterization (QD), the misfit minimization problem (APR) for the model
classMqd and 2-norms‖ · ‖i is

min
A,b,c
A 6=0

(

min
D̂

‖D − D̂‖F subject to

[

d̂i

1

] [
A b/2

b⊤/2 c

] [

d̂i

1

]⊤

= 0, for i = 1, . . . , N

︸ ︷︷ ︸

M(D,Bqd(A,b,c))

)

.

(QDTLS)
Problems (BLNTLS) and (QDTLS) have the same geometric interpretation as the

TLS problem—minimize the sum of squared orthogonal distances from the data points to
the estimated model. In the special case whenA > 0 and4c < b⊤A−1b, Bqd(A, b, c) is
an ellipsoid and the approximation problem becomes an ellipsoid fitting problem. Because
of the geometrically appealing cost function, the misfit minimization problem for ellipsoid
fitting attracted much attention in the literature. Nevertheless, in the nonlinear case, we
do not solve the misfit minimization problems (BLNTLS) and (QDTLS) but alternative
modeling problems, called adjusted least squares (ALS). The reasons are

1. the minimization problems (BLNTLS) and (QDTLS) are expensive to solve, and

2. the solutions of these problems do not define consistent estimators.

In the EIV setting, i.e., assuming that the outcomes come from a true model with stochastic
measurement error, the aim is to find consistent estimators.An estimator is consistent when it
converges asymptotically to the true model as the numberN of observed outcomes increases.
The estimators defined by the orthogonal regression problems (BLNTLS) and (QDTLS)
are not consistent, but the estimator defined by the ALS method is consistent. In addition,
the computation of the ALS estimator reduces to a generalized eigenvalue computation and
does not require expensive optimization methods.

i

i

i

i

2.6. Dynamic models and global total least squares 23

2.6 Dynamic Models and Global Total Least Squares
In dynamic problems, the data consists of one or moretime serieswd =

(
wd(1), . . . , wd(T)

)
.

Note 2.5 (Notationwd) The letter “d” in subscript stands for “data”. It is used to distinguish
a general time seriesw from a particular given onewd.

In the context of dynamic problems, we associateU with the set of sequences(Rw)T . The
dynamic nature of a modelB is expressed in the existence of relations among the values
of a time seriesw ∈ B at consecutive moments of time. Restricting ourselves to linear
constant coefficient relations, this yields the following difference equation:

R0w(t) + R1w(t + 1) + · · · + Rlw(t + l) = 0, for t = 1, . . . , T − l. (DE)

For l = 0 (no time shifts in the linear relations), (DE) describes a linear static model. As
in the static case, (DE) is called a kernel representation ofthe system.1The system induced
by (DE) is denoted as follows:

B = ker
(
R(σ)

)
:=

{
w ∈ (Rw)T | (DE) holds

}
, whereR(z) :=

∑l
i=0 Riz

i, (KR)

andσ is the shift operator:(σw)(t) = w(t + 1).
LetB = ker

(
R(σ)

)
with a row proper polynomial matrixR(z) ∈ R

p×w[z] and define
l := deg(R), m := w−p. It can be shown that forT sufficiently large,dim(B) ≤ Tm+lp.
Thus the complexity of the system, which is related todim(B), is specified by the maximum
lagl and the integerm. Under the above assumption,m is equal to the input cardinality of the
system, i.e., the number of inputs in an input/output representation of the system. We denote
byL w

m,l the class of all linear time-invariant (LTI) systems withw variables, maximum input
cardinalitym, and maximum lagl. Note that the class of systemsL w

m,0, described by zero
lag difference equations, is the set of linear static systems of dimension at mostm as defined
before.

Modeling a dynamic system from data is called system identification. We consider
the identification problem for the LTI model classM = L w

m,l and treat first the exact
identification problem: given datawd, such thatwd ∈ B ∈ L w

m,l, find a representation
of B. Under certain identifiability conditions on the data and the model class, the MPUM
Bmpum of wd in the model classL w

m,l exists and is equal toB.
We consider algorithms for passing fromwd to a kernel or input/state/output represen-

tation ofBmpum. The algorithms are in the setting of what are called subspace identification
methods; i.e., the parameters of the system are retrieved from certain subspaces computed
from the given data. We do not emphasize the geometric interpretation and derivation of
the subspace algorithms and give instead more system theoryoriented derivations.

In their pure form, exact identification algorithms are mainly of theoretical interest.
Most system identification problems start from rough data, so that the approximation element
is critical. The exact identification algorithms can be modified so that they can “work” with
rough data. We do not pursue this approach but consider instead the misfit approximation
problem (APR), which is optimization based.

1We do not distinguish between model and system but preferablyuse model in the static context or in general
discussions and system in the dynamic context.

i

i

i

i

24 Chapter 2. Approximate Modeling via Misfit Minimization

The misfit minimization problem (APR) with model classM = L w
m,l and2-norm

‖ · ‖U is called the global total least squares problem (GlTLS). Interms of the
kernel representation (KR), the GlTLS problem is

min
R(z)

(

min
ŵ

‖wd − ŵ‖ s.t. ŵ ∈ B := ker
(
R(σ)

)

︸ ︷︷ ︸

M(wd,ker(R(σ)))

)

s.t. R full row rank.

(TLSR(z))

The constraintR(z) full row rank, deg(R) = l is equivalent toB := ker
(
R(σ)

)
∈ L w

m,l

and the constraintw ∈ B is equivalent to (DE). In turn, (DE) can be written as the structured
system of equations

[
R0 R1 · · · Rl

]








w(1) w(2) · · · w(T − l)
w(2) w(3) · · · w(T − l + 1)

...
...

...
w(l + 1) w(l + 2) · · · w(T)








= 0,

which makes a link with the structured total least squares problem.

2.7 Structured Total Least Squares
The GlTLS problem (TLSR(z)) is similar to the TLS problem, the main difference being

that the generally unstructured matrix̂D in the TLS problem is replaced by a block-Hankel
structured matrix in the GlTLS problem. In this section, we define a general approximation
problem with a constraint expressed as rank deficiency of a structured matrix.

Let S : R
np → R

m×(n+d) be an injective function. A matrixC ∈ R
m×(n+d) is

said to beS -structured ifC ∈ image(S). The vectorp for which C = S (p) is called
the parameter vector of the structured matrixC. Respectively,Rnp is called the parameter
space of the structureS .

The structured total least squares (STLS) problem aims to find an optimal structured
low-rank approximationS (p̂) of a given structured matrixS (p); i.e., given a
structure specificationS , a parameter vectorp, and a desired rankn, find

p̂stls = arg min
p̂

‖p − p̂‖ subject to rank
(
S (p̂)

)
≤ n. (STLS)

By representing the rank constraint in (STLS) as “there is a full row rank matrixR ∈
R

d×(n+d), such thatRS ⊤(p̂) = 0”, the STLS problem can be written equivalently as

R̂stls = arg min
RR⊤=Id

min
p̂

‖p − p̂‖ subject to RS
⊤(p̂) = 0, (STLSR)

which is a double minimization problem, similar to the general misfit minimization prob-
lem (APR). The STLS formulation, however, is not linked witha particular model class: it
is viewed as a flexible tool that can match different misfit minimization problems.

Table 2.1 gives a summary of the misfit minimization problemsdescribed up to now.

i

i

i

i

2.8. Algorithms 25

Table 2.1.Misfit minimization problems.

Name U M Problem
TLS R

d L d
m,0 min

D̂∈B̂∈L d
m,0

‖D − D̂‖F

GTLS R
d L d

m,0 min
D̂∈B̂∈L d

m,0

√
∑

i ‖
√

W (di − d̂i)‖2

WTLS R
d L d

m,0 min
D̂∈B̂∈L d

m,0

√
∑

i ‖
√

Wi(di − d̂i)‖2

Bilinear R
d Mbln min

D̂∈B̂∈Mbln

‖D − D̂‖F

Quadratic R
d Mqd min

D̂∈B̂∈Mqd

‖D − D̂‖F

GlTLS (Rw)T L w
m,l min

d̂∈B̂∈L w
m,l

‖wd − ŵ‖ℓ2

2.8 Algorithms
Optimization Methods

The approximate modeling problem (APR) is a double minimization problem: on the inner
level is the misfit computation and on the outer level is the search for the optimal model. In
the linear case, the modelB is a subspace ofU , so that the misfit computation is equivalent
to projection of the dataD onB. In this case, it is possible to express the misfitM(D ,B)
in a closed form. The outer minimization problemminB∈M M(D ,B), however, is a
nonlinear least squares problem. We employlocal optimization methods for its numerical
solution. The local optimization methods require initial approximation and find only one
locally optimal model.

Important issues we deal with are finding good and computationally inexpensive initial
approximations and making the misfit function and its first derivative evaluation numerically
efficient. By solving these issues, we obtain an “engineering solution” of the problem, i.e.,
a solution that is effective for real-life applications.

Caveat: We aim at efficient evaluation of the misfit function, which ensures efficiency
only with respect to the amount of given data: in the static case, the numberN of observed
outcomes and in the dynamic case the lengthT of the observed time series. In this book,
we do not address the related question of achieving efficiency on the level of the outer
minimization problem, i.e., with respect to the number of model parameters. Thus an
implicit assumption throughout this work is that a simple approximate model we aim for.
Dealing with large scale nonlinear least squares problems,however, is a well developed
topic (see, e.g., [BHN99]) so that general purpose solutions can be used.

Adjusted Least Squares Method

In the nonlinear case not only the outer minimization but also the misfit computation is a
nonconvex problem and requires iterative solution methods. This makes the misfit mini-
mization problem numerically rather expensive. In addition, from a statistical point of view

i

i

i

i

26 Chapter 2. Approximate Modeling via Misfit Minimization

Table 2.2.Problems, algorithms, and application fields.

Problem Algorithm Application field
WTLS optimization chemometrics
STLS optimization system identification
bilinear model approximation ALS motion analysis
quadratic model approximationALS ellipsoid estimation

the obtained solution is not attractive, because in the EIV setting, it is inconsistent. For
these reasons, we adopt an alternative approach.

The ALS method is a quadratically constrained least squaresmethod. Its solution is
obtained from a generalized eigenvalue decomposition. Theproblem is motivated and de-
rived from the consideration of obtaining a consistent estimator in the EIV setting. Knowing
the noise variance, the bias of the ordinary least squares method is removed. This involves
adding a correction to the sample covariance matrix. If the noise variance is unknown, it
can be estimated together with the model parameters.

Benchmark examples show that the ALS estimator gives good fits that are comparable
with those obtained from the orthogonal regression methods. The advantage over the misfit
approximation problem, however, is that the ALS approximation does not depend on a
user-supplied initial approximation and is computationally less expensive.

Table 2.2 gives a summary of the problems, algorithms, and applications considered
in the book.

Software Implementation

The algorithms in the book have documented software implementation. Each algorithm is
realized by one or more functions and the functions are separated in the following packages:

• MATLAB software for weighted total least squares approximation,

• C software for structured total least squares approximation,

• MATLAB software for balanced model identification, and

• MATLAB software for approximate system identification.

Many of the simulation examples presented in the book are included in the packages as
demo files. Thus the reader can try out these examples and modify the simulation settings.
Appendix B gives the necessary background information for starting to use the software.

i

i

i

i

Part I

Static Problems

27

i

i

i

i

i

i

i

i

Chapter 3

Weighted Total Least
Squares

We start this chapter with the simplest of the approximate modeling problems—the ones for
the linear static model. The kernel, image, and input/output representations of a linear static
model are reviewed in Section 3.2. The misfit criterion is defined as a weighted projection
and the corresponding misfit approximation problem is called weighted total least squares
(WTLS). Two interpretations of the weight matrices in the WTLSformulation are described
in Section 3.1. The TLS and GTLS problems are special cases ofthe WTLS problem and
are considered in Section 3.3.

In Section 3.4, we start to discuss the solution of the general WTLS problem. First,
the misfit computation is explained. It is a quadratic minimization problem, so that its
solution reduces to solving a linear system of equations. The remaining part of the WTLS
problem is the minimization with respect to the model parameters. This problem is treated
in Section 3.5, where three different algorithms are presented. In Section 3.6, we show
simulation results that compare the performance of the algorithms.

3.1 Introduction
In this chapter, we consider approximate modeling by a linear static model. Therefore, the
universum of possible outcomes isU = R

d, the available data is the set ofN outcomes
D = { d1, . . . , dN } ⊂ U , and the model class isM = L d

m,0. The parameterm specifies
the maximum allowed complexity for the approximating model.

The matrixD :=
[
d1 · · · dN

]
is called the data matrix. We use the shorthand

notation
[
d1 · · · dN

]
∈ B ⊆ U : ⇐⇒ di ∈ B, for i = 1, . . . , N.

The WTLS misfit between the dataD and a modelB ∈ L d
m,0 is defined as follows:

Mwtls
([

d1 · · · dN

]
,B

)
:= min

d̂1,...,d̂N∈B

√
√
√
√

N∑

i=1

(di − d̂i)⊤Wi(di − d̂i), (Mwtls)

whereW1, . . . ,WN are given positive definite matrices.

29

i

i

i

i

30 Chapter 3. Weighted Total Least Squares

Problem 3.1 (WTLS).Given the data matrixD =
[
d1 · · · dN

]
∈ R

d×N , a complexity
boundm, and positive definite weight matricesW1, . . . ,WN , find an approximate model

B̂wtls := arg min
B̂∈L d

m,0

Mwtls(D, B̂). (WTLS)

Note 3.2 (Element-wise weighted total least squares)The special case when all weight
matrices are diagonal is called element-wise weighted total least squares (EWTLS). Let
Wi = diag(w1,i, . . . , wd,i) and define thed × N matrix Σ by Σji :=

√
wj,i for all j, i.

Denote by⊙ the element-wise productA ⊙ B =
[
aijbij

]
. Then

N∑

i=1

∆d⊤i Wi∆di = ‖Σ ⊙ ∆D‖2
F,

where∆D :=
[
∆d1 · · · ∆dN

]
is the correction matrixD−D̂. In Note 3.7, we comment

on a statistical interpretation of the EWTLS problem and in Note 3.17 on a relation with a
GTLS problem.

Note 3.3 (TLS as an unweighted WTLS)The extreme special case whenWi = I for
all i is called unweighted. Then the WTLS problem reduces to the TLSproblem. The
TLS misfit Mtls weights equally all elements of the correction matrix∆D. It is a natural
choice when there is no prior knowledge about the data. In addition, the unweighted case
is computationally easier to solve than the general weighted case.

In the unweighted case,̂D tends to approximate better the large elements ofD than
the small ones. This effect can be reduced by introducing proper weights, for example the
reciprocal of the entries of the data matrix. The resulting relative error TLS problem is a
special case of the WTLS problem withWi := diag(1/d2

1i, . . . , 1/d2
di) or, equivalently, an

EWTLS problem withΣji = 1/dji.

Problem 3.4 (Relative error TLS). Given the data matrixD ∈ R
d×N and a complexity

boundm, find an approximate model

B̂rtls := arg min
B∈L d

m,0

min
D̂∈B

√
√
√
√

N∑

i=1

d∑

j=1

(Dji − D̂ji)2

D2
ji

. (RTLS)

The misfit function of the relative error TLS problem is

Mrtls(D,B) = min
D̂∈B

‖Σ ⊙ (D − D̂)‖F, whereΣ :=
[
1/dji

]
.

Example 3.5 (Relative errors) Consider the data matrix

D =

[
5.4710 0.2028 0.5796 0.6665 0.6768
0.9425 0.7701 0.7374 0.8663 0.9909

]

,

i

i

i

i

3.1. Introduction 31

obtained from an experiment withd = 2 variables andN = 5 observed outcomes. We aim
to model this data, using the model classL 2

1,0. Note that the elements ofD, except forD11,
are approximately five times smaller thanD11. The matrices of the element-wise relative
errors

∆Drel :=

[

|dji − d̂ji|
|dji|

]

for the TLS and relative error TLS solutions are, respectively,

∆Drel,tls =

[
0.0153 0.8072 0.2342 0.2404 0.2777
0.3711 0.8859 0.7673 0.7711 0.7907

]

and

∆Drel,rtls =

[
0.8711 0.2064 0.0781 0.0661 0.0030
0.1019 0.5322 0.0674 0.0584 0.0030

]

.

Note that∆Drel,tls,11 = 0.0153 is small but the other elements of∆Drel,tls are larger. This is
a numerical illustration of the above-mentioned undesirable effect of using the TLS method
for approximation of data with elements of very different magnitude. The corresponding
“total” relative errors‖∆Drel‖F, i.e., the misfitsMrtls(D, B̂), are‖∆Drel,tls‖F = 1.89 and
‖∆Drel,rtls‖F = 1.06. The example illustrates the advantage of introducing element-wise
scaling in the approximation criterion, in order to achieveadequate approximation.

Another situation in which weights are needed is when the data matrix is a noisy mea-
surement of a true matrix that satisfies a true modelB̄ ∈ L d

m,0 in the model class. Intuition
suggests that the elements perturbed by noise with larger variance should be weighted less in
the cost function. The precise formulation of this intuitive reasoning leads to the maximum
likelihood criterion for the EIV model. The EIV model for theWTLS problem is defined
as follows.

Definition 3.6 (WTLS EIV model). The data is a noisy measurementD = D̄ + D̃ of true
dataD̄ ∈ B̄ ∈ L d

m,0, whereB̄ is a true model in the model class, andD̃ is the measurement

error. In addition, the vector of measurement errorsvec(D̃) is zero mean and Gaussian,
with covariance matrix̄σ2 ·diag(V1, . . . , VN), i.e.,vec(D̃) ∼ N

(
0, σ̄2 ·diag(V1, . . . , VN)

)
.

In the estimation problem, the covariance matricesV1, . . . , VN are assumed known butσ̄2

need not be known.

Note 3.7 (Statistical interpretation of the EWTLS problem) From a statistical point of
view, the EWTLS problem formulation corresponds to a WTLS EIV setup in which all
measurement errors are uncorrelated. We refer to this EIV model as the EWTLS EIV
model.

By choosingWi = V −1
i , the approximation̂Bwtls is the maximum likelihood estimate

of B̄ in the WTLS EIV model. Under additional assumptions (see [KV04])s it is aconsistent
estimator ofB̄.

i

i

i

i

32 Chapter 3. Weighted Total Least Squares

100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

N

e(
N

)

wls

tls

wtls

gtls

Figure 3.1. Relative error of estimatione as a function ofN for four estimators.

Note 3.8 (Noise variance estimation)The optimal solutionB̂wtls does not depend on a
scaling of the weight matrices by the same scaling factor; i.e., the optimal solution with
weightsσ−2Wi does not depend onσ2. It turns out that the normalized optimal misfit
M(D, B̂wtls)/N is an estimate of the noise varianceσ̄2 in the EIV model.

Example 3.9 (Consistency)We set up a simulation example corresponding to the WTLS
EIV model withd = 3, m = 2, andN ranging from 75 to 750. LetU(u, u) be a matrix
of independent and uniformly distributed elements in the interval [u, u]. The true data
matrix is D̄ = U(0, 1) and the measurement error covariance matrices areσ̄2 · Vi =
diag(σ2

i1, σ
2
i2, σ

2
i3), whereσi1 = σi2 = U(0.01, 0.26), andσi3 = U(0.01, 0.035).

For a fixedN ∈ [75, 750], 500 noise realizations are generated and the estimates are
computed with the following methods:

TLS total least squares (Wi = W = I),

GTLS generalized total least squares (Wi = W = V −1
avr , whereVavr := (

∑N
i=1

√
Vi/N)2),

WTLS weighted total least squares (Wi = V −1
i), and

WLS weighted least squares (that minimizes a weighted norm ofthe equation error of an
input/output representation; see Section 3.2).

A relative error of estimatione that measures the distance from the estimated modelB̂ to the
true oneB̄ (in terms of the parameterX in an input/output representation; see Section 3.2)
is averaged for the500 noise realizations and plotted as a function ofN in Figure 3.1.
Convergence of the relative error of estimation to zero asN increases indicates consistency
of the corresponding estimator.

The stochastic framework gives a convincing interpretation of the weight matricesWi.
Also, it suggests possible ways to choose them. For example,they can be selected by
noise variance estimation from repeated measurements or from prior knowledge about the
accuracy of the measurement devices.

i

i

i

i

3.2. Kernel, image, and input/output representations 33

A practical application of the WTLS problem occurs in chemometrics, where the aim
is to estimate the concentrations of certain chemical substances in a mixture from spectral
measurements on the mixture. For details see [WAH+97, SMWV05].

3.2 Kernel, Image, and Input/Output Representations
In this section we review three common representations of a linear static model: kernel, im-
age, and input/output. They give different parameterizations of the model and are important
in setting up algorithms for approximate modeling with the model classL d

m,0.

Kernel Representation

LetB ∈ L d
m,0; i.e.,B is a subspace ofRd with dimension at mostm. A kernel representation

of B is given by a system of equationsRd = 0, such thatB = { d ∈ R
d | Rd = 0 } or,

equivalently, byB = ker(R). The matrixR ∈ R
g×d is a parameter of the modelB.

The parameterR is not unique. There are two sources for the nonuniqueness:

1. R might have redundant rows, and

2. for a full-rank matrixU , ker(R) = ker(UR).

The parameterR having redundant rows is related to the minimality of the representation.
For a given linear static modelB, the representationRd = 0 of B is minimal if R has the
minimal number of rows among all parametersR that define a kernel representation ofB.
The kernel representation, defined byR, is minimal if and only ifR is full row rank.

Because of item 2, a minimal kernel representation is still not unique. All minimal
representations, however, are related to a given one via a premultiplication of the parameterR
with a nonsingular matrixU . In a minimal kernel representation, the rows ofR are a basis
for B⊥, the orthogonal complement ofB, i.e.,B⊥ = row span(R). The choice ofR is
nonunique due to the nonuniqueness in the choice of basis ofB⊥.

Assuming thatB ∈ L d
m,0 anddim(B) = m, the minimal number of laws necessary to

defineB isp := d−m; i.e., in a minimal representation,B = ker(R) with row dim(R) = p.

Image Representation

The dual of the kernel representationB = ker(R) is the image representation

B = { d ∈ R
d | d = Pl, l ∈ R

l }

or, equivalently,B = col span(P). Again, for a givenB ∈ L d
m,0, an image representation

B = col span(P) is not unique because of the possible nonminimality ofP and the choice
of basis. The representation is minimal if and only ifP is a full column rank matrix. In a
minimal image representation,col dim(P) = dim(B) and the columns ofP form a basis
for B. Clearly, col span(P) = col span(PU), for any nonsingular matrixU ∈ R

l×l.
Note that

ker(R) = col span(P) = B ∈ L
d
m,0 =⇒ RP = 0,

which gives a link between the parametersP andR.

i

i

i

i

34 Chapter 3. Weighted Total Least Squares

Input/Output Representation

Both the kernel and the image representations treat all variables on an equal footing. In
contrast, the more classical input/output representation

Bi/o(X) := { d =: col(di , do) ∈ R
d | X⊤di = do } (I/Orepr)

distinguishes free variablesdi ∈ R
m, called inputs, and dependent variablesdo ∈ R

p, called
outputs. In an input/output representation,di can be chosen freely, whiledo is fixed bydi

and the model.
The partitioningd = col(di , do) gives an input/output partitioning of the variables: the

firstm := dim(di) variables are inputs and the remainingp := dim(do) = d−m variables are
outputs. An input/output partitioning is not unique. Givena kernel or image representation,
finding an input/output partitioning is equivalent to selecting ap × p full-rank submatrix
of R or anm× m full-rank submatrix ofP . In fact, generically, any splitting of the variables
into a group ofp variables (outputs) and a group of remaining variables (inputs) defines a
valid input/output partitioning. In nongeneric cases, certain partitionings of the variables
into inputs and outputs are not possible.

Note that in (I/Orepr), the firstm variables are fixed to be inputs, so that givenX,
the input/output representationBi/o(X) is fixed and vice versa; givenB ∈ L d

m,0, the
parameterX (if it exists) is unique. Thus, as opposed to the parametersR andP in the kernel
and the image representations, the parameterX in the input/output representation (I/Orepr)
is unique.

Consider the input/output representationBi/o(X) of L d
m,0 ∈ B. The matrices

R =
[
X⊤ −I

]
and P =

[
I

X⊤

]

are parameters of, respectively, kernel and image representations ofB, i.e.,

Bi/o(X) = ker
([

X⊤ −I
])

= col span

([
I

X⊤

])

.

Conversely, given the parameters

R =:
[
Ri Ro

]
, Ro ∈ R

p×p and P =:

[
Pi

Po

]

, Pi ∈ R
m×m,

of, respectively, kernel and image representations ofB ∈ L d
m,0, and assuming thatRo andPi

are nonsingular,
X⊤ = −R−1

o Ri = PoP
−1
i

is the parameter of the input/output representation (I/Orepr) of B, i.e.,

ker
(

m p
[
Ri Ro

])
= col span

([
Pi

Po

]
m

p

)

= Bi/o
(
(−R−1

o Ri)
⊤

)
= Bi/o

(
(PoP

−1
i)⊤

)
.

Figure 3.2 shows the links among kernel, image, and input/output representations.

i

i

i

i

3.3. Special cases with closed form solutions 35

B = ker(R) oo RP=0 //

X⊤=−R−1
o Ri

$$IIIIIIIIIIIIIIIIIIIII
B = col span(P)

X⊤=PoP
−1
i

yyssssssssssssssssssssss

B = Bi/o(X)

R=[X⊤ −I]

ddIIIIIIIIIIIIIIIIIIIII

P⊤=[I X]

99ssssssssssssssssssssss

Figure 3.2. Links among kernel, image, and input/output representations ofB ∈ L d
m,0.

Note 3.10 (Weighted least squares)The input/output latency minimization problem

X̂wls = arg min
X

√
√
√
√

N∑

i=1

(X⊤di,i − do,i)⊤Wi(X⊤di,i − do,i), (WLSX)

corresponding to problem (APReqn) with‖e‖i = ‖
√

Wie‖, is the weighted LS problem.

Note 3.11 (AX = B notation) A standard notation adopted in the numerical linear algebra
literature for the input/output linear static model representation (I/Orepr) isa⊤X = b⊤,
i.e., a = di andb = do. For repeated observationsD =

[
d1 · · · dN

]
, the statement

D ∈ Bi/o(X) is equivalent to the linear system of equationsAX = B, where
[
A B

]
:=

D⊤ with A ∈ R
N×m andB ∈ R

N×p.

3.3 Special Cases with Closed Form Solutions
The special cases

• Wi = I, i.e., the total least squares problem, and

• Wi = W , i.e., the generalized total least squares problem,

allow closed form solution in terms of the singular value decomposition (SVD) of the data
matrixD =

[
d1 · · · dN

]
. For general weight matricesWi, however, the WTLS problem

has no closed form solution and its solution is based on numerical optimization methods
that are less robust and efficient. For this reason, recognizing the special cases and applying
the special methods is important.

The following lemmas are instrumental for the solution of the TLS problem.

Lemma 3.12.For D ∈ R
d×N andm ∈ N, D ∈ B ∈ L d

m,0 ⇐⇒ rank(D) ≤ m.

Proof. Let D ∈ B ∈ L d
m,0 and consider a minimal kernel representation ofB = ker(R),

whereR ∈ R
p×d is full row rank. ThenD ∈ B ∈ L d

m,0 =⇒ RD = 0 =⇒
rank(D) ≤ m.

Now letD be rank deficient withrank(D) ≤ m. Then there is a full row rank matrix
R ∈ R

p×d, p := d− m, that annihilatesD, i.e.,RD = 0. The matrixR defines a model in
the classL d

m,0 via B := ker(R). ThenRD = 0 =⇒ D ∈ B ∈ L d
m,0.

i

i

i

i

36 Chapter 3. Weighted Total Least Squares

Lemma 3.12 shows that the approximation of the data matrixD with a model in the
classL d

m,0 is equivalent to finding a matrix̂D ∈ R
d×N with rank at mostm. In the case

when the approximation criterion is‖D − D̂‖F (TLS problem) or‖D − D̂‖2, the problem
has a solution in terms of the SVD ofD. The result is known as the Eckart–Young–Mirsky
low-rank matrix approximation theorem [EY36]. We state it in the next lemma.

Lemma 3.13 (Matrix approximation lemma). LetD = UΣV ⊤ be the SVD ofD ∈ R
d×N

and partition the matricesU , Σ =: diag(σ1, . . . , σd), andV as follows:

U =:

m p
[
U1 U2

]
d , Σ =:

m p
[
Σ1 0
0 Σ2

]
m

p
and V =:

m p
[
V1 V2

]
N , (SVDPRT)

wherem ∈ N is such that0 ≤ m ≤ min(d, N) andp := d− m. Then the rank-m matrix

D̂∗ = U1Σ1V
⊤
1

is such that
‖D − D̂∗‖F = min

rank(D̂)≤m

‖D − D̂‖F =
√

σ2
m+1 + · · · + σ2

d .

The solutionD̂∗ is unique if and only ifσm+1 6= σm.

The solution of the TLS problem (TLS) trivially follows fromLemmas 3.12 and 3.13.

Theorem 3.14 (Solution of the TLS problem). Let D = UΣV ⊤ be the SVD ofD and
partition the matricesU , Σ, and V as in (SVDPRT). Then a TLS approximation ofD
in L d

m,0 is

D̂tls = U1Σ1V
⊤
1 , B̂tls = ker(U⊤

2) = col span(U1),

and the corresponding TLS misfit is

‖D − D̂tls‖F =
√

σ2
m+1 + · · · + σ2

d , where Σ2 =: diag(σm+1, . . . , σd).

A TLS approximation always exists. It is unique if and only ifσm 6= σm+1.

Note 3.15 (Efficient computation ofB̂tls) If one is interested in an approximate modelB̂tls

and not in an approximated datâDtls, the computation can be done more efficiently. A TLS
modelB̂tls depends only on the left singular vectors ofD. Therefore, for any orthogonal
matrix Q, a TLS approximation computed for the data matrixDQ is still B̂tls (the left
singular vectors are not affected by the multiplication with Q). Let D =

[
R1 0

]
Q⊤ be

the QR factorization ofD. A TLS approximation ofR1 is the same as a TLS approximation
of D. ForN ≫ d, computing the QR factorizationD =

[
R1 0

]
Q⊤ and the SVD ofR1

is a more efficient alternative for findinĝBtls than computing the SVD ofD.

Note 3.16 (Nongeneric TLS problems)The TLS problem formulation (TLSX) suffers
from the drawback that the optimal approximating modelB̂tls might have no input/output

i

i

i

i

3.3. Special cases with closed form solutions 37

representation (I/Orepr). In this case (known as nongeneric TLS problem), the optimiza-
tion problem (TLSX) has no solution. By suitable permutation of the variables,however,
(TLSX) can be made solvable, so thatX̂tls exists andB̂tls = Bi/o(X̂tls).

The issue of whether the TLS problem is generic or not is not related to the ap-
proximation of the dataper sebut to the possibility of representing the optimal
modelB̂tls in the form (I/Orepr), i.e., to the possibility of imposing agiven in-
put/output partition on̂Btls.

The solution of the GTLS problem can be obtained from the solution of a TLS problem
for a modified data matrix. In fact, with the same transformation technique, we can solve
a more general WTLS problem than the previously defined GTLS problem. Define the
following misfit criterion:

Mgtls2(D,B) = min
D̂∈B

∥
∥
√

Wl(D − D̂)
√

Wr

∥
∥

F
. (Mgtls2)

With Wl = W andWr = I the misfit minimization problem

B̂gtls2 = arg min
B̂∈L d

m,0

Mgtls2(D, B̂) (GTLS2)

reduces to the previously defined GTLS problem. The right weight matrixWr, however,
gives additional degrees of freedom for choosing an appropriate weighting pattern.

Note 3.17 (EWTLS with rank-one weight matrix Σ) LetWl = diag(wl)andWr = diag(wr),
wherewl ∈ R

d
+ andwr ∈ R

N
+ are given vectors with positive elements. Then

Mgtls2(D,B) = min
D̂∈L d

m,0

‖Σgtls2 ⊙ (D − D̂)‖F, where Σgtls2 = wlw
⊤
r ;

i.e., the GTLS problem (GTLS2) with diagonal weight matricesWl andWr corre-
sponds to an EWTLS problem with rank-one weight matrixΣ.

Theorem 3.18 (Solution of the GTLS problem). Define the modified data matrix

Dm :=
√

WlD
√

Wr,

and let D̂m,tls, B̂m,tls = ker(Rm,tls) = col span(Pm,tls) be a TLS approximation ofDm

in L d
m,0. Then a solution of the GTLS problem (GTLS2) is

D̂gtls2 =
(√

Wl
)−1

D̂m,tls
(√

Wr
)−1

,

B̂gtls2 = ker
(
Rm,tls

√

Wl
)

= col span
((√

Wl
)−1

Pm,tls

)

,

and the corresponding GTLS misfit is
∥
∥D − D̂gtls2

∥
∥

F
=

∥
∥Dm − D̂m,tls

∥
∥

F
.

i

i

i

i

38 Chapter 3. Weighted Total Least Squares

A GTLS solution always exists. It is unique if and only ifB̂m,tls is unique.

Proof. The cost function of the GTLS problem (GTLS2) can be written as
∥
∥
√

Wl(D − D̂)
√

Wr

∥
∥

F
=

∥
∥Dm −

√

WlD̂
√

Wr
︸ ︷︷ ︸

D̂m

∥
∥

F
=:

∥
∥Dm − D̂m

∥
∥

F
,

which is the cost function of a TLS problem for the modified data matrixDm. Because the
mappingD̂m 7→ D̂, defined byD̂m =

√
WlD̂

√
Wr, is one-to-one, the above transformation

shows that the GTLS problem forD is equivalent to the TLS problem forDm. The GTLS
solution D̂gtls2 is recovered from the TLS solution̂Dm,tls by the inverse transformation
D̂gtls2 = (

√
Wl)

−1D̂m,tls(
√

Wr)
−1. We have

Bgtls2 = col span
(
D̂gtls2

)
= col span

((√

Wl
)−1

D̂m,tls

)

= col span
((√

Wl
)−1

Pm,tls

)

,

and it follows thatBgtls2 = ker
(
Rm,tls

√
Wl

)
.

3.4 Misfit Computation
The WTLS problem is a double minimization problem with an inner minimization, the
search for the best approximation of the data in a given model, and an outer minimiza-
tion, the search for the model. First, we solve the inner minimization problem: the misfit
computation (Mwtls).

Since the model is linear, (Mwtls) is a convex quadratic optimization problem with a
linear constraint. Therefore, it has an analytic solution.In order to give explicit formulas for
the optimal approximation̂Dwtls andMwtls(D,B), however, we need to choose a particular
parameterization of the given modelB. Three parameterizations—kernel, image, and
input/output—are described in Section 3.2. We state the results for the kernel and the image
representations. The results for the input/output representation follow from the given ones
by the substitutionsR 7→

[
X⊤ −I

]
andP 7→

[
I

X⊤

]
.

Theorem 3.19 (WTLS misfit computation, kernel representation version). Let ker(R)
be a minimal kernel representation ofB ∈ L d

m,0. The best WTLS approximation ofD in B,
i.e., the solution of (Mwtls), is

d̂wtls,i =
(
I − W−1

i R⊤(RW−1
i R⊤)−1R

)
di, for i = 1, . . . , N,

with the corresponding misfit

Mwtls
(
D, ker(R)

)
=

√
√
√
√

N∑

i=1

d⊤i R⊤(RW−1
i R⊤)−1Rdi. (MwtlsR)

Proof. Define the correction∆D := D − D̂. The misfit computation problem (Mwtls) is
equivalent to

min
∆d1,...,∆dN

N∑

i=1

∆d⊤i Wi∆di subject to R(di − ∆di) = 0, for i = 1, . . . , N.

i

i

i

i

3.4. Misfit computation 39

Observe that this is a separable weighted least norm problem; i.e., it involvesN indepen-
dent weighted least norm subproblems. DefineE := RD and letE =:

[
e1 · · · eN

]
.

Consider theith subproblem

min
∆di

∆d⊤i Wi∆di subject to R∆di = ei.

Its solution is
∆d∗i = W−1

i R⊤(RW−1
i R⊤)−1Rdi,

so that the squared minimum misfit is

M2
wtls(D,B) =

N∑

i=1

∆d∗⊤i Wi∆d∗i =

N∑

i=1

d⊤i R⊤(RW−1
i R⊤)−1Rdi.

Next, we state the result in the special case of a GTLS problem.

Corollary 3.20 (GTLS misfit computation, kernel representation version). Letker(R)
be a minimal kernel representation ofB ∈ L d

m,0. The best GTLS approximation ofD
in B is

D̂gtls =
(
I − W−1R⊤(RW−1R⊤)−1R

)
D,

with the corresponding misfit

Mgtls
(
D, ker(R)

)
=

√

trace (D⊤R⊤(RW−1R⊤)−1RD). (MgtlsR)

The image representation is dual to the kernel representation. Correspondingly, the
misfit computation with kernel and with image representations of the model are dual prob-
lems. The kernel representation leads to a weighted least norm problem and the image
representation leads to an WLS problem.

Theorem 3.21 (WTLS misfit computation, image representationversion). Letcol span(P)
be a minimal image representation ofB ∈ L d

m,0. The best WTLS approximation ofD in B is

d̂wtls,i = P (P⊤WiP)−1P⊤Widi, for i = 1, . . . , N,

with the corresponding misfit

Mwtls
(
D, col span(P)

)
=

√
√
√
√

N∑

i=1

d⊤i Wi

(
I − P (P⊤WiP)−1P⊤Wi

)
di. (MwtlsP)

Proof. In terms of the image representation̂D = PL, with L =:
[
l1 · · · lN

]
, prob-

lem (Mwtls) is equivalent to

min
l1,...,lN

N∑

i=1

(di − d̂i)
⊤Wi(d − d̂i) subject to d̂i = Pli, for i = 1, . . . , N,

i

i

i

i

40 Chapter 3. Weighted Total Least Squares

which is a separable WLS problem. The solution of theith subproblem

min
li

(di − d̂i)
⊤Wi(d − d̂i) subject to d̂i = Pli

is l∗i = (P⊤WiP)−1P⊤Widi, so thatd̂∗i = P (P⊤WiP)−1P⊤Widi.

Corollary 3.22 (GTLS misfit computation, image representation version). Letcol span(P)
be a minimal image representation ofB ∈ L d

m,0. The best GTLS approximation ofD in B is

D̂gtls = P (P⊤WP)−1P⊤WD,

with the corresponding minimum value of the misfit function

Mgtls
(
D, col span(P)

)
=

√

trace
(
D⊤W

(
I − P (P⊤WP)−1P⊤W

)
D

)
. (MgtlsP)

3.5 Misfit Minimization ∗

In Section 3.4, we solved the inner minimization problem of the WTLS problem—misfit
computation. Now we consider the remaining problem—the minimization with respect to
the model parameters. This is a nonconvex optimization problem that in general has no
closed form solution. For this reason, numerical optimization methods are employed for its
solution. First, we review the methods proposed in the literature. Then we present in detail
three algorithms. In Section 3.6, we compare their performance on test examples.

Algorithms Proposed in the Literature

Special optimization methods for the WTLS problem are proposed in [DM93, WAH+97,
PR02, MMH03]. The Riemannian singular value decomposition(RiSVD) framework of
De Moor [DM93] is derived for the STLS problem and includes the EWTLS problem with
complexity specificationm = d−1 as a special case. The restriction to more general WTLS
problems comes from the fact that the RiSVD framework is derived for matrix approximation
problems with rank reduction by one and with diagonal weightmatrices. In [DM93], an
algorithm resembling the inverse power iteration algorithm is proposed for computing the
RiSVD. The method, however, has no proven convergence properties.

The maximum likelihood principle component analysis (MLPCA) method of Wentzell
et al. [WAH+97] is an alternating least squares algorithm. It applies tothe general WTLS
problems and is globally convergent. The convergence rate,however, is linear and the
method can be rather slow in practice.

The method of Premoli and Rastello [PR02] is a heuristic for solving the first order
optimality condition of (WTLS). A solution of a nonlinear equation is searched for instead
of a minimum point of the original optimization problem. Themethod is locally convergent
with superlinear convergence rate. The method is not globally convergent and the region of
convergence around a minimum point can be rather small in practice.

The weighted low-rank approximation (WLRA) framework of Manton, Mahony,
and Hua et al. [MMH03] proposes specialized optimization methods on a Grassman man-
ifold. The least squares nature of the problem is not exploited by the algorithms proposed
in [MMH03].

i

i

i

i

3.5. Misfit minimization∗ 41

Table 3.1. Model representations and optimization algorithms used inthe methods of
[DM93, WAH+97, PR02, MMH03].

Method Representation Algorithm
RiSVD kernel inverse power iteration
MLPCA image alternating projections

PR input/output iteration based on heuristic linearization
WLRA kernel Newton method

The RiSVD, MLPCA, Premoli–Rastello (PR), and WLRA methods differ in the
parameterization of the model and the optimization algorithm that are used.

Table 3.1 summarizes the model parameterizations and optimization algorithms for the
different methods.

Alternating Least Squares Algorithm

The alternating least squares method is based on an image representation of the model, i.e.,
B = col span(P), whereP ∈ R

d×m. First we rewrite (WTLS) in the form

min
D̂∈B∈L d

m,0

√

vec⊤(D − D̂)W vec(D − D̂), where W := diag(W1, . . . ,WN).

The constraint̂D ∈ B is equivalent toD̂ = PL, whereL ∈ R
m×N , so that (WTLS) can

further be written as

min
P∈Rd×m

min
L∈Rm×N

vec⊤(D − PL)W vec(D − PL). (WTLSP)

The two problems

min
P∈Rd×m

vec⊤(D − PL)W vec(D − PL), (RLX1)

min
L∈Rm×N

vec⊤(D − PL)W vec(D − PL), (RLX2)

derived from (WTLSP) by fixing, respectively,L andP to given values, are WLS problems
and therefore can be solved in closed form. They can be viewedas relaxations of the non-
convex problem (WTLSP) to convex problems. Note that (RLX2) is the misfit computation
of (WTLSP) and the solution for the case, whereW is block-diagonal is (MwtlsP).

The alternating least squares method is an iterative methodthat alternatively solves
(RLX1) and (RLX2) with, respectively,L andP fixed to the solution of the previously
solved relaxation problem. The resulting algorithm is Algorithm 3.1.

Algorithm 3.1 is given for an arbitrary positive definite weight matrixW . WhenW
is block-diagonal (WTLS problem) or diagonal (EWTLS problem), Algorithm 3.1 can be
implemented more efficiently, taking into account the structure ofW . For example, in the
WTLS case, the solution of problem (RLX1) can be computed efficiently as follows:

li = (P⊤WiP)−1P⊤Widi, for i = 1, . . . , N,

i

i

i

i

42 Chapter 3. Weighted Total Least Squares

Algorithm 3.1 Alternating least squares algorithm for WTLS problem wtlsap

Input: data matrixD ∈ R
d×N , weight matrixW ∈ R

Nd×Nd, complexity specificationm
for the WTLS approximation, and relative convergence toleranceε.

1: Initial approximation: compute a TLS approximation ofD in L d
m,0 and letP (0) := P̂tls,

D(0) := D̂tls, L(0) := L̂tls, whereL̂tls is the matrix, such that̂Dtls = P̂tlsL̂tls.
2: k := 0.
3: repeat
4: Compute the solution of (RLX1)

vec(L(k+1)) =
(
P(k)⊤WP(k)

)−1
P(k)⊤W vec(D),

whereP(k) = IN ⊗ P (k).
5: M

(k)
wtls =

√

vec⊤(D − P (k)L(k+1))W vec(D − P (k)L(k+1)).
6: k = k + 1.
7: Compute the solution of (RLX2)

vec(P (k)) =
(
L (k)⊤WL (k)

)−1
L (k)⊤W vec(D),

whereL (k) = L(k)⊤ ⊗ Id.
8: M

(k)
wtls =

√

vec⊤(D − P (k)L(k))W vec(D − P (k)L(k)).

9: until |M (k)
wtls − M

(k−1)
wtls |/M (k)

wtls < ε.
Output: P̂wtls := P (k) andD̂wtls = P (k)L(k).

whereli is theith column ofL. Similarly, (MwtlsP) takes into account the block-diagonal
structure ofW for efficient solution of problem (RLX2).

The alternating least squares algorithm monotonically decreases the cost function
value, so that it is globally convergent. The convergence rate, however, is linear and depends
on the distribution of the singular values ofD [MMH03, IV.A]. With a pair of singular values
that are close to each other the convergence rate can be rather low.

Note 3.23 (Initial approximation) For simplicity the initial approximation is chosen to be
a TLS approximation ofD in L d

m,0. The weight matrixW , however, can partially be taken
into account in the computation of the initial approximation. Let the vectorw ∈ R

dN
+ be

the diagonal ofW and letŴ ∈ R
d×N be defined aŝW := vec−1(w), where the mapping

w 7→ Ŵ is denoted byvec−1. The EWTLS problem with weightsΣij :=
√

Ŵij can be
viewed as an approximation of the WTLS problem that takes intoaccount only the diagonal
elements ofW and ignores all off-diagonal elements. In the EIV setting, this is equivalent
to ignoring the cross covariance information.

The solution of the EWTLS problem, however, still requires local optimization meth-
ods that have to be initialized from a given initial approximation. An additional simpli-
fication that results in a GTLS problem and therefore in an exact solution method is to
approximate the matrixΣ by a rank-one matrix; see Note 3.17.

i

i

i

i

3.5. Misfit minimization∗ 43

Algorithm of Premoli and Rastello

The algorithm of Premoli and Rastello uses the input/outputrepresentationBi/o(X) of the
model. We have

D ∈ B ∈ L
d
m,0 ⇐⇒ AX = B, whereD⊤ =:

[
A B

]
,

wherecol dim(A) = m, col dim(B) = p, andd = m + p. The WTLS misfit as a function
of the parameterX is (see (MwtlsR))

Mwtls(X) =

√
√
√
√

N∑

i=1

d⊤i R⊤(RW−1
i R⊤)−1Rdi, whereR :=

[
X⊤ −I

]
. (MwtlsX)

Then (WTLS) becomes the unconstrained optimization problem

X̂wtls = arg min
X

Mwtls(X). (WTLSX)

DefineVi := W−1
i and the residual matrix

E(X) := AX − B, E⊤(X) =:
[
e1(X) · · · eN (X)

]
,

and partitiondi andVi as follows:

di =:

[
ai

bi

]
m

p
, Vi =:

m p
[

Va,i Vab,i

Vba,i Vb,i

]
m

p
.

The first order optimality conditionM ′
wtls(X) = 0 of (WTLSX) is (see Appendix A.1)

2
N∑

i=1

(

aie
⊤
i (X)Γ−1

i (X) − (Va,iX − Vab,i)Γ
−1
i (X)ei(X)e⊤i (X)Γ−1

i (X)
)

= 0,

where
Γi(X) := RW−1

i R⊤.

We aim to find a solution ofM ′
wtls(X) = 0 that corresponds to a solution of the WTLS

problem, i.e., to a global minimum point ofMwtls.
The algorithm proposed in [PR02] uses an iterative procedure starting from an initial

approximationX(0) and generating a sequence of approximationsX(k), k = 0, 1, 2, . . .,
that approaches a solution ofM ′

wtls(X) = 0. The iteration is implicitly defined by the
equation

F (X(k+1),X(k)) = 0, (LINRLX)

where

F (X(k+1),X(k)) := 2

N∑

i=1

(

ai

(
X(k+1)⊤ai − bi

)⊤
Γ−1

i (X(k))

− (Va,iX
(k+1) − Vab,i)Γ

−1
i (X(k))ei(X

(k))e⊤i (X(k))Γ−1
i (X(k))

)

.

i

i

i

i

44 Chapter 3. Weighted Total Least Squares

Note thatF (X(k+1),X(k)) is linear inX(k+1), so thatX(k+1) can be computed in a closed
form as a function ofX(k). Equation (LINRLX) withX(k) fixed can be viewed as a linear
relaxation of the first order optimality condition of (WTLSX), which is a highly nonlinear
equation.

An outline of the PR algorithm is given in Algorithm 3.2. In general, solving the
equation (LINRLX) forX(k+1) requires vectorization. The identityvec(AXB) = (B⊤ ⊗
A) vec(X) is used in order to transform (LINRLX) to the classical system of equations
G(X(k)) vec(X(k+1)) = h(X(k)), whereG andh are given in the algorithm.

Algorithm 3.2 Algorithm of Premoli and Rastello for the WTLS problem wtlspr

Input: the data matrixD ∈ R
d×N , the weight matrices{Wi}N

i=1, a complexity specifica-
tion m for the WTLS approximation, and a convergence toleranceε.

1: Initial approximation: compute a TLS approximationBi/o(X̂tls) of D in L d
m,0, and let

X(0) := X̂tls. (See Note 3.23.)

2: Define:D =:

[
a1 · · · aN

b1 · · · bN

]
m

p
, wherep := d− m.

3: k := 0.
4: repeat
5: Let G = 0mp×mp andh = 0mp×1.
6: for i = 1, . . . , N do
7: ei := X(k)⊤ai − bi.
8: V1 := W−1

i .

9: Mi :=

([

X(k)

−I

]⊤

Vi

[

X(k)

−I

])−1

.

10: yi := Miei.
11: G = G + Mi ⊗ (aia

⊤
i) − (yiy

⊤
i) ⊗ Va,i.

12: h = h + vec(aib
⊤
i Mi − Vab,iyiy

⊤
i).

13: end for
14: Solve the systemGx = h and letX(k+1) := vec−1(x).
15: k := k + 1.
16: until ‖X(k) − X(k−1)‖F/‖X(k)‖F < ε
Output: X̂wtls := X(k).

Note 3.24 (Relation to Gauss–Newton-type algorithms)Algorithm 3.2 isnot a Gauss–
Newton-type algorithm for solving the first order optimality condition because the approx-
imation F is not the first order truncated Taylor series ofM ′

wtls; it is a different linear
approximation. The choice makes the derivation of the algorithm simpler but complicates
the convergence analysis.

Note 3.25 (Convergence properties)Algorithm 3.2 is proven to be locally convergent with
a superlinear convergence rate; see [MRP+05, Section 5.3]. Moreover, the convergence rate
tends to quadratic as the approximation gets closer to a minimum point. The algorithm,
however, is not globally convergent, and simulation results suggest that the region of conver-
gence to a minimum point could be rather small. This requiresa good initial approximation
for convergence.

i

i

i

i

3.5. Misfit minimization∗ 45

An Algorithm Based on Classical Local Optimization Methods

Both the alternating least squares and the PR algorithms areheuristic optimization methods.
Next, we describe an algorithm for the WTLS problem based on classical local optimization
methods. The classical local optimization methods have by now reached a high level of ma-
turity. In particular, their convergence properties are well understood, while the convergence
properties of the RiSVD, MLPCA, and PR methods are still not.

In order to apply a classical optimization algorithm for thesolution of (WTLS), first
we have to choose a parameterization of the model. Possible parameterizations are given
by the kernel, image, and input/output representations. For reasons to be discussed later
(see Note 3.26), we choose the input/output representation(I/Orepr), defined on page 34,
so that the considered problem is (WTLSX).

A quasi-Newton-type method requires an evaluation of the cost functionMwtls(X)
and its first derivativeM ′

wtls(X). Both the misfit and its first derivative are available in
closed form, so that their evaluation is a matter of numerical implementation of the involved
operations. The computational steps are summarized in Algorithm 3.3. The proposed
algorithm, based on a classical optimization method, is outlined in Algorithm 3.4.

Algorithm 3.3 WTLS cost function and first derivative evaluation qncostderiv

Input: D ∈ R
d×N , {Wi}N

i=1, m, andX.

1: Define:D =:

[
a1 · · · aN

b1 · · · bN

]
m

p
, wherep := d− m.

2: Let f = 01×1 andf ′ = 0m×p.
3: for i = 1, . . . , N do
4: ei := X⊤ai − bi.
5: V1 := W−1

i .

6: Solve the system
([

X
−I

]⊤
Vi

[
X
−I

])

yi = ei.

7: f = f + e⊤i yi.
8: f ′ = f ′ + aiy

⊤
i − (Va,iX − Vab,i)yiy

⊤
i .

9: end for
Output: Mwtls(X) = f , M ′

wtls(X) = 2f ′.

Algorithm 3.4 Algorithm for WTLS based on classical local optimization wtlsopt

Input: the data matrixD ∈ R
d×N , the weight matrices{Wi}N

i=1, a complexity specifica-
tion m for the WTLS model, and a convergence toleranceε.

1: Initial approximation: compute a TLS approximationBi/o(X̂tls) of D in L d
m,0, and let

X(0) := X̂tls. (See Note 3.23.)
2: Execute a standard optimization algorithm, e.g., the Broyden, Fletcher, Goldfarb, and

Shanno (BFGS) quasi-Newton method, for the minimization ofMwtls overX with initial
approximationX(0) and with cost function and first derivative evaluation performed via
Algorithm 3.3. LetX̂ be the approximation found by the optimization algorithm upon
convergence.

Output: X̂wtls = X̂.

i

i

i

i

46 Chapter 3. Weighted Total Least Squares

The optimization problem (WTLSX) is a nonlinear least squares problem; i.e.,

Mwtls(X) = F⊤(X)F (X)

for certainF : R
m×p → R

Np. Therefore, the use of special optimization methods such as
the Levenberg–Marquardt method is preferable. The vectorF (X), however, is computed
numerically, so that the JacobianJ(X) :=

[
Fi/xj

]
, wherex = vec(X), cannot be found

in closed form. A possible workaround for this problem is proposed in [GP96], where an
approximation called quasi-Jacobian is used instead. The quasi-Jacobian can be evaluated
in a similar way to the one for the gradient, which allows us touse the Levenberg–Marquardt
method for the solution of the WTLS problem.

Note 3.26 (Kernel vs. input/output representation) In Note 3.16 we comment that an op-
timal approximationB̂ might have no input/output representation (I/Orepr). In practice,
even when such a representation exists, the parameterX̂ might be large, which might cause
numerical problems because of ill conditioning. In this respect the use of a kernel or image
representation is preferable over an input/output representation.

The input/output representation (I/Orepr), however, has the advantage that the param-
eterX is unique, while the parametersR andP in the kernel and image representations are
not. The misfitMwtls depends only onker(R) andcol span(P) and not on all elements of
R andP . This makes the optimization problemsminR Mwtls(R) andminP Mwtls(P) more
difficult than (WTLSX). Additional constraints such asRR⊤ = I andP⊤P = I have to
be imposed and the misfit and its derivative have to be derivedas a function of a unique
parameterization ofker(R) andcol span(P). The mathematical structure appropriate to
treat this type of problem is the Grassman manifold. Classical optimization methods for
optimization over a Grassman manifold are proposed in [MMH03].

3.6 Simulation Examples
We outlined the following algorithms for the WTLS problem:

MLPCA—the alternating least squares algorithm,

PR—the algorithm of Premoli and Rastello,

QN—the algorithm based on a quasi-Newton optimization method, and

LM—the algorithm based on the Levenberg–Marquardt optimization method.

In this section, we compare the performance of the algorithms on a simulation example.
The considered model class isL 4

2,0 and the experiment hasN = 25 outcomes. The data
D ∈ R

4×25, used in the example, is simulated according to the WTLS EIV model with
a true modelBi/o(X̄), whereX̄ ∈ R

2×2 is a random matrix, and with random positive
definite weight matrices{Wi}25

i=1.
The algorithms are compared on the basis of the

• achieved misfitMwtls(D, B̂), whereB̂ is the computed approximate model;

• number of iterations needed for convergence to the specified convergence tolerance;

i

i

i

i

3.7. Conclusions 47

Table 3.2.Simulation results comparing four algorithms for the WTLS problem.

Method MLPCA PR QN LM GTLS TLS WLS
misfit 0.4687 0.4687 0.4687 0.46870.7350 0.7320 1.0500
error 0.2595 0.2582 0.2581 0.25820.4673 0.4698 0.5912
iter. 51 6 5 4 — — —

fun. eval. — — 18 29 — — —
megaflops 54 0.06 0.11 0.15 0.010 0.005 0.010
time, sec 2.29 0.40 0.59 0.54 0.004 0.002 0.003

• execution time, measured in seconds;

• relative error of approximation‖X̄−X̂‖F/‖X̂‖F, whereX̂ is such that̂B = Bi/o(X̂);

• computational cost, measured in floating point operations(flops); and

• number of cost function evaluations.

The criteria that are not relevant for a method are marked with “—”. The experiment is
repeated 10 times with different noise realizations and theaveraged results are shown in
Table 3.2.

In addition to the four WTLS algorithms, the table shows the results for the GTLS,
TLS, and weighted least squares (WLS) methods. The GTLS method is applied by taking
W to be the average1/N

∑N
i=1 Wi of the weight matrices and the WLS method uses only

the information{Wb,i}N
i=1, whereWi =:

[
Wa,i Wab,i

∗ Wb,i

]

andWb,i ∈ R
p×p.

The results indicate that although (in this example) the four WTLS algorithms con-
verge to the same local minimum of the cost function, their convergence properties and
numerical efficiency are different. In order to achieve the same accuracy, the MLPCA al-
gorithm needs more iterations than the other algorithms andas a result its computational
efficiency is lower. The large number of iterations needed for convergence of the MLPCA
algorithm is due to its linear convergence rate. In contrast, the convergence rate of the
other algorithms is superlinear. They need approximately the same number of iterations
and the execution times and numerical efficiency are similar. The PR algorithm is about
two times more efficient than the standard local optimization algorithms, but it has no global
convergence property, which is a serious drawback for most applications.

3.7 Conclusions
In this chapter we considered approximate modeling problems for linear static problems.
The most general problem formulation that we treated is the WTLS problem, where the
distance from each of the outcomes to the model is measured bya weighted norm with
possibly different weight matrix. The WTLS problem is motivated by the relative error TLS
and EIV estimation problems, where the weighted misfit naturally occurs and the weight
matrices have interpretation, e.g., in the EIV estimation problem, the weight matrices are
related to the covariance matrices of the measurement errors.

i

i

i

i

48 Chapter 3. Weighted Total Least Squares

We showed the relations among the kernel, image, and input/output representations.
Except for the nongeneric cases that occur in the input/output representation, one repre-
sentation can be transformed into another one. Thus in misfitapproximation problems the
choice of the representation is a matter of convenience. Once computed, the approximate
modelB̂ can be transformed to any desired representation. We noted that the numerical
algorithms proposed in the literature for the WTLS problem differ mainly because they use
different model representations.

We showed how the TLS and GTLS problems are solved by an SVD. Inlinear algebra
terms, these problems boil down to finding a closest rankdeficient matrix to a given matrix.
The main tool for obtaining the solution is the matrix approximation lemma. The solution
always exists but in certain nongeneric cases it could be nonunique.

The numerical solution of the general WTLS problem was approached in two steps:

1. compute analytically the misfit and

2. solve numerically the resulting optimization problem.

We showed two different expressions for the WTLS misfit: one for a model given by a kernel
representation and the other for a model given by an image representation. In the first case,
the misfit computation problem is a weighted least norm problem, and in the second case,
it is a WLS problem.

Apart from the model representation used, another way of obtaining different com-
putational algorithms is the use of a different optimization method in the second step. We
outlined three algorithms: alternating least squares, thealgorithm of Premoli and Rastello,
and an algorithm based on classical local optimization methods. The alternating least
squares algorithm has a linear convergence rate, which makes it rather slow compared to the
other two algorithms, whose convergence rate is superlinear. The algorithm of Premoli and
Rastello is not globally convergent, while the other two algorithms have this property. For
these reasons, the algorithm based on standard local optimization methods is recommended
for solving WTLS problems.

The proposed Algorithm 3.4, based on local optimization methods, however, uses the
input/output representationBi/o(X) of the model. As already discussed, this representation
is not general; there are cases when the dataD is such that the optimal approximation̂B
has no input/output representationBi/o(X̂). Such cases are nongeneric, but even whenX̂
exists, it might be large, which might cause ill conditioning. A solution for this problem is to
use a kernel or an image representation of the model. The choice of a kernel representation
leads to the optimization methods presented in [MMH03].

i

i

i

i

Chapter 4

Structured Total Least
Squares

The weighted total least squares problem generalizes the TLS problem by introducing
weights in the misfit function. The structured total least squares problem generalizes the TLS
problem by introducing a structure in the data matrix. The motivation for the special type
of block-Hankel structure comes from system identification. The global total least squares
problem is closely related to the structured total least squares problem with block-Hankel
structured data matrix.

Section 4.1 gives an overview of the existing literature. Section 4.2 defines the type
of structure we restrict ourselves to and derives an equivalent unconstrained optimization
problem. The data matrix is partitioned into blocks and eachof the blocks is block-
Toeplitz/Hankel structured, unstructured, or exact. In Section 4.3, the properties of the
equivalent problem are established. The special structureof the equivalent problem enables
us to improve the computational efficiency of the numerical solution methods. By exploiting
the structure, the computational complexity of the algorithms (local optimization methods)
per iteration is linear in the sample size.

4.1 Overview of the Literature
History of the Problem

The origin of the STLS problem dates back to the work of Aoki and Yue [AY70a], although
the name “structured total least squares” did not appear until 23 years later in the liter-
ature [DM93]. Aoki and Yue consider a single-input single-output system identification
problem, where both the input and the output are noisy (EIV setting) and derive a maxi-
mum likelihood solution. Under the normality assumption for the measurement errors, a
maximum likelihood estimate turns out to be a solution of theSTLS problem. Furthermore,
Aoki and Yue approach the optimization problem in a similar way to the one we adopt:
they use classical nonlinear least squares minimization methods for solving an equivalent
unconstrained problem.

The STLS problem occurs frequently in signal processing applications. Cadzow
[Cad88] and Bresler and Macovski [BM86] propose heuristic solution methods that turn

49

i

i

i

i

50 Chapter 4. Structured Total Least Squares

out to besuboptimal[DM94, Section V] with respect to the STLS criterion. These methods,
however, became popular because of their simplicity. For example, the method of Cadzow
is an iterative method that alternates between unstructured low-rank approximation and
structure enforcement, thereby requiring only SVD computations and manipulation of the
matrix entries.

Abatzoglou, Mendel, and Harda [AMH91] are considered to be the first who formu-
lated an STLS problem. They called their approachconstrained total least squaresand
motivate the problem as an extension of the TLS method to matrices with structure. The
solution approach adopted in [AMH91] is closely related to the one of Aoki and Yue. Again,
an equivalent optimization problem is derived, but it is solved numerically via a Newton-type
optimization method.

Shortly after the publication of the work on the constrainedtotal least squares problem,
De Moor lists many applications of the STLS problem and outlines a new framework for
deriving analytical properties and numerical methods [DM93]. His approach is based on
the Lagrange multipliers and the basic result is an equivalent problem, calledRiemannian
singular value decomposition, that can be considered as a “nonlinear” extension of the
classical SVD. As an outcome of the new problem formulation,an iterative solution method
based on the inverse power iteration is proposed.

Another algorithm for solving the STLS problem (even withℓ1 and ℓ∞ norms in
the cost function), calledstructured total least norm, is proposed by Rosen, Park, and
Glick [RPG96]. In contrast to the approaches of Aoki and Yue and Abatzoglou et al.,
Rosen et al. solve the problem in its original formulation. The constraint is linearized around
the current iteration point, which results in a linearly constrained least squares problem. In
the algorithm of [RPG96], the constraint is incorporated inthe cost function by adding a
multiple of its residual norm.

The weighted low-rank approximation framework of Manton, Mahony, and Hua
[MMH03] has been extended in Schuermans, Lemmerling, and Van Huffel [SLV04, SLV05]
toHankel structured low-rank approximationproblems. All problem formulations and solu-
tion methods cited above, except for the ones in the WLRA framework, aim at rank reduction
of the data matrixC by one. A generalization of the algorithm of Rosen et al. to problems
with rank reduction by more than one is proposed by Van Huffel, Park, and Rosen [VPR96].
It involves, however, Kronecker products that unnecessarily inflate the dimension of the
involved matrices. The solution methods in the WLRA framework [SLV04, SLV05] are
also computationally demanding.

When dealing with a general affine structure, the constrainedtotal least squares, Rie-
mannian singular value decomposition, and structured total least norm methods have cubic
computational complexity in the number of measurements. Fast algorithms with linear com-
putational complexity are proposed by Lemmerling, Mastronardi, and Van Huffel [LMV00]
and Mastronardi, Lemmerling, and Van Huffel [MLV00] for special STLS problems with
data matrixS (p) =:

[
A b

]
that is Hankel or composed of a Hankel blockA and an

unstructured columnb. They use the structured total least norm approach but recognize that
a matrix appearing in the kernel subproblem of the algorithmhas low displacement rank.
This is exploited via the Schur algorithm.

i

i

i

i

4.2. The structured total least squares problem 51

Motivation for Our Work

The STLS solution methods outlined above point out the following issues:

• structure: the structure specification for the data matrixS (p) varies from general
affine [AMH91, DM93, RPG96] to specific affine, such as Hankel/Toeplitz [LMV00],
or Hankel/Toeplitz block augmented with an unstructured column [MLV00],

• rank reduction:all methods, except for the ones of [VPR96, SLV04, SLV05], reduce
the rank of the data matrix byd = 1;

• computational efficiency:the efficiency varies from cubic for the methods that use a
general affine structure to linear for the efficient methods of [LMV00, MLV00] that
use a Hankel/Toeplitz-type structure.

No efficient algorithms exist for problems with block-Hankel/Toeplitz structure and rank
reductiond > 1. In addition, the proposed methods lack a numerically reliable and robust
software implementation that would make possible their usein real-life applications. Due to
the above reasons, the STLS methods, although attractive for theoretical studies and relevant
for applications, did not become popular for solving real-life problems.

The motivation for our work is to make the STLS method practically useful by deriving
algorithms that are general enough for various applications and computationally efficient
for real-life examples. We complement the theoretical study by a software implementation.

4.2 The Structured Total Least Squares Problem
The STLS problem

min
p̂

‖p − p̂‖ subject to rank
(
S (p̂)

)
≤ n (STLS)

defined in Section 2.7 is a structured low-rank approximation problem. The functionS :
R

np → R
m×(n+d), m > n, defines the structure of the data as follows: a matrixC ∈

R
m×(n+d) is said to have structure defined byS if there exists ap ∈ R

np , such that
C = S (p). The vectorp is called a parameter vector of the structured matrixC.

The aim of the STLS problem is to perturb as little as possiblea given parameter
vectorpby a vector∆p, so that the perturbed structured matrixS (p+∆p)becomes
rank deficient with rank at mostn.

A kernel representation of the rank deficiency constraintrank
(
S (p)

)
= n yields the

equivalent problem

min
RR⊤=Id

min
p̂

‖p − p̂‖ subject to RS
⊤(p̂) = 0. (STLSR)

In this chapter, we use an input/output representation, so that the considered STLS problem
is defined as follows.

i

i

i

i

52 Chapter 4. Structured Total Least Squares

Problem 4.1 (STLS).Given a data vectorp ∈ R
np , a structure specificationS : R

np →
R

m×(n+d), and a rank specificationn, solve the optimization problem

X̂stls = arg min
X,∆p

‖∆p‖ subject to S (p − ∆p)

[
X
−Id

]

= 0. (STLSX)

Define the matrices

Xext :=

[
X
−I

]

and
[
A B

]
:= C := S (p), whereA ∈ R

m×n andB ∈ R
m×d,

and note thatCXext = 0 is equivalent to the structured system of equationsAX = B.
The STLS problem is said to be affine structured if the function S is affine, i.e.,

S (p) = S0 +

np∑

i=1

Sipi, for all p ∈ R
np and for someSi, i = 1, . . . , np. (4.1)

In an affine STLS problem, the constraintS (p − ∆p)Xext = 0 is bilinear in the decision
variablesX and∆p.

Lemma 4.2.LetS : R
np → R

m×(n+d) be an affine function. Then

S (p − ∆p)Xext = 0 ⇐⇒ G(X)∆p = r(X),

where
G(X) :=

[
vec

(
(S1Xext)

⊤
)

· · · vec
(
(Snp

Xext)
⊤

)]
∈ R

md×np , (4.2)

and
r(X) := vec

((
S (p)Xext

)⊤
)

∈ R
md.

Proof.

S (p − ∆p)Xext = 0 ⇐⇒
np∑

i=1

Si∆piXext = S (p)Xext

⇐⇒
np∑

i=1

vec
(
(SiXext)

⊤
)
∆pi = vec

((
S (p)Xext

)⊤
)

⇐⇒ G(X)∆p = r(X).

Using Lemma 4.2, we rewrite the affine STLS problem as follows:

min
X

(

min
∆p

‖∆p‖ subject to G(X)∆p = r(X)
)

. (4.3)

The inner minimization problem has an analytic solution, which allows us to derive an
equivalent optimization problem.

i

i

i

i

4.2. The structured total least squares problem 53

Theorem 4.3 (Equivalent optimization problem for affine STLS). Assuming thatnp ≥
md, the affine STLS problem (4.3) is equivalent to

min
X

f0(X), where f0(X) := r⊤(X)Γ†(X)r(X) and Γ(X) := G(X)G⊤(X).

(4.4)

Proof. Under the assumptionnp ≥ md, the inner minimization problem of (4.3) is equiva-
lent to a least norm problem. Its minimum point (as a functionof X) is

∆p∗(X) = G⊤(X)
(
G(X)G⊤(X)

)†
r(X),

so that

f0(X) = ∆
(
p∗(X)

)⊤
∆p∗(X) = r⊤(X)

(
G(X)G⊤(X)

)†
r(X) = r⊤(X)Γ†(X)r(X).

The significance of Theorem 4.3 is that the constraint and thedecision variable∆p in
problem (4.3) are eliminated. Typically, the number of elementsnd in X is much smaller
than the number of elementsnp in the correction∆p. Thus the reduction in the complexity
is significant.

The equivalent optimization problem (4.4) is a nonlinear least squares problem, so
that classical optimization methods can be used for its solution. The optimization methods
require a cost function and first derivative evaluation. In order to evaluate the cost functionf0

for a given value of the argumentX, we need to form the weight matrixΓ(X) and to solve
the system of equationsΓ(X)y(X) = r(X). This straightforward implementation requires
O(m3) floating point operation (flops). For largem (the applications that we aim at) this
computational complexity becomes prohibitive.

It turns out, however, that for special affine structuresS , the weight matrixΓ(X)
has a block-Toeplitz and block-banded structure, which canbe exploited for efficient cost
function and first derivative evaluations. The set of structures ofS for which we establish
the special properties ofΓ(X) is specified next.

Assumption 4.4 (Flexible structure specification).The structure specificationS : R
np →

R
m×(n+d) is such that for allp ∈ R

np , the data matrixS (p) =: C =:
[
A B

]
is of the

typeS (p) =
[
C1 · · · Cq

]
, whereCl, for l = 1, . . . , q, is block-Toeplitz, block-Hankel,

unstructured, or exact and all block-Toeplitz/Hankel structured blocksCl have equal row
dimensionK of the blocks.

Assumption 4.4 says thatS (p) is composed of blocks, each one of which is block-
Toeplitz, block-Hankel, unstructured, or exact. A blockCl that is exact is not modified in
the solutionĈ := S (p − ∆p), i.e., Ĉl = Cl. Assumption 4.4 is the essential structural
assumption that we impose on the problem (STLSX). As shown in Section 4.6, it is fairly
general and covers many applications.

i

i

i

i

54 Chapter 4. Structured Total Least Squares

Example 4.5 Consider the following block-Toeplitz matrix:

C =














5
6

3
4

1
2

7
8

5
6

3
4

9
10

7
8

5
6














with row dimension of the blockK = 2. Next, we specify the matricesSi that define
via (4.1) an affine functionS , such thatC = S (p) for certain parameter vectorp. Let==
be the element-wise comparison operator

(A==B) := C, for all A,B ∈ R
m×n, whereCij :=

{

1 if Aij = Bij ,

0 otherwise.

Let E be the6 × 3 matrix with all elements equal to 1 and defineS0 := 06×3 andSi :=
(C==iE), for i = 1, . . . , 10. We have

C =
10∑

i=1

Sii = S0 +
10∑

i=1

Sipi =: S (p), with p =
[
1 2 · · · 10

]⊤
.

The matrixC considered in the example is special; it allowed us to easilywrite down a
corresponding affine functionS . Clearly with the constructedS , any6×3 block-Toeplitz
matrix C with row dimension of the blockK = 2 can be written asC = S (p) for
certainp ∈ R

10.

We use the notationnl for the number ofblockcolumns of the blockCl. For unstruc-
tured and exact blocks,nl := 1.

4.3 Properties of the Weight Matrix ∗

For the evaluation of the cost functionf0 of the equivalent optimization problem (4.4), we
have to solve the system of equationsΓ(X)y(X) = r(X), whereΓ(X) ∈ R

md×np with
bothm andnp large. In this section, we investigate the structure of the matrix Γ(X). In
the notation, occasionally we drop the explicit dependenceof r andΓ onX.

Theorem 4.6 (Structure of the weight matrixΓ). Consider the equivalent optimization
problem (4.4) from Theorem 4.3. If, in addition to the assumptions of Theorem 4.3, the
structureS is such that Assumption 4.4 holds, then the weight matrixΓ(X) has the block-

i

i

i

i

4.3. Properties of the weight matrix∗ 55

banded and block-Toeplitz structure

Γ(X) =















Γ0 Γ⊤
1 · · · Γ⊤

s 0

Γ1
. ..

.. .
.. .

. . .
...

. ..
.. .

.. .
. . . Γ⊤

s

Γs
. ..

.. .
.. .

. . .
...

. ..
.. .

.. .
. . . Γ⊤

1

0 Γs · · · Γ1 Γ0















∈ R
md×md, (4.5)

whereΓk ∈ R
dK×dK , for k = 0, 1, . . . , s, ands = maxl=1,...,q(nl − 1), wherenl is the

number of block columns in the blockCl of the data matrixS (p).

The proof is developed in a series of lemmas. First, we reducethe original problem
with multiple blocksCl (see Assumption 4.4) to three independent problems—one for the
unstructured case, one for the block-Hankel case, and one for the block-Toeplitz case.

Lemma 4.7.Consider a structure specification of the form

S (p) =
[
S 1(p1) · · · S q(pq)

]
, pl ∈ R

np,l ,
∑q

l=1 np,l =: np,

wherep =: col(p1, . . . , pq) andS (pl) := Sl
0+

∑np,l

i=1 Sl
ip

l
i, for all pl ∈ R

np,l , l = 1, . . . , q.
Then

Γ(X) =

q
∑

l=1

Γl(X), (4.6)

whereΓl := Gl(Gl)⊤, Gl :=
[
vec

(
(Sl

1X
l
ext)

⊤
)

· · · vec
(
(Sl

np,l
X l

ext)
⊤

)]
, and

Xext =: col(X1
ext, . . . ,X

q
ext), with X l

ext ∈ R
nl×d,

∑q
l=1 nl = n + d.

Proof. The result is a refinement of Lemma 4.2. Let∆p =: col(∆p1, . . . ,∆pq), where
∆pl ∈ R

np,l , for l = 1, . . . , q. We have

S (p − ∆p)Xext = 0 ⇐⇒ ∑q
l=1 S l(pl − ∆pl)X l

ext = 0

⇐⇒ ∑q
l=1

∑np

i=1 Sl
i∆pl

iX
l
ext = S (p)Xext

⇐⇒ ∑q
l=1 Gl∆pl = r(X)

⇐⇒
[
G1 · · · Gq

]

︸ ︷︷ ︸

G(X)

∆p = r(X),

so thatΓ = GG⊤ =
∑q

l=1 Gl(Gl)⊤ =
∑q

l=1 Γl.
Next, we establish the structure ofΓ for an STLS problem with unstructured data

matrix.

i

i

i

i

56 Chapter 4. Structured Total Least Squares

Lemma 4.8.Let

S (p) :=








p1 p2 · · · pn+d

pn+d+1 pn+d+2 · · · p2(n+d)

...
...

...
p(m−1)(n+d)+1 p(m−1)(n+d)+2 · · · pm(n+d)







∈ R

m×(n+d).

Then
Γ = Im ⊗ (X⊤

extXext); (4.7)

i.e., the matrixΓ has the structure (4.5) withs = 0 andΓ0 = IK ⊗ (X⊤
extXext).

Proof. We have

S (p − ∆p)Xext = 0 ⇐⇒ vec
(
X⊤

extS
⊤(∆p)

)
= vec

((
S (p)Xext

)⊤
)

⇐⇒ (Im ⊗ X⊤
ext)

︸ ︷︷ ︸

G(X)

vec
(
S

⊤(∆p)
)

︸ ︷︷ ︸

∆p

= r(X).

Therefore,Γ = GG⊤ = (Im ⊗ X⊤
ext)(Im ⊗ X⊤

ext)
⊤ = Im ⊗ (X⊤

extXext).
Next, we establish the structure ofΓ for an STLS problem with block-Hankel data

matrix.

Lemma 4.9.Let

S (p) :=








C1 C2 · · · Cn

C2 C3 · · · Cn+1

...
...

...
Cm Cm+1 · · · Cm+n−1







∈ R

m×(n+d),

n :=
n + d

L
,

m :=
m

K
,

whereCi areK × L unstructured blocks, parameterized byp(i) ∈ R
KL as follows:

Ci :=









p
(i)
1 p

(i)
2 · · · p

(i)
L

p
(i)
L+1 p

(i)
L+2 · · · p

(i)
2L

...
...

...

p
(i)
(K−1)L+1 p

(i)
(K−1)L+2 · · · p

(i)
KL









∈ R
K×L.

Define a partitioning ofXext asX⊤
ext =:

[
X1 · · · Xn

]
, whereXj ∈ R

d×L. ThenΓ has
the block-banded and block-Toeplitz structure (4.5) withs = n − 1 and with

Γk =
n−k∑

j=1

XjX
⊤
j+k, where Xk := IK ⊗ Xk. (4.8)

Proof. Define the residualR := S (∆p)Xext and the partitioningR⊤ =:
[
R1 · · · Rm

]
,

i

i

i

i

4.3. Properties of the weight matrix∗ 57

whereRi ∈ R
d×K . Let ∆C := S (∆p), with block entries∆Ci. We have

S (p − ∆p)Xext = 0 ⇐⇒ S (∆p)Xext = S (p)Xext

⇐⇒








X1 X2 · · · Xn

X1 X2 · · · Xn

. ..
.. .

. . .
X1 X2 · · · Xn















∆C⊤
1

∆C⊤
2

...
∆C⊤

m+n−1








=








R⊤
1

R⊤
2
...

R⊤
m








⇐⇒








X1 X2 · · · Xn

X1 X2 · · · Xn

. . .
. . .

. . .
X1 X2 · · · Xn








︸ ︷︷ ︸

G(X)








vec(∆C⊤
1)

vec(∆C⊤
2)

...
vec(∆C⊤

m+n−1)








︸ ︷︷ ︸

∆p

=








vec(R⊤
1)

vec(R⊤
2)

...
vec(R⊤

m)








︸ ︷︷ ︸

r(X)

.

Therefore,Γ = GG⊤ has the structure (4.5), withΓk ’s given by (4.8).
The derivation of theΓ matrix for an STLS problem with block-Toeplitz data matrix

is analogous to the one for an STLS problem with block-Hankeldata matrix. We state the
result in the next lemma.

Lemma 4.10.Let

S (p) :=








Cn Cn−1 · · · C1

Cn+1 Cn · · · C2

...
...

...
Cm+n−1 Cm+n−2 · · · Cm







∈ R

m×(n+d),

with the blocksCi defined as in Lemma 4.9. ThenΓ has the block-banded and block-Toeplitz
structure (4.5) withs = n − 1 and

Γk =

n∑

j=k+1

XjX
⊤
j−k. (4.9)

Proof. Following the same derivation as in the proof of Lemma 4.9, wefind that

G =








Xn Xn−1 · · · X1

Xn Xn−1 · · · X1

. ..
. . .

. . .
Xn Xn−1 · · · X1








.

Therefore,Γ = GG⊤ has the structure (4.5), withΓk ’s given by (4.9).
Proof of Theorem 4.6.Lemmas 4.7–4.10 show that the weight matrixΓ for the original

problem has the block-banded and block-Toeplitz structure(4.5) with s = maxl=1,...,q

(nl − 1), wherenl is the number of block columns in thelth block of the data matrix.

i

i

i

i

58 Chapter 4. Structured Total Least Squares

Apart from revealing the structure ofΓ, the proof of Theorem 4.6 gives an algorithm
for the construction of the blocksΓ0, …, Γs that defineΓ:

Γk =

q
∑

l=1

Γl
k, whereΓl

k =







∑nl

j=k+1 Xl
j(X

l
j−k)⊤ if Cl is block-Toeplitz,

∑nl−k
j=1 Xl

j(X
l
j+k)⊤ if Cl is block-Hankel,

δkIK ⊗
(
(X l

ext)
⊤X l

ext

)
if Cl is unstructured,

0dK if Cl is exact,

(4.10)

whereδ is the Kronecker delta function:δ0 = 1 andδk = 0 for k 6= 0.

Corollary 4.11 (Positive definiteness of the weight matrixΓ). Assume that the structure
of S is given by Assumption 4.4 with the blockCq being block-Toeplitz, block-Hankel, or
unstructured and having at leastd columns. Then the matrixΓ(X) is positive definite for
all X ∈ R

n×d.

Proof. We will show thatΓq(X) > 0 for all X ∈ R
n×d. From (4.6), it follows thatΓ has

the same property. By the assumptioncol dim(Cq) ≥ d, it follows thatXq
ext = [∗

−Id
], where

the∗ denotes a block (possibly empty) depending onX. In the unstructured case,Γq =
Im ⊗

(
(Xq

ext)
⊤Xq

ext

)
; see (4.10). Butrank

(
(Xq

ext)
⊤Xq

ext

)
= d, so thatΓq is nonsingular. In

the block-Hankel/Toeplitz case,Gq is block-Toeplitz and block-banded; see Lemmas 4.9
and 4.10. One can verify by inspection that, independent ofX, Gq(X) has full row rank
due to its row echelon form. ThenΓq = Gq(Gq)⊤ > 0.

The positive definiteness ofΓ is studied in a statistical setting in [KMV05, Section 4],
where more general conditions are given. The restriction ofAssumption 4.4 that ensures
Γ > 0 is fairly minor, so that in what follows we will consider STLSproblems of this type
and replace the pseudoinverse in (4.4) with the inverse.

In the next section, we give an interpretation of the result from a statistical point of
view, and in Section 4.5, we consider in more detail the algorithmic side of the problem.

4.4 Stochastic Interpretation ∗

Our work on the STLS problem has its origin in the field of estimation theory. Consider the
EIV model

AX ≈ B, where A = Ā + Ã, B = B̄ + B̃, and ĀX̄ = B̄. (EIVX)

The dataA andB is obtained from true values̄A andB̄ with measurement errors̃A andB̃
that are zero mean random matrices. Define the extended matrix C̃ :=

[

Ã B̃
]

and the

vectorc̃ := vec(C̃⊤) of the measurement errors. It is well known (see [VV91, Chapter 8])
that the TLS problem (TLSX) provides a consistent estimator for the true value of the
parameterX̄ in the model (EIVX) if cov(c̃) = σ2I (and additional technical conditions are
satisfied). If in addition tocov(c̃) = σ2I, c̃ is normally distributed, i.e.,̃c ∼ N(0, σ2I),then
the solutionX̂tls of the TLS problem is the maximum likelihood estimate ofX̄.

The model (EIVX) is called structured EIV model if the observed dataC and the true
valueC̄ :=

[
Ā B̄

]
have a structure defined by a functionS . Therefore,

C = S (p) and C̄ = S (p̄),

i

i

i

i

4.4. Stochastic interpretation∗ 59

where p̄ ∈ R
np is a true value of the parameterp. As a consequence, the matrix of

measurement errors is also structured. LetS be affine and defined by (4.1). Then

C̃ =

np∑

i=1

Sip̃i and p = p̄ + p̃,

where the random vector̃p represents the measurement error on the structure parameter p̄.
In [KMV05], it is proven that the STLS problem (STLSX) provides a consistent estimator
for the true value of the parameter̄X if cov(p̃) = σ2I (and additional technical conditions
are satisfied). If̃p ∼ N(0, σ2I) then a solutionX̂ of the STLS problem is a maximum
likelihood estimate ofX̄.

Let r̃(X) := vec
(
S (p̃)Xext

)
be the random part of the residualr.

In the stochastic setting, the weight matrixΓ is, up to the scale factorσ2, equal to
the covariance matrixVr̃ := cov(r̃).

Indeed,̃r = Gp̃, so that

Vr̃ := E(r̃r̃⊤) = G E(p̃p̃⊤)G⊤ = σ2GG⊤ = σ2Γ.

Next, we show that the structure ofΓ is in a one-to-one correspondence with the
structure ofVc̃ := cov(c̃). Let Γij ∈ R

dK×dK be the(i, j)th block ofΓ and letVc̃,ij ∈
R

(n+d)K×(n+d)K be the(i, j)th block ofVc̃. Define also the following partitionings of the
vectorsr̃ andc̃:

r̃ =: col(r̃1, . . . , r̃m), r̃i ∈ R
dK and c̃ =: col(c̃1, . . . , c̃m), c̃i ∈ R

(n+d)K ,

wherem := m/K. Usingri = Xextci, whereXext := (IK ⊗ X⊤
ext), we have

σ2Γij = E(r̃ir̃
⊤
j) = XextE(c̃ic̃

⊤
j)X⊤

ext = XextVc̃,ijX
⊤

ext. (4.11)

The one-to-one relation between the structures ofΓ andVc̃ allows us to relate the
structural properties ofΓ, established in Theorem 4.6, with statistical properties of the
measurement errors. Define stationarity ands-dependence of a centered sequence of random
vectors̃c := {c̃1, c̃2, . . .}, c̃i ∈ R

(n+d)K as follows:

• c̃ is stationary if the covariance matrixVc̃ is block-Toeplitz with block size
(n + d)K × (n + d)K, and

• c̃ is s-dependentif the covariance matrixVc̃ is block-banded with block size
(n + d)K × (n + d)K and block bandwidth2s + 1.

The sequence of measurement errorsc̃1, . . . , c̃m being stationary ands-dependent
corresponds toΓ being block-Toeplitz and block-banded.

i

i

i

i

60 Chapter 4. Structured Total Least Squares

The statistical setting gives an insight into the relation between the structure of the
weight matrixΓ and the structure of the data matrixC. It can be verified that the structure
specification of Assumption 4.4 implies stationarity ands-dependen for̃c. This indicates
an alternative (statistical) proof of Theorem 4.6.

The blocks ofΓ are quadratic functions ofX, Γij(X) = XextWc̃,ijX
⊤

ext, where
Wc̃,ij := Vc̃,ij/σ2; see (4.11). Moreover, by Theorem 4.6, we have that under Assump-
tion 4.4,Wc̃,ij = Wc̃,|i−j|, for certain matricesWc̃,k, k = 1, . . . ,m, andWc̃,ij = 0, for
|i − j| > s, wheres is defined in Theorem 4.6. Therefore,

Γk(X) = XextWc̃,kX
⊤

ext, for k = 1, . . . , s, where Wc̃,k :=
1

σ2
Vc̃,k.

In (4.10) we show how the matrices{Γk}s
k=0 are determined from the structure specification

of Assumption 4.4. Now we give the corresponding expressions for the matrices{Wc̃,k}s
k=0:

Wc̃,k := diag(W 1
k , . . . ,W q

k), and W l
k =







(J⊤
nlK

)tlk if Cl is block-Toeplitz,

(JnlK)tlk if Cl is block-Hankel,

δkInlK if Cl is unstructured,

0nlK if Cl is exact,

(4.12)

whereJnl
is thenl × nl shift matrix

Jnl
:=










0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0










∈ R
nl×nl .

In the computational algorithm described in Section 4.5, weuse the partitioning of
the matrixΓ into blocks of sized × d. Let Γij ∈ R

d×d be the(i, j)th block ofΓ and let
Vc̃,ij ∈ R

(n+d)×(n+d) be the(i, j)th block ofVc̃. Define the following partitionings of the
vectorsr̃ andc̃:

r̃ =: col(r̃1, . . . , r̃m), r̃i ∈ R
d and c̃ =: col(c̃1, . . . , c̃m), c̃i ∈ R

n+d.

Using r̃i = X⊤
extc̃i, we have

Γij =
1

σ2
E(r̃ir̃

⊤
j) =

1

σ2
X⊤

extE(c̃ic̃
⊤
j)Xext =

1

σ2
X⊤

extVc̃,ijXext =: X⊤
extWc̃,ijXext.

4.5 Efficient Cost Function and First Derivative
Evaluation ∗

We consider an efficient numerical method for solving the STLS problem (STLSX) by
applying standard local optimization algorithms to the equivalent problem (4.4). With
this approach, the main computational effort is in the cost function and its first derivative
evaluation.

i

i

i

i

4.5. Efficient cost function and first derivative evaluation∗ 61

First, we describe the evaluation of the cost function: given X, computef0(X). For
given X, and with{Γk}s

k=0 constructed according to (4.12), the weight matrixΓ(X) is
specified. Then, from the solution of the systemΓ(X)yr(X) = r(X), the cost function is
found asf0(X) = r⊤(X)yr(X).

The properties ofΓ(X) can be exploited in the solution of the systemΓyr = r.
The subroutineMB02GDfrom the SLICOT library [VSV+04] exploits both the block-
Toeplitz and the block-banded structure to compute a Cholesky factor ofΓ in O((dK)2sm)
flops. In combination with the LAPACK subroutineDPBTRSthat solves block-banded
triangular systems of equations, the cost function is evaluated inO(m) flops. Thus an
algorithm for local optimization that uses only cost function evaluations has computational
complexityO(m) flops per iteration, because the computations needed internally for the
optimization algorithm do not depend onm.

Next, we describe the evaluation of the derivative. The derivative of the cost func-
tion f0 is (see Appendix A.2)

f ′
0(X) = 2

m∑

i,j=1

ajr
⊤
i (X)Mij(X) − 2

m∑

i,j=1

[
I 0

]
Wc̃,ij

[
X
−I

]

Nji(X), (4.13)

whereA⊤ =:
[
a1 · · · am

]
, with ai ∈ R

n,

M(X) := Γ−1(X), N(X) := Γ−1(X)r(X)r⊤(X)Γ−1(X),

andMij ∈ R
d×d, Nij ∈ R

d×d are the(i, j)th blocks ofM andN , respectively.
Consider the following two partitionings ofyr ∈ R

md:

yr =: col(yr,1, . . . , yr,m), yr,i ∈ R
d and yr =: col(yr,1, . . . , yr,m), yr,i ∈ R

dK ,
(4.14)

wherem := m/K. The first sum in (4.13) becomes

m∑

i,j=1

ajr
⊤
i Mij = A⊤Yr, where Y ⊤

r :=
[
yr,1 · · · yr,m

]
. (4.15)

Define the sequence of matrices

Nk :=

m−k∑

i=1

yr,i+ky
⊤
r,i, Nk = N⊤

−k, k = 0, . . . , s.

The second sum in (4.13) can be written as

m∑

i,j=1

[
I 0

]
Wc̃,ij

[
X
−I

]

Nji =

s∑

k=−s

K∑

i,j=1

(Wã,k,ijX − Wãb̃,k,ij)N
⊤
k,ij ,

whereWc̃,k,ij ∈ R
(n+d)×(n+d) is the(i, j)th block ofWc̃,k ∈ R

K(n+d)×K(n+d), Wã,k,ij ∈
R

n×n andWãb̃,k,ij ∈ R
n×d are defined as blocks ofWc̃,k,ij as

Wc̃,k,ij =:

[
Wã,k,ij Wãb̃,k,ij

Wb̃ã,k,ij Wb̃,k,ij

]

,

i

i

i

i

62 Chapter 4. Structured Total Least Squares

andNk,ij ∈ R
d×d is the(i, j)th block ofNk ∈ R

dK×dK .
Thus the evaluation of the derivativef ′

0(X) uses the solution ofΓyr = r, already
computed for the cost function evaluation and additional operations ofO(m) flops. The
steps described above are summarized in Algorithms 4.1 and 4.2.

The structure ofS (·) is specified by the integerK, the number of rows in
a block of a block-Toeplitz/Hankel structured blockC(i), and the arrayS ∈
({T, H, U, E} × N × N)

q that describes the structure of the blocks{C(i)}q
i=1.

The ith elementSi of the arrayS specifies the blockC(i) by giving its typeSi(1), the
number of columnsni = Si(2), and (ifC(i) is block-Hankel or block-Toeplitz) the column
dimensionti = Si(3) of a block inC(i). Therefore, the input data for the STLS problem is
the data matrixS (p) (alternatively the parameter vectorp) and the structure specification
K andS.

Algorithm 4.1 outlines the steps for the construction of theWc̃,k matrices. It re-
quires arithmetic operation only for indexing matrix-vector elements. Thes + 1 matrices
{Wc̃,k}s

k=0 are sparse. For the typical applications that we address, however, their dimen-
sion (n + d)K × (n + d)K is relatively small (compared to the row dimensionm of the
data matrix), so that we do not take into account their structure.

Algorithm 4.1 From structure specificationK, S to {Wc̃,k} decode_struct

Input: structure specificationK, S.
1: Defines := maxl=1,...,q(nl − 1), wherenl := nl/tl, for block-Toeplitz/Hankel struc-

tured blockCl, andnl := 1, otherwise.
2: for k = 1, . . . , s do
3: for l = 1, . . . , q do
4: if Sl(1)==T then
5: W l

k = (J⊤
nl

)tlk

6: else if Sl(1)==H then
7: W l

k = (Jnl
)tlk

8: else if Sl(1)==U then
9: W l

k = δkInl

10: else
11: W l

k = 0nl

12: end if
13: end for
14: Wc̃,k := diag(W 1

k , . . . ,W q
k)

15: end for
Output: {Wc̃,k}s

k=0.

Algorithm 4.2 specifies the steps needed for the cost function and its first derivative
evaluation. The flops per step for Algorithm 4.2 are as follows:

i

i

i

i

4.5. Efficient cost function and first derivative evaluation∗ 63

2. (n + d)(n + 2d)dK3

3. m(n + 1)d

4. msd2K2

5. md

8. msd2K − s(s + 1)d2K2/2

9. mnd + (2s + 1)(nd + n + 1)dK2

Thus in totalO(md(sdK2 +n)+n2dK3 +3nd2K3 +2d3K3 +2snd2K2) flops are
required for cost function and first derivative evaluation.Note that the flop counts depend
on the structure throughs.

Algorithm 4.2 STLS cost function and first derivative evaluation cost

Input: A, B, X, {Wc̃,k}s
k=0.

1: Γk = (IK ⊗
[
X⊤ −I

]
)Wc̃,k(IK ⊗

[
X⊤ −I

]
)⊤, for k = 0, 1, . . . , s.

2: r = vec
(
(AX − B)⊤

)
.

3: SolveΓyr = r exploiting the block-banded and block-Toeplitz structureof Γ, e.g., by
using the routinesMB02GDfrom the SLICOT library andDPBTRSfrom the LAPACK
library.

4: f0 = r⊤yr.
5: If only the cost function evaluation is required, outputf0 and stop.
6: Definecol(yr,1, . . . , yr,m) := yr, whereyr,i ∈ R

d; col(yr,1, . . . , yr,m) =: yr, where
yr,i ∈ R

dK , m := m/K; andY ⊤
r :=

[
yr,1 · · · yr,m

]
.

7: Nk =
∑m−k

i=1 yr,i+ky
⊤
r,i, for k = 0, 1, . . . , s.

8: f ′
0 = 2A⊤Yr − 2

∑s
k=−s

∑K
i,j=1(Wã,k,ijX − Wãb̃,k,ij)N

⊤
k,ij , where Wc̃,k,ij ∈

R
(n+d)×(n+d) is the (i, j)th block of Wc̃,k ∈ R

K(n+d)×K(n+d), Wã,k,ij ∈ R
n×n;

Wãb̃,k,ij ∈ R
n×d are defined as blocks ofWc̃,k,ij as

Wc̃,k,ij =:

[
Wã,k,ij Wãb̃,k,ij

Wb̃ã,k,ij Wb̃,k,ij

]

;

andNk,ij ∈ R
d×d is the(i, j)th block ofNk ∈ R

dK×dK .
Output: f0, f ′

0.

Using the computation of the cost function and its first derivative, we can apply the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton method. Thus the overall
algorithm for the computation of the STLS solution is Algorithm 4.3.

A more efficient alternative, however, is to apply a nonlinear least squares optimization
algorithm, such as the Levenberg–Marquardt
algorithm. LetΓ = U⊤U be the Cholesky factorization ofΓ. Thenf0 = F⊤F , with
F := U−1r. (Note that the evaluation ofF (X) is cheaper than that off0(X).) We do not
know an analytic expression for the Jacobian matrixJ(X) = [∂Fi/∂xj], but instead we
use the so-called pseudo-JacobianJ+ proposed in [GP96]. The evaluation ofJ+ can be
done efficiently, using the approach described above forf ′(X).

Moreover, by using the nonlinear least squares approach andthe pseudo-JacobianJ+,
we have as a byproduct of the optimization algorithm an estimate of the covariance matrix

i

i

i

i

64 Chapter 4. Structured Total Least Squares

Algorithm 4.3 Algorithm for solving the STLS problem stls

Input: the structure specificationK, S and the matricesA andB.
1: Compute the matrices{Wc̃,k} via Algorithm 4.1.
2: Compute the TLS solutionX(0) of AX ≈ B by, e.g., the functionMB02MDfrom the

SLICOT library.
3: Execute a standard optimization algorithm, e.g., the BFGS quasi-Newton method, for

the minimization off0 overX with initial approximationX(0) and with cost function
and first derivative evaluation performed via Algorithm 4.2.

Output: X̂ the approximation found by the optimization algorithm uponconvergence.

Table 4.1. Standard approximation problems that are special cases of the STLS problem
for particular structure specificationK, S.

Problem StructureS K

Least squares (LS)
[[
E n

]
,
[
U d

]]
1

Total least squares (TLS)
[
U n + d

]
1

Mixed least squares–total least squares (LS-TLS)
[[
E n1

]
,
[
U n2

]
,
[
U d

]]
1

Hankel low-rank approximation (HLRA)
[
H n + p m

]
p

SISO deconvolution
[[
T n

]
,
[
U 1

]]
1

SISO EIV system identification
[[
H n + 1

]
,
[
H n + 1

]]
1

Vx̂ = cov
(
vec(X̂)

)
. As shown in [PS01, Chapter 17.4.7, equations (17)–(35)],

Vx̂ ≈
(
J⊤

+ (X̂)J+(X̂)
)−1

.

UsingVx̂, we can compute statistical confidence bounds for the estimate X̂.
The solution method outlined in Algorithm 4.3, using the Levenberg–Marquardt al-

gorithm, is implemented in C language. A description of the software package is given in
Appendix B.2.

4.6 Simulation Examples
The approximation problems listed in Table 4.1 are special cases of the block-Toeplitz/Hankel
STLS problem for particular choices of the structure specificationK, S. If not given, the
third element ofSl is by default equal to one.

Our goal is to show the flexibility of the STLS problem formulation (STLSX) with a
structure of Assumption 4.4. More realistic applications of the STLS package are described
in Chapter 11, where real-life data sets for multi-input multi-output (MIMO) system identifi-
cation are used. Special problems such as LS, TLS, and mixed LS-TLS should be solved by
the corresponding special methods. Still, they serve as benchmarks for the STLS package.

We show simulation examples for the problems of Table 4.1. The data is a perturbed
version of a “true” data generated by a “true” model. True model and true data refer to the

i

i

i

i

4.6. Simulation examples 65

particular problem (see the description below) and are selected randomly. The perturbation
is a Gaussian noise with a covariance matrixσ2I.

Table 4.2 shows the scaled computation timet, cost function valuef0(X̂), i.e., error
of approximation, and relative error of estimation

e := ‖X̄ − X̂‖F/‖X̄‖F, whereX̄ is the parameter of the “true” model

for the STLS package and for an alternative computational method, if there is one. The
scaling is done by the smaller of the two values: the one achieved by the STLS package and
the one achieved by the alternative method.

Next, we describe the simulation setup for the examples.

Least Squares

The LS problemAX ≈ B, whereA ∈ R
m×n is exact and unstructured andB ∈ R

m×d

is perturbed and unstructured, is solved as an STLS problem with structure specification
S =

[[
E n

]
,
[
U d

]]
. In the simulation example, the solution of the STLS packageis

checked by the MATLAB least squares solver\ . In the example,m = 100, n = 5, d = 2,
andσ = 0.1.

In the LS case, the STLS optimization algorithm converges intwo iteration steps. The
reason for this is that the second order approximation used in the algorithm is actually the
exact LS cost function. Therefore, independent of the initial approximation, in one iteration
step the algorithm finds the global optimum point. An additional iteration is needed in order
to conclude that the computed approximation in the first stepis optimal.

Total Least Squares

The TLS problemAX ≈ B, where the data matrixC :=
[
A B

]
∈ R

m×(n+d) is perturbed
and unstructured, is solved as an STLS problem with structure specificationS =

[
U n + d

]
.

In the simulation example, the solution of the STLS package is checked by the function
tls.m that implements the SVD method for the computation of the TLSsolution; see
Theorem 3.14. In the example,m = 100, n = 5, d = 2, andσ = 0.1.

Table 4.2. Comparison of the STLS package and alternative methods on simulation exam-
ples.t—scaled execution time,f0—scaled cost function value,e—scaled error of estimation.
The scaling is the smaller of the values achieved by the methods.

Problem STLS package Alternative method
t f0 e t f0 e function

LS 40 1 1.000000 1 1.000000000000 1 \
TLS 1 1 1.000000 2 1.000000000000 1 tls
LS-TLS 1 1 1.000000 5 1.000000000000 1 lstls
HLRA 1 1 1.000087 147 1.000000056132 1 faststln2
Deconvolution 1 1 1.000009 631 1.000000000002 1 faststln1
System ident. 1 1 1.000000 — — — —

i

i

i

i

66 Chapter 4. Structured Total Least Squares

In the TLS case, the STLS algorithm converges in one iteration step, because the
default initial approximation used in the STLS package is the TLS solution.

Mixed Least Squares–Total Least Squares

The mixed LS-TLS problem [VV91, Section 3.5] is defined as follows: AX ≈ B, where
A =

[
Ae Ap

]
, Ap ∈ R

m×n1 andB ∈ R
m×d are perturbed and unstructured, andAe ∈

R
m×n2 is exact and unstructured. This problem is solved as an STLS problem with structure

specificationS =
[[
E n1

]
,
[
U n2

]
,
[
U d

]]
. In [VV91] an SVD based method for the

computation of the mixed LS-TLS solution is proposed. In thesimulation example the
solution of the STLS package is checked by a MATLAB implementation lstls.m of the
exact mixed LS-TLS solution method. In the example,m = 100, n = 5, d = 2, n1 = 1,
andσ = 0.1.

Hankel Low-Rank Approximation

The Hankel low-rank approximation problem [DM93, Section 4.5], [SLV04] is defined as
follows:

min
∆p

‖∆p‖2
2 subject to H (p − ∆p) has given rankn. (4.16)

HereH is a mapping from the parameter spaceR
np to the set of them × (n + p) block-

Hankel matrices, with block sizep×m. If the rank constraint is expressed asH (p̂)
[

X
−I

]
= 0,

whereX ∈ R
n×p is an additional variable, then (4.16) becomes an STLS problem with

K = p andS =
[
H n + p m

]
.

The Hankel low-rank approximation problem has a system theoretic meaning of ap-
proximate realization or (finite-time) model reduction; see Section 11.4. In the single-input
single-output (SISO) case, i.e., whenp = m = 1, the STLS package is checked by a MAT-
LAB implementationfaststln2 of the method of [LMV00]. In the example, the true
parameter vector is̄p = col(1, . . . , 12) (to which corresponds̄x = col(−1, 2)) and the
given vector isp = p̄ + col(5, 0, . . . , 0).

The computed solutions by the STLS package andfaststln2 approximate the
same locally optimal solution. In the example, however, theSTLS package achieves bet-
ter approximation of the minimum point for 147 times less computation time. The huge
difference in the execution times is due to the MATLAB implementation offaststln1 :
m-files that extensively usefor loops are executed slowly in MATLAB (versions≤ 7.0).

Single-Input Single-Output Deconvolution

The convolution of the sequences(. . . , a−1, a0, a1, . . .) and (. . . , x−1, x0, x1, . . .) is the
sequence(. . . , b−1, b0, b1, . . .) defined as follows:

bi =
∞∑

j=−∞

xjai−j . (4.17)

i

i

i

i

4.6. Simulation examples 67

Assume thatxj = 0 for all j < 1 and for allj > n. Then (4.17) fori = 1, . . . ,m can be
written as the following structured system of equations:








a0 a−1 · · · a1−n

a1 a0 · · · a2−n

...
...

...
am−1 am+n−2 · · · am−n








︸ ︷︷ ︸

A








x1

x2

...
xn








︸ ︷︷ ︸

x

=








b1

b2

...
bm








︸ ︷︷ ︸

b

. (4.18)

Note that the matrixA is Toeplitz structured and is parameterized by the vector

a = col(a1−n, . . . , am−1) ∈ R
m+n−1.

The aim of the deconvolution problem is to findx, givena andb. With exact data
the problem boils down to solving the system of equations (4.18). By construction it has an
exact solution. Moreover, the solution is unique wheneverA is of full column rank, which
can be translated to a condition ona (persistency of excitation).

The deconvolution problem is more realistic and more challenging when the dataa, b is
perturbed. We assume thatm > n, so that the system of equations (4.18) is overdetermined.
Because botha andb are perturbed and theA matrix is structured, the deconvolution problem
is an STLS problem with the structure specificationS =

[[
T n

]
,
[
U 1

]]
. Moreover,

under the assumption that the observations are obtained from true values with additive noise
that is zero mean and normal, with covariance matrix a multiple of the identity, the STLS
method provides a maximum likelihood estimate of the true values.

We compare the solution obtained by the STLS package with thesolution obtained by
the MATLAB implementationfaststln1 of the method of [MLV00]. In the particular
simulation example,m = 200, n = 2, andσ = 0.05. The STLS package computes
slightly more accurate approximation of a minimum point using 631 times less computation
time. The difference in the execution time is again due to theMATLAB implementation of
faststln1 .

Single-Input Single-Output Errors-in-Variables System
Identification

Consider the SISO linear time-invariant system described by the difference equation

yt +

n∑

τ=1

aτyt+τ =

n∑

τ=0

bτut+τ (4.19)

and define the parameter vector

x := col(b0, . . . , bn,−a0, . . . ,−an−1) ∈ R
2n+1.

Given a set of input/output data(u1, y1), . . . , (uT , yT) and an order specificationn, we want
to find the parameterx of a system that fits the data.

i

i

i

i

68 Chapter 4. Structured Total Least Squares

For the time horizont = 1, . . . , T , (4.19) can be written as the structured system of
equations








u1 u2 · · · un+1 y1 y2 · · · yn
u2 u3 · · · un+2 y2 y3 · · · yn+1

...
...

...
...

...
...

um um+1 · · · uT ym ym+1 · · · yT−1








x =








yn+1

yn+2

...
yT








, (4.20)

wherem := T −n. We assume that the time horizon is large enough to ensurem > 2n+1.
The system (4.20) is satisfied for exact data and a solution isthe true value of the parameterx.
Moreover, under additional assumption on the input (persistency of excitation) the solution
is unique.

For perturbed data an approximate solution is sought, and the fact that the system of
equations (4.20) is structured suggests the use of the STLS method. Again, under appropriate
conditions for the data generating mechanism, an STLS solution provides a maximum
likelihood estimator.

The structure arising in the SISO identification problem is

S =
[[
H n + 1

]
,
[
H n + 1

]]
,

wheren is the order of the system. Unfortunately, in this case we do not have an alternative
method by which the result of the STLS package can be verified.In the simulation example
we choosen = 3,

ā = 0.151
[
1 0.9 0.49 0.145

]
, b̄ =

[
1 −1.2 0.81 −0.27

]
,

T = 1000, ū white noise with unit variance, andσ2 = 0.1. From the compared LS, TLS, and
STLS solutions, the relative error of estimatione is largest for the LS method and is smallest
for the STLS method. (The numerical values are not shown in Table 4.2.) This relation of
the estimation errors can be expected with high probabilityfor large sample size (T → ∞)
due to the statistical consistency of the TLS and STLS methods and the inconsistency of
the LS method. In addition, the STLS method being a maximum likelihood method is
statistically more efficient than the TLS method.

4.7 Conclusions
We considered an STLS problem with block-wise specified structure of the data matrix.
Each of the blocks can be block-Toeplitz/Hankel structured, unstructured, or exact. It is
shown that such a formulation is flexible and covers as special cases many previously studied
structured and unstructured matrix approximation problems.

The proposed numerical solution method is based on an equivalent unconstrained
optimization problem (4.4). We proved that our Assumption 4.4 about the structure of the
data matrix implies that the weight matrixΓ in the equivalent problem is block-Toeplitz and
block-banded. These properties are used for cost function and first derivative evaluation
with linear in the sample size computational cost.

i

i

i

i

4.7. Conclusions 69

Our results show that a large variety of STLS problems can be solved efficiently with
a single kernel computational tool—efficient Cholesky factorization of a block-
Toeplitz and block-banded matrix.

The block-Toeplitz/Hankel structure is motivated by approximate modeling problems
for MIMO linear time-invariant dynamical systems. For example, EIV system identification,
approximate realization, and model reduction problems canbe solved via the proposed STLS
algorithm.

Useful extensions of the results are

1. weighted STLS problems with cost function∆p⊤W∆p, whereW > 0 is diagonal,
and

2. regularized STLS problems, where the cost function is augmented with the regular-
ization termvec⊤(X)Q vec(X).

These extensions are still computable inO(m) flops per iteration by our approach with small
modifications [MV06]. For example, the weighted STLS problem leads to weight matrixΓ
that is no longer block-Toeplitz but still block-banded with bandwidth independent ofm.
This property is sufficient for cost function and first derivative evaluation with computational
complexityO(m).

i

i

i

i

70 Chapter 4. Structured Total Least Squares

i

i

i

i

Chapter 5

Bilinear
Errors-in-Variables Model

A bilinear EIV model is considered. It corresponds to an overdetermined set of linear
equationsAXB = C, in which the dataA, B, C is perturbed by errors. An ALS estimator
is constructed that converges to the true value of the parameter X as the number of rows
in A and the number of columns inB tend to infinity.

The estimator is modified for an application in computer vision. A pair of corre-
sponding points in two images are related via a bilinear equation, in which a parameter is
the fundamental matrix. The fundamental matrix contains information about the relative
orientation of the two images, and its estimation is a central problem in two-view motion
analysis.

5.1 Introduction
In this section, we generalize the linear model

AX ≈ B (5.1)

to the bilinear in the measurements model

AXB ≈ C. (5.2)

An example where the bilinear model (5.2) occurs is the totalproduction cost model.

Example 5.1 (Total production cost model)Assume thatp production inputs (materials,
parts, labor, etc.) are combined to maken products. Letbk, k = 1, . . . , p, be the price per
unit of thekth production input andxjk, j = 1, . . . , n, k = 1, . . . , p, be the number of units
of thekth production input required to produce one unit of thejth product. The production
cost per unit of thejth product is thejth element of the vector

y = Xb, y ∈ R
n.

Let aj , j = 1, . . . , n, be a required quantity to be produced of thejth product. The
total quantity needed of thekth production input is thekth element of the vector

z⊤ = a⊤X, z ∈ R
p.

71

i

i

i

i

72 Chapter 5. Bilinear Errors-in-Variables Model

The total production costc is z⊤b = a⊤y, which gives a “single measurement”AXB = C
model

a⊤Xb = c.

Multiple measurements occur when a set of quantitiesa(1), . . . , a(N1), to be produced
of then products, a set of prices per unitb(1), . . . , b(N2) of the production inputs, and a set
of total costscil, corresponding to all combinations of the required quantities and prices,
are given. Then the model is






a(1)⊤

...
a(N1)⊤






︸ ︷︷ ︸

A

X
[
b(1) · · · b(N2)

]

︸ ︷︷ ︸

B

=






c11 · · · c1N2

...
...

cN11 · · · cN1N2






︸ ︷︷ ︸

C

.

Another example that involves the bilinear model (5.2) is the estimation of the funda-
mental matrix in two-view motion analysis. The fundamentalmatrix estimation problem is
treated in detail in the latter sections of this chapter.

The TLS method applied for (5.2) results in the following optimization problem:

min
X,∆A,∆B,∆C

∥
∥
[
∆A ∆B ∆C

]∥
∥

2

F
s.t. (A − ∆A)X(B − ∆B) = C − ∆C. (5.3)

As mentioned in [Ful87], the TLS estimatêXtls (a global minimum point of (5.3)) is biased.
Moreover (5.3) is a nonconvex optimization problem, whose solution requires computa-
tionally demanding optimization methods that are not guaranteed to find a global minimum
point.

We use instead an ALS estimator that is consistent and computationally cheap. A
strong assumption needed for the ALS estimator, however, isthat the covariance structure of
the measurement noises is known exactly. In contrast, the TLS method needs the covariances
up to a scaling factor. In the fundamental matrix estimationproblem, we derive a noise
variance estimation procedure that overcomes this deficiency.

5.2 Adjusted Least Squares Estimation of a Bilinear
Model

In the model (5.2),A ∈ R
N1×n, B ∈ R

p×q, andC ∈ R
N1×q are observations andX ∈

R
n×p is a parameter of interest. We assume that the observations are noisy measurements

of true valuesĀ, B̄, andC̄, i.e.,

A = Ā + Ã, B = B̄ + B̃, C = C̄ + C̃. (5.4)

The true values̄A, B̄, andC̄ of the observations are assumed to satisfy the bilinear model
ĀX̄B̄ = C̄ for some true valuēX of the parameter. From the point of view of EIV modeling,
C̃ represents the equation error, whilẽA andB̃ represent the measurement errors.

Looking for asymptotic results in the estimation ofX, we fix the dimensions ofX—
n andp—and let the number of measurements,m and q, increase. The measurements

i

i

i

i

5.2. Adjusted least squares estimation of a bilinear model 73

are represented by the rows ofA, the columns ofB, and the elements ofC. Define the
covariance matrices

VÃ := E Ã⊤Ã, VB̃ := E B̃B̃⊤.

The assumptions are enumerated with Roman numerals.

(i) The elements of̃A, B̃, andC̃ are centered random variables with finite second order
moments. The elements of any one of the matricesÃ, B̃, C̃ are independent of the
elements of the other two matrices. The covariance matricesVÃ andVB̃ are known.

Consider first the LS cost function

Qls(X;A,B,C) := ‖AXB − C‖2
F. (5.5)

In the space of matricesRn×p, we introduce a scalar product〈T, S〉 := trace(TS⊤). The
derivative∂Qls/∂X is a linear functional onRn×p:

1

2

∂Qls

∂X
(H) = trace

(
(AXB − C)(AHB)⊤

)

= trace
(
A⊤(AXB − C)B⊤H⊤

)

= 〈A⊤(AXB − C)B⊤, H〉. (5.6)

We identify the derivative with the matrix that represents it in (5.6), so that we redefine

1

2

∂Qls

∂X
:= A⊤(AXB − C)B⊤.

The LS estimator̂Xls is the solution of the optimization problem

min
X

Qls(X;A,B,C)

or, equivalently, the solution of the score equation

Ψls(X;A,B,C) := ∂Qls/∂X = (A⊤A)X(BB⊤) − A⊤CB⊤ = 0. (5.7)

For the estimator, we can take

X̂ls := (A⊤A)†A⊤CB⊤(BB⊤)†,

which satisfies (5.7) ifA⊤A andBB⊤ are nonsingular. In the absence of measurement
errors, i.e., wheñA = 0 andB̃ = 0, the LS estimator is consistent.

If Ã = 0, the “partial least squares” estimator

X̂pa := TLS solution ofXB = (A⊤A)†A⊤C (5.8)

is consistent. Similarly, if̃B = 0, the estimator

X̂pb := TLS solution ofAX = CB⊤(BB⊤)† (5.9)

is consistent. The partial least squares estimatorsX̂pa andX̂pb are inconsistent when both
A andB are noisy.

i

i

i

i

74 Chapter 5. Bilinear Errors-in-Variables Model

Next, we are looking for a corrected score functionΨals, such that

E[Ψals(X; Ā + Ã, B̄ + B̃, C) | C] = Ψls(X; Ā, B̄, C), for all X, Ā, B̄, andC.

The ALS estimatorX̂als is defined from the equation

Ψals(X;A,B,C) = 0. (5.10)

In order to solve (5.2), we look for a correction∆Ψ applied on the LS score func-
tion Ψls, such thatΨals = Ψls − ∆Ψ. By assumption (i),

E[Ψls(X; Ā + Ã, B̄ + B̃, C) | C]

= Ψls(X; Ā, B̄, C) + E Ã⊤ÃXB̄B̄⊤ + E Ā⊤ĀXB̃B̃⊤ + VÃXVB̃

= Ψls + ∆Ψ1(B̄) + ∆Ψ2(Ā) + VÃXVB̃,

where

∆Ψ1(B̄) := VÃXB̄B̄⊤ and ∆Ψ2(Ā) := Ā⊤ĀXVB̃.

To find a proper correction term∆Ψ, consider

E∆Ψ1(B̄ + B̃) = VÃXB̄B̄⊤ + VÃXVB̃ (5.11)

and

E∆Ψ2(Ā + Ã) = Ā⊤ĀXVB̃ + VÃXVB̃. (5.12)

Then

∆Ψ(A,B) = ∆Ψ1(B) + ∆Ψ2(A) − VÃXVB̃

and

Ψals(X;A,B,C)

= (A⊤A)X(BB⊤) − A⊤CB⊤ − VÃX(BB⊤) − (A⊤A)XVB̃ + VÃXVB̃

= (A⊤A − VÃ)X(BB⊤ − VB̃) − A⊤CB⊤.

As an estimator we can take

X̂als := (A⊤A − VÃ)†(A⊤CB⊤)(BB⊤ − VB̃)†. (5.13)

If A⊤A− VÃ andBB⊤ − VB̃ are nonsingular, then (5.13) satisfies (5.10). These matrices
are nonsingular with probability tending to one as the number of measurements tend to
infinity.

i

i

i

i

5.3. Properties of the adjusted least squares estimator 75

5.3 Properties of the Adjusted Least Squares
Estimator

We introduce further assumptions.

(ii) The rows ofÃ are independent, the columns ofB̃ are independent, and all elements
of C̃ are independent.

(iii) E ã4
ij ≤ const, E b̃4

kl ≤ const, andE c̃2
il ≤ const.

(iv) With VĀ := Ā⊤Ā andVB̄ := B̄B̄⊤,

λmax(VĀ) + m

λ2
min(VĀ)

→ 0 asN1 → ∞ and
λmax(VB̄) + q

λ2
min(VB̄)

→ 0 asN2 → ∞.

Assumption (iv) corresponds to the condition of weak consistency, given in [Gal82]
for the maximum likelihood estimator in the linear model (5.1).

Theorem 5.2 (Weak consistency).Under assumptions (i) to (iv), the ALS estimatorX̂als

converges toX̄ in probability asN1 → ∞ andN2 → ∞.

Proof. See [KMV03, Theorem 1].
Under more restrictive assumptions than (iii) and (iv), theALS estimator is strongly

consistent.

(iii’) E |ãij |2r ≤ const, E |b̃kl|2r ≤ const, andE |c̃il|2r ≤ const for a fixed real number
r ≥ 2.

(iv’) For a fixedN ′
1 ≥ 1,

∞∑

N1=N ′
1

(
N

r/2
1

λr
min(VĀ)

+
λr

max(VĀ)

λ2r
min(VĀ)

)

< ∞,

and for a fixedN ′
2 ≥ 1,

∞∑

N2=N ′
2

(
N

r/2
2

λr
min(VB̄)

+
λr

max(VB̄)

λ2r
min(VB̄)

)

< ∞,

wherer is defined in assumption (iii’).

Theorem 5.3 (Strong consistency).Under assumptions (i), (ii), (iii’), and (iv’), the ALS
estimatorX̂als converges toX̄ almost surely asN1 → ∞ andN2 → ∞.

Proof. See [KMV03, Theorem 2].
In [KMV03, Section 5], we prove the following rate of convergence:

‖X̂als− X̄‖F =

(√
N1 +

√

λmax(VĀ)

λmin(VĀ)
+

√
N2 +

√

λmax(VB̄)

λmin(VB̄)

)

Op(1) .

i

i

i

i

76 Chapter 5. Bilinear Errors-in-Variables Model

Under additional assumptions, the ALS estimator is asymptotically normal; see [KMV03,
Section 6]. It turns out that the asymptotic covariance matrix of the estimator does not
depend upon the covariance structure ofC̃.

In [KMV03, Section 7] a heuristic small sample modification of the ALS estimator
is proposed. The approach is similar to the one of [CST00]. The modified ALS estimator
has the same asymptotic properties as the ALS estimator but improves the results for small
sample size.

5.4 Simulation Examples
In this section, we apply the ALS estimator to a hypotheticalexample. Consider the bilinear
model (5.2) withN1 = N2 = N andn = p = 2, i.e.,

A
︸︷︷︸

N×2

X
︸︷︷︸

2×2

B
︸︷︷︸

2×N

= C
︸︷︷︸

N×N

.

The true data is

Ā =






I2

...
I2




 , B̄ =

[
I2 · · · I2

]
, and C̄ =






I2 · · · I2

...
...

I2 · · · I2




 ,

so that the true value of the parameter isX̄ = I2. The perturbations̃A, B̃, andC̃ are
selected in three different ways.

• Equally sized errors.All errors ãij , b̃kl, c̃il are independent, centered, and normally
distributed with common variance0.01.

• Differently sized errors.All errorsãij , b̃kl, c̃il are independent, centered, and normally
distributed. The elements in the first column ofÃ have variance0.05 and the elements
in the second column of̃A have variance0.01. The elements in the first row of̃B
have variance0.01 and the elements in the second row ofB̃ have variance0.05. All
elements ofC̃ have variance0.01.

• Correlated errors.All errors ãij , b̃kl, c̃il are independent and normally distributed.
All rows of Ã have covariance0.01 [5 1

1 1] and the elements are independent from row
to row. All columns ofB̃ have covariance0.01 [1 1

1 5] and the elements are independent
from column to column.

The estimation is performed for increasing number of measurementsN . As a measure
of the estimation quality, we use the empirical relative mean square error

e(N) =
1

K

K∑

s=1

‖X̄ − X̂(s)‖2
F

‖X̄‖2
F

,

whereX̂(s) is the estimate computed for thesth noise realization.
The following estimators are compared:

i

i

i

i

5.4. Simulation examples 77

X̂als—the ALS estimator,

X̂m—the small sample modified ALS estimator [KMV03, Section 7],

X̂ls—the LS estimator, and

X̂pa andX̂pb—the partial least squares estimators (5.8) and (5.9).

Figure 5.1 shows the relative mean square errore for N ranging from 20 to 100. The
consistency properties of the ALS estimators and the bias ofthe other estimators is most
clearly seen in the experiment with correlated errors. Notethat the small sample modification
indeed improves the relative mean square error and for largesample size converges to the
original ALS estimator.

20 40 60 80 100
0

1

2

3

4

5

6
x 10

−3 Equally sized errors

X̂ls

X̂pa
X̂pb

X̂m

X̂als

N

e(
N

)

20 40 60 80 100
0

0.005

0.01

0.015

0.02

X̂ls

X̂pa X̂pb

X̂m

X̂als

N

e(
N

)
Differently sized errors

20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

X̂ls

X̂pa

X̂pb

X̂m

N

e(
N

)

Correlated errors

X̂als

Figure 5.1. Relative mean square errore as a function ofN .

i

i

i

i

78 Chapter 5. Bilinear Errors-in-Variables Model

5.5 Fundamental Matrix Estimation
Suppose that two images are captured by a mobile camera andN matching pairs of pixels
are located. Let

u(i) = col(u
(i)
1 , u

(i)
2 , 1) and v(i) = col(v

(i)
1 , v

(i)
2 , 1), for i = 1, . . . , N,

be the homogeneous pixel coordinates in the first and second images, respectively. The
so-called epipolar constraint

v(i)⊤Fu(i) = 0, i = 1, . . . , N, (5.14)

relates the corresponding matching pixels, whereF ∈ R
3×3, rank(F) = 2 is the funda-

mental matrix. Estimation ofF from the given datav(i), u(i), i = 1, . . . , N , is called
structure from motion problem and is a central problem in computer vision. We adapt the
ALS estimator (5.13) to the fundamental matrix estimation problem.

The fundamental matrix estimation problem is not a special case of the bilinear model
considered in Sections 5.1–5.4. Note that with

A :=
[
v(1) · · · v(N)

]⊤
, B :=

[
u(1) · · · u(N)

]
, and C := 0,

(5.14) represents only the diagonal elements of the equation AFB = C. Moreover, theC
matrix is noise-free, and the parameterF is of rank two and normalized. Thus the ALS
estimator derived for the bilinear model (5.2) cannot be used directly for the estimation of
the fundamental matrixF .

As in Section 5.1, we assume that the given points are noisy observations

u(i) = ū(i) + ũ(i), and v(i) = v̄(i) + ṽ(i), for i = 1, . . . , N (5.15)

of true values̄u(i) andv̄(i) that satisfy the model

v̄(i)⊤F̄ ū(i) = 0, for i = 1, . . . , N (5.16)

for some true valuēF ∈ R
3×3, rank(F̄) = 2 of the parameterF . In addition, we assume

thatF̄ is normalized by‖F̄‖F = 1.
In the absence of noise, equations (5.14) have an exact solution F̄ . The so-called

eight-point algorithm [Har97] computes it fromN = 8 given pairs of points. A lot of
techniques have been proposed to improve the accuracy of theeight-point algorithm in the
presence of noise [TM97, MM98, LM00]. From a statistical point of view, however, the
corresponding estimators are inconsistent. We review in more detail the estimator proposed
in [MM98].

In [MM98], the model (5.14) is transformed into the form
(
u(i) ⊗ v(i)

︸ ︷︷ ︸

a(i)

)⊤
vec(F)
︸ ︷︷ ︸

f

= 0, for i = 1, . . . , N. (5.17)

Defining the matrixA :=
[
a(1) · · · a(N)

]⊤
, (5.17) becomes the system of equations

Af = 0. The normalization condition‖F‖F = 1 for F implies the normalization condi-
tion ‖f‖ = 1 for f . With noisy data, an estimate off can be computed by solving the
optimization problem

min
f

‖Af‖2
2 subject to ‖f‖ = 1, (5.18)

i

i

i

i

5.5. Fundamental matrix estimation 79

which is a quadratically constrained least squares problem, so that its global solution̂fls,1

can be computed from the SVD ofA. The corresponding estimatêFls,1 is constructed
from f̂ls,1 in an obvious way. We denote this construction byF̂ls,1 := vec−1(f̂ls,1). Finally,
the rank constraint is enforced by approximatingF̂ls,1 with the nearest (in Frobenius norm)
rank-deficient matrix̂Fls. This requires another SVD.

For statistical analysis of̂Fls, the vectorsa(i) are interpreted as observations

a(i) = ū(i) ⊗ v̄(i) + ã(i). (5.19)

The estimator̂Fls is consistent under the assumption that the errorsã(1), . . . , ã(N) are zero
mean independent and identically distributed (i.i.d.) random vectors. Such an assumption,
however, is not satisfied for the EIV model (5.15). Suppose that the measurementsu(i)

andv(i) are obtained with additive errors̃v(i) andṽ(i) that are independent zero mean i.i.d.
normal random vectors. Then the vectorsã(i) are not normally distributed because their
elements involve the product of two coordinates. It can be shown that

E ã(i)ã(i)⊤ =
(
E ũ(i)ũ(i)⊤

)
⊗

(
v̄(i)v̄(i)⊤

)
+

(
ū(i)ū(i)⊤

)
⊗

(
E ṽ(i)ṽ(i)⊤

)

+
(
E ṽ(i)ṽ(i)⊤

)
⊗

(
E ũ(i)ũ(i)⊤

)
.

In [MM98], the estimatorF̂ls is called the TLS estimator. In fact,̂Fls is the TLS
estimator for the transformed modelAf = 0, ‖f‖ = 1. The TLS estimator for the original
problem (5.14) is (compare with (5.3))

min
F

∆u(1),...,∆u(N)

∆v(1),...,∆v(N)

N∑

i=1

(

‖∆u(i)‖2 + ‖∆v(i)‖2
)

subject to (u(i) + ∆u(i))⊤F (v(i) + ∆v(i)) = 0

for i = 1, . . . , N,

(5.20)
which is a different problem. It is a nonconvex optimizationproblem. Moreover, as noted
in Section 5.1, the TLS estimator̂Xtls (a global minimum point of (5.20)) is also biased. We
refer toF̂ls as the LS estimator because in terms of the bilinear model (5.14) it minimizes
the equation errorAf .

We make the following assumptions on the errorsũ(i) andṽ(i) in (5.15).

(i) ũ(i) andṽ(i), for i = 1, . . . , N , are zero mean independent random variables.

(ii) cov(ũ(i)) = cov(ṽ(i)) = σ̄2 · diag(1, 1, 0), for i = 1, . . . , N and certain̄σ > 0.

Let ũ(i) := col(ũ
(i)
1 , ũ

(i)
2 , ũ

(i)
3). Assumption (ii) means that the components ofũ(i) are

uncorrelated,̃u(i)
3 is noise-free, andvar

(
ũ

(i)
1

)
= var

(
ũ

(i)
2

)
= σ̄2. The same holds for̃v(i).

These are more natural assumptions for the application at hand than the assumptions onã(i)

needed for consistency of the LS estimator.

i

i

i

i

80 Chapter 5. Bilinear Errors-in-Variables Model

5.6 Adjusted Least Squares Estimation of the
Fundamental Matrix

The LS cost function is

Qls(F) :=

N∑

i=1

qls(F ;u(i), v(i)), where qls(F ;u, v) :=
(
v⊤Fu

)2
.

Next, we construct an adjusted cost functionQals(F) that leads to a consistent estimator. It
is defined by the identity

EQals(F) = Qls(F) for all F ∈ R
3×3 andū(i), v̄(i) ∈ R

3.

By assumption (i),

Qals(F) =

N∑

i=1

qals(F ;u(i), v(i)),

whereqals satisfies the identity

E qals(F ; ū + ũ, v̄ + ṽ) = qls(F ; ū, v̄), for all F ∈ R
3×3 andū, v̄ ∈ R

3,

andũ ∼ N(0, V), ṽ ∼ N(0, V) independent, withV := σ2 diag(1, 1, 0).
The solution of (5.6) is

qals(F, u, v) := trace
((

vv⊤ − V
)
F

(
uu⊤ − V

)
F⊤

)

. (5.21)

Indeed,

E qals(F ; ū + ũ, v̄ + ṽ)

= E trace
((

(v̄ + ṽ)(v̄ + ṽ)⊤ − V
)
F

(
(ū + ũ)⊤(ū + ũ)⊤ − V

)
F⊤

)

= E trace
((

v̄v̄⊤ + 2v̄ṽ⊤ + (ṽṽ⊤ − V)
)
F

(
ūū⊤ + 2ūũ⊤ + (ũũ⊤ − V)

)
F⊤

)

.

After expanding the right-hand side and applying the expectation operator to the summands,
assumptions (i) and (ii) imply that all summands except for the first one are equal to zero.
Thus

E qals(F, ū + ũ, v̄ + ṽ) = trace
((

v̄v̄⊤
)
F

(
ūū⊤

)
F⊤

)

.

But

trace
((

v̄v̄⊤
)
F

(
ūū⊤

)
F⊤

)

=
(
ū⊤F⊤v̄

)(
v̄⊤Fū

)
=

(
v̄⊤Fū

)2
= qls(F, ū, v̄).

Then the solution of (5.6) is given by

Qals(F) = trace

(N∑

i=1

(
v(i)v(i)⊤ − V

)
F

(
u(i)u(i)⊤ − V

)
F⊤

)

.

i

i

i

i

5.7. Properties of the fundamental matrix estimator∗ 81

With f := vec(F),

Qals(F) = f⊤

(N∑

i=1

(
u(i)u(i)⊤ − V

)
⊗

(
v(i)v(i)⊤ − V

)
)

f.

Denote

SN :=

N∑

i=1

(
u(i)u(i)⊤ − V

)
⊗

(
v(i)v(i)⊤ − V

)
(5.22)

and let
f̂als,1 ∈ arg min f⊤SNf subject to ‖f‖ = 1. (5.23)

The matrixSN is symmetric, so that the ALS estimatorf̂als,1 is a normalized eigenvector
of SN associated with the smallest eigenvalue ofSN .

Let F̂als,1 := vec−1(f̂als,1). If rank(F̂als,1) = 3, it is approximated by a rank-deficient
matrix. LetF̂als,1 = UΣV ⊤, whereΣ = diag(σ1, σ2, σ3) andU, V ∈ R

3×3 are orthogonal
matrices, be an SVD of̂Fals,1. The ALS estimator on the second stage is defined as

F̂als := U diag(σ1, σ2, 0)V ⊤,

i.e., the best low-rank approximation of̂Fals,1, according to the Eckart–Young–Mirsky
theorem [EY36].

5.7 Properties of the Fundamental Matrix Estimator ∗

Consistency of the estimator̂Fals,1 implies consistency of the estimatorF̂als. Indeed, suppose
that‖F̂als,1 − F̄‖F ≤ ε. Becauserank(F̄) = 2, for the estimator̂Fals on the second stage,
we have

‖F̂als,1 − F̂als‖F ≤ ‖F̂als,1 − F̄‖F ≤ ε. (5.24)

Then
‖F̂als− F̄‖F ≤ ‖F̂als− F̂als,1‖F + ‖F̂als,1 − F̄‖F ≤ 2ε.

Note that the matrix−F̄ also satisfies (5.16), and‖ − F̄‖F = ‖F̄‖F = 1. Therefore we
estimateF̄ up to a sign.

Introduce the matrix

FN :=
1

N

N∑

i=1

(
ū(i)ū(i)⊤

)
⊗

(
v̄(i)v̄(i)⊤

)
. (5.25)

For the vectorf̄ := vec(F̄), we have (see (5.16))

f̄⊤
FN f̄ =

1

N

N∑

i=1

trace(v̄(i)v̄(i)⊤F̄ ū(i)ū(i)⊤F̄⊤) = 0,

andFN ≥ 0. Thusλmin(FN) = 0. We require that there existsN ′ such thatrank(FN) =
8 for N ≥ N ′. Moreover, we need a stronger assumption.

Let λ1(FN) ≥ λ2(FN) ≥ · · · ≥ λ9(FN) = 0 be the eigenvalues ofFN .

i

i

i

i

82 Chapter 5. Bilinear Errors-in-Variables Model

(iii) There existN ′ ≥ 1 andc0 > 0, such that for allN ≥ N ′, λ8(FN) ≥ c0.

The minimization problem (5.23) could have a nonunique solution, but due to as-
sumption (iii), forN > N ′(ω) the smallest eigenvalue ofSN will be unique and then the
estimatorf̂als,1 will be uniquely defined, up to a sign.

The next assumptions are needed for the convergence

1

N
SN − FN → 0 almost surely asN → ∞. (5.26)

(iv) 1
N

∑N
i=1 ‖ū(i)‖4 ≤ const and 1

N

∑N
i=1 ‖v̄(i)‖4 ≤ const.

(v) For fixedδ > 0, E ‖ũ(i)‖4+δ ≤ const andE ‖ṽ(i)‖4+δ ≤ const.

For two matricesA andB of the same size, define the distance betweenA andB as
the Frobenius norm of their difference, i.e.,

dist(A,B) := ‖A − B‖F.

Theorem 5.4 (Strong consistency).Under assumptions (i) to (v),

dist(F̂als, {−F̄ ,+F̄}) → 0 almost surely asN → ∞. (5.27)

Proof. See [KMV02, Theorem 1].
The computation of the ALS estimator needs knowledge of the noise variancēσ2.

Whenσ̄2 is unknown, it can be estimated as follows:

σ̂2 = arg min
σ

∣
∣λmin

(
SN (σ2)

)∣
∣ .

In [KMV02, Section 3], the ALS estimator using the noise variance estimatêσ2 instead of
the true noise variancēσ2 is proven to be consistent.

5.8 Simulation Examples
In this section, we present numerical results with the estimatorsF̂ and σ̂2. The data is
simulated. The fundamental matrix̄F is a randomly chosen rank two matrix with unit
Frobenius norm. The true coordinatesū(i) andv̄(i) have third components equal to one, and
the first two components are vectors with unit norm and randomdirection. The perturbations
ũ(i) and ṽ(i) are selected according to the assumptions stated in this book; i.e., the third
components̃u(i)

3 = ṽ
(i)
3 = 0, andũ

(i)
j , ṽ

(i)
j ∼ N(0, σ̄2), are independent fori = 1, . . . , N

andj = 1, 2. In each experiment, the estimation is repeated 1000 times with the same true
data and different noise realizations.

The true value of the parameter̄F is known, which allows evaluation of the results.
We compare three estimators:

F̂als(σ̄
2)—the ALS estimator using the true noise varianceσ̄2,

F̂als(σ̂
2)—the ALS estimator using the estimated noise varianceσ̂2, and

i

i

i

i

5.8. Simulation examples 83

150 200 250 300 350 400 450

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PSfrag

Estimation ofF̄

X̂ls

X̂als(σ̄
2)

X̂als(σ̂
2)

N

e

100 500
0.0

0.4

150 200 250 300 350 400 450

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10.1

100 500
9.1

10

Estimation ofσ̄2

N

σ̄
2
,σ̂

2

σ̂2

σ̄2

×10−5

Figure 5.2. Left: relative error of estimatione := ‖F̄ − F̂‖F/‖F̄‖F as a function of the
sample sizeN . Right: convergence of the noise variance estimateσ̂2 to the true valuēσ2.

150 200 250 300 350 400 450

0.005

0.01

0.015

0.02

0.025

N

σ
m

in
(F̂

al
s,
1
)

100 500
0.00

0.03

150 200 250 300 350 400 450

5

6

7

8

9

100 500
4

10

N

‖
1 N

S
N
−

F
N
‖ F

×10−3

Figure 5.3. Left: distance fromF̂als,1 to the set of rank-deficient matrices. Right: conver-
gence of1N SN to FN .

F̂ls—the LS estimator.

Figure 5.2 shows the relative error of estimatione := ‖F̄ − F̂‖F/‖F̄‖F as a function
of the sample sizeN in the left plot and the convergence of the estimateσ̂2 in the right plot.
Figure 5.3, left plot, shows the convergence of the estimator F̂als,1 to the set of rank-deficient
matrices. This empirically confirms inequality (5.24). Theright plot in Figure 5.3 confirms
the convergence of1N SN → FN asN → ∞; see (5.26).

Figure 5.4 shows the functionSN (σ2), used in the estimation of̄σ2, for N = 500
in the left plot and forN = 30 in the right plot. In general,SN (σ2) is a nonconvex, non-
differentiable function with many local minima. However, we observed empirically that
the number of local minima decreases asN increases. For larger sample sizes and smaller
noise variance, the functionSN (σ2) becomes unimodal.

i

i

i

i

84 Chapter 5. Bilinear Errors-in-Variables Model

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

N = 500

σ2

S
N

(σ
2
)

σ̂2

σ̄2

SN

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−4

0

0.5

1

1.5
x 10

−4

σ2

S
N

(σ
2
)

σ̂2σ̄2

SN

N = 30

Figure 5.4. The functionSN (σ2) used for the estimation of̄σ2. Left: large sample size.
Right: small sample size.

5.9 Conclusions
We considered the bilinear modelAXB = C. The TLS estimator is inconsistent in this
case. We constructed the ALS estimator, which is consistentand computationally cheap.
Conditions for weak and strong consistency were listed.

An open question is, What are the optimality properties of theALS estimator? For the
linear modelAX = B, in [KM00] it was shown that the ALS estimator is asymptotically
efficient whenVÃ is known exactly andE b̃2

kl are known up to a constant factor. It would
be interesting to check the following conjecture:

In the modelAXB = C, the ALS estimator is asymptotically efficient when
VÃ andVB̃ are known exactly andE c̃2

il are known up to a constant factor.

Estimation of the rank-deficient fundamental matrix, yielding information about the
relative orientation of two images in two-view motion analysis, was considered. A consistent
estimator was derived by minimizing a corrected contrast function in a bilinear EIV model.
The proposed ALS estimator was computed in three steps: first, estimate the measurement
error variance; second, construct a preliminary matrix estimate; and third, project that
estimate onto the space of singular matrices.

i

i

i

i

Chapter 6

Ellipsoid Fitting

A parameter estimation problem for ellipsoid fitting in the presence of measurement errors
is considered. The LS estimator is inconsistent and, due to the nonlinearity of the model, the
orthogonal regression estimator is inconsistent as well; i.e., these estimators do not converge
to the true value of the parameters as the sample size tends toinfinity. A consistent estimator
is proposed, based on a proper correction of the LS estimator. The correction is explicitly
given in terms of the true value of the noise variance.

In Section 6.2, we define the quadratic EIV model. The LS and ALS estimators are
defined in Sections 6.3 and 6.4. Ellipsoid estimates are derived from the general quadratic
model estimates in Section 6.5. An algorithm for ALS estimation is outlined in Section 6.6.
We show simulation examples in Section 6.7.

6.1 Introduction
In this chapter, we consider the ellipsoid fitting problem: given a set of data points

x(1), . . . , x(N), where x(i) ∈ R
n,

find an ellipsoid

E (Ae, c) := {x ∈ R
n : (x − c)⊤Ae(x − c) = 1 }, Ae = Â⊤

e > 0, (6.1)

that “best matches” them. The freedom in the choice of the matching criterion gives rise to
different estimation methods.

One approach, called algebraic fitting, is to solve the optimization problem

min
Ae,c

N∑

i=1

(
(x(i) − c)⊤Ae(x

(i) − c) − 1
)2

(6.2)

and to define the estimate as any global optimal point. We willrefer to (6.2) as the LS
method for the ellipsoid model.

85

i

i

i

i

86 Chapter 6. Ellipsoid Fitting

Another approach, called geometric fitting, is to solve the optimization problem

min
Ae,c

N∑

i=1

(

dist
(
x(i),E (Ae, c)

))2

, (6.3)

wheredist(x,E) is the Euclidean distance from the pointx to the setE . In the statistical
literature, (6.3) is called the orthogonal regression method.

Note 6.1 (Orthogonal regression≡ TLS) The TLS method applied to the ellipsoid model
(6.1) results in the following optimization problem:

min
Ae,c

∆x(1),...,∆x(N)

N∑

i=1

∥
∥∆x(i)

∥
∥

2
subject to

(
x(i) + ∆x(i) − c

)⊤
Ae

(
x(i) + ∆x(i) − c

)
= 1

for i = 1, . . . , N.

(6.4)

Clearly,

dist(x,E) = arg
(

min
∆x

‖∆x‖2 subject to (x + ∆x − c)⊤Ae(x + ∆x − c) = 1
)

and (6.4) is separable in∆x(1), . . . ,∆x(N), so that the TLS problem (6.4) is equivalent to
the orthogonal regression problem (6.3). In (6.3), the auxiliary variables∆x(1), . . . ,∆x(N)

are “hidden” in thedist function.

We assume that all data points are noisy measurementsx(i) := x̄(i)+x̃(i) of some true
pointsx̄(1), . . . , x̄(N) that lie on a true ellipsoidE (Āe, c̄); i.e., the model is a quadratic EIV
model. The measurement errorsx̃(1), . . . , x̃(N) are centered, independent, and identically
distributed (i.i.d.), and the distribution is normal with variance-covariance matrix̄σ2I, where
σ̄2 is the noise variance.

Due to the quadratic nature of the ellipsoid model with respect to the measurementx,
both the algebraic and the geometric fitting methods are inconsistent in a statistical sense,
see [NS48] and the discussion in [Ful87, page 250]. We propose an ALS estimator that is
consistent.

The LS estimator, defined by (6.2), is a nonlinear least squares problem. We use a
computationally cheap, but suboptimal method to solve the optimization problem (6.2). The
equation defining the ellipsoid model is “embedded” in the quadratic equation

x⊤Ax + b⊤x + d = 0, A = A⊤ > 0, (6.5)

which is linear in the parametersA, b, andd, so that a linear least squares estimation
is possible. For given estimateŝA, b̂, and d̂ of the parameters in (6.5), assuming that
Â = Â⊤ > 0, the estimates of the original parameters in (6.2) are givenby

ĉ := −1

2
Â−1b̂ and Âe :=

1

ĉ⊤Âĉ − d̂
Â. (6.6)

The necessary computation for the (suboptimal) LS estimator involves finding an eigenvector
associated with the smallest eigenvalue of a symmetric matrix. We use the same indirect
approach to compute the ALS estimator.

i

i

i

i

6.2. Quadratic errors-in-variables model 87

The correction needed for the ALS estimator is given explicitly in terms of the noise
varianceσ̄2. We give an algorithm for ellipsoid fitting that implements the theoretical
results. Its computational cost increases linearly with the sample sizeN . In [KMV04], we
present the statistical properties of the estimator and treat the case when̄σ2 is unknown.

The orthogonal regression estimator, on the other hand, is computed via a local op-
timization method and scales worse withN and with the dimensionn of the vector space.
In addition, due to the nonconvexity of the cost function in (6.3), the computed solution
depends on the supplied initial approximation. In degenerate cases (see [Nie02, pages 260–
261]) the global minimum of (6.3) is not unique, so that thereare several “best” fitting
ellipses.

We point out several papers in which the ellipsoid fitting problem is considered.
Gander, Golub, and Strebel [GGS94] consider algebraic and geometric fitting methods for
circles and ellipses and note the inadequacy of the algebraic fit on some specific examples.
Later on, the given examples are used as benchmarks for the algebraic fitting methods.
Fitting methods, specific for ellipsoids, as opposed to the more general conic sections,
are first proposed in [FPF99]. The methods incorporate the ellipticity constraint into the
normalizing condition and thus give better results when an elliptic fit is desired. In [Nie01]
a new algebraic fitting method is proposed that does not have as singularity the special case
of a hyperplane fitting; if the best fitting manifold is affine the method coincides with the
TLS method.

A statistical point of view on the ellipsoid fitting problem is taken in [Kan94]. Kanatani
proposed an unbiased estimation method, called a renormalization procedure. He uses an
adjustment similar to the one in the present chapter, but hisapproach of estimating the
unknown noise variance is different from the one presented in [KMV04]. Moreover, the
noise variance estimate proposed in [Kan94] is still inconsistent; the bias is removed up to
the first order approximation.

6.2 Quadratic Errors-in-Variables Model
A second order surface inRn is the set

B(A, b, d) := {x ∈ R
n | x⊤Ax + b⊤x + d = 0 }, (6.7)

where the symmetric matrixA ∈ S, the vectorb ∈ R
n, and the scalard ∈ R are parameters

of the surface. IfA = 0 andb 6= 0, then the surface (6.7) is a hyperplane, and ifA is
positive definite and4d < b⊤A−1b, then (6.7) is an ellipsoid. Until Section 6.5, we will
only assume thatB(A, b, d) is a nonempty set, but in Section 6.5, we will come back to the
ellipsoid fitting problem, so that the parameters will be restricted.

Let Ā ∈ S, b̄ ∈ R
n, andd̄ ∈ R be such that the setB(Ā, b̄, d̄) is nonempty and let the

pointsx̄(1), . . . , x̄(N) lie on the surfaceB(Ā, b̄, d̄), i.e.,

x̄(i)⊤Āx̄(i) + b̄⊤x̄(i) + d̄ = 0, for i = 1, . . . , N. (6.8)

The pointsx(1), . . . , x(N) are measurements of the pointsx̄(1), . . . , x̄(N), respectively, i.e.,

x(i) = x̄(i) + x̃(i), for i = 1, . . . , N, (6.9)

i

i

i

i

88 Chapter 6. Ellipsoid Fitting

wherex̃(1), . . . , x̃(N) are the corresponding measurement errors. We assume that the mea-
surement errors form an i.i.d. sequence and the distribution of x̃(i), for all i = 1, . . . , N , is
normal and zero mean, with variance-covariance matrixσ̄2In, i.e.,

E x̃(i1)x̃(i2)⊤ = 0, for all i1, i2 = 1, . . . , N, i1 6= i2,

and
x̃(i) ∼ N(0, σ̄2In), for i = 1, . . . , N,

whereσ̄2 > 0 is called the noise variance.
The matrixĀ is the true value of the parameterA, while b̄ andd̄ are the true values

of the parametersb andd, respectively. Without additional constraints imposed onthe
parameters, for a given second order surfaceB(A, b, d), the model parametersA, b, andd
are not unique:B(τA, τb, τd) is the same surface for any real nonzeroτ . This makes the
quadratic model, parameterized byA, b, andd, nonidentifiable. To resolve the problem,
we impose a normalizing condition; e.g., the true values of the parameters are assumed to
satisfy the constraint

‖Ā‖2
F + ‖b̄‖2 + d̄2 = 1. (6.10)

Then the estimates are unique up to a sign.

Note 6.2 (Invariance of the LS and ALS estimators)As shown in [Boo79, page 59],
[GGS94, page 564, equation (3.5)], and [Pra87, page 147], the constraint (6.10) is not
invariant under Euclidean transformations. As a result, the LS estimator is not invariant un-
der Euclidean transformations. Such a dependence on the coordinate system is undesirable.
Suggestions for making the LS estimator invariant can be found in [Nie01].

The following question arises. Are the ALS estimators derived with the constraint
(6.10) invariant? If the noise variance isfixed, the answer is negative. However, if we are
allowed to modify the noise variance after the transformation of the data, then the ALS
estimator can be made invariant.

A modification of the noise variance that ensures invarianceunder Euclidean transfor-
mations is the noise variance estimation procedure derivedin [KMV04]. We demonstrate
the invariance properties of the ALS estimator with estimated noise variance by a simulation
example in Section 6.7. Rigorous analysis is presented in [SKMH05].

6.3 Ordinary Least Squares Estimation
The LS estimator for the second order surface model (6.7), subject to the normalizing con-
dition (6.10), is defined as a global minimum point of the following optimization problem:

min
A,b,d

N∑

i=1

(
x(i)⊤Ax(i) + b⊤x(i) + d

)2
subject to

{

A = A⊤,

‖A‖2
F + ‖b‖2 + d2 = 1.

(6.11)

The LS cost function is

Qls(A, b, d) =

N∑

i=1

qls(A, b, d;x(i)),

i

i

i

i

6.3. Ordinary least squares estimation 89

where the elementary LS cost function

qls(A, b, d;x) = (x⊤Ax + b⊤x + d)2

measures the discrepancy of a single measurement pointx from the surfaceB(A, b, d).
In order to derive the solution of (6.11), we introduce a parameter vectorβ containing

all decision variables. Letvecs : S → R
(n+1)n/2 be an operator, a symmetric matrix

vectorizing operator, that stacks the upper triangular part of A in a vector. The vector of
decision variables is

β := col
(
vecs(A), b, d

)
, (6.12)

an element of the parameter spaceR
nβ , nβ := (n + 1)n/2 + n + 1.

Define the symmetric Kronecker product⊗s by

x⊤Ax = (x⊗s x)⊤ vecs(A) for all x ∈ R
n andA ∈ S. (6.13)

We have for the elementary LS cost function

qls(β;x) = (x⊤Ax + b⊤x + d)2

=

(

[
(x⊗s x)⊤ x⊤ 1

]

︸ ︷︷ ︸

y⊤





vecs(A)
b
d





)2

= (y⊤β)2 = β⊤yy⊤β

(6.14)

and for the LS cost function

Qls(β) =

N∑

i=1

qls(β;x(i)) =

N∑

i=1

(
(y(i)⊤)β

)2
= ‖Y β‖2 = β⊤Y ⊤Y β,

where

y(i) :=





x(i) ⊗s x(i)

x(i)

1



 , for i = 1, . . . , N, and Y :=






y(1)⊤

...
y(N)⊤




 .

Let H ∈ R
nβ×nβ be a matrix, such that

‖Hβ‖2 = ‖A‖2
F + ‖b‖2 + d2, for all A ∈ S, b ∈ R

n, d ∈ R, (6.15)

whereβ is defined in (6.12).
The LS estimation problem (6.11) is equivalent to the following classical quadratically

constrained least squares problem:

min
β

‖Y β‖2 subject to ‖Hβ‖2 = 1. (6.16)

The LS estimator̂βls isH−1vmin, wherevmin is a normalized eigenvector ofH−T Y ⊤Y H−1,
corresponding to the smallest eigenvalue.

i

i

i

i

90 Chapter 6. Ellipsoid Fitting

In order to avoid the computation of the Gram matrixY ⊤Y , one can obtain the solution
from the SVD ofY H−1. Let

Y H−1 = UΣV ⊤, with U⊤U = I, V ⊤V = I, and

Σ = diag(σ1, . . . , σn), σ1 ≥ · · · ≥ σn ≥ 0. (6.17)

Thenβ̂ls is H−1vmin, wherevmin is the last column of the matrixV .

Note 6.3 The matrixH that ensures (6.15) is a diagonal matrix with diagonal elements equal
to 1 or

√
2, where the latter correspond to the off-diagonal elements of A; see Note 6.5.

Since the normalizing condition (6.10) is arbitrary, however, we can choose any nonsingular
matrix H in (6.16). Particularly simple isH = I. The LS and ALS estimators depend
on the normalizing condition, but the ALS estimator is consistent for any nondegenerate
normalizing condition, i.e., for any full-rank matrixH.

Note thatvecs(xx⊤) 6= x⊗s x. One can verify thatx⊗s x = D vecs(xx⊤), whereD
is a diagonal matrix with diagonal elements equal to 1 or 2; the latter corresponds to the
off-diagonal elements ofxx⊤ appearing in the productD vecs(xx⊤); see Note 6.5.

6.4 Adjusted Least Squares Estimation
The LS estimator is readily computable but it is inconsistent. We propose an adjustment
procedure that defines a consistent estimator. The proposedapproach is due to [KZ02] and
is related to the method of corrected score functions; see [CRS95, Section 6.5].

The ALS estimator̂βals is defined as a global minimum point of the following opti-
mization problem:

min
β

Qals(β) subject to ‖Hβ‖2 = 1,

where the ALS cost functionQals is

Qals(β) =

N∑

i=1

qals(β;x(i)) for all β ∈ R
nβ .

Let x = x̄ + x̃, wherex̃ is normally distributed with zero mean and variance-covariance
matrix σ̄2I. The elementary ALS cost functionqals is defined by the identity

E qals(β, x̄ + x̃) = qls(β, x̄), for all β ∈ R
nβ andx̄ ∈ R

n. (6.18)

We motivate the definition of the ALS cost function as follows:

Qls(β) :=

N∑

i=1

qls(β; x̄(i)), for all β ∈ R
nβ ,

has as a global minimum point the true value of the parameter vector

β̄ := col
(
vecs(Ā), b̄, d̄

)
.

i

i

i

i

6.4. Adjusted least squares estimation 91

Indeed,Qls ≥ 0 and by definitionQls(β̄) = 0. From

EQals = Qls,

we see that, as the sample size grows,Qals approximatesQls. Provided thatQls hasβ̄ as a
unique global minimum (the contrast condition of [KMV04]),the ALS estimator is strongly
consistent.

Next, we derive an explicit expression for the ALS cost function Qals. From (6.18)
and (6.14), we have

E qals(β, x) = qls(β, x̄) = β⊤ȳȳ⊤β =: β⊤ψls(x̄)β,

where
ȳ := col

(
(x̄⊗s x̄), x̄, 1

)
and ψls(x̄) := ȳȳ⊤.

Thus the ALS elementary cost functionqals is quadratic inβ,

qals(β;x) = β⊤ψals(x)β,

where
Eψals(x) = ψls(x̄). (6.19)

Under the normality assumption for the noise termx̃, (6.19) yields the following convolution
equation:

(1

2πσ̄2

)n/2
∫ ∞

−∞

· · ·
∫ ∞

−∞

ψals(x̄ + x̃)

n∏

i=1

exp

(

− x̃2
i

2σ̄2

)

dx̃1 · · · dx̃n = ψls(x̄).

Solving for the unknownψals is a deconvolution problem.
The deconvolution problem can be solved independently for the entries ofψals. The

elements of the matrixψls(x̄) are monomials of at most fourth order in̄x. Consider the
generic term

ηls(x̄) = x̄ix̄j x̄px̄q, wherei, j, p, q ∈ { 0, 1, . . . , n }.

We formally set̄x0 = 1 and allow any of the indices to be zero, in order to allowηls to be
of order less than four.

Letr(s), s = 1, . . . , n, denote the number of repetitions of the indexs in the monomial
x̄ix̄j x̄px̄q. For example, letn = 2. In the monomial̄x1x̄

3
2, r(1) = 1 andr(2) = 3, and in

the monomial̄x4
1, r(1) = 4 andr(2) = 0.

The functions

t0(ξ) := 1, t1(ξ) := ξ, t2(ξ) := ξ2 − σ̄2,

t3(ξ) := ξ3 − 3ξσ̄2, and t4(ξ) := ξ4 − 6ξ2σ̄2 + 3σ̄4 (6.20)

have the property

E tk(x̄s + x̃s) = x̄k
s , for all x̄s ∈ R andk = 0, 1, 2, 3, 4,

i

i

i

i

92 Chapter 6. Ellipsoid Fitting

wherex̃s ∼ N(0, σ̄2). Thus the polynomial

ηals(x) :=

n∏

s=1

tr(s)(xs) (6.21)

has the property
E ηals(x) = x̄ix̄j x̄px̄q = ηls(x̄) for all x̄ ∈ R

n.

This shows thatηals is the desired solution. The matrixψals is constructed element-wise in
the described way.

The ALS cost functionQals is quadratic inβ,

Qals(β) = β⊤Ψalsβ, for all β ∈ R
nβ ,

where

Ψals =

N∑

i=1

ψals(x
(i)).

Thus the functionQals is described thoroughly.

Example 6.4 (The matrixψals for n = 2) The model parameters areA = [a11 a12
a21 a22

], b =
[

b1
b2

]
, and the scalard. The parameter space is 6-dimensional with

β := col
(
vecs(A), b, d

)
=

[
a11 a12 a22 b1 b2 d

]⊤
.

From (6.13), we have

[
x1 x2

]⊤ ⊗s
[
x1 x2

]⊤
=

[
x1x1 2x1x2 x2x2

]⊤
,

so that
y := col

(
(x⊗s x), x, 1

)
=

[
x1x1 2x1x2 x2x2 x1 x2 1

]⊤
,

ψls(x) = yy⊤ =











x4
1 2x3

1x2 x2
1x

2
2 x3

1 x2
1x2 x2

1

∗ 4x2
1x

2
2 2x1x

3
2 2x2

1x2 2x1x
2
2 2x1x2

∗ ∗ x4
2 x1x

2
2 x3

2 x2
2

∗ ∗ ∗ x2
1 x1x2 x1

∗ ∗ ∗ ∗ x2
2 x2

∗ ∗ ∗ ∗ ∗ 1











,

with ∗’s indicating the symmetric elements.
The adjusted matrixψals is ψals = ψls + ∆ψals, where the correction∆ψals is











3σ̄4 − 6σ̄2x2
1 −6σ̄2x1x2 ∆ψals,13 −3σ̄2x1 −σ̄2x2 −σ̄2

∗ ∆ψals,22 −6σ̄2x1x2 −2σ̄2x2 −2σ̄2x1 0
∗ ∗ 3σ̄4 − 6σ̄2x2

2 −σ̄2x1 −3σ̄2x2 −σ̄2

∗ ∗ ∗ −σ̄2 0 0
∗ ∗ ∗ ∗ −σ̄2 0
∗ ∗ ∗ ∗ ∗ 0











,

i

i

i

i

6.5. Ellipsoid estimation 93

∆ψals,13 = σ̄4 − σ̄2(x2
1 + x2

2), and ∆ψals,22 = 4σ̄4 − 4σ̄2(x2
1 + x2

2).

The correction matrix∆ψals, without the fourth order terms in̄σ, is derived in [Zha97,
Section 7]. The derivation in [Zha97], however, applies only for the two-dimensional case.

The recommended way of computing the LS estimator is via the SVD of Y H−1. For
the ALS estimator we use the less accurate eigenvalue decomposition because the correction
is derived forΨls = Y ⊤Y and cannot be determined for the factorY .

6.5 Ellipsoid Estimation
The ALS estimatorβals is derived for the general quadratic EIV model (6.8)–(6.9).Now we
specialize it for the ellipsoid fitting problem; i.e., we assume that the true surface belongs
to the class of surfaces

B(Ae, c) = {x ∈ R
n : (x − c)⊤Ae(x − c) = 1 } (6.22)

for some true values̄Ae ∈ S, Āe = Ā⊤
e > 0, andc̄ of the parametersAe andc. The equation

definingB(Āe, c̄) can be written as

x⊤Āex − 2(Āec̄)
⊤x + c̄⊤Āec̄ − 1 = 0,

or, with θ :=
(
‖Āe‖2

F + ‖2Āec̄‖2 + (c̄⊤Āec̄ − 1)2
)1/2

,

x⊤(Āe/θ)x − 2(Āec̄/θ)⊤x + (c̄⊤Āec̄ − 1)/θ = 0.

Introduce the new parameters

Ā :=
Āe

θ
, b̄ := −2

Āec

θ
, and d̄ :=

c̄⊤Āec̄ − 1

θ
.

As defined,Ā, b̄, andd̄ satisfy the normalizing condition (6.10).
We can go back to the original parametersĀe andc̄ from Ā, b̄, andd̄ that satisfy (6.10)

by

c̄ = −1

2
Ā−1b̄ and Āe =

1

c̄⊤Āc̄ − d̄
Ā. (6.23)

Note thatθ = c̄⊤Āc̄− d̄ is nonzero. LetÂ, b̂, d̂ be the ALS estimator of the parametersĀ,
b̄, d̄. The estimator of the parameters̄Ae andc̄ is given by the transformation (6.6).

If the obtained estimatêAe is indefinite, we impose a posteriori positive definiteness
by the projection

Âe,2 :=
∑

l:λ̂l>0 λ̂lv̂lv̂
⊤
l , (6.24)

whereÂe =
∑n

l=1 λ̂lv̂lv̂
⊤
l is the eigenvalue decomposition of̂Ae. Indefinite estimatêAe

can be obtained because the estimator does not enforce the prior knowledgeÂe = Â⊤
e > 0.

Clearly, the two-stage procedure—̂Ae obtained on the first stage and̂Ae,2 on the second
stage—is suboptimal. Empirical results, however, suggest that the event of having the
constraintÂe > 0 active is rare. Typically, it occurs for a small sample size with nonuniform
data point distribution and for data with outliers. Due toĀe = Â⊤

e > 0 and the consistency
of the estimatorÂe, we expect that for large sample size,Âe > 0.

i

i

i

i

94 Chapter 6. Ellipsoid Fitting

6.6 Algorithm for Adjusted Least Squares
Estimation ∗

In this section, we summarize the estimation procedure described above by giving Algo-
rithm 6.1 for its computation. Notation similar to the MATLAB syntax for indexing the
elements of a matrix is used. For example,A(i1:i2, j1:j2) stands for the submatrix ofA
obtained by selecting the elements with first index in the set{i1, i1 + 1, . . . , i2} and with
second index in the set{j1, j1 + 1, . . . , j2}.

Note 6.5 If a general quadratic model is estimated, the normalizing condition is given
as prior knowledge, see Note 6.3. If an ellipsoid is estimated, however, the normalizing
condition is arbitrary. In Algorithm 6.1, we setH = I, which corresponds to a normalizing
condition

‖ vecs(A)‖2 + ‖b‖2 + d2 = 1.

The matrixH corresponding to the normalizing condition (6.10) is

H =





√
D

In

1



 ,

whereD is a diagonal matrix with diagonal elements

Dii =

{

2 if i ∈ I ,

1 otherwise.

Note 6.6 (Known blocks of the matrixΨals) Algorithm 6.1 can be improved by setting
certain elements ofΨals in advance and not by following the general adjustment procedure.
Consider a block partitioning of the matricesψls, ψals, andΨals according to the partitioning
of the vector

[
(x⊗s x)⊤ | x⊤ | 1

]⊤
;

e.g., forψls, denote

ψls =:





ψls,11 ψls,12 ψls,13

∗ ψls,22 ψls,23

∗ ∗ ψls,33



 .

All elements ofψls are monomials inx; moreover all elements of:

• ψls,11(x) are of fourth order,

• ψls,12(x) are of third order,

• ψls,13(x) andψls,22(x) are of second order,

• ψls,23(x) are of first order, and

• the scalarψls,33(x) = 1 is independent ofx.

i

i

i

i

6.6. Algorithm for adjusted least squares estimation∗ 95

Algorithm 6.1 ALS ellipsoid fitting als_fit

Input: a matrixX :=
[
x(1) · · · x(N)

]
∈ R

n×N and the noise variancēσ2.
1: Form the tensorT ∈ R

5×n×N , T (k, l, i) := tk
(
X(l, i)

)
, for k = 0, . . . , 4, l = 1, . . . , n,

andi = 1, . . . , N , where the functionstk, k = 0, 1, 2, 3, 4, are given in (6.20).
2: Define the vectors1, l ∈ R

n+1 by 1 := col(1, . . . , 1, 1), l := col(1, . . . , n, 0), and form
the matrixM ∈ R

nβ×2, nβ := (n + 1)n/2 + n + 1, M :=
[

vecs(l 1⊤) vecs(1 l⊤)
]
.

We useM to find the indices of̄x in the entries ofψls(x̄). Note that
(
M(p, 1),M(p, 2)

)

are the indices of̄x in thepth entry ofȳ := x̄⊗s x̄. Recall thatψls(x̄) := ȳȳ⊤. Thus the
indices ofx̄ in the(p, q)th entry ofψls(x̄) are

(
M(p, 1),M(p, 2),M(q, 1),M(q, 2)

)
.

3: Define a binary operator== by (l1==l2) := 1 if l1 = l2 and 0, otherwise, for all
l1, l2 ∈ R. Form the tensorR ∈ R

nβ×nβ×n,

R(p, q, l) =
(
M(p, 1)==l

)
+

(
M(p, 2)==l

)
+

(
M(q, 1)==l

)
+

(
M(q, 2)==l

)
,

for all q ≥ p andl = 1, . . . , n, which contains the number of repetitions of an indexl in
an entry(p, q)th of ψls(x̄). In terms of the functionr, defined in Section 6.4,R stores
(
r(1), . . . , r(n)

)
for the entries ofψls(x̄).

4: Compute

ηals(p, q) =

N∑

i=1

n∏

l=1

T
(
R(p, q, l), l, i

)
for all q ≥ p.

This step corresponds to the correction (6.21) from Section6.4.
5: Form the setI of the indices of the vectorvecs(A), corresponding to the off-diagonal

elements ofA, I = { 1, . . . , (n + 1)n/2 } − { l(l + 1)/2 : l = 1, . . . , n }. (I1 − I2

denotes the set difference of the setsI1 andI2.) Note that{ l(l + 1)/2 | l = 1, . . . , n }
are the indices ofvecs(A), corresponding to the diagonal elements ofA.

6: Form the symmetric matrixΨals by

Ψals(p, q) :=







4ηals(p, q) if p ∈ I andq ∈ I ,

1ηals(p, q) if p 6∈ I andq 6∈ I ,

2ηals(p, q) otherwise,

for all q ≥ p, andΨals(p, q) := Ψals(q, p), for all q < p.
7: Find an eigenvector̂βals associated with the smallest eigenvalue ofΨals.
8: Normalizeβ̂als, β̂als := β̂als/‖β̂als‖.
9: Reconstruct the estimateŝA, b̂, andd̂ from the vector̂βals,

Â := vecs
−1

(
β̂als(1 : n(n + 1)/2)

)
, b̂ := β̂als

(
n(n + 1)/2 + 1 : nβ − 1

)
, d̂ := β̂als(nβ),

wherevecs
−1 : R

n(n+1)/2 → S, forms a symmetric matrix out of the vector of the
elements in its upper triangular part.

10: Obtain the estimates of the ellipsoid parametersĀe andc̄ by (6.6).
11: If Âe ≤ 0, projectÂ on the positive definite cone by (6.24).
Output: the estimateŝAe, ĉ of the ellipsoid parameters.

i

i

i

i

96 Chapter 6. Ellipsoid Fitting

For the blocks of order zero and one, there is no correction applied in the formation of the
matrixψals. The correction for the elements of the blocks of order two is−σ̄2In. Thus for
the corresponding blocks ofψals, we have

ψals,22(x) = xx⊤ − σ̄2In, ψals,23(x) = x,

ψals,13(x) = x⊗s x − vecs(σ̄
2In), ψals,33(x) = 1.

Finally, the corresponding blocks ofΨals are

Ψals,22 =
∑N

i=1 x(i)x(i)⊤ − Nσ̄2In, Ψals,23 =
∑N

i=1 x(i),

Ψals,13 =
∑N

i=1 x(i) ⊗s x(i) − vecs(Nσ̄2In), Ψals,33 = N,

and only the upper triangular part of the blockΨals,11 and the blockΨals,12 need to be
computed in steps 4 and 5 of Algorithm 6.1.

6.7 Simulation Examples
We show the ALS, LS, and orthogonal regression (OR) estimates for a test example from
[GGS94], called “special data”. It is designed to illustrate the inadequacy of the algebraic
fitting method and to show the advantage of the OR method.

Only data points are given; even if they are generated with a true model, we do not
know it. For this reason the comparison is visual. Since the noise variance needed for the
ALS estimator is unknown, we estimate it via the procedure proposed in [KMV04].

Figure 6.1 shows the data points with the estimated ellipsessuperimposed on them.
The OR estimator is computed by a general purpose optimization algorithm (MATLAB
functionfmincon). The cost function is evaluated as explained in [Zha97, Section 5.2].

For the first test example (see Figure 6.1, left) the OR estimator is influenced by
the initial approximation. Using the LS estimate as initialapproximation, the optimization
algorithm converges to a local minimum. The resulting estimate is the dashed-dotted ellipse
closer to the LS estimate. Using the ALS estimate as initial approximation, the obtained
estimate is the dashed-dotted ellipse closer to the ALS estimate. Next, we will consider the
better of the two OR estimates.

Although the sample size is onlyN = 8 data points, the ALS estimator gives good
estimates that are comparable with the OR estimate. The value of the OR cost function
(see (6.3)) is 3.2531 for the LS estimator, 1.6284 for the ALSestimator, and 1.3733 for
the OR estimate. The ALS estimator is less than 19% suboptimal. Moreover, the volume
of the OR estimate is 62.09 square units, while the volume of the ALS estimate is 34.37
square units, which is nearly twice as small. Visually (as well as in other senses), “smaller”
estimates are preferable.

In a second example, taken from [Spä97], the ALS estimate is close to the OR estimate;
see Figure 6.1, right. In terms of the OR cost function, the ALS estimate is less than 25%
suboptimal. The volume of the ALS estimate is comparable to that of the OR estimate.

Figure 6.2 illustrates the invariance properties of the ALSestimator with estimated
noise variance. The data used is again the “special data” from [GGS94]. The figure shows
translated, rotated, scaled, and translated and rotated data points with the corresponding
ALS estimates.

i

i

i

i

6.7. Simulation examples 97

0 5 10 15
−2

0

2

4

6

8

Test example “special data” from [GGS94].

x1

x
2

2 4 6 8
−2

0

2

4

6

8

10

12

Example from [Spä97].

x1

Figure 6.1. Test examples. dashed—LS, dashed-dotted—OR, solid—ALS,◦—data points,
×—centers of the estimated ellipses.

−15 −10 −5 0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

x1

x
2

original

translated
scaled

rotated

translated
and rotated

(0, 0)

Figure 6.2. ALS estimates of the original, translated, rotated, scaled, and translated and
rotated data points.◦—data points,×—centers of the estimated ellipses,•—point(0, 0).

i

i

i

i

98 Chapter 6. Ellipsoid Fitting

6.8 Conclusions
The LS estimation of the ellipsoid parameters from noisy measurements of points on its
boundary is a nonlinear least squares problem. An indirect,suboptimal approach was
used that transforms the ellipsoid model to a general quadratic model and applies linear
least squares estimation. Due to the measurement errors, however, the LS estimator is
inconsistent.

Assuming that the measurement errors are normally distributed, a correction is derived
that uses the true measurement error variance and adjusts the LS cost function, so that
the resulting ALS estimator is consistent. An algorithm forthe necessary computation is
outlined.

The ALS estimator is illustrated via simulation examples. Compared to the orthogonal
regression estimator, it has the advantage of being cheaperto compute and independent
of initial approximation. The computational efficiency is crucial for higher dimensional
ellipsoid fitting and for problems with large sample size.

i

i

i

i

Part II

Dynamic Problems

99

i

i

i

i

i

i

i

i

Chapter 7

Introduction to
Dynamical Models

With this chapter, we start to consider modeling problems for linear time-invariant (LTI)
systems. First, we give an introduction to the LTI model class using the behavioral language.
As in the static case, a key question is the representation ofthe model, i.e., how it is described
by equations. Again, the kernel, image, and input/output representations play an important
role, but other representations that bring additional structure into evidence are used as well.

Dynamical systems are much richer in properties than staticsystems. In the dynamic
case, the memory of the system is central, i.e., the fact thatthe past can affect the future.
The intuitive notion of memory is formalized in the definition of state. In addition, a key
role is played by the controllability property of the system. Every linear static system has an
image representation. In the dynamic case this is no longer true. A necessary and sufficient
condition for existence of an image representation is controllability.

7.1 Linear Time-Invariant Systems
Dynamical systems describe variables that are functions ofone independent variable, re-
ferred to as “time”. In Chapter 2, a system was defined as a subsetB of a universum setU .
In the context of dynamical systems,U is a set of functionsw : T → W, denoted byWT.
The setsW andT ⊆ R are called, respectively, signal space and time axis. The signal
space is the set where the system variables take on their values and the time axis is the set
where the time variable takes on its values. We use the following definition of a dynamical
system [Wil86a].

A dynamical systemΣ is a 3-tupleΣ = (T, W,B), with T ⊆ R the time axis,W
the signal space, andB ⊆ W

T the behavior.

The behaviorB ⊆ W
T is the set of all legitimate functions, according to the system Σ,

from the universum setU = W
T. When the time axis and the signal space are understood

from the context, as is often the case, we may identify the system Σ = (T, W,B) with
its behaviorB. As with any set, the behavior can be described in a number of ways.
In the context of dynamical systems, most often used are representations by equations

101

i

i

i

i

102 Chapter 7. Introduction to Dynamical Models

f : W
T → R

g, i.e., B = {w ∈ W
T | f(w) = 0 }. The equationsf(w) = 0 are called

annihilating behavioral equations.
Of interest are systems with special properties. In the behavioral setting,

a property of the systemΣ is always defined in terms of the behavior and then
translated to equivalent statements in terms of particularrepresentations.

Similarly, the statement thatw is a trajectory ofΣ, i.e., w ∈ B, is translated to more
convenient characterizations for numerical verification in terms of representations ofΣ.

Note 7.1 (Classical vs. behavioral theory)In the classical theory, system properties are
often defined on the representation level; i.e., a property of the system is defined as a
property of a particular representation. (Think, for example, of controllability, which is
defined as a property of a state space representation.) This has the drawback that such a
definition might be representation dependent and thereforenot a genuine property of the
system itself. (For example, a controllable system (see Section 7.5) for definition, may have
uncontrollable state representation.)

It is more natural to work instead the other way around.

1 Define the property in terms of the behaviorB.

2 Find the implications of that property on the parameters ofthe system in particular
representations. On this level, algorithms for verification of the property are derived.

The way of developing system theory as a sequence of steps 1 and 2 is characteristic for the
behavioral approach.

A static system(U ,B) is linear when the universum setU is a vector space and
the behaviorB is a linear subspace. Analogously, a dynamical systemΣ = (T, W,B) is
linear when the signal spaceW is a vector space andB is a linear subspace ofW

T (viewed
as a vector space in the natural way).

The universum setWT of a dynamical system has special structure that is not present
in the static case. For this reason dynamical systems are richer in properties than static
systems. Next, we restrict ourselves to the case when the time axis is eitherT = N or
T = Z and define two properties—time-invariance and completeness. In keeping with
tradition, we call a functionw ∈ W

T a time series.
A systemΣ = (N, W,B) is time-invariant if B ⊆ σB, whereσ is the backward

shift operator(σw)(t) := w(t + 1) andσB := {σw | w ∈ B }. In the caseT = Z, a
systemΣ = (Z, W,B) is time-invariant ifB = σB. Time-invariance requires that if a
time seriesw is a trajectory of a time-invariant system, then all its backward shiftsσtw,
t > 0, are also trajectories of that system.

The restriction of the behaviorB ⊆ (Rw)T to the time interval[t1, t2], wheret1, t2 ∈ T

andt1 < t2, is denoted by

B|[t1,t2]:= {w ∈ (Rw)t2−t1+1 | there arew− andw+ such thatcol(w−, w, w+) ∈ B }.

A systemΣ = (T, W,B) is completeif

w|[t0,t1]∈ B|[t0,t1] for all t0, t1 ∈ T, t0 ≤ t1 =⇒ w ∈ B;

i

i

i

i

7.2. Kernel representation 103

i.e., by looking at the time seriesw through a window of finite widtht1− t0, one can decide
if it is in the behavior or not. Moreover, if the window can be taken to have a fixed width
t1 − t0 = l, then the system is calledl-complete. It turns out that a system is complete if
and only if its behavior is closed in the topology of pointwise convergence, i.e., ifwi ∈ B

for i ∈ N andwi(t) → w(t), for all t ∈ T, impliesw ∈ B. Also, a system isl-complete
if and only if there is a difference equation representationof that system withl time shifts.
For LTI systems, the completeness property is also calledfinite dimensionality.

We consider the class of discrete-time complete LTI systems. Our generic notation
for the signal space isW = R

w.

The class of all complete LTI systems withw variables is denoted byL w.

Next, we discuss representations of the classL w.

7.2 Kernel Representation
Consider the difference equation

R0w(t) + R1w(t + 1) + · · · + Rlw(t + l) = 0, where Rτ ∈ R
g×w. (DE)

It shows the dependence among consecutive samples of the time seriesw. Assuming that
Rl 6= 0, the maximum number of shifts isl. The integerl is called thelag of the equation.
Since in general (DE) is a vector equation,l is the largest lag among the lagsl1, . . . , lg of
all scalar equations.

Obviously, (DE) induces a dynamical system via the representation

B = {w ∈ (Rw)Z | (DE) holds}.

One can analyzeB using the difference equation. It turns out, however, that it is more
convenient to use polynomial matrix algebra for this purpose. (DE) is compactly written in
terms of the polynomial matrix

R(z) := R0 + R1z
1 + R2z

2 + · · · + Rlz
l ∈ R

g×w[z]

asR(σ)w = 0. Consequently, operations on the system of difference equations are repre-
sented by operations on the polynomial matrixR. The system induced by (DE) is

ker
(
R(σ)

)
:= {w ∈ (Rw)N | R(σ)w = 0 }. (KERrepr)

We call (KERrepr) a kernel representation of the systemB := ker
(
R(σ)

)
.

The following theorem summarizes the representation-freecharacterization of the
class of complete LTI systems, explained in the previous section, and states that

without loss of generality one can assume the existence of a kernel representation
B = ker

(
R(σ)

)
of a systemB ∈ L w.

i

i

i

i

104 Chapter 7. Introduction to Dynamical Models

Theorem 7.2 (Willems [Wil86a]). The following are equivalent:

(i) Σ = (Z, Rw,B) is linear, time-invariant, and complete.

(ii) B is linear, shift-invariant, and closed in the topology of pointwise convergence.

(iii) There is a polynomial matrixR ∈ R
•×w[z], such thatB = ker

(
R(σ)

)
.

The linearity of the system induced by (DE) follows from the linearity of (DE)
with respect tow. The shift-invariance follows from the time-invariance ofthe coeffi-
cientsR0, . . . , Rl, and the completeness follows from the fact that (DE) involves a finite
numberl shifts of the time series. Thus (iii)=⇒ (i) is immediate. The reverse implication
(i) =⇒ (iii), on the other hand, requires proof; see [Wil86a, Theorem 5].

A kernel representation associated with a givenB ∈ L w is not unique. The non-
uniqueness is due to:

1. linearly dependent equations (which refers toR not being full row rank) and

2. equivalence of the representationsker
(
R(σ)

)
= 0 andker

(
U(σ)R(σ)

)
= 0, where

U ∈ R
g×g[z] is a unimodular matrix.

A square polynomial matrixU is unimodularif it has a polynomial inverse. A necessary
and sufficient condition forU to be unimodular is its determinant to be a nonzero constant.
Two kernel representations of the same behavior are called equivalent.

Premultiplication ofR with a unimodular matrix is a convenient way to repre-
sent a sequence of equivalence transformations on the system of difference equa-
tions (DE).

For a given systemB ∈ L w, there always exists a kernel representation in which
the polynomial matrixR has full row rank [Wil91, Proposition III.3]. Such a kernel repre-
sentation is called aminimal kernel representation. In a minimal kernel representation, the
number of equationsp := row dim(R) is minimal among all possible kernel representa-
tions ofB. All minimal kernel representations of a given system are infact unimodularly
equivalent; i.e., ifR′(σ) = 0 andR′′(σ) = 0 are both minimal, then there is a unimodular
matrixU , such thatR′ = UR′′.

There exists a minimal kernel representationB = ker
(
R(σ)

)
, in which the number

of equationsp = row dim(R), the maximum lagl := maxi=1,...,p li, and the total lagn :=
∑p

i=1 li are simultaneously all minimal over all possible kernel representations [Wil86a,
Theorem 6]. Such a kernel representation is calledshortest lag representation. A kernel
representationB = ker

(
R(σ)

)
is a shortest lag representation if and only ifR(z) is row

proper. The polynomial matrixR =
[
r1 · · · rp

]⊤
, deg(ri) =: li is row proper if the

leading row coefficient matrix (i.e., the matrix of which the(i, j)th entry is the coefficient
of the term with powerli of Rij(z)) is full row rank. It can be shown that theli’s are the
observability indices of the system.

The minimal and shortest lag kernel representations correspond to special prop-
erties of theR matrix: in a minimal representation,R is full row rank, and in a
shortest lag representation,R is row proper.

i

i

i

i

7.3. Inputs, outputs, and input/output representation 105

A shortest lag representation is a special minimal representation, because a row proper
matrix is necessarily full row rank. A shortest lag representation, however, is still not
unique.

The minimal number of equationsp, the lagl, and the total lagn are invariants
of B. It turns out thatp is equal to the number of outputs, called output cardinality, in an
input/output representation. Correspondingly, the integer m := w − p is also an invariant
of B and is called the input cardinality. It is equal to the numberof inputs in an input/output
representation. The total lagn is equal to the state dimension in a minimal state space
representation ofB. We use the following notation:

m(B) for the input cardinality ofB,

p(B) for the output cardinality ofB,

n(B) for the minimal state dimension ofB, and

l(B) for the lag ofB.

7.3 Inputs, Outputs, And Input/Output
Representation

Consider a projection operatorΠ ∈ R
w×w and a partitioning of the time seriesw ∈ (Rw)Z

into time seriesu andy as follows:
[
u
y

]

:= Π⊤w, where dim
(
u(t)

)
=: m, dim

(
y(t)

)
=: p, with m + p = w.

Respectively a behaviorB ∈ L w is partitioned into two subbehaviorsBu andBy. The
variables inu are called free ifBu = (Rm)Z. If, in addition, any other partitioning results
in no more free variables, thenBu is called maximally free inB. A partitioning in which
Bu is maximally free is called an input/output partitioning with u an input andy an output.

There always exists an input/output partitioning of the variables ofB ∈ L w, in
fact a componentwise one; see [Wil86a, Theorem 2]. It is not unique, but the number of
free variablesm and the number of dependent variablesp are equal to, respectively, the
input cardinality and the output cardinality ofB and are invariant. In a minimal kernel
representationker

(
R(σ)

)
= B, the choice of such a partitioning amounts to the selection

of a full-rank square submatrix ofR. The variables corresponding to the columns ofR that
form the full-rank submatrix are dependent variables and the other variables are free.

The inputs together with the initial conditions determine the outputs. This property
is calledprocessing[Wil91, Definition VIII.2]. Also the inputs can be chosen so that
they are not anticipated by the outputs.Nonanticipationis also called causality [Wil91,
Definition VIII.4].

Let ker
(
R(σ)

)
be a minimal kernel representation ofB ∈ L w. One can always find

a permutation matrixΠ ∈ R
w×w, such thatP ∈ R

p×p[z], defined byRΠ =:
[
Q −P

]
, has

a nonzero determinant and the rational polynomial matrix

G(z) := P−1(z)Q(z) ∈ R
p×m(z) (TF)

i

i

i

i

106 Chapter 7. Introduction to Dynamical Models

is proper. This requires selecting a submatrixP among all full-rank square submatrices
of R that has determinant of maximal degree. Then the corresponding partitioning ofw,
col(u, y) := Π⊤w, is an input/output partitioning.G being proper implies thatu is not
anticipated byy; see [Wil91, Theorem VIII.7].

The difference equation

P (σ)y = Q(σ)u (I/Oeqn)

with an input/output partitioningΠ is called an input/output equation, and the matrixG,
defined in (TF), is called the transfer function of the systemB := ker

(
R(σ)

)
.

The class of LTI complete systems withw variables and at mostm inputs is denoted
by L w

m .

The systemB ∈ L w induced by an input/output equation with parameters(P,Q)
(and input/output partitioning defined byΠ) is

Bi/o(P,Q,Π) := {w := Π col(u, y) ∈ (Rw)N | P (σ)y = Q(σ)u }. (I/Orepr)

(I/Orepr) is called an input/output representation of the systemB := Bi/o(P,Q,Π). If Π
is the identity matrixIw, it is skipped in the notation of the input/output representation.

7.4 Latent Variables, State Variables, and State Space
Representations

Modeling from first principles invariably requires the addition to the model of other variables
apart from the ones that the model aims to describe. Such variables are called latent, and we
denote them byl (not to be confused with the lag of a difference equation). The variablesw
that the model aims to describe are called manifest variables in order to distinguish them
from the latent variables.

An important result, called the elimination theorem [Wil86a, Theorem 1], states that
the behavior

B(R,M) :=
{

w ∈ (Rw)N
∣
∣ ∃ l ∈ (Rl)N, such thatR(σ)w = M(σ)l

}
(LVrepr)

induced by the latent variable equation

R(σ)w = M(σ)l (LVeqn)

is LTI. The behaviorB(R,M) is called manifest behavior of the latent variable system.
The behavior of the manifest and latent variables together is called the full behavior of the
system. The elimination theorem states that if the full behavior is LTI, then the manifest
behavior is LTI; i.e., by eliminating the latent variables,the resulting system is still LTI.

A latent variable system isobservableif there is a mapw 7→ l, i.e., if the latent
variables can be inferred from the knowledge of the system and the manifest variables. The
kernel representation is a special case of the latent variable representation forR = I.

i

i

i

i

7.4. Latent variables, state variables, and state space representations 107

State variablesare special latent variables that specify the memory of the system.
More precisely, latent variablesx are called state variables if they satisfy the following
axiom of state [Wil91, Definition VII.1]:

(w1, x1), (w2, x2) ∈ B, t ∈ N, andx1(t) = x2(t) =⇒ (w, x) ∈ B,

where

(
w(τ), x(τ)

)
:=

{(
w1(τ), x1(τ)

)
for τ < t

(
w2(τ), x2(τ)

)
for τ ≥ t.

A latent variable representation of the system is a state variable representation if there exists
an equivalent representation whose behavioral equations are first order in the latent variables
and zeroth order in the manifest variables. For example, theequation

σx = A′x + B′v, w = C ′x + D′v

defines a state representation. It is called state representation with a driving input becausev
acts like the input:v is free and, together with the initial conditions, determines a trajectory
w ∈ B. The system induced by the parameters(A′, B′, C ′,D′) is

Bss(A
′, B′, C ′,D′) :=

{
w ∈ (Rw)N

∣
∣ ∃ v ∈ (Rv)N andx ∈ (Rn)N,

such thatσx = A′x + B′v, w = C ′x + D′v
}
.

Any LTI systemB ∈ L w admits a representation by an input/state/output equation

σx = Ax + Bu, y = Cx + Du, w = Πcol(u, y), (I/S/Oeqn)

in which both the input/output and the state structure of thesystem are explicitly dis-
played [Wil86a, Theorem 3]. The systemB, induced by an input/state/output equation
with parameters(A,B,C,D) andΠ, is

Bi/s/o(A,B,C,D,Π) := {w := Π col(u, y) ∈ (Rw)N | ∃ x ∈ (Rn)N,

such thatσx = Ax + Bu, y = Cx + Du }. (I/S/Orepr)

(I/S/Orepr) is called an input/state/output representation of the systemB := Bi/s/o(A,B,C,
D,Π). Again,Π is skipped whenever it isI.

An input/state/output representation is not unique. The minimal state dimensionn =
dim(x) among all input/state/output representations ofB, however, is invariant (denoted
by n(B)).

We denote the class of LTI systems withw variables, at mostm inputs, and minimal
state dimension at mostn by L w,n

m .

i

i

i

i

108 Chapter 7. Introduction to Dynamical Models

7.5 Autonomous and Controllable Systems
A systemB is autonomousif for any trajectoryw ∈ B the past

w− :=
(
. . . , w(−2), w(−1)

)

of w completely determines its future

w+ :=
(
w(0), w(1), . . .

)
.

A systemB is autonomous if and only if its input cardinalitym(B) equals0. Therefore,
an autonomous LTI system is parameterized by the pair of matricesA andC via the state
space representation

σx = Ax, y = Cx, w = y. (AUT)

The system induced by the state space representation with parameters(A,C) is

Bi/s/o(A,C) := {w ∈ (Rp)N | ∃ x ∈ (Rn)N, such thatσx = Ax, w = Cx }.

The behavior of an autonomous system is finite dimensional; in fact,dim(B) = n(B).
Alternatively, an autonomous LTI system is parameterized in a minimal kernel representation
B = ker

(
R(σ)

)
by a square and nonsingular matrixR, i.e.,R ∈ R

p×p[z], det(R) 6= 0.
The systemB is controllableif for any two trajectoriesw1, w2 ∈ B, there is a third

trajectoryw ∈ B, such thatw1(t) = w(t), for all t < 0, andw2(t) = w(t), for all
t ≥ 0. The subset of controllable systems contained in the setL w is denoted byL w

ctrb. A
noncontrollable systemB can be represented [Wil91, Proposition V.8] asB = Bctrb⊕Baut,
whereBctrb is the largest controllable subsystem inB andBaut is a (nonunique) autonomous
subsystem.

A test for controllability of the systemB in terms of the parameterR ∈ R
g×w[z] in a

kernel representationB = ker
(
R(σ)

)
is given in [Wil91, Theorem V.2]:B is controllable if

and only if the matrixR(z) has a constant rank for allz ∈ C. Equivalently,B is controllable
if and only if a matrixR that defines a minimal kernel representation ofB is left prime. In
terms of the input/output representationB = Bi/o(P,Q), B being controllable is equivalent
to P andQ being left coprime.

The controllable subsystemBctrb of B can be found via the factorizationR = FR′,
whereF ∈ R

g×g[z] andR′ is prime: Bctrb = ker
(
R′(σ)

)
. In general, left multiplication

of R with a nonsingular polynomial matrix changes the behavior:it amounts to adding an
autonomous subbehavior. Only left multiplication with a unimodular matrix does not alter
the behavior because it adds the trivial autonomous behavior {0}.

7.6 Representations for Controllable Systems
The transfer functionG parameterizes the controllable subsystem ofBi/o(P,Q). LetZ be
the Z-transform

Z (w) = w(0) + w(1)z−1 + w(2)z−2 + · · ·
and consider the input/output equation

Z (y) = G(z)Z (u). (TFeqn)

i

i

i

i

7.6. Representations for controllable systems 109

(TFeqn) is known as a frequency domain equation becauseG(ejω) describes how the
sinusoidal inputu(t) = sin(ωt) is “processed” by the system:

y(t) = |G(ejω)| sin
(
ωt + ∠G(ejω)

)
.

The system induced byG (with an input/output partition defined byΠ) is

Bi/o(G,Π) :=
{

w = Πcol(u, y) ∈ (Rw)N
∣
∣ y = Z

−1
(
G(z)Z (u)

) }
. (TFrepr)

(TFrepr) is called a transfer function representation of the systemB := Bi/o(G,Π).
In terms of the parameters of the input/state/output representationBi/s/o(A,B,C,D) =
Bi/o(G), the transfer function is

G(z) = C(Iz − A)−1B + D. (TF←I/S/O)

Define the matrix valued time seriesH ∈ (Rp×m)N by H := Z −1(G), i.e.,

G(z) = H(0) + H(1)z−1 + H(2)z−2 + · · · . (TF←CONV)

The time seriesH is a parameter in an alternative, time-domain representation of the system
Bi/o(G,Π). Let ⋆ be the convolution operator. Then

y(t) := (H ⋆ u)(t) =

t−1∑

τ=0

H(τ)u(t − τ). (CONVeqn)

The system induced byH (with an input/output partition defined byΠ) is

Bi/o(H,Π) :=
{

w = Πcol(u, y) ∈ (Rw)N
∣
∣ y = H ⋆ u

}
. (CONVrepr)

(CONVrepr) is called a convolution representation of the systemB := Bi/o(H,Π).
The matricesH(t), t ≥ 0, are called Markov parameters of the representation

Bi/o(H). In terms of the parameters of the state space representation Bi/s/o(A,B,C,D) =
Bi/o(H), the Markov parameters are

H(0) = D, H(t) = CAt−1B, t ≥ 1. (CONV←I/S/O)

In addition to the transfer function (TFrepr) and convolution (CONVrepr) representa-
tions, a controllable systemB ∈ L w allows an image representation [Wil91, Theorem V.3];
i.e., there is a polynomial matrixM ∈ R

w×g[z], such thatB = image
(
M(σ)

)
, where

image
(
M(σ)

)
:= {w ∈ (Rw)N | ∃ l ∈ (Rw)N, such thatw = M(σ)l }. (IMGrepr)

The image representation is minimal if the numberl of latent variables is minimal; i.e., there
are no extra external variables in the representation than necessary. The image representation
image

(
M(σ)

)
of B is minimal if and only ifM is full column rank.

i

i

i

i

110 Chapter 7. Introduction to Dynamical Models

7.7 Representation Theorem
The following theorem summarizes the results presented in the previous sections of this
chapter.

Theorem 7.3 (LTI system representations).The following statements are equivalent:

(i) B is a complete LTI system withw variables,m inputs, andp := w − m outputs, i.e.,
B ∈ L w andm(B) = m;

(ii) there is a (full row rank) polynomial matrixR ∈ R
p×w[z], such thatB = ker

(
R(σ)

)
;

(iii) there are polynomial matricesQ ∈ R
p×m[z] andP ∈ R

p×p[z], det(P) 6= 0, P−1Q
proper, and a permutation matrixΠ ∈ R

w×w, such thatB = Bi/o(P,Q,Π);

(iv) there is a natural numbern, matricesA ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, andD ∈

R
p×m, and a permutation matrixΠ ∈ R

w×w, such thatB = Bi/s/o(A,B,C,D,Π);

(v) there is a natural numberl ∈ N and polynomial matricesR ∈ R
p×m[z] andM ∈

R
p×l[z], such thatB = B(R,M);

(vi) there is a natural numberl ∈ N and matricesA′ ∈ R
n×n, B′ ∈ R

n×m, C ′ ∈ R
p×n,

andD′ ∈ R
p×m, such thatB = Bss(A

′, B′, C ′,D′).

If in additionB is controllable, then the following statement is equivalent to (i)–(vi):

(vii) there is a full column rank matrixM ∈ R
w×m[z], such thatB = image

(
M(σ)

)
.

A controllable systemB has transfer functionBi/o(G,Π) and convolutionBi/o(H,Π)
representations. These representations are unique when aninput/output partitioning of the
variables is fixed.

The proofs of most of the implications of Theorem 7.3 can be found in [Wil86a]
and [Wil91]. These proofs are constructive and give explicit algorithms for passing from
one representation to another.

Figure 7.1 shows schematically the representations discussed up to now. To the left
of the vertical line are representations that have no explicit input/output separation of the
variables and to the right of the vertical line are representations with input/output separation
of the variables. In the first row are state space representations. The representations below
the second horizontal line exist only for controllable systems.

Transition from a latent variable representation to a representation without latent
variables, for exampleB(R′,M ′) → ker(R), involves elimination. Transition from a
representation without an input/output separation to a representation with such a separation,
for exampleker(R) → Bi/o(P,Q), involves input/output selection. Transitions from a
representation in the second or third rows to a representation in the first row is a realization
problem.

In principle, all transitions from one type of representation to another are of interest
(and imply algorithms that implement them). Moreover, all representations have special
forms such as the controller canonical form, the observer canonical form, balanced rep-
resentation, etc. Making the graph in Figure 7.1 connected suffices in order to be able to

i

i

i

i

7.8. Parameterization of a trajectory 111

derive any representation, starting from any other one. Having a specialized algorithm that
does not derive intermediate representations, however, has advantages from a computational
point of view.

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â input/output

state space Bss(A
′, B′, C ′,D′) Bi/s/o(A,B,C,D)

B(R′,M ′) elimination // ker(R) i/o selection // Bi/o(P,Q)

controllable image(M) Bi/o(G)

Bi/o(H)

Figure 7.1. Representations by categories: state space, input/output, and controllable.

7.8 Parameterization of a Trajectory
A trajectoryw of B ∈ L w is parameterized by

1. a corresponding inputu and

2. initial conditionsxini .

If B is given in an input/state/output representationB = Bi/s/o(A,B,C,D), then an inputu
is given and the initial conditions can be chosen as the initial statex(1). The variation of
constants formula

w = col(u, y), y(t) = CAt−1xini +

t−1∑

τ=1

CAt−τ−1B
︸ ︷︷ ︸

H(t−τ)

u(τ) + Du(t), t ≥ 1 (VC)

gives a parameterization ofw. Note that the second term in the expression fory is the
convolution ofH andu. It alone gives the zero initial conditions response. Theith column
of the impulse responseH is the zero initial conditions response of the system to input
u = eiδ, whereei is theith unit vector.

For a given pair of matrices(A,B), A ∈ R
n×n, B ∈ R

n×m, andt ∈ N, define the
extended controllability matrix (witht block columns)

Ct(A,B) :=
[
B AB · · · At−1B

]
(C)

i

i

i

i

112 Chapter 7. Introduction to Dynamical Models

and letC (A,B) := C∞(A,B). The pair(A,B) is controllable ifC (A,B) is full row rank.
By the Cayley–Hamilton theorem [Bro70, page 72],rank

(
C (A,B)

)
= rank

(
Cn(A,B)

)
,

so that it suffices to check the rank of the finite matrixCn(A,B). The smallest natural
numberi, for which Ci(A,B) is full row rank, is denoted byν(A,B) and is called the
controllability index of the pair(A,B). The controllability index is an invariant under state
transformation; i.e.,ν(A,B) = ν(SAS−1, SB) for any nonsingular matrixS. In fact,
ν(A,B) is an invariant of any systemBi/s/o(A,B, •, •), so that it is legitimate to use the
notationν(B) for B ∈ L w. Clearly,ν(B) ≤ n(B).

Similarly, for a given pair of matrices(A,C), A ∈ R
n×n, C ∈ R

p×n, andt ∈ N,
define the extended observability matrix (witht block rows)

Ot(A,C) := col(C,CA, . . . , CAt−1) (O)

and letO(A,C) := O∞(A,C). The pair(A,C) is observable ifO(A,C) is full column
rank. Again,rank

(
O(A,C)

)
= rank

(
On(A,C)

)
, so that it suffices to check the rank of

On(A,C). The smallest natural numberi, for whichOi(A,C) is full row rank, is denoted
by µ(A,C) and is called the observability index of the pair(A,C). The observability
index is an invariant under state transformation; i.e.,µ(A,C) = µ(SAS−1, CS−1) for any
nonsingular matrixS. In fact,ν(A,C) is equal to the lag of any systemBi/s/o(A, •, C, •),
so that it is invariant and it is legitimate to use the notation ν(B) for B ∈ L w. Clearly,
l(B) = ν(B) ≤ n(B).

If the pairs(A,B) and(A,C) are understood from the context, they are skipped in
the notation of the extended controllability and observability matrices.

We define also the lower triangular block-Toeplitz matrix

Tt+1(H) :=










H(0)
H(1) H(0)
H(2) H(1) H(0)

...
...

. . .
.. .

H(t) H(t − 1) · · · H(1) H(0)










(T)

and letT (H) = T∞(H). With this notation, equation (VC) can be written compactlyas
[
u
y

]

=

[
0 I

O(A,C) T (H)

] [
xini

u

]

. (VC’)

If the behaviorB is not given by an input/state/output representation, thenthe pa-
rameterization of a trajectoryw ∈ B is more involved. For example, in an input/output
representationB = Bi/o(P,Q), w can be parameterized by the inputu and thel = deg(P)
values of the time serieswini :=

(
w(−l + 1), . . . , w(0)

)
precedingw as follows:

y = Oi/owini + T (H)u. (VC i/o)

HereOi/o is a matrix that induces a mapping fromwini to the corresponding initial conditions
response. LetBi/s/o(A,B,C,D) = Bi/o(P,Q). Comparing (VC’) and (VC), we see that
the matrixOi/o can be factored asOi/o = O(A,C)X, whereX is a matrix that induces the
mapwini 7→ xini , called a state map [RW97].

The graph in Figure 7.2 illustrates the two representationsintroduced in this section
for a trajectoryw of the systemB ∈ L w,n

m .

i

i

i

i

7.9. Complexity of a linear time-invariant system 113

w ∈ B ∈ L w,n
m

55

uukkkkkkkkkkkkk jj

**TTTTTTTTTTTTTT

B = Bi/o(P,Q,Π), wini
oo // B = Bi/s/o(A,B,C,D,Π), xini

Figure 7.2. Links amongw ∈ B ∈ L w,n
m and its parameterizations in input/output and

input/state/output form.

7.9 Complexity of a Linear Time-Invariant System
In Chapter 2, we introduced the complexity of a linear systemB as the dimension ofB as
a subspace of the universum set. For an LTI systemB ∈ L w and forT ≥ l(B),

dim(B|[1,T]) = m(B)T + n(B), (dimB)

which shows that the pair of natural numbers
(
m(B),n(B)

)
(the input cardinality and

the total lag) specifies the complexity of the system. The model classL w,n
m contains LTI

systems of complexity bounded by the pair(m, n).
In the context of system identification problems, aiming at akernel representation

of the model, we need an alternative specification of the complexity by the input cardinal-
ity m(B) and the lagl(B). In general,

(
l(B) − 1

)
p(B) < n(B) ≤ l(B)p(B),

so that
dim(B|[1,T]) ≤ m(B)T + l(B)p(B)

and the pair
(
m(B), l(B)

)
bounds the complexity of the systemB.

The class of LTI systems withw variables, at mostm inputs, and lag at mostl is
denoted byL w

m,l.

This class specifies a set of LTI systems of a bounded complexity.

7.10 The Module of Annihilators of the Behavior ∗

Define the set of annihilators of the systemB ∈ L w as

NB := { r ∈ R
w[z] | r⊤(σ)B = 0 }

and the set of annihilators with length less than or equal tol as

N
l

B := { r ∈ NB | deg(r) < l }.

i

i

i

i

114 Chapter 7. Introduction to Dynamical Models

The setsNB andN l
B

are defined as subsets ofR
w[z]. With some abuse of notation, we

consider also the annihilators as vectors; i.e., forr(z) =: r0 + r1z + · · · + rlz
l ∈ NB, we

also writecol(r0, r1, . . . , rl) ∈ NB.

Lemma 7.4.Let r(z) = r0 + r1z + · · · + rl−1z
l−1. Thenr ∈ N l

B
if and only if

col⊤(r0, r1, . . . , rl−1)B|[1,l]= 0.

The set of annihilatorsNB is the dualB⊥ of the behaviorB.

The proof of the following facts can be found in [Wil86a]. Thestructure ofNB

is that of the module ofR[z] generated byp polynomial vectors, sayr(1), . . . , r(p). The
polynomial matrixR := [r(1) . . . r(p)]⊤ yields a kernel representation of the behaviorB,
i.e.,B = ker

(
R(σ)

)
.

Without loss of generality, assume thatR is row proper; i.e.,ker
(
R(σ)

)
is a shortest

lag kernel representation. By the row properness ofR, the set of annihilatorsN l
B

can be
constructed from ther(k)’s and their shifts

N
l

B = image
(
r(1)(z), zr(1)(z), . . . , zl−µ1−1r(1)(z) ; . . . ;

r(p)(z), zr(p)(z), . . . , zl−µp−1r(p)(z)
)
.

The dimension ofN l
B

is l − µ1 + l − µ2 + · · · + l − µp = pl − n.
In the proof of the fundamental lemma (see Appendix A.3), we need the following

simple fact.

Lemma 7.5. Let r(1), . . . , r(p), wheredeg(ri) =: µi, be independent over the ring of
polynomials. Then

r(1)(z), zr(1)(z), . . . , zl−µ1−1r(1)(z) ; . . . ; r(p)(z), zr(p)(z), . . . , zl−µp−1r(p)(z)

are independent over the field of reals.

i

i

i

i

Chapter 8

Exact Identification

With this chapter, we start to consider identification problems. The first problem is the
simplest of this type: given a trajectory of an LTI system, find a representation of the system
that produced this trajectory. The problem is defined and motivated in Sections 8.1–8.3.

Exact identification is closely related to the constructionof the most powerful unfal-
sified model (MPUM). In Section 8.2, we define the MPUM, and in Section 8.3, we define
the identifiability property. Under identifiability, the MPUM of the data, which is explicitly
constructible from the data, coincides with the data generating system. This allows us to
find the data generating system from data. An identifiabilitytest in terms of the given data
is presented in Section 8.4. This key result is repeatedly used in what follows and is called
the fundamental lemma.

In Section 8.5, we review algorithms for exact identification. Section 8.6 presents
algorithms for passing from data to a convolution representation. Section 8.7 reviews real-
ization theory and algorithms. Section 8.8 presents algorithms for computation of sequential
free responses, which are a key ingredient of direct algorithms for the construction of an
input/state/output representation of the MPUM.

In Section 8.9, we explain the relation of the algorithms presented to classical algo-
rithms for deterministic subspace identification. In particular, the orthogonal and oblique
projections correspond to computation of, respectively, free responses and sequential free
responses of the system. We comment on the inherent inefficiency of the orthogonal and
oblique projections for the purpose of exact identification. Simulation results that compare
the efficiency of various exact identification algorithms are shown in Section 8.10.

8.1 Introduction
In this chapter, we consider the following problem:

Given a trajectorywd of an LTI systemB, find a representation ofB.

We refer to this most basic identification problem as an exactidentification problem. It is
of interest to find algorithms that make the transition fromwd directly to any one of the
various possible representations ofB; cf., Figure 7.1.

115

i

i

i

i

116 Chapter 8. Exact Identification

data identification // model

Bi/s/o(A,B,C,D)

11
tt

7

¡¡

1

®®
wd = (ud, yd) ∈ B

12

44

10 --

6

''

Bi/o(G)
9nn

3

®®

2

KK

Bi/o(H)

8

cc

5

gg

4

KK

re
al

iz
at

io
n

OO
GF ED@A BC

GF ED@A BC

GF ED@A BC

GF ED@A BC

Figure 8.1. Data, input/output model representations, and links amongthem.

1. G(z) = C(Iz − A)−1B + D

2. Realization of a transfer function

3. H = Z −1(G)

4. G = Z (H) =
∑∞

t=0 H(t)z−t

5. Convolutionyd(t) =
∑t

τ=0 H(τ)ud(t − τ)

6. Exact identification; see Algorithms 8.6 and 8.7

7. H(0) = D, H(t) = CAt−1B, for t ≥ 1

8. Realization of an impulse response; see Algorithm 8.8

9. Simulation of the response under the inputud

10. Exact identification; see Algorithm 8.1

11. Simulation of the response under the inputud and initial conditionsx(1) = xini

12. Exact identification; see Algorithms 8.4 and 8.5

Figure 8.1 shows the representations with an input/output partition of the variables
that we considered before and the trajectorywd =: (ud, yd). The transitions fromwd to
convolution, transfer function, and input/state/output representations are exact identification
problems. The transitions among the representations themselves are representation prob-
lems. Most notable of the representation problems are the realization ones: passing from
an impulse response or transfer function to an input/state/output representation.

The exact identification problem is an important system theoretic problem. It includes
as a special case the classical impulse response realization problem and is a prerequisite

i

i

i

i

8.2. The most powerful unfalsified model 117

for the study of more involved approximate, stochastic, andstochastic/approximate identi-
fication problems (e.g., the GlTLS misfit minimization problem, which is an approximate
identification problem). In addition, numerical algorithms for exact identification are useful
computational tools and appear as subproblems in other identification algorithms. By itself,
however, exact identification is not a practical identification problem. The data is assumed
to be exact and unlessB is the trivial systemB = (Rw)N, a randomly chosen time series
wd ∈ (Rw)N is a trajectory ofB with probability zero.

Modified exact identification algorithms can be applied on data that is not necessarily
generated by a finite dimensional LTI system by replacing exact linear algebra operations
with approximate operations. For example, rank determination is replaced by numerical
rank determination (via SVD) and solution of a system of linear equations by LS or TLS
approximation. A lot of research is devoted to the problem ofestablishing alternatives
to wd ∈ B, under which such modified algorithms have desirable properties. Often this
problem is treated in the stochastic setting of the ARMAX model and the properties aimed
at are consistency and asymptotic efficiency.

Note 8.1 (Multiple time series) In general, the given data for identification is a finite set
of time serieswd,1, . . . , wd,N . In the presentation, however, we define and solve the iden-
tification problems for a single time series. The generalization for multiple time series of
equal length is trivial and the one for nonequal length is an open problem.

Note 8.2 (Finite amount of data) An important aspect of the identification problems that
we address is the finiteness of the available data. Previous studies of exact identification
either assume an infinite amount of data or do not address the issue of finiteness of the data.

Note 8.3 (Given input/output partitioning) Although the exact identification problem is
defined in the behavioral setting, most of the established results are in the input/output
setting. In our treatment, some problems are also solved in the input/output setting.

Software implementation of the algorithms presented in this and the following chapter
is described in Appendix B.3.

8.2 The Most Powerful Unfalsified Model
The notion of the most powerful unfalsified model (MPUM) is introduced in [Wil86b,
Definition 4]. It plays a fundamental role in the exact identification problem.

Definition 8.4 (MPUM in the model classL w [Wil86b]). The systemB ⊆ (Rw)N is an
MPUM of the time serieswd ∈ (Rw)T in the model classL w if it is

1. finite dimensional LTI, i.e.,B ∈ L w,

2. unfalsified, i.e.,wd ∈ B|[1,T], and

3. most powerful among all finite dimensional LTI unfalsifiedsystems, i.e.,

B
′ ∈ L

w andwd ∈ B
′|[1,T] =⇒ B|[1,T]⊆ B

′|[1,T].

i

i

i

i

118 Chapter 8. Exact Identification

The MPUM ofwd is denoted byBmpum(wd). We skip the explicit dependence onwd when
wd is understood from the context.

The existence and uniqueness of the MPUM are proven in the following theorem.

Theorem 8.5 (Existence and uniqueness of the MPUM [Wil86b]).The MPUM ofwd ∈
(Rw)T exists and is unique. Moreover,

Bmpum(wd) = ∩wd∈B|[1,T]

B∈L
w

B;

i.e.,Bmpum(wd) is the smallest shift-invariant closed in the topology of pointwise
convergence subspace of(Rw)N that containswd.

Proof. DefineB′ := ∩wd∈B|[1,T]

B∈L
w

B. We will show thatB′ is an MPUM.

Lemma 8.6 (Intersection property ofL w). B1,B2 ∈ L w =⇒ B1 ∩ B2 ∈ L w.

Proof. See [Wil86b, Proposition 11].
Lemma 8.6 implies thatB′ ∈ L w. Obviously,wd ∈ B′, so thatB′ is unfalsified.

Moreover,B′ is in the intersection of all finite dimensional LTI unfalsified models, so that
it is most powerful. Therefore,B′ is an MPUM.

We proved the existence of an MPUM. In order to prove uniqueness, assume that there
is B′′ 6= B′ that is also an MPUM ofwd. By Lemma 8.6,B := B′′ ∩B′ ∈ L w andB is
obviously unfalsified. ButB ⊂ B′, so thatB′ is not an MPUM, which is a contradiction.

The next proposition shows another characterization of theMPUM for infinite wd.

Proposition 8.7.Letwd ∈ (Rw)N. Then

Bmpum(wd) = closure
(
image(wd, σwd, σ

2wd, . . .)
)
;

i.e.,Bmpum(wd) is the closure of the span ofwd and all its shifts.

Proof. Let B′ := closure
(
image(wd, σwd, σ

2wd, . . .)
)
. By definition, B′ is a closed,

linear, and shift-invariant subspace. Then [Wil86a, Theorem 5] implies thatB′ ∈ L w. By
definition,wd ∈ B′, so thatB′ is unfalsified. From conditions 1 and 2 of Definition 8.4, it
is easy to see that any unfalsified model containsB′. Therefore,B′ is the MPUM ofwd.

Note 8.8 (Algorithms for construction of the MPUM) Proposition 8.7 shows that the
MPUM Bmpum(wd) is explicitly constructible from the given datawd. However, algorithms
that pass fromwd to concrete representations ofBmpum(wd) are needed. Such algorithms
are described in Section 8.5.

i

i

i

i

8.3. Identifiability 119

Note 8.9 (GenericallyBmpum(wd) = (Rw)N for infinite data wd ∈ (Rw)N) The existence
of the MPUM is guaranteed in the model classL w of unbounded complexity. For “rough”
datawd ∈ (Rw)N (the generic case in(Rw)N), the MPUM is the trivial systemBmpum(wd) =
(Rw)N, i.e., a system withw inputs. Therefore, generically the MPUM of an infinite time
series does not exist in a model classL w

m with m < w. Therefore, an approximation is needed
in order to find a nontrivial model. Approximate identification is treated in Chapter 11.

Note 8.10 (GenericallyBmpum(wd)|[1,T]= (Rw)T for finite data wd ∈ (Rw)T)
For finite datawd ∈ (Rw)T , the MPUM always exists in a model classL w

m with any number
0 ≤ m ≤ w of inputs. For rough data the solution is still a trivial systemBmpum(wd)|[1,T]=
(Rw)T . Now, however, the possibility of fitting an arbitraryT samples long time series is
achieved by the initial conditions as well as the inputs. Indeed, any observable systemB ∈
L w of ordern(B) ≥ p(B)T is unfalsified by anyT samples long time serieswd ∈ (Rw)T .

8.3 Identifiability
Not every trajectorywd of a systemB ∈ L w allows the reconstruction ofB from wd.
For example, the trajectorywd = 0 ∈ B does not carry any information aboutB because
any LTI system is compatible with the zero trajectory. The possibility of identifying B

from wd is a property of bothwd andB. In order to formalize the notion of the “possibility
of identifying a system from exact data”, we define the identifiability property as follows.

Definition 8.11 (Identifiability). The systemB ⊆ (Rw)N is identifiable from the data
wd ∈ (Rw)T in the model classL w,n

m,l if

1. B ∈ L
w,n
m,l ,

2. wd ∈ B|[1,T], and

3. there is no other systemB′ ∈ L
w,n
m,l , B′ 6= B, that fits the data, i.e.,

B
′ ∈ L

w,n
m,l and wd ∈ B

′|[1,T] =⇒ B
′ = B.

Identifiability inL
w,n
m,l implies that the MPUM of the datawd is inL

w,n
m,l and coincides

with the data generating systemB.

Theorem 8.12. If B ⊆ (Rw)N is identifiable in the model classL w,n
m,l from the datawd ∈

(Rw)T in the model classL w,n
m,l , thenB = Bmpum(wd).

Proof. The first condition forB being identifiable fromwd implies the first condition for
B being the MPUM ofwd, and the second conditions are equivalent. Condition 3 forB

being identifiable fromwd implies that there is a unique unfalsified system in the model
classL w,n

m,l . Therefore,B is the MPUM ofwd.
Since the MPUM is explicitly computable from the given data (see Note 8.8) identi-

fiability indeed implies the “possibility of identifying the system from exact data”. In Sec-
tion 8.5, we list algorithms for passing fromwd to kernel, convolution, and input/state/output

i

i

i

i

120 Chapter 8. Exact Identification

representations of the MPUM. For example, consider Algorithm 8.1, which constructs a ker-
nel representation of the MPUMBmpum(wd).

Next, we define the considered exact identification problem.

Problem 8.13 (Exact identification). Givenwd ∈ B ∈ L w and complexity specification
(m, lmax, nmax), determine whetherB is identifiable fromwd in the model classL w,nmax

m,lmax
,

and if so, find an algorithm that computes a representation ofB.

8.4 Conditions for Identifiability
The block-Hankel matrix witht1 block rows andt2 block columns, constructed from (in
general matrix valued) time seriesw =

(
w(1), w(2), . . .

)
, is denoted by

Ht1,t2(w) :=










w(1) w(2) w(3) · · · w(t2)
w(2) w(3) w(4) · · · w(t2 + 1)
w(3) w(4) w(5) · · · w(t2 + 2)

...
...

...
...

w(t1) w(t1 + 1) w(t1 + 2) · · · w(t1 + t2 − 1)










. (H)

If both block dimensionst1 andt2 are infinite, we skip them in the notation; i.e., we define
H (w) := H∞,∞(w). If the time series is finitew =

(
w(1), . . . , w(T)

)
, i.e., thenHt1(w)

denotes the Hankel matrix witht1 block rows and as many block columns as the finite time
horizonT allows; i.e.,Ht1(w) := Ht1,t2(w), wheret2 = T − t1 + 1.

With some abuse of notation (w is viewed as both the matrix
[
w(1) w(2) · · ·

]
and

the vectorcol
(
w(1), w(2), . . .

)
, the infinite Hankel matrixH (w) can be block partitioned

in the following two ways:

H (w) =








w
σw
σ2w

...








=
[
w σw σ2w · · ·

]
,

which shows that it is composed ofw and its shiftsσtw, t ≥ 1, stacked next to each other.
Therefore,w ∈ B implies thatcol span

(
H (w)

)
⊆ B. We establish conditions onw

andB under which equality holds, i.e., conditions under whichw specifiesB exactly.

Definition 8.14 (Persistency of excitation).The time seriesud =
(
ud(1), . . . , ud(T)

)
is

persistently exciting of orderL if the Hankel matrixHL(ud) is of full row rank.

Lemma 8.15 (Fundamental lemma [WRMM05]). Let

1. wd = (ud, yd) be aT samples long trajectory of the LTI systemB, i.e.,

wd =

[
ud

yd

]

=

([
ud(1)
yd(1)

]

, . . . ,

[
ud(T)
yd(T)

])

∈ B|[1,T];

i

i

i

i

8.4. Conditions for identifiability 121

2. the systemB be controllable; and

3. the input sequenceud be persistently exciting of orderL + n(B).

Then anyL samples long trajectoryw = (u, y) ofB can be written as a linear combination
of the columns ofHL(wd) and any linear combinationHL(wd)g, g ∈ R

T−L+1, is a
trajectory ofB, i.e.,

col span
(
HL(wd)

)
= B|[1,L].

Proof. See Appendix A.3.
The fundamental lemma gives conditions under which the Hankel matrix HL(wd)

has the “correct” image (and as a consequence the “correct” left kernel). For sufficiently
largeL, namelyL ≥ l(B) + 1, it answers the identifiability question.

Theorem 8.16 (Identifiability conditions). The systemB ∈ L w is identifiable from the
exact datawd = (ud, yd) ∈ B if B is controllable andud is persistently exciting of order
l(B) + 1 + n(B).

Note that for applying Theorem 8.16, we need to know a priori the order and the lag
of B and thatB is controllable. These assumptions can be relaxed as follows. Knowledge of
upper boundsnmax andlmax of, respectively,n(B) andl(B) suffice to verify identifiability.
Moreover, the condition “B controllable andud persistently exciting of orderlmax +
1 + nmax” is the sharpest necessary condition for identifiability that is verifiable from
the data,nmax, andlmax only. In other words, ifud is not persistently exciting of order
lmax + 1 + nmax, then there is a controllable systemB ∈ L

w,nmax
m,lmax

, such thatwd ∈ B and
B is not identifiable fromwd.

We will need the following corollary of the fundamental lemma.

Corollary 8.17 (Willems et al. [WRMM05]). Consider the minimal input/state/output
representation of the controllable systemB, Bi/s/o(A,B,C,D), and letxd be the state
sequence ofBi/s/o(A,B,C,D), corresponding to the trajectorywd = (ud, yd) of B.

(i) If ud is persistently exciting of ordern(B) + 1, then

rank
([

xd(1) xd(2) · · · xd(T)
])

= n(B)

and

rank

[
ud(1) · · · ud(T)
xd(1) · · · xd(T)

]

= n(B) + m.

(ii) If ud is persistently exciting of ordern(B) + L, then

rank

[
Xd

HL(ud)

]

= n(B) + Lm, where Xd :=
[
xd(1) · · · xd(T − L + 1)

]
.

The rest of the chapter is devoted to the second part of the exact identification problem:
algorithms that compute a representation of the MPUM.

i

i

i

i

122 Chapter 8. Exact Identification

8.5 Algorithms for Exact Identification
If the conditions of Theorem 8.16 are satisfied, then there are algorithms that compute a
representation of the data generating systemB from the datawd. In fact, such algorithms
compute the MPUM of the datawd. In this section, we outline four classes of algorithms for
exact identification. The first one derives a kernel representation and the second one derives
a convolution representation. Composed with realization algorithms, they give (indirect)
algorithms for the computation of state space representations. The last two classes of
algorithms construct (directly) an input/state/output representation.

Algorithms for Computation of a Kernel Representation

Under the assumption of the fundamental lemma,

ker
(
Hlmax+1(wd)

)
= B|[0,lmax].

Therefore, a basis for the left kernel ofHlmax+1(wd) defines a kernel representation ofB ∈
L

w,nmax
m,lmax

. Let
[

R̃0 R̃1 · · · R̃lmax

]
Hlmax+1(wd) = 0,

whereR̃i ∈ R
g×w with g = p(lmax + 1) − n(B). Then

B = ker
(
R̃(σ)

)
, where R̃(z) =

lmax∑

i=0

R̃iz
i.

This (in general nonminimal) kernel representation can be made minimal by standard
polynomial linear algebra algorithms: find a unimodular matrix Ũ ∈ R

g×g[z], such that
Ũ R̃ = [R

0], whereR is full row rank. Thenker
(
R(σ)

)
= 0 is a minimal kernel represen-

tation ofB.
The above procedure is summarized in Algorithm 8.1.

Note 8.18 (Approximate identification) The SVD in step 2 of Algorithm 8.1 is used for the
computation of the left kernel of the block-Hankel matrixHlmax+1(wd). Other algorithms
can be used for the same purpose as well. The SVD, however, hasan important advantage
when an approximate model is desired.

Suppose thatrank
(
Hlmax+1(wd)

)
= w(lmax +1), so thatBmpum is the trivial model

(Rw)T . Nevertheless, one can proceed heuristically with steps 5 and 6 in order to compute
a nontrivial approximate model. The parameterg can either be chosen from the decay of
the singular values (e.g., the number of singular values smaller than a user-given tolerance)
or be fixed. The selection ofg determines the number of inputs of the identified model and
thus its complexity. The motivation for this heuristic for approximate modeling is thatU2

spans a space that in a certain sense is an “approximate left kernel” ofHlmax+1(wd).

In [Wil86b, Section 15], Algorithm 8.1 is refined. An efficient recursive algorithm
for the computation of a kernel representation of the MPUM isproposed. Moreover, the
algorithm of [Wil86b] computes a shortest lag kernel representation and as a byproduct
finds an input/output partition of the variables.

i

i

i

i

8.5. Algorithms for exact identification 123

Algorithm 8.1 Kernel representation of the MPUM w2r

Input: wd ∈ (Rw)T andlmax.
1: Compute the SVD ofHlmax+1(wd) = UΣV ⊤ and letr be the rank ofHlmax+1(wd).
2: if r = w(lmax + 1) then
3: R(z) = 01×w {the MPUM is the trivial model(Rw)T }.
4: else

5: Let U :=

r g
[
U1 U2

]
and defineU⊤

2 =:
[

R̃0 R̃1 · · · R̃lmax

]
, whereR̃i ∈ R

g×w.

6: Compute a unimodular matrix̃U ∈ R
g×g[z], such that

Ũ(z)

(lmax∑

i=0

R̃iz
i

)

=

[
R(z)

0

]

, whereR is full row rank.

7: end if
Output: R(z)—a minimal kernel representation of the MPUM.

Algorithm 8.2 is an indirect algorithm for computation of aninput/state/output rep-
resentation of the MPUM that uses Algorithm 8.1 for computing a kernel representation
first. The transition from a kernel representation to an input/state/output representation is
a standard one. First, a maximal-degree, full-rank submatrix P ∈ R

p×p of R is selected
andQ is defined as the complementary toP submatrix ofR. Then the left matrix fraction
description(P,Q) is realized by standard realization algorithms.

Algorithm 8.2 I/S/O representation of the MPUM via a kernel representation w2r2ss

Input: wd ∈ (Rw)T andlmax.
1: Compute a minimal kernel representation of the MPUM via Algorithm 8.1.
2: Select a maximal-degree, full-rank submatrixP ∈ R

p×p of R and letQ be the comple-
mentary toP submatrix ofR {select an input/output partition of the variables}.

3: Realize(P,Q) via a state space systemBi/s/o(A,B,C,D).
Output: (A,B,C,D)—a minimal input/state/output representation of the MPUM.

If an input/output partition of the time serieswd is a priori given, then step 2 is skipped.
For the computation of the transfer functionP−1(z)Q(z) of B, matrix polynomial linear
operations are needed that are not an integral part of most popular numerical linear algebra
packages and libraries such as MATLAB.

Algorithms for Computation of a Convolution Representatio n

The convolution representation is parameterized by the impulse response. Algorithm 8.7
from Section 8.6 computes the impulse response directly from data. This algorithm is a
consequence of the fundamental lemma with the refinement that iteratively sequential pieces
of the impulse response are computed.

The impulse response is used in the algorithms for balanced model identification,
presented in Chapter 9. Previously proposed algorithms forbalanced model identification

i

i

i

i

124 Chapter 8. Exact Identification

compute a Hankel matrix of the Markov parameters and thus recompute most samples of
the impulse response many times. The algorithm presented inSection 8.6 avoids this and
as a result is more efficient.

Algorithm 8.3 is an indirect algorithm for computation of aninput/state/output repre-
sentation of the MPUM that uses Algorithm 8.7 for computing aconvolution representation
first. The transition from a convolution representation to an input/state/output representation
is a standard problem of realization theory; see Section 8.7.

Algorithm 8.3 I/S/O representation of the MPUM via an impulse responseuy2h2ss

Input: ud, yd, nmax, andlmax.
1: Compute the firstlmax + 1 + nmax samples of the impulse responseH of the MPUM

via Algorithm 8.7.
2: Compute a realizationBi/s/o(A,B,C,D) of H via Algorithm 8.8.

Output: (A,B,C,D)—a minimal input/state/output representation of the MPUM.

Algorithms Based on Computation of an Observability Matrix

Let B = Bi/s/o(A,B,C,D). If, in addition towd = (ud, yd), the extended observability
matrix Olmax+1(A,C) were known, we could find(A,B,C,D) by solving two linear
systems of equations. The first block row ofOlmax+1(A,C) immediately givesC, andA
is computed from the so-called shift equation

(
σ∗

Olmax+1(A,C)
)
A =

(
σOlmax+1(A,C)

)
.

(σ andσ∗, acting on a block matrix, remove, respectively, the first and the last block rows.)
OnceA andC are known, computingD, B, and the initial conditionxini , under whichwd

is obtained, is also a linear problem. The system of equations (see (VC))

yd(t) = CAtxini +
t−1∑

τ=1

CAt−1−τBud(τ) + Dδ(t + 1), for t = 1, . . . , lmax + 1, (8.1)

is linear in the unknownsD, B, andxini and can be solved explicitly by using Kronecker
products.

Thus the identification problem boils down to the computation of Olmax+1(A,C).
Observe that the columns ofOlmax+1(A,C) aren(B) linearly independent free responses
of B. Moreover,anyn(B) linearly independent free responsesy1, . . . , yn(B) of B, stacked
next to each other, determine the extended observability matrix up to a similarity transfor-
mation. Letx1, . . . , xn(B) be the initial conditions fory1, . . . , yn(B). The matrix

Xini :=
[
x1 · · · x

n(B)

]
∈ R

n(B)×n(B)

is full rank because, by assumption, the corresponding responses are linearly independent.
Then

Y0 :=
[
y1 · · · y

n(B)

]
= Olmax+1(A,C)Xini ,

which shows thatY0 is equivalent toOlmax+1(A,C).

i

i

i

i

8.5. Algorithms for exact identification 125

We have further reduced the identification problem to the problem of computing
n(B) linearly independent free responses of the MPUM. Under the assumptions of the
fundamental lemma, such responses can be computed in the same way as the one used for
the computation of the impulse response directly from data.The details are described in
Section 8.8.

Sincen(B) is unknown, however,nmax free responsesy1, . . . , ynmax
are computed

such that the corresponding matrixY0 :=
[
y1 · · · ynmax

]
has its maximal possible

rank n(B). The matrixY0 in this case can be viewed as an extended observability ma-
trix Olmax+1(Ã, C̃) for a nonminimal input/state/output representation ofB with Ã ∈
R
nmax×nmax andC̃ ∈ R

p×nmax . In order to find a minimal representation, a rank revealing
factorizationY0 = ΓXini of Y0 is computed. The matrixΓ is equal toOlmax+1(A,C) up to
a similarity transformation. The nonuniqueness of the state space basis in whichΓ andXini

are obtained corresponds precisely to the nonuniqueness ofthe rank revealing factorization.
The procedure outlined above is summarized in Algorithm 8.4. An alternative ap-

proach for computing a state sequence directly from data, based on the shift-and-cut map [WR02],
is presented in [MWD05].

Algorithm 8.4 I/S/O representation of the MPUM via an observability matrix uy2o2ss

Input: ud, yd, lmax, andnmax.
1: Computenmax,lmax+1 samples long free responsesY0 of the MPUM via Algorithm 8.9.
2: Compute a rank revealing factorizationY0 = ΓXini .
3: Solve the linear system of equations(σ∗Γ)A = (σΓ) for A and defineC to be the first

block entry ofΓ.
4: Solve the linear system of equations (8.1) forD, B, andxini .

Output: (A,B,C,D)—a minimal input/state/output representation of the MPUM.

Algorithms Based on Computation of a State Sequence

If a state sequencexd(1), . . . , xd(n(B) + m + 1) of an input/state/output representation of
the MPUM were known, then the parameters(A,B,C,D) could be computed by solving
the linear system of equations

[
xd(2) · · · xd(n(B) + m + 1)
yd(1) · · · yd(n(B) + m)

]

=

[
A B
C D

] [
xd(1) · · · xd(n(B) + m)
ud(1) · · · ud(n(B) + m)

]

. (8.2)

Therefore, the identification problem is reduced to the problem of computing a state sequence
of the MPUM. This can be done by computingn(B)+m+1 sequentialfree responses. By
“sequential” we mean that the corresponding sequence of initial conditions for the responses
is a valid state sequence. Under the conditions of the fundamental lemma, such responses
can be computed from data by an algorithm similar to the ones used for the computation of
the impulse response and free responses. Sincen(B) is unknown, however,nmax + m + 1
sequential free responses should be computed. The details are described in Section 8.8.

The procedure outlined above is summarized in Algorithm 8.5.

i

i

i

i

126 Chapter 8. Exact Identification

Algorithm 8.5 I/S/O representation of the MPUM via a state sequence uy2x2ss

Input: ud, yd, lmax, andnmax.
1: Computenmax, lmax + 1 samples long sequential free responsesY0 of the MPUM via

Algorithm 8.9.
2: Compute a rank revealing factorizationY0 = ΓXd.
3: Solve the system of equations (8.2) forA,B,C,D, where

[
xd(1) · · · xd(nmax + m + 1)

]
:= Xd.

Output: (A,B,C,D)—a minimal input/state/output representation of the MPUM.

8.6 Computation of the Impulse Response from Data
In this section, we consider the following problem:

Given a trajectorywd = (ud, yd) of a systemB ∈ L w, find the firstt samples of
the impulse response ofB.

Under the conditions of the fundamental lemma, we have that

col span
(
Ht(wd)

)
= B|[1,t].

This implies that there exists a matrixG, such thatHt(yd)G = H. Thus the problem
reduces to finding a particularG.

DefineUp, Uf , Yp, andYf as follows:

Hlmax+t(ud) =:

[
Up

Uf

]

, Hlmax+t(yd) =:

[
Yp

Yf

]

, (8.3)

whererow dim(Up) = row dim(Yp) = lmax androw dim(Uf) = row dim(Yf) = t.

Theorem 8.19 (Impulse response from data).Let wd = (ud, yd) be a trajectory of a
controllable LTI systemB ∈ L

w,nmax
m,lmax

and let ud be persistently exciting of ordert +
lmax + nmax. Then the system of equations





Up

Uf

Yp



G =






0mlmax×m[
Im

0m(t−1)×m

]

0plmax×m




 (8.4)

is solvable forG ∈ R
•×m. Moreover, for any particular solution̄G, the matrixYfḠ contains

the firstt samples of the impulse response ofB, i.e.,

YfḠ = H.

Proof. Under the assumptions of the theorem, we can apply the fundamental lemma with
L = lmax + t. Thus

col span
(
Hlmax+t(wd)

)
= B|[1,lmax+t].

i

i

i

i

8.6. Computation of the impulse response from data 127

First, we show that (8.4) is solvable. The impulse response(
[

Im
0m(t−1)×m

]

,H) is a (matrix

valued) response ofB obtained under zero initial conditions. Because of the zeroinitial

conditions,(
[

Im
0m(t−1)×m

]

,H) preceded by any number of zeros remains a response ofB.

Therefore, there exists a matrix̄G, such that






Up

Uf

Yp

Yf







Ḡ =








0mlmax×m[
Im

0m(t−1)×m

]

0plmax×m

H








.

This shows that there exists a solutionḠ of (8.4) and thereforeYfḠ is the impulse response.
Conversely, letG be a solution of (8.4). We have







Up

Uf

Yp

Yf







G =








0mlmax×m[
Im

0m(t−1)×m

]

0plmax×m

YfG








(8.5)

and the fundamental lemma guarantees that the right-hand side of (8.5) is a response ofB.
The response is identically zero during the firstlmax samples, which (using the assumption

lmax ≥ l(B)) guarantees that the initial conditions are set to zero. Theinput
[

Im
0m(t−1)×m

]

is a matrix valued impulse, so that the corresponding outputYfG is indeed the impulse
responseH.

Theorem 8.19 gives the following block algorithm for the computation ofH.

Algorithm 8.6 Block computation of the impulse response from data uy2hblk

Input: ud, yd, lmax, andt.
1: Solve the system of equations (8.4). LetḠ be the computed solution.
2: ComputeH = YfḠ.

Output: the firstt samples of the impulse responseH of the MPUM.

Note 8.20 (Efficient implementation via QR factorization) The system of equations (8.4)
of step 1 of Algorithm 8.6 can be solved efficiently by first “compressing the data” via the
QR factorization







Up

Uf

Yp

Yf







⊤

= QR, R⊤ =:

[
R11 0 0
R21 R22 0

]

,

whereR11 ∈ R
j×j , j = m(lmax + t) + plmax, and then computing the pseudoinverse of

theR11 block. We have

H = Yf





Up

Uf

Yp





† 



0
I
0



 = R21R
†
11





0
I
0



 .

i

i

i

i

128 Chapter 8. Exact Identification

We proceed to point out an inherent limitation of Algorithm 8.6 when dealing with
finite amount of data. Let aT samples long trajectory be given. The persistency of excitation
assumption in Theorem 8.19 requires thatHt+lmax+nmax

(ud)be full row rank, which implies
that

m(t + lmax + nmax) ≤ T − (t + lmax + nmax) + 1 =⇒ t ≤ T + 1

m + 1
− lmax − nmax.

Thus, using Algorithm 8.6, we are limited in the number of samples of the impulse response
that can be computed. Moreover, for efficiency and accuracy (in the presence of noise),
we want to have Hankel matricesUp, Uf , etc., with many more columns than rows, which
implies smallt.

In fact, according to Theorem 8.16,ud persistently exciting of order1+lmax +nmax

is sufficient for computation of the whole impulse response of the system. Indeed, this can
be done by weaving trajectories. (See Figure 8.2 for an illustration.)

Lemma 8.21 (Weaving trajectories).Consider a systemB ∈ L w and let

1. wd,1 be aT1 samples long trajectory ofB, i.e.,wd,1 ∈ B|[1,T1];

2. wd,2 be aT2 samples long trajectory ofB, i.e.,wd,2 ∈ B|[1,T2]; and

3. the lastlmax samples, wherelmax ≥ l(B), of wd,1 coincide with the firstlmax

samples ofwd,2, i.e.,
(
wd,1(T1 − lmax + 1), . . . , wd,1(T1)

)
=

(
wd,2(1), . . . , wd,2(lmax)

)
.

Then the trajectory

w :=
(
wd,1(1), . . . , wd,1(T1), wd,2(lmax + 1), . . . , wd,2(T2)

)
(8.6)

obtained by weaving togetherwd,1 andwd,2 is a trajectory ofB, i.e.,w ∈ B|[1,T1+T2−lmax].

Proof. Let xd,1 :=
(
xd,1(1), . . . , xd,1(T1 + 1)

)
andxd,2 :=

(
xd,2(1), . . . , xd,2(T2 + 1)

)

be state sequences ofB associated withwd,1 andwd,2, respectively. Assumption 3 implies
thatxd,1(T1 + 1) = xd,2(lmax + 1). Therefore, (8.6) is a trajectory ofB.

Algorithm 8.7 overcomes the above-mentioned limitation ofthe block algorithm by
iteratively computing blocks ofL consecutive samples, where

1 ≤ L ≤ T + 1

m + 1
− lmax − nmax. (8.7)

Moreover, monitoring the decay ofH (provided the system is stable) while computing it
gives a heuristic way to determine a value fort that is sufficiently large to show the transient.

In the recursive algorithm, the matricesUp, Uf , Yp, andYf defined above are redefined
as follows:

Hlmax+L(ud) =:

[
Up

Uf

]

, Hlmax+L(yd) =:

[
Yp

Yf

]

,

whererow dim(Up) = row dim(Yp) = lmax androw dim(Uf) = row dim(Yf) = L.

i

i

i

i

8.6. Computation of the impulse response from data 129

lmax

wd,1 ∈ B|[1,T1]

wd,2 ∈ B|[1,T2]

=⇒w ∈ B|[1,T1+T2−lmax]

Figure 8.2. Weaving trajectories.

Algorithm 8.7 Iterative computation of the impulse response from data uy2h

Input: ud, yd, nmax, lmax, and eithert or a convergence toleranceε.
1: Choose the number of samplesL computed in one iteration step according to (8.7).

2: Initialization: k := 0, F
(0)
u :=

[
0mlmax×m[

Im
0m(L−1)×m

]

]

, andF
(0)
y,p := 0plmax

.

3: repeat

4: Solve the system





Up

Uf

Yp



 G(k) =

[

F
(k)
u

F
(k)
y,p

]

.

5: Compute the responseH(k) := F
(k)
y,f := YfG

(k).

6: DefineF
(k)
y :=

[

F
(k)
y,p

F
(k)
y,f

]

.

7: Shift Fu andFy: F
(k+1)
u :=

[

σLF
(k)
u

0mL×m

]

, F
(k+1)
y,p := σLF

(k)
y .

8: Increment the iteration counterk := k + 1.

9: until

{

kL < t if t is given,

‖H(k−1)‖F ≤ ε otherwise.

Output: H = col
(
H(0), . . . ,H(k−1)

)
.

Proposition 8.22. Let wd = (ud, yd) be a trajectory of a controllable LTI systemB of
order n(B) ≤ nmax and lag l(B) ≤ lmax, and letud be persistently exciting of order
L + lmax + nmax. Then Algorithm 8.7 computes the firstt samples of the impulse response
of B.

Proof. Under the assumptions of the proposition, we can apply Theorem 8.19, with the
parametert replaced by the parameterL, selected in step 1 of the algorithm (Algorithm 8.6).
Steps 4 and 5 of the recursive algorithm correspond to steps 1and 2 of the block algorithm.

i

i

i

i

130 Chapter 8. Exact Identification

The right-hand side

[
F (k)

u

F (k)
y,p

]

of the system of equations, solved in step 4, is initialized so that

H(0) is indeed the matrix of the firstL samples of the impulse response.
The response computed on the(k+1)st iteration step,k ≥ 1, is a response due to zero

input and its firstlmax samples overlap the lastlmax samples of the response computed on
thekth iteration step. By the weaving lemma (Lemma 8.21), their concatenation is a valid
response. Applying this argument recursively, we have thatH computed by the algorithm
is the impulse response of the system.

With L = 1, the persistency of excitation condition required by Proposition 8.22 is
lmax +1+nmax, which is the identifiability condition of Theorem 8.16 (with the unknown
lag l(B) and ordern(B) replaced by their given upper boundslmax andnmax).

Note 8.23 (Data driven simulation) In [MWRM05], Theorem 8.19 and Algorithms 8.6
and 8.7 are modified to compute an arbitrary response directly from data. This proce-
dure is called data driven simulation and is shown to be related to deterministic subspace
identification algorithms.

Note 8.24 (Efficient implementation via QR factorization) The most expensive part of
Algorithm 8.7 is solving the system of equations in step 4. Itcan be solved efficiently via
the QR factorization, as described in Note 8.20. Moreover, since the matrix on the left-hand
side of the system is fixed, the pseudo-inverse can be computed outside the iteration loop
and used for all iterations.

8.7 Realization Theory and Algorithms
The problem of passing from an impulse response to another representation (typically in-
put/state/output or transfer function) is called realization. Given a sequenceH : N → R

p×m,
we say that a systemB ∈ L w

m , w := m+p, realizesH if B has a convolution representation
with an impulse responseH. In this case, we say thatH is realizable (by a system in the
model classL w

m). A sequenceH might not be realizable by afinite dimensionalLTI system,
but if it is realizable, the realization is unique.

Theorem 8.25 (Test for realizability). The sequenceH : N → R
p×m is realizable by

a finite dimensional LTI system withm inputs if and only if the two-sided infinite Hankel
matrix H (σH) has a finite rank. Moreover, if the rank ofH (σH) is n, then there is a
unique systemB ∈ L w,n

m that realizesH.

Let H be realizable by a systemB ∈ L w
m with an input/state/output representation

B = Bi/s/o(A,B,C,D). We have that

Hi,j(σH) = Oi(A,C)Cj(A,B),

and from the properties of the controllability and observability matrices, it follows that

rank
(
Hi,j(σH)

)
=

{

min(pi, mj) for all i < µ(B) andj < ν(B),

n(B) otherwise.

i

i

i

i

8.7. Realization theory and algorithms 131

Therefore, if we know thatH is an impulse response of a finite dimensional LTI systemB

of ordern(B) ≤ nmax and lagl(B) ≤ lmax, wherenmax andlmax are given, we can
find n(B) by a rank computation as follows:

n(B) = rank
(
Hlmax+1,nmax

(σH)
)
.

This fact is often used in subspace identification. Moreover, the SVDHt,t(σH) = UΣV ⊤,
t > nmax, allows us to find a finite timet balanced approximation of the MPUM, so that
the numerical rank computation of the block-Hankel matrix of the Markov parameters is a
good heuristic for approximate identification.

Note 8.26 (Realization and exact identification)Clearly, realization is a special exact iden-
tification problem. Realization ofH : N → R

p×m is equivalent to exact identification of the
time series

wd,1 = (ud,1, yd,1) :=
(
col(0, δe1), col(0, h1)

)
,

· · ·
wd,m = (ud,m, yd,m) :=

(
col(0, δem), col(0, hm)

)
,

where
[
h1 · · · hm

]
:= H, δ is the Kronecker delta function,

[
e1 · · · em

]
:= Im, and

the zero prefix islmax samples long. (The zero prefix fixes the initial conditions tobe zero,
which otherwise are free in the exact identification problem.) Special purpose realization
methods, however, are more efficient than a general exact identification algorithm.

Note 8.27 (Realization and exact identification of an autonomous system)An alterna-
tive point of view of realization is as an exact identification of an autonomous system:
realization ofH : N → R

p×m is equivalent to exact identification of the time series

wd,1 = (ud,1, yd,1) := (0, σh1), . . . , wd,m = (ud,m, yd,m) := (0, σhm).

Consider the impulse responseH of the system

Bi/s/o
(
A,

[
b1 · · · bm

]
, C, •

)

and the responsesy1, . . . , ym of the autonomous systemBi/s/o(A,C) due to the initial con-
ditionsb1, . . . , bm. It is easy to verify that

σH =
[
y1 · · · ym

]
.

Thus, with an obvious substitution,

realization algorithms can be used for exact identificationof an autonomous system
and vice versa; algorithms for identification of an autonomous systems can be used
for realization.

Once we know from Theorem 8.25 or from prior knowledge that a given time series
H :=

(
H(0),H(1), . . . ,H(T)

)
is realizable in the model classL w

m,lmax
, we can proceed

with the problem of finding a representation of the system that realizesH. General exact
identification problems can be used but in the special case athand there are more efficient
alternatives. Algorithm 8.8 is a typical realization algorithm.

i

i

i

i

132 Chapter 8. Exact Identification

Algorithm 8.8 Realization algorithm h2ss

Input: H andlmax satisfying the conditions of Theorem 8.25.
1: Compute a rank revealing factorization of the Hankel matrixHlmax+1(σH) = Γ∆.
2: Let D = H(0), C be the first block row ofΓ, andB be the first block column of∆.
3: Solve the shift equation(σ∗Γ)A = σΓ.

Output: parameters(A,B,C,D) of a minimal input/state/output realization ofH.

The key computational step is the rank revealing factorization of the Hankel ma-
trix Hlmax+1(H). Moreover, this step determines the state basis in which theparameters
A,B,C,D are computed. In case of finite precision arithmetic, it is well known that rank
computation is a nontrivial problem. The rank revealing factorization is crucial for the
outcome of the algorithm because the rank ofHlmax+1(H) is the order of the realization.

When the given time seriesH is not realizable by an LTI system of ordernmax :=
plmax, i.e., Hlmax+1(σH) is full rank, the SVD offers a possibility to find approximate
realization in the model classL w

m,lmax
; see also Note 8.18 on page 122. Replace the rank

revealing factorization in step 1 of Algorithm 8.8 by the SVDHlmax+1(H) = UΣV ⊤

and the definitionsΓ := U
√

Σ and∆ :=
√

ΣV ⊤. This can be viewed as computation
of an “approximate rank revealing factorization”. Note that in this case the finite time
controllability and observability gramians are equal,

Γ⊤Γ = ∆∆⊤ = Σ,

so that the computed realizationBi/s/o(A,B,C,D) is in a finite timelmax balanced form.
Algorithm 8.8 with the above modification is Kung’s algorithm [Kun78].

8.8 Computation of Free Responses
In this section, we consider the following problem:

Givenwd = (ud, yd) ∈ B, find (sequential) free responsesY0 of B.

By “sequential”, we mean that the initial conditions corresponding to the columns ofY0

form a valid state sequence ofB.
First, we consider computation of general free responses. Using the fundamental

lemma, a set oft samples long free responses can be computed from data as follows:
[
Ht(ud)
Ht(yd)

]

G =

[
0
Y0

]

. (8.8)

Therefore, for anyG that satisfiesHt(ud)G = 0, the columns ofY0 := Ht(yd)G are free
responses. The columns ofG are vectors in the null space ofHt(ud) and can be computed
explicitly; however, in general,rank(Y0) ≤ n(B). The conditionrank(Y0) = n(B) is
needed for identification of an input/state/output representation of the MPUM, as outlined
in Algorithm 8.3.

In order to ensure the rank condition, we use the splitting ofthe data into “past” and
“future” as defined in (8.3). The blocks in the past allow us torestrict the matrixG, so that

i

i

i

i

8.9. Relation to subspace identification methods∗ 133

the initial conditionsXini under which the responsesY0 are generated satisfyrank(Xini) =
n(B). This impliesrank(Y0) = n(B). In turns out, however, that in choosing the initial
conditionsXini , we can furthermore produce sequential free responses.

Using the fundamental lemma, we know that the right-hand side of the equation






Up

Uf

Yp

Yf







G =







Up

0
Yp

Y0







is a trajectory. Therefore, a set of free responses can be computed from data by solving the
system of equations





Up

Uf

Yp



G =





Up

0
Yp



 (8.9)

and settingY0 = YfG. Moreover, the Hankel structure ofUp andYp imply that Y0 is a
matrix of sequential responses. System (8.9) andY0 = YfG give a block algorithm for
the computation of sequential free responses. It is analogous to the block algorithm for the
computation of the impulse response and again the computation can be performed efficiently
via the QR factorization.

We proceed to present a recursive algorithm for the computation of Y0, analogous to
Algorithm 8.7 for the computation of the impulse response. An advantage of the recursive
algorithm over the block one is that one is not restricted by the finite amount of datawd to
a finite length responsesY0.

Proposition 8.28. Under the assumptions of Proposition 8.22, Algorithm 8.9 computes a
matrix of sequential free responses ofB with t block rows.

Proof. This is similar to the proof of Proposition 8.22.

8.9 Relation to Subspace Identification Methods ∗

MOESP-Type Algorithms

The multivariable output error state space (MOESP)-type subspace identification algorithms
correspond to the algorithm based on the computation of freeresponses as outlined in
Section 8.5, Algorithm 8.4. However, in the MOESP algorithms, step 1—the computation
of free responses—is implemented via theorthogonal projection

Y0 := Hlmax+1(yd)
(

I − H
⊤
lmax+1(ud)

(
Hlmax+1(ud)H

⊤
lmax+1(ud)

)−1
Hlmax+1(ud)

)

︸ ︷︷ ︸

Π⊥
ud

;

(8.10)
i.e., the MOESP algorithms compute the orthogonal projection of the rows ofHlmax+1(yd)
on the orthogonal complement of the row space ofHlmax+1(ud). In subspace identification
it is customary to think in terms of geometric operations: projection of the rows of a certain

i

i

i

i

134 Chapter 8. Exact Identification

Algorithm 8.9 Iterative computation of sequential free responses uy2y0

Input: ud, yd, nmax, lmax, and either the desired number of samplest or a convergence
toleranceε.

1: Choose the number of samplesL computed in one iteration step according to (8.7).

2: Initialization: k := 0, F
(0)
u :=

[
Up

0

]

, andF
(0)
y,p := Yp.

3: repeat

4: Solve the system





Up

Uf

Yp



 G(k) =

[

F
(k)
u

F
(k)
y,p

]

.

5: Compute the responseY (k)
0 := F

(k)
y,f := YfG

(k).

6: DefineF
(k)
y :=

[

F
(k)
y,p

F
(k)
y,f

]

.

7: Shift Fu andFy: F
(k+1)
u :=

[

σLF
(k)
u

0mL×m

]

andF
(k+1)
y,p := σLF

(k)
y .

8: Increment the iteration counterk := k + 1.

9: until

{

kL < t if t is given,

‖Y (k−1)
0 ‖F ≤ ε otherwise.

Output: Y0 = col
(
Y

(0)
0 , . . . , Y

(k−1)
0

)
.

matrix onto the row space of another matrix. The fact that these matrices have special
(block-Hankel) structure is ignored and the link with system theory is lost. Still, as we show
next,

the orthogonal projection (8.10) has the simple and useful system theoretic inter-
pretation of computing a maximal number of free responses.

Observe that [
Hlmax+1(ud)
Hlmax+1(yd)

]

Π⊥
ud

=

[
0
Y0

]

,

which corresponds to (8.8) except that now the projectorΠ⊥
ud

is a square matrix, while
in (8.8) G is in general a rectangular matrix. In [VD92, Section 3.3], it is shown that a
sufficient condition forrank(Y0) = n(B) is

rank

([
Xini

Hlmax+1(ud)

])

= n(B) + (lmax + 1)m. (8.11)

This condition, however, is not verifiable from the datawd = (ud, yd). Therefore, givenwd,
one cannot check in general whether the data generating system B is identifiable by the
MOESP algorithms. Under the identifiability condition

ud persistently exciting of orderlmax + 1 + nmax,

which is verifiable from the data, Corollary 8.17 implies (8.11).

i

i

i

i

8.9. Relation to subspace identification methods∗ 135

Finally, note that thej = T−lmax free responses that the orthogonal projection (8.10)
computes are typically more than necessary for exact identification, i.e.,j ≫ n(B). There-
fore, in general, the orthogonal projection is a computationally inefficient operation for
exact identification. This deficiency of the MOESP algorithms is partially corrected on the
level of the numerical implementation. First, the QR factorization

[
Hnmax

(ud)
Hnmax

(yd)

]⊤

= QR

is computed and then only the block entryR22 of theR factor is used, where

R⊤ =:

nmaxm nmaxp
[

R11 0 0
R21 R22 0

]
nmaxm

nmaxp
.

It can be shown (see [VD92, Section 4.1]) that

col span(Y0) = col span(R22).

The column dimension ofR22 is nmaxp, which is (typically) comparable withnmax and is
(typically) much smaller thanj.

N4SID-Type Algorithms

The numerical algorithms for subspace state space system identification (N4SID) correspond
to the algorithm based on the computation of a state sequenceas outlined in Section 8.5,
Algorithm 8.5. However, in the N4SID-type algorithms, step1—the computation of se-
quential free responses—is implemented via theoblique projection. Consider the splitting
of the data into “past” and “future”,

H2(lmax+1)(ud) =:

[
Up

Uf

]

, H2(lmax+1)(yd) =:

[
Yp

Yf

]

, (8.12)

with row dim(Up) = row dim(Uf) = row dim(Yp) = row dim(Yf) = lmax + 1, and let

Wp :=

[
Up

Yp

]

.

As the key computational step of the MOESP algorithms is the orthogonal projection, the
key computational step of the N4SID algorithms is the oblique projection ofYf along the
space spanned by the rows ofUf onto the space spanned by the rows ofWp. This geometric
operation, denoted byYf/Uf Wp, is defined as follows (see [VD96, equation (1.4), page 21]):

Y0 := Yf/Uf Wp := Yf
[
W⊤

p Uf
⊤

]
[
WpW

⊤
p WpU

⊤
f

UfW
⊤
p UfUf

⊤

]+ [
Wp

0

]

︸ ︷︷ ︸

Πobl

. (8.13)

Next, we show that

i

i

i

i

136 Chapter 8. Exact Identification

the oblique projection computes sequential free responsesof the system.

Note that 



Wp

Uf

Yf



Πobl =





Wp

0
Y0





corresponds to (8.9) except that the oblique projectorΠobl is a square matrix, while in (8.9),
G is in general rectangular. Therefore, the columns of the oblique projectionY0 given
in (8.13) arej := T −2lmax−1 sequential free responses. However, as with the orthogonal
projection, the oblique projection also computes in general more responses than thenmax +
m + 2 ones needed for applying Algorithm 8.5.

In [VD96, Section 2, Theorem 2], it is (implicitly) proven that a sufficient condition
for rank(Xd) = n(B), which is needed for the exact identification Algorithm 8.5,is

1. ud persistently exciting of order2nmax and

2. row span(Xd) ∩ row span(Uf) = {0};

see assumptions 1 and 2 of [VD96, Section 2, Theorem 2]. As with assumption (8.11)
in the MOESP algorithms, however, assumption 2 is again not verifiable from the given
data. Persistency of excitation ofud of order2(lmax + 1) + n(B) (i.e., the assumption
of the fundamental lemma) is a sufficient condition, verifiable from the data(ud, yd), for
assumptions 1 and 2 of [VD96, Section 2, Theorem 2].

8.10 Simulation Examples
Impulse Response Computation

First we consider the problem of computing the firstt samples of the impulse responseH
of a systemB from datawd := (ud, yd). We choose a random stable systemB of order
n = 4 with m = 2 inputs andp = 2 outputs. The datawd is obtained according to the
EIV modelwd = w̄ + w̃, wherew̄ := (ū, ȳ) ∈ B|[1,T] with T = 500, ū is zero mean unit
variance white Gaussian noise, andw̃ is a zero mean white Gaussian noise with variance
σ2. Varyingσ, we study empirically the effect of random perturbation on the results.

We apply Algorithm 8.6 witht = 27, nmax = n, andlmax = ⌈nmax/p⌉. The
computed impulse response is denoted byĤ and is compared with the “true” impulse
responseH obtained fromB by simulation. The comparison is in terms of the Frobenius
norme = ||H − Ĥ||F of the approximation errorH − Ĥ. We also apply Algorithm 8.7
with parametersnmax = n, lmax = ⌈nmax/p⌉, L = 12, and the functionimpulse from
the System Identification Toolbox of MATLAB that estimates impulse response from data.

Table 8.1 shows the approximation errorse and execution times for four different noise
levels and for the three compared algorithms. (The efficiency is measured by the execution
time and not by the floating point operations (flops) because the functionimpulse is
available only in the latter versions of MATLAB that do not support flop counts.)

In the absence of noise, both Algorithm 8.6 and Algorithm 8.7compute up to numerical
errors exactly the impulse responseH, while the same is not true for the functionimpulse .
The simulation results show that the iterative algorithm isfaster than the block algorithm.

i

i

i

i

8.10. Simulation examples 137

Table 8.1. Error of approximatione = ||H − Ĥ||F and execution time in seconds for
Algorithm 8.6, Algorithm 8.7 withL = 12, and the functionimpulse .

σ = 0.0 σ = 0.01 σ = 0.05 σ = 0.1
Method e time, s e time, s e time, s e time, s

Algorithm 8.6 10−14 0.293 0.029 0.277 0.096 0.285 0.251 0.279
Algorithm 8.7 10−14 0.066 0.023 0.086 0.066 0.068 0.201 0.087

impulse 0.059 0.584 0.067 0.546 0.109 0.573 0.249 0.558

5 10 15 20 25 30
0

5

10

15

20

25

L

m
eg

afl
op

s

Figure 8.3. Number of flops as a function of the parameterL.

Also, when the given datawd is noisy, the iterative algorithm outperforms the block algorithm
and the functionimpulse .

Next, we show the effect of the parameterL on the number of flops and the error of
approximatione. The plot in Figure 8.3 shows the number of flops, measured in megaflops,
as a function ofL. The function is monotonically increasing, so that most efficient is the
computation forL = 1. The plots in Figure 8.4 show the approximation errore as a function
of L for four different noise levels. The results are averaged for 100 noise realizations. The
functione(t) is complicated and is likely to depend on many factors. The graphs, however,
indicate that in the presence of noise, there is a trade-off between computational efficiency
and approximation error. For smallL the computational cost is small, but the errore tends
to be large.

Comparison of Exact Identification Algorithms

We compare the numerical efficiency of the following algorithms for deterministic identifi-
cation:

uy2ssmr Algorithm of Moonen and Ramos [MR93]; see Algorithm 9.6;

uy2ssvd Algorithm of Van Overschee and De Moor [VD96]; see Algorithm9.5;

“Deterministic algorithm 1” of Section 2.4.1 in [VD96] is combined with the
choice of the weight matricesW1 andW2 given in Theorem 13, Section 5.4.1.
Our implementation, however, differs from the outline of the algorithms given
in [VD96]; see Note 9.4 on page 145;

i

i

i

i

138 Chapter 8. Exact Identification

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

L

e

σ = 010−14

5 10 15 20 25 30
0.022

0.027

0.032

L

e

σ = 0.01

5 10 15 20 25 30

0.2

0.4

L

e

σ = 0.05

5 10 15 20 25 30
0.2

0.7

1.2

L

e

σ = 0.1

Figure 8.4. Error of approximatione = ||H − Ĥ||F as a function of the parameterL for
different noise levelsσ.

det_stat “Deterministic algorithm 1” of [VD96, Section 2.4.1]l;
(implementationdet_stat.m supplementing the book)

det_alt “Deterministic algorithm 2” of [VD96, Section 2.4.2];
(implementationdet_alt.m supplementing the book);

projec “Projection algorithm” of [VD96, Section 2.3.1];
(implementationprojec.m supplementing the book);

intersec “Intersection algorithm” of [VD96, Section 2.3.2];
(implementationintersec.m supplementing the book);

moesp A deterministic version of the MOESP algorithm;

uy2ssbal The algorithm for deterministic balanced subspace identification proposed in
Chapter 9 (with parameterL = 1); see Algorithm 9.4;

uy2h2ss Algorithm 8.7 (withL = 1) applied for the computation of the first2nmax +
1 samples of the impulse response, followed by Kung’s algorithm for the
realization of the impulse response; see Algorithm 8.3.

For the experiments we generate a random stablenth order systemB withm = 2 inputs
andp = 2 outputs. The input isT samples long, zero mean unit variance white Gaussian
sequence and the initial conditionxini is a zero mean random vector. We assume that the

i

i

i

i

8.11. Conclusions 139

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n = 4

T

m
eg

afl
op

s

uy2ssmr
uy2ssvd

det_stat
det_alt

moesp

uy2ssbal

projec

intersec

uy2h2ss

Figure 8.5. Number of flops for the algorithms as a function of the lengthT of the given
time series.

true order is known; i.e.,nmax = n andlmax is selected as⌈nmax/p⌉. The parameteri
(the number of block rows of the Hankel matrix constructed from data) in the subspace
identification algorithms is selected asi = ⌈nmax/p⌉.

First, we illustrate the amount of work (measured in megaflops) for the compared
algorithms as a function ofT ; see Figure 8.5. The order is chosen asn = 4 andT varies
from 100 to 500. The computational complexity of all compared algorithms is linear inT
but with different initial cost and different slope. The initial cost and the slope are smallest
(almost the same) foruy2ssbal anduy2h2ss .

The second experiment shows the flops for the compared algorithms as a function
of the system ordern; see Figure 8.6. The lengthT of the given time series is chosen
as 50 and the ordern is varied from 1 to 18. We deliberately chooseT small to show
the limitations of the algorithms to identify a system from afinite amount of data. At a
certain value ofn, the graphs in Figure 8.6 stop. The value ofn where a graph stops is the
highest possible order of a system that the corresponding algorithm can identify from the
givenT = 50 data points. (At higher values ofn, the algorithm either exits with an error
message or gives a wrong result.) The flops as a function ofn are quadratic for all compared
algorithms but again the actual number of flops depends on theimplementation. Again,
most efficient areuy2ssbal anduy2h2ss . Also, they outperform all other methods
exceptmoesp in the ability to identify a (high order) system from (small)amount of data.
This is a consequence of the fact that Algorithm 8.7 is more parsimonious in the persistency
of excitation assumption than Algorithm 8.6.

8.11 Conclusions
We have presented theory and algorithms for exact identification of LTI systems. Although
the exact identification problem is not a realistic identification problem, it is interesting and
nontrivial from theoretic and algorithmic points of view. In addition, it is an ingredient and

i

i

i

i

140 Chapter 8. Exact Identification

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

m
eg

afl
op

s

n

T = 50
uy2ssmr
uy2ssvd
det_stat
det_alt

moesp
uy2ssbal

projec
intersec

uy2h2ss

Figure 8.6. Number of flops for the algorithms as a function of the ordern of the system.

prerequisite for proper understanding of other more complicated and realistic identification
problems incorporating uncertainty.

The main result is the answer to the identifiability question; Under what conditions,
verifiable fromwd, does the MPUM coincide with the data generating system? Once this
question is answered positively, one can consider algorithms for passing from the data to a
representation of the unknown system. In fact, the algorithms compute a representation of
the MPUM.

We have presented algorithms for exact identification aiming at kernel, convolution,
and input/state/output representations. The latter ones were analyzed in the most detail. We
showed links and a new interpretation of the classical MOESPand N4SID deterministic
subspace identification algorithms.

i

i

i

i

Chapter 9

Balanced Model
Identification

In this chapter, algorithms for identification of a balancedstate space representation are
considered. They are based on the algorithms for computation of the impulse response and
sequential zero input responses presented in Chapter 8. Theproposed algorithms are more
efficient than the existing alternatives that compute the whole Hankel matrix of Markov
parameters. Moreover, using a finite amount of data, the existing algorithms compute a
finite time balanced representation, and the identified models have a lower bound on the
distance from an exact balanced representation. The proposed algorithms can approximate
arbitrarily closely an exact balanced representation. Thefinite time balancing parameter
can be selected automatically by monitoring the decay of theimpulse response. We show
what is optimal in terms of the minimal identifiability condition partitioning of the data into
“past” and “future” for deterministic subspace identification.

9.1 Introduction
In this chapter, we consider the following deterministic identification problem:

Given aT samples long input/output trajectorywd = (ud, yd)of an LTI systemB ∈
L

w,nmax
m,lmax

, determine a balanced input/state/output representation

B = Bi/s/o(Abal, Bbal, Cbal,Dbal)

of the system, i.e., a representation such that

O
⊤(Abal, Cbal)O(Abal, Cbal) = C (Abal, Bbal)C

⊤(Abal, Bbal) = Σ,

whereΣ = diag(σ1, . . . , σn(B)) andσ1 ≤ σ1 ≤ · · · ≤ σ
n(B).

The problem is to find conditions and algorithms to construct(Abal, Bbal, Cbal,Dbal) directly
from wd. Equivalently, we want to find a balanced input/state/output representation of the
MPUM.

141

i

i

i

i

142 Chapter 9. Balanced Model Identification

Algorithm 9.1 Balanced identification via a state sequence uy2ssbal

Input: ud, yd, nmax, lmax, and∆ > nmax.
1: Compute the first2∆ samplesH of the impulse response matrix ofB.
2: Computenmax + m + 1, ∆ samples long sequential free responsesY0 of B.
3: Compute the SVD,H = UΣV ⊤, of the block-Hankel matrixH = H∆(σH).
4: Compute the balanced state sequenceXbal :=

√
Σ−1U⊤Y0,

Xbal =
[
xbal(nmax + 1) · · · xbal(2nmax + 2 + m)

]
.

5: Compute the balanced realizationAbal, Bbal, Cbal, Dbal by solving the linear system of
equations

[
xbal(nmax + 2) · · · xbal(2nmax + 2 + m)
yd(nmax + 1) · · · yd(2nmax + 1 + m)

]

=

[
Abal Bbal

Cbal Dbal

] [
xbal(nmax + 1) · · · xbal(2nmax + 1 + m)
ud(nmax + 1) · · · ud(2nmax + 1 + m)

]

. (9.1)

Output: Abal, Bbal, Cbal,Dbal.

Although the assumption thatwd is exact is mainly of theoretical importance, solving
the exact identification problem is a prerequisite for the study of the realistic approximate
identification problem, wherewd is approximated by a trajectorŷw of an LTI system. In a
balanced basis, one can apply truncation as a very effectiveheuristic for model reduction,
which yields a method for approximate identification.

The balanced state space identification problem is studied in [MR93] and [VD96,
Chapter 5]. The proposed algorithms fit the outline of Algorithm 9.1.

In [MR93, VD96], it is not mentioned that the Hankel matrix ofMarkov parame-
tersH∆(σH) is computed. Also, in [MR93], it is not mentioned that the matrix Y0 of
sequential zero input responses is computed. In this chapter, we interpret these algorithms
as implementations of Algorithm 9.1 and reveal their structure.

Note 9.1 (Finite time-∆ balancing) The basic algorithm factors a finite∆ × ∆ block-
Hankel matrix of Markov parametersH, so that the obtained representation (Abal, Bbal, Cbal,
Dbal) is finite time-∆ balanced. For large∆, the representation obtained is close to an
infinite time balanced one. Determining an appropriate value for the parameter∆, however,
is a problem in its own right and is addressed here. The important difference among the
algorithms of [MR93], [VD96], and the ones proposed here is the method of computing the
matrixY0 and the impulse responseH.

Note 9.2 (Model reduction) Identification of a state space model in a balanced basis is
motivated by the effective heuristic for model reduction bytruncation in that basis. In
principle it is possible to identify the model in any basis and then apply standard algorithms
for state transformation to a balanced basis. The direct algorithms discussed in this chapter,
however, have the advantage over the indirect approach thatthey allow us toidentify a
reduced order model directly from data without ever computing a full order model.

i

i

i

i

9.1. Introduction 143

Algorithm 9.2 Balanced identification via the impulse response uy2h2ss

Input: ud, yd, nmax, and∆ > nmax.
1: Find the first2∆ samplesH(0), . . . ,H(2∆ − 1) of the impulse response ofB and let

H := col
(
H(0), . . . ,H(2∆ − 1)

)
.

2: Compute the SVD,H = UΣV ⊤, of the block-Hankel matrix of Markov parametersH =
H∆(σH) ∈ R

∆p×∆m.
3: DefineObal := U

√
Σ andCbal :=

√
ΣV ⊤.

4: Let Dbal = H(0), Bbal be equal to the firstm columns ofCbal (the first block column),
Cbal be equal to the firstp rows ofObal (the first block row), andAbal be the solution of
the shift equation(σ∗Obal)Abal = σObal.

Output: Abal, Bbal, Cbal,Dbal.

The model reduction can be done in step 5 of Algorithm 9.1. Letr be the desired
order of the reduced model and letXred be the truncated to the firstr rows balanced state
sequenceXbal. As a heuristic model reduction procedure, we derive the reduced model
parameters by solving theleast squares problem

[
xred(nmax + 2) · · · xred(2nmax + 2 + m)
yd(nmax + 1) · · · yd(2nmax + 1 + m)

]

=

[
Ared Bred

Cred Dred

] [
xred(nmax + 1) · · · xred(2nmax + 1 + m)
ud(nmax + 1) · · · ud(2nmax + 1 + m)

]

in place of the exact system of equations (9.1). The obtainedmodel(Ared, Bred, Cred,Dred)
is not the same as the model obtained by truncation of the (finite time-∆) balanced model.
In particular, we do not know about error bounds similar to the ones available for the (infinite
time) balanced model reduction.

Step 1, computation of the impulse response, is the crucial one. OnceH is computed,
a balanced model can be obtained directly via Kung’s algorithm. This gives the alternative
deterministic balanced model identification algorithm, outlined in Algorithm 9.2.

In Algorithm 9.2, once the impulse response is computed, theparametersAbal, Bbal,
Cbal, andDbal are obtained without returning to the original observed data. Yet another
alternative for computing a balanced representation directly from data is to obtain the pa-
rametersAbal andCbal as in Algorithm 9.2 fromObal and the parametersBbal andDbal (as
well as the initial conditionxbal(1), under whichwd is obtained) from the linear system of
equations

yd(t) = CbalA
t
balxbal(1) +

t−1∑

τ=1

CbalA
t−1−τ
bal Bbalud(τ) + Dbalδ(t + 1), for t = 1, . . . , T,

(9.2)
using the original data. (By using Kronecker products, (9.2) can be solved explicitly.) The
resulting Algorithm 9.3 is in the spirit of the MOESP-type algorithms.

Simulation results show that in the presence of noise, “going back to the data”, as
done in Algorithms 9.1 and 9.3, leads to more accurate results. This gives an indication that
Algorithms 9.1 and 9.3 might be superior to Algorithm 9.2.

i

i

i

i

144 Chapter 9. Balanced Model Identification

Algorithm 9.3 Balanced identification via an observability matrix uy2h2o2ss

Input: ud, yd, nmax, and∆ > nmax.
1: Find the first2∆ samplesH(0), . . . ,H(2∆− 1) of the impulse response of the MPUM

and letH := col
(
H(0), . . . ,H(2∆ − 1)

)
.

2: Compute the SVD,H = UΣV ⊤, of the block-Hankel matrix of Markov parametersH =
H∆(σH) ∈ R

∆p×∆m.
3: DefineObal := U

√
Σ.

4: Let Cbal be equal to the firstp rows ofObal (the first block row) andAbal be the solution
of the shift equation(σ∗Obal)Abal = σObal.

5: Solve the system of equations (9.2) forBbal, Dbal, andxbal(1).
Output: Abal, Bbal, Cbal,Dbal.

9.2 Algorithm for Balanced Identification
In Chapter 8, we specified steps 1 and 2 of Algorithm 9.1. Steps3, 4, and 5 follow from
standard derivations, which we now detail. LetH be the Hankel matrix of the Markov
parametersH := H∆(σH). By factoringH into Obal andCbal via therestrictedSVD

H = UΣV ⊤ = U
√

Σ
︸ ︷︷ ︸

Obal

√
ΣV ⊤

︸ ︷︷ ︸

Cbal

,

we obtain an extended observability matrixObal = O∆(Abal, Cbal) and a corresponding
extended controllability matrixCbal = C∆(Abal, Bbal) in a finite time balanced basis. The
basis is finite time-∆ balanced, because the finite time-∆ observability gramianO⊤

balObal =
Σ and the finite time-∆ controllability gramianCbalC

⊤
bal = Σ are equal and diagonal.

The matrix of sequential zero input responsesY0 can be written asY0 = ΓX for a
certain extended observability matrixΓ and a state sequenceX in the same basis. We find
the balanced state sequence

Xbal :=
[
xbal(lmax + 1) · · · xbal(lmax + 1 + nmax + m)

]

corresponding toObal = U
√

Σ from

Y0 = ObalXbal =⇒ Xbal =
√

Σ−1U⊤Y0.

The corresponding balanced representation(Abal, Bbal, Cbal,Dbal) is computed from the
system of equations

[
xbal(lmax + 2) · · · xbal(lmax + 2 + nmax + m)
yd(lmax + 1) · · · yd(lmax + 1 + nmax + m)

]

=

[
Abal Bbal

Cbal Dbal

] [
xbal(lmax + 1) · · · xbal(lmax + 1 + nmax + m)
ud(lmax + 1) · · · ud(lmax + 1 + nmax + m)

]

. (9.3)

This yields Algorithm 9.4.
The preceding presentation in this section and Propositions 8.22 and 8.28 prove the

following main result.

i

i

i

i

9.3. Alternative algorithms 145

Algorithm 9.4 Algorithm for balanced subspace identification uy2ssbal

Input: ud, yd, nmax, lmax, and either∆ or a convergence toleranceε.
1: Apply Algorithm 8.9 with inputsud, yd, nmax, lmax, L, and∆, in order to compute the

sequential zero input responsesY0.
2: Apply Algorithm 8.7 with inputsud, yd, nmax, lmax, and either∆ or ε, in order to

compute the impulse responseH and, if not given, the parameter∆.
3: Form the Hankel matrixH := H∆(σH) and compute the SVDH = UΣV ⊤.
4: Compute a balanced state sequenceXbal =

√
Σ−1U⊤Y0.

5: Compute a balanced representation by solving (9.3).
Output: Abal, Bbal, Cbal, Dbal, and∆.

Algorithm 9.5 Algorithm of Van Overschee and De Moor uy2ssvd

Input: ud, yd, and a parameteri.

Define:
[

Up

Uf

]

:= H2i(ud), whererow dim(Up) = i, and
[

Yp

Yf

]

:= H2i(yd), where

row dim(Yp) = i.
Compute the weight matrixW := U⊤

p (UpU
⊤
p)−1J , whereJ is the left–right flipped

identity matrix.

1: Compute the oblique projectionY0 := Yf/Uf

[
Up

Yp

]

; see (8.13).

2: Compute the matrix̂H := Y0W .
3: Compute the SVD̂H = UΣV ⊤.
4: Compute a balanced state sequenceXbal =

√
Σ−1U⊤Y0.

5: Compute a balanced representation by solving (9.3).
Output: Abal, Bbal, Cbal, Dbal.

Theorem 9.3. Let wd = (ud, yd) be a trajectory of a controllable LTI systemB of order
n(B) ≤ nmax and lagl(B) ≤ lmax, and letud be persistently exciting of orderL+lmax+
nmax. Then(Abal, Bbal, Cbal,Dbal) computed by Algorithm 9.4 is a finite time-∆ balanced
representation ofB.

9.3 Alternative Algorithms
We outline the algorithms of Van Overschee and De Moor [VD96]and Moonen and
Ramos [MR93].

Note 9.4 (Weight matrix W) The weight matrixW is different from the one in [VD96].
In terms of the final result̂H, however, it is equivalent. Another difference between Algo-
rithm 9.5 and the deterministic balanced subspace algorithm of [VD96] is that the shifted
state sequence appearing on the left-hand side of (9.3) is recomputed in [VD96] by another
oblique projection.

In the algorithms of Van Overschee and De Moor and Moonen and Ramos, the pa-
rameteri plays the role of the finite time balancing parameter∆. Note thati is given and
the “past” and the “future” are taken with equal lengthi.

i

i

i

i

146 Chapter 9. Balanced Model Identification

Algorithm 9.6 Algorithm of Moonen and Ramos uy2ssmr

Input: ud, yd, and a parameteri.

Define:
[

Up

Uf

]

:= H2i(ud), whererow dim(Up) = i, and
[

Yp

Yf

]

:= H2i(yd), where

row dim(Yp) = i.

Compute a matrix[T1 T2 T3 T4], whose rows form a basis for the left kernel of

[
Up

Yp

Uf
Yf

]

.

1: Compute a matrix of zero input responsesY0 = T †
4 [T1 T2]

[
Up

Yp

]

.

2: Compute the Hankel matrix of Markov parametersH = T †
4 (T2T

†
4 T3 − T1)J .

3: Compute the SVD,H = UΣV ⊤.
4: Compute a balanced state sequenceXbal =

√
Σ−1U⊤Y0.

5: Compute a balanced representation by solving (9.3).
Output: Abal, Bbal, Cbal, Dbal.

Both Algorithm 9.5 and Algorithm 9.6 fit the outline of Algorithm 9.1, but steps
1 and 2 are implemented in rather different ways. As shown in Section 8.8, the oblique

projectionYf/Uf

[
Up

Yp

]

is a matrix of sequential zero input responses. The weight matrix W

in the algorithm of Van Overschee and De Moor is constructed so that Ĥ = Y0W is an
approximation of the Hankel matrix of Markov parametersH; it is the sum ofH and a
matrix of zero input responses.

The most expensive computation in the algorithm of Moonen and Ramos is the com-

putation of the annihilators
[
T1 · · · T4

]
. The matrix[T1 T2]

[
Up

Yp

]

is a nonminimal state

sequence (the shift-and-cut operator [RW97]) andT †
4 is a corresponding extended observ-

ability matrix. ThusT †
4 [T1 T2]

[
Up

Yp

]

is a matrix of sequential zero input responses. It turns

out that(T2T
†
4 T3 − T1)J is an extended controllability matrix (in the same basis), so that

T †
4 (T2T

†
4 T3 − T1)J is the Hankel matrix of Markov parametersH.

A major difference between the proposed Algorithm 9.4, on one hand, and the algo-
rithms of Van Overschee and De Moor and Moonen and Ramos, on the other hand, is that
in Algorithm 9.4 the Hankel matrixH is not computed butconstructedfrom the impulse
response that parameterizes it. This is a big computationalsaving because recomputing the
same elements ofH is avoided. In addition, in approximate identification, wherewd is not
a trajectory ofB, the matriceŝH andH computed by the algorithms of Van Overschee and
De Moor and Moonen and Ramos are in general no longer Hankel, while the matrixH in
Algorithm 9.4 is by construction Hankel.

9.4 Splitting of the Data into “Past” and “Future” ∗

In the algorithms of Moonen and Ramos and Van Overschee and DeMoor, the block-Hankel

matrices
[

Up

Uf

]

and
[

Yp

Yf

]

are split into “past” and “future” of equal length. Natural questions

are why is this necessary and furthermore what is “optimal” according to certain relevant
criteria partitionings. These questions have been open fora long time, in particular in the

i

i

i

i

9.5. Simulation examples 147

context of the stochastic identification problem; see [DM03].
In Chapter 8, we showed that the pastUp, Yp is used to assign the initial conditions

and the futureUf , Yf is used to compute a response. By weaving consecutive segments of
the response, as done in Algorithms 8.7 and 8.9, the number ofblock rows in the future
does not need to be equal to the required length of the response. Thus from the perspective
of deterministic identification, the answer to the above question is as follows:

row dim(Up) = row dim(Yp) = lmax, i.e., the given least upper bound on
the system lagl(B), androw dim(Uf) = row dim(Yf) ∈ {1, . . . , γ − lmax +
nmax}, whereγ is the order of persistency of excitation of the inputud.

By using the iterative algorithms for computation of the impulse response and sequential free
responses with parameterL = 1, Algorithms 9.2, 9.3, and 9.4 require the same assumption
as the identifiability assumption of Theorem 8.16, so that the partitioning “past =lmax and
future = 1” is consistent with our previous results.

Using the fundamental lemma, we can prove the following result.

Proposition 9.5. Let wd = (ud, yd) be a trajectory of a controllable LTI systemB ∈
L

w,nmax

m,i , and letud be persistently exciting of order2i + nmax. Then the representations
computed by Algorithms 9.5 and 9.6 are equivalent toB. Moreover, the representation
computed by Algorithm 9.6 is in a finite time-i balanced basis.

Proposition 9.5 shows that Algorithms 9.5 and 9.6 are not parsimonious with respect
to the available data. In particular, the systemB can be identifiable with Algorithms 9.2,
9.3, and 9.4 but not with Algorithms 9.5 and 9.6.

Note that the persistency of excitation required by Algorithms 9.5 and 9.6 is a function
of the finite time balancing parameter. This implies that with a finite amount of data,
Algorithms 9.5 and 9.6 are limited in the ability to identifya balanced representation.
In fact,

i ≤
⌊

T + 1

2
(
max(m, p) + 1

)

⌋

,

where⌊a⌋ denotes the highest integer smaller thana. In contrast, the persistency of exci-
tation required by Algorithms 9.2, 9.3, and 9.4 depends onlyon the upper bounds on the
system order and the lag and thus these algorithms can compute an infinite time balanced
representation if the identifiability condition holds.

9.5 Simulation Examples
In this section, we show examples that illustrate some of theadvantages of the proposed
Algorithm 9.4. In all experiments the systemB is given by a minimal input/state/output
representation with transfer function

C(Iz − A)−1B + D =
0.89172(z − 0.5193)(z + 0.5595)

(z − 0.4314)(z + 0.4987)(z + 0.6154)
.

The input is a unit variance white noise and the data available for identification is the
corresponding trajectorywd of B, corrupted by white noise with standard deviationσ.

i

i

i

i

148 Chapter 9. Balanced Model Identification

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t

H
(t

),
Ĥ

(t
)

σ = 0.0

||H − Ĥ|| = 10−15

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t

H
(t

),
Ĥ

(t
)

σ = 0.1

||H − Ĥ|| = 0.02

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t

H
(t

),
Ĥ

(t
)

σ = 0.2

||H − Ĥ|| = 0.05

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t

H
(t

),
Ĥ

(t
)

σ = 0.4

||H − Ĥ|| = 0.21

Figure 9.1. Impulse response estimation. Solid red line—exact impulseresponseH, dashed
blue line—impulse responsêH computed from data via Algorithm 8.7.

Although our main concern is the correct work of the algorithms for exact data, i.e., with
σ = 0, by varying the noise varianceσ2, we can investigate empirically the performance
under noise. The simulation time isT = 100. In all experiments the upper boundsnmax

andlmax are taken equal to the system ordern = 3 and the parameterL is taken equal to3.
Consider first the estimation of the impulse response. Figure 9.1 shows the exact

impulse responseH of B and the estimatêH computed by Algorithm 8.7. With exact data,
||H − Ĥ||F = 10−15, so that up to the numerical precision the match is exact. Theplots in
Figure 9.1 show the deterioration of the estimates when the data is corrupted by noise.

Consider next the computation of the zero input response. Table 9.1 shows the error
of estimatione := ||Y0 − Ŷ0||F and the corresponding number of operations, whereY0 is a
matrix of exact sequential zero input responses with length∆ = 10 andŶ0 is its estimate
computed from data. The estimate is computed in three ways: by Algorithm 8.9, imple-
mented with the QR factorization; by the oblique projection, computed directly from (8.13);
and by the oblique projection, computed via the QR factorization; see Section 8.8.

Algorithm 8.9 needs fewer computations and gives more accurate results than the
alternatives. As already emphasized, the reason for this isthat selecting the parameter
L = nmax = 3 instead ofL = ∆ = 10, as in a block computation, results in a more
overdetermined system of equations in step 4 of Algorithm 8.9 compared with system (8.9)
used in the block algorithm. (For the example, the difference is 95 vs. 88 columns.) As
a result, the noise is averaged over more samples, which leads to a better estimate in a

i

i

i

i

9.6. Conclusions 149

Table 9.1. Error of estimatione = ||Y0 − Ŷ0||F and the corresponding number of opera-
tionsf in megaflops, whereY0 is an exact sequence of zero input responses andŶ0 is the
estimate computed from data.

Method σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.4
e f e f e f e f

Alg. 8.9 with QR 10−14 130 1.2990 131 2.5257 132 4.7498 132
formula (8.13) 10−10 182 1.6497 186 3.2063 187 6.0915 189
(8.13) with QR 10−14 251 1.6497 251 3.2063 251 6.0915 252

statistical sense. Solving several more overdetermined systems of equations instead of one
more rectangular system can be more efficient, as it is in the example.

All algorithms return a finite time balanced model. The next experiment illustrates the
effect of the parameter∆ on the balancing. LetWc/Wo be the controllability/observability
gramians of an infinite time balanced model andŴc/Ŵo be the controllability/observability
gramians of an identified model. Define closeness to balancing by

e2
bal :=

||Wc − Ŵc||2F + ||Wo − Ŵo||2F
||Wc||2F + ||Wo||2F

.

Figure 9.2 showsebal as a function of∆ for the three algorithms presented in the chapter. The
estimates obtained by Algorithm 9.4 and the algorithm of Moonen and Ramos are identical.
The estimate obtained by the algorithm of Van Overschee and De Moor is asymptotically
equivalent, but for small∆, it is worse. This is a consequence of the fact that this algorithm
uses an approximation of the Hankel matrix of Markov parameters. Figure 9.2 also shows
ebal as a function of∆ for noisy data withσ = 0.001 and the total number of flops required
by the three algorithms.

9.6 Conclusions
The impulse response and sequential free responses are the main tools for balanced model
identification. First, a (nonbalanced) state sequence is obtained from the sequential free
responses. Then a Hankel matrix is constructed from the impulse response, and from its
SVD a balancing transformation is obtained. A balanced state sequence is computed via a
change of basis and the corresponding balanced state representation is obtained by solving
a system of equations. We called this procedure the basic algorithm and showed that the
algorithms of Moonen and Ramos and Van Overschee and De Moor fit into it. Based on the
algorithms for computation of the impulse response and sequential free responses directly
from data, we proposed alternative algorithms for balancedmodel identification.

There are a number of advantages of the proposed algorithms over the existing ones.
The algorithms of Moonen and Ramos and Van Overschee and De Moor compute the whole
Hankel matrix of Markov parametersH, while the proposed algorithms compute only the
elements that uniquely specifyH and thenconstructH from them. Because of the Hankel
structure, the algorithms of Moonen and Ramos and Van Overschee and De Moor recompute
most elements ofH many times. This is an inefficient step in these algorithms that we avoid.

i

i

i

i

150 Chapter 9. Balanced Model Identification

5 10 15
0

0.01

∆

e b
al
(∆

)

σ = 0

uy2ssmr
uy2ssvd
uy2ssbal

5 10 15
0

0.01

∆

e b
al
(∆

)

uy2ssmr
uy2ssvd
uy2ssbal

σ = 0.001

5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

∆

#
of

flo
ps

σ = 0

Figure 9.2. Closeness to balancingebal and computational cost as functions of the fi-
nite time balancing parameter∆ (uy2ssmr —Algorithm 9.5,uy2ssvd —Algorithm 9.6,
uy2ssbal —Algorithm 9.4).

In the algorithms of Moonen and Ramos and Van Overschee and DeMoor, the finite
time balancing parameter∆ is supplied by the user. In the proposed algorithms, it can be
determined automatically on the basis of a desired convergence tolerance of the impulse
response, which is directly related to the closeness of the obtained representation to a
balanced one.

The algorithms of Moonen and Ramos and Van Overschee and De Moor compute
finite time-∆ balanced representation with∆ ≤ ⌊ 1

2 (T + 1)/
(
max(m, p) + 1

)
⌋, whereT is

the length of the given time serieswd. The proposed algorithms have no such limitation and
can thus compute a representation that is arbitrary close toan infinite time balanced one.

The proposed algorithms have weaker persistency of excitation condition than the
one needed for the algorithms of Moonen and Ramos and Van Overschee and De Moor. As
a result, in certain cases, the proposed algorithms are applicable, while the algorithms of
Moonen and Ramos and Van Overschee and De Moor are not.

i

i

i

i

(A,B,C,D)ū

ũ

ȳ

ỹ
ud yd

x̄ini

Figure 10.1.Block scheme of the dynamic EIV model.

Chapter 10

Errors-in-Variables
Smoothing and Filtering

State estimation problems for LTI systems with noisy inputsand outputs (EIV model, see
Figure 10.1) are considered.

An efficient recursive algorithm for the smoothing problem is derived. The equiva-
lence between the optimal filter and an appropriately modified Kalman filter is established.
The optimal estimate of the input signal is derived from the optimal state estimate. The
result shows that the EIV filtering problem is not fundamentally different from the classical
Kalman filtering problem.

10.1 Introduction
The EIV smoothing and filtering problems were first put forward by Guidorzi, Diversi, and
Soverini in [GDS03], where a transfer function approach is used and recursive algorithms
that solve the filtering problem are derived. The treatment,however, is limited to the SISO
case and the solution obtained is not linked to the classicalKalman filter.

The MIMO case is addressed in [MD03], where the equivalence with a modified
Kalman filter is established. Closely related to the approach of [MD03] is the one used in
[DGS03]. The continuous-time version of the EIV state estimation problem is explicitly
solved in [MWD02] by a completion of squares approach.

In this chapter, we consider the EIV model

wd = w̄ + w̃, where w̄ ∈ B ∈ L
w,n
m (EIV)

151

i

i

i

i

152 Chapter 10. Errors-in-Variables Smoothing and Filtering

andw̃ is a white, stationary, zero mean, stochastic process with positive definite covariance
matrix Vw̃ := cov

(
w̃(t)

)
for all t; i.e., we assume that the observed time serieswd is a

noise corrupted version of a true time seriesw̄ that is a trajectory of an LTI systemB with
input cardinalitym and state dimensionn. The systemB and the noise covarianceVw̃ are
assumed known.

We use the input/state/output representation ofB = Bi/s/o(A,B,C,D), i.e.,

w̄ = col(ū, ȳ), where σx̄ = Ax̄ + Bū, ȳ = Cx̄ + Dū, x̄(1) = x̄ini . (10.1)

Correspondingly, the observed time serieswd and the measurement errorsw̃ have the in-
put/output partitioningswd = col(ud, yd) andw̃ = col(ũ, ỹ). Furthermore, the covariance
matrixVw̃ is assumed to be block-diagonal,Vw̃ = diag(Vũ, Vỹ), whereVũ, Vỹ > 0.

The problem considered is to find the LS estimate of the statex̄ from the observed
datawd. We prove that the optimal filter is the Kalman filter for the system

σx̄ = Ax̄ + Bud + v1,

yd = Cx̄ + Dud + v2,
(10.2)

where the process noisev1 and the measurement noisev2 are jointly white

cov

([
v1(t1)
v2(t1)

]

,

[
v1(t2)
v2(t2)

])

=

[
−B 0
−D I

] [
Vũ

Vỹ

] [
−B 0
−D I

]⊤

δ(t1 − t2)

=:

[
Q S
S⊤ R

]

δ(t1 − t2).

(10.3)

The EIV state estimation problem is treated in [RH95] and [FW97]. The global
total least squares problem of [RH95] has as a subproblem thecomputation of the closest
trajectory in the behavior of a given system to a given time series. This is a deterministic
approximation problem corresponding to the EIV smoothing problem considered in this
chapter.

10.2 Problem Formulation
Consider the time horizon[1, T] and define the covariance matrices ofũ, ỹ, andw̃:

Vũ := cov(ũ), Vỹ := cov(ỹ), and Vw̃ := cov(w̃).

Problem 10.1 (EIV smoothing problem). The EIV smoothing problem is defined by

min
x̂,ŵ=col(û,ŷ)

(wd − ŵ)⊤V−1
w̃ (wd − ŵ) subject to

x̂(t + 1) = Ax̂(t) + Bû(t), ŷ(t) = Cx̂(t) + Dû(t), for t = 1, . . . , T,
(10.4)

and theEIV smoothed state estimatêx(·, T + 1) is the optimal solution of (10.4).

Under the normality assumption for̃w, x̂(·, T +1) is the maximum likelihood estimate
of x̄ [GDS03].

i

i

i

i

10.3. Solution of the smoothing problem 153

Problem 10.2 (EIV filtering problem). The EIV filtering problem is to find a dynamical
system

σz = Afz + Bfwd, x̂ = Cfz + Dfwd (10.5)

such that̂x(t) = x̂(t, t + 1), wherex̂(·) is the solution of (10.5); i.e., theEIV filtered state
estimate, andx̂(·, t + 1) is the EIV smoothed state estimate with a time horizont + 1.

The EIV filtering problem is defined as a state estimation problem. When the input is
measured with additive noise, an extra step is needed to find the filtered input/output signals
from the state estimate. This is explained in Note 10.8.

Note 10.3 (Initial conditions) Problem 10.1 implicitly assumes no prior information about
the initial conditionx̄(1). Another possibility is that̄x(1) is exactly known. The standard
assumption is̄x(1) ∼ N(xini , Pini), i.e., x̄(1) is normally distributed with mean̄xini and
covariancePini . An exactly known initial condition corresponds toPini = 0 and an unknown
initial condition corresponds to information matrixP−1

ini = 0.
We have chosen the initial condition assumption that results in the simplest derivation.

With the classical stochastic assumptionx̄ini ∼ N(xini , Pini), (10.4) becomes

min
û,ŷ,x̂

∥
∥
∥
∥
∥
∥
∥
∥

√
√
√
√
√





Pini

Vũ

Vỹ





−1 



xini − x̂ini

ud − û
yd − ŷ





∥
∥
∥
∥
∥
∥
∥
∥

2

subject to
x̂(t + 1) = Ax̂(t) + Bû(t)
ŷ(t) = Cx̂(t) + Dû(t)

for t = 1, . . . , T.

10.3 Solution of the Smoothing Problem
Block Algorithms

We represent the input/output dynamics of the system (10.1), over the time horizon[1, T],
explicitly as (see (VC’))

ȳ = OT (A,C)x̄ini + TT (H)ū,

whereH is the impulse response ofB. Using this representation, the EIV smoothing
problem (10.4) becomes a classical weighted least squares problem

min
x̂ini ,û

∥
∥
∥
∥

√
[
Vũ

Vỹ

]−1 ([
ud

yd

]

−
[

0 I
OT (A,C) TT (H)

] [
x̂ini

û

])∥
∥
∥
∥

2

. (10.6)

Alternatively, we represent the input/state/output dynamics of the system, over the
time horizon[1, T], as

ȳ = Ax̄ + Bū,

i

i

i

i

154 Chapter 10. Errors-in-Variables Smoothing and Filtering

where

ȳ :=














ȳ(1)
0

ȳ(2)
0
...

ȳ(T)
0














, A :=














C 0
A −I

C 0
A −I

. . .
. . .
C 0
A −I














, B :=














D
B

D
B

.. .
D
B














.

Substitutingyd − ỹ for ȳ andud − ũ for ū (see (EIV)), we have

yd + Bud = Ax̄ + Bũ + Cỹ, (10.7)

whereyd is defined analogously tōy and

C := diag

([
I
0

]

, . . . ,

[
I
0

])

.

Using (10.7) and defining∆w := col(∆u,∆y), (10.4) is equivalent to the problem

min
x̂,∆w

∆w⊤V−1
w̃ ∆w subject to yd + Bud = Ax̂ +

[
B C

]
∆w, (10.8)

which is a minimum norm-type problem, so that its solution also has closed form.

Recursive Algorithms

Next, we show a recursive solution for the case whenx̄(1) = x̄ini is given andD = 0. The
more general case,̄x(1) ∼ N(xini , Pini) andD 6= 0, leads to a similar but heavier result.

Define the value functionVτ : R
n → R, for τ = 1, . . . , T as follows: Vτ (z) is

the minimum value of (10.4) overt = τ, . . . , T − 1 with x̂(τ) = z. ThenV1(xini) is the
optimum value of the EIV smoothing problem. By the dynamic programming principle, we
have

Vτ (z) = min
û(τ)

(∥
∥
∥

√

V−1
ũ

(
û(τ) − ud(τ)

)
∥
∥
∥

2

+
∥
∥
∥

√

V−1
ỹ

(
Cz − yd(τ)

)
∥
∥
∥

2

+ Vτ+1

(
Az + Bû(τ)

))

. (10.9)

The value functionVτ is quadratic for allτ ; i.e., there areP (τ) ∈ R
n×n, s(τ) ∈ R

n, and
v(τ) ∈ R, such that

Vτ (z) = z⊤P (τ)z + 2s⊤(τ)z + v(τ).

This allows us to solve (10.9).

Theorem 10.4 (Recursive smoothing).The solution of the EIV smoothing problem with
givenx̄(1) = x̄ini andD = 0 is

û(t) = −
(
B⊤P (t+1)B +V −1

ũ

)−1(
B⊤P (t+1)Ax̂(t)+B⊤s(t+1)−V −1

ũ ud(t)
)
,

(10.10)

i

i

i

i

10.4. Solution of the filtering problem 155

x̂(t + 1) = Ax̂(t) + Bû(t), with x̂(1) = x̄ini , and ŷ(t) = Cx̂(t) for t = 0, . . . , T − 1,
where

P (t) = −A⊤P (t + 1)B
(
B⊤P (t + 1)B + V −1

ũ

)−1
B⊤P (t + 1)A

+ A⊤P (t + 1)A + C⊤V −1
ỹ C, (10.11)

for t = T − 1, . . . , 0, with P (T) = 0, and

s(t) = −A⊤P (t + 1)B
(
B⊤P (t + 1)B + V −1

ũ

)−1

(
B⊤s(t + 1) − V −1

ũ ud(t)
)

+ A⊤s(t + 1) − C⊤V −1
ỹ yd(t), (10.12)

for t = T − 1, . . . , 0, with s(T) = 0.

Proof. See Appendix A.4.
P ands are obtained from the backward-in-time recursions (10.11)and (10.12), and

the estimateŝu, x̂, andŷ are obtained from the forward-in-time recursion (10.10).

Note 10.5 (Suboptimal smoothing)With (A,C) observable, (10.11) has a steady state
solutionP̄ that satisfies the algebraic Riccati equation

P̄ = −A⊤P̄B(B⊤P̄B + V −1
ũ)−1B⊤P̄A + A⊤P̄A + C⊤V −1

ỹ C. (10.13)

In a suboptimal solution, the unique positive definite solution P̄+ of (10.13) can be substi-
tuted forP (t) in (10.12) and (10.10). This is motivated by the typically fast convergence
of P (t) to P̄+. Then the smoothing procedure becomes

1. find the positive definite solution̄P+ of the algebraic Riccati equation (10.13),

2. simulate the LTI system (10.12) withP (t) = P̄+, for all t,

3. simulate the LTI system (10.10) withP (t) = P̄+ for all t.

10.4 Solution of the Filtering Problem
Analogously to the derivation of (10.7) in Section 10.3, nowwe derive an equivalent model
to the EIV model representation in the form (10.2). Substituteu − ũ for ū andy − ỹ for ȳ
(see (EIV)) in (10.1):

σx̄ = Ax̄ + Bud − Bũ, yd = Cx̄ + Dud − Dũ + ỹ.

Then define a “fake” process noisev1 and measurement noisev2 by

v1 := −Bũ and v2 := −Dũ + ỹ.

The resulting system

σx̄ = Ax̄ + Bud + v1, yd = Cx̄(t) + Dud + v2 (10.14)

i

i

i

i

156 Chapter 10. Errors-in-Variables Smoothing and Filtering

is in the form (10.2), whereQ, S, andR are given in (10.3).
The Kalman filter corresponding to the modified system (10.14) with the covariance

(10.3) is
σz = Akfz + Bkfwd, x̂ = Ckfz + Dkfwd, (10.15)

where

Akf(t) =
(
A − K(t)C

)
, Bkf(t) =

[
B − K(t)D K(t)

]
,

Ckf(t) = I − P (t)C⊤
(
CP (t)C⊤ + R

)−1
C, (10.16)

Dkf(t) = P (t)C⊤
(
CP (t)C⊤ + R

)−1[− D I
]
,

K(t) =
(
AP (t)C⊤ + S

)(
CP (t)C⊤ + R

)−1
,

and

P (t + 1) = AP (t)A⊤ −
(
AP (t)C⊤ + S

)(
CP (t)C⊤ + R

)−1(
AP (t)C⊤ + S

)⊤
+ Q.

We call (10.15) themodified Kalman filter. It recursively solves (10.7) (which is equivalent
to (10.14)) for the last block entry of the unknownx̄. The solution is in the sense of the
WLS problem

min
x̂,ê

ê⊤
([

B C
]
Vw̃

[
B C

]⊤
)−1

ê subject to yd + Bud = Ax̂ + ê,

which is an equivalent optimization problem to the EIV smoothing problem (10.8). There-
fore, the EIV filtering problem is solved by the modified Kalman filter.

Theorem 10.6.The solution of the EIV filtering problem isAf = Akf , Bf = Bkf , Cf = Ckf ,
andDf = Dkf , defined in (10.16).

Note 10.7 (Suboptimal filtering) One can replace the time-varying Kalman filter with the
(suboptimal) time-invariant filter, obtained by replacingP (t) in (10.15) with the positive
definite solutionP̄+ of the algebraic Riccati equation

P̄ = AP̄A⊤ −
(
AP̄C⊤ + S

)(
CP̄C⊤ + R

)−1(
AP̄C⊤ + S

)⊤
+ Q.

Equivalently, one can argue that the time-invariant filter is optimal whenT goes to infinity.

Note 10.8 (Optimal estimation of the input/output signals)Up to now we were inter-
ested in optimal filtering in the sense of state estimation. The optimal estimates of the
input and the output, however, can be derived from the modified Kalman filter. The state
estimatêx, the one-step-ahead predictionz(t + 1), and the optimal input estimatêu satisfy
the equation

z(t + 1) = Ax̂(t) + Bû(t). (10.17)

Then we can find̂u exactly from x̂ and z(t + 1), obtained from the modified Kalman
filter (10.15). In fact, (10.17) and the Kalman filter equations imply that

û(t) = E(t)z(t) + F (t)wd(t), (10.18)

i

i

i

i

10.5. Simulation examples 157

whereE(t) := −VũD⊤
(
CP (t)C⊤ + R(t)

)−1
C and

F (t) :=
[

I − VũD⊤
(
CP (t)C⊤ + R

)−1
D , VũD⊤

(
CP (t)C⊤ + R

)−1
]

.

The optimal output estimate is

ŷ(t) =
(
CCkf(t) + DE(t)

)
z(t) +

(
CDkf(t) + DF (t)

)
wd(t). (10.19)

Appending the output equation of the EIV filter (10.5) with (10.18) and (10.19), we have
an explicit solution of the EIV filtering problem of [GDS03] as a (modified) Kalman filter.

Note 10.9 (Misfit/latency) More general estimation problems occur whenw̄ is generated
by the stochastic model (10.2) with a noise covariance matrix

Vv := cov

([
v1(t)
v2(t)

])

,

and the datawd, available for estimation, is generated by the EIV model (EIV). The EIV
smoothing and filtering problems can be defined in this case analogously to Problems 10.1
and 10.2, and the results of the chapter can be repeated mutatis mutandis for the new
problems. The final result is the equivalence of the EIV filterto the modified Kalman
filter (10.15)–(10.16), with the only difference that now

[
Q S
S⊤ R

]

= Vv +

[
−B 0
−D I

] [
Vũ

Vỹ

] [
−B 0
−D I

]⊤

.

The more general setup is attractive because the noisesv1, v2 have different interpretation
from that ofw̃. The former models thelatencycontribution and the latter models themisfit
contribution; see [LD01, MWD02].

10.5 Simulation Examples
We illustrate numerically the results of the chapter. The parameters of the input/state/output
representation ofB are

A =

[
0.6 −0.45
1 0

]

, B =

[
1
0

]

, C =
[
0.48429 −0.45739

]
, and D = 0.5381.

The time horizon isT = 100, the initial state is̄xini = 0, the input signal is a normal white
noise sequence with unit variance, andVũ = Vỹ = 0.4.

The estimate of the EIV filter is computed directly from the definition; i.e., we solve a
sequence of smoothing problems with increasing time horizon. Every smoothing problem
is as a WLS problem (10.6). The last block entries of the obtained sequence of solutions
form the EIV filter state estimate.

We compare the EIV filter estimate with the estimate of the modified Kalman fil-
ter (10.15). The state estimatex̂kf obtained by the modified Kalman filter is up to numerical
errors equal to the state estimatex̂f obtained by the EIV filter,‖x̂kf − x̂f‖ < 10−14. This is
the desired numerical verification of the theoretical result. The absolute errors of estimation
‖x̂− x̄‖2, ‖û− ū‖2, ‖ŷ− ȳ‖2 for all estimation methods presented in the chapter are given
in Table 10.1.

i

i

i

i

158 Chapter 10. Errors-in-Variables Smoothing and Filtering

Table 10.1.Comparison of the absolute errors of the state, input, and output estimates for
all methods (MKF—modified Kalman filter).

Method ‖x̂ − x̄‖2 ‖û − ū‖2 ‖ŷ − ȳ‖2

optimal smoothing 75.3981 29.2195 15.5409
optimal filtering 75.7711 35.5604 16.4571
time-varying MKF 75.7711 35.5604 16.4571
time-invariant MKF 76.1835 35.7687 16.5675
noisy data 116.3374 42.4711 41.2419

10.6 Conclusions
We considered optimal EIV estimation problems for discrete-time LTI systems. A recursive
solution for the smoothing problem is derived. The filteringproblem is solved via a modified
Kalman filter. The equivalence between the EIV filter and the modified Kalman filter is
established algebraically using explicit state space representation of the system. The optimal
estimate of the input is a linear function of the optimal state estimate, so that it is obtained
by an extra output equation of the modified Kalman filter. The results are extended to the
case when the system is driven by a measured and an unobservedinput.

i

i

i

i

Chapter 11

Approximate System
Identification

The following identification problem is considered:

Minimize the2-norm of the difference between a given time series and an approx-
imating one under the constraint that the approximating time series is a trajectory
of an LTI system of a fixed complexity.

The complexity is measured by the input cardinality and the lag. The question leads to the
global total least squares problem (TLSR(z)) and alternatively can be viewed as maximum
likelihood identification in the EIV setting. Multiple timeseries and latent variables can
be considered in the same setting. Special cases of the problem are autonomous system
identification, approximate realization, and finite time optimal ℓ2 model reduction.

The identification problem is related to the structured total least squares problem
(STLSX), so that it can be solved in practice by the methods developed in Chapter 4 and
the software tool presented in Appendix B.2. The proposed system identification method
and software implementation are tested on data sets from thedatabase for the identification
of systems (DAISY).

11.1 Approximate Modeling Problems
Figure 11.1 shows three approximate modeling problems. On top is the model reduc-
tion problem: given an LTI system̄B, find an LTI approximationB̂ of a desiredlower
complexity. A tractable solution that gives very good results in practice is balanced trun-
cation [Moo81]. We consider finite timeℓ2 optimal model reduction: the sequence of the
first T Markov parameters of̄B is approximated by the sequence of the corresponding
Markov parameters of̂B in the2-norm sense.

The identification problem is similar to the model reductionone but starts instead
from an observed responsewd. Various data collection models (the down arrows fromB̄ to
wd andH in Figure 11.1) are possible. For example, the EIV model iswd = w̄ + w̃, where
w̄ is a trajectory generated bȳB andw̃ is measurement noise.

159

i

i

i

i

160 Chapter 11. Approximate System Identification

B̄ model reduction //

²²

da
ta

co
lle

ct
io

n

¼¼

B̂

wd

STLS

--

identification
gggggggggggg

33gggggggggggg

ŵ

OO

H STLS //

approximate realization

ppppppppppp

77ppppppppppp

X̂
¡¡

ne
w

re
su

lt

¢¢¢¢¢¢¢¢

@@¢¢¢¢¢¢¢¢

//

@@

Ĥ

re
al

iz
at

io
n

XX

Figure 11.1. Different problems aiming at a (low complexity) modelB̂ that approximates
a given (high complexity) model̄B. The time serieswd is an observed response andH is
an observed impulse response.

Of independent interest are the identification problems from a measurement of the
impulse responseH = H̄ + H̃, which is an approximate realization problem, and the
autonomous system identification problem, wherew̄ andŵ are free responses. A classical
solution to these problems is Kung’s algorithm [Kun78].

The key observation that motivates the application of STLS for system identification
and model reduction is that their kernel subproblem is to finda block-Hankel rank-deficient
matrixH (ŵ) approximating a given full-rank matrixH (wd) with the same structure.

Noniterative methods such as balanced model reduction, subspace identification,
and Kung’s algorithm solve the kernel approximation problem via the SVD.

For finite matrices, however, the SVD approximation ofH (wd) is unstructured. For this
reason the algorithms based on the SVD are suboptimal with respect to an induced norm of
the approximation error∆w := wd − ŵ. The STLS method, on the other hand, preserves
the structure and is optimal according to this criterion.

Our purpose is to show how system theoretic problems with misfit optimality
criterion are solved as equivalent STLS problems

X̂ = arg min
X

(

min
ŵ

‖wd − ŵ‖ subject to S (ŵ)

[
X
−I

]

= 0

)

(STLSX)

and subsequently make use of the efficient numerical methodsdeveloped for the
STLS problem.

The constraint of (STLSX) enforces the structured matrixS (ŵ) to be rank deficient, with
rank at mostrow dim(X) and the cost function measures the distance from the given datawd

to its approximationŵ. The STLS problem aims at optimal structured low-rank approxi-
mation ofS (wd) by S (ŵ); cf. Chapter 4.

The STLS method originates from the signal processing and numerical linear algebra
communities and is not widely known in the area of systems andcontrol. The classical
TLS method is known in the early system identification literature as the Koopmans–Levin

i

i

i

i

11.1. Approximate modeling problems 161

method [Lev64]. In this chapter, we show the applicability of the STLS method for system
identification. We extend previous results [DR94, LD01] of the application of STLS for
SISO system identification to the MIMO case and present numerical results on data sets
from DAISY [DM05].

The Global Total Least Squares Problem

LetM be a user-specified model class and letwd be an observed time series of lengthT ∈ N.
The model class restricts the maximal allowed model complexity. Within M , we aim to
find the modelB̂ that best fits the data according to the misfit criterion

B̂ := arg min
B∈M

M(wd,B), with M(wd,B) := min
ŵ∈B

‖wd − ŵ‖.

The resulting optimization problem is known as the global total least squares (GlTLS)
problem [RH95].

The approach of Roorda and Heij [RH95] and Roorda [Roo95] is based on solving
the inner minimization problem, the misfit computation, by isometric state representation of
the system and subsequently alternating least squares or Gauss–Newton-type algorithm for
the outer minimization problem. They use a state space representation with driving input.
Our approach of solving the GlTLS problem is different. We use a kernel representation of
the system and relate the identification problem to the STLS problem (STLSX).

Link with the Most Powerful Unfalsified Model

In Chapter 8, we introduced the concept of the most powerful unfalsified model (MPUM).
A modelB is unfalsified by the observationwd if wd ∈ B. A modelB1 is more powerful
thanB2 if B1 ⊂ B2. Thus the concept of the MPUM is to find the most powerful model
consistent with the observations—a most reasonable and intuitive identification principle.

In practice, however, the MPUM can be unacceptably complex.For example, in the
EIV setting the observationwd :=

(
wd(1), . . . , wd(T)

)
, wd(t) ∈ R

w, is perturbed by noise,
so that with probability one the MPUM isBmpum = (Rw)T ; see Note 8.10. Such a model
is useless because it imposes no laws.

The GlTLS problem addresses this issue by restricting the model complexity by the
constraintB̂ ∈ M , whereM is an a priori specified model class. Whenever the MPUM
does not belong toM , an approximation is needed. The idea is to

correct the given time series as little as possible, so that the MPUM of the corrected
time series belongs toM .

This is a most reasonable adaptation of the MPUM to approximate identification. The
measure of closeness is chosen as the2-norm, which weights equally all variables over all
time instants. In a stochastic setting, weighted norms can be used in order to take into
account prior knowledge about nonuniform variance among the variables and/or in time.

i

i

i

i

162 Chapter 11. Approximate System Identification

11.2 Approximate Identification by Structured Total
Least Squares

The considered approximate identification problem is defined as follows.

Problem 11.1 (GlTLS).For given time serieswd ∈ (Rw)T and a complexity specification
(m, l), wherem is the maximum number of inputs andl is the maximum lag of the identified
system, solve the optimization problem

B̂ := arg min
B∈L w

m,l

(

min
ŵ∈B

‖wd − ŵ‖
)

. (GlTLS)

The optimal approximating time series iŝw∗, corresponding to a global minimum point
of (GlTLS), and the optimal approximating system isB̂.

The inner minimization problem of (GlTLS), i.e., the misfitM(wd,B) computation,
has the system theoretic meaning of finding the best approximation ŵ∗ of the given time
serieswd that is a trajectory of the (fixed from the outer minimizationproblem) systemB.
This is asmoothing problem.

Our goal is to express (GlTLS) as an STLS problem (STLSX). Therefore, we need to
ensure that the constraintS (ŵ)

[
X
−I

]
= 0 is equivalent toŵ ∈ B ∈ L w

m,l. As a byproduct
of doing this, we relate the parameterX in the STLS problem formulation to the systemB.
The equivalence is proven under an assumption that is conjectured to hold generically in
the data space(Rw)T .

Lemma 11.2. Consider a time seriesw ∈ (Rw)T and assume (without loss of gener-
ality) that there are natural numbersl and p, p ≥ 1, and a matrixR ∈ R

p×(l+1)w,
such thatRHl+1(w) = 0. DefineR =:

[
R0 R1 · · · Rl

]
, whereRi ∈ R

p×w,

R(z) :=
∑l

i=0 Riz
i, andB := ker

(
R(σ)

)
. Thenw ∈ B|[1,T] and if Rl is full rank,

B ∈ L
w,pl
m,l , wherem := w− p.

Proof. From the identity

RHl+1(w) = 0 ⇐⇒ ∑l

τ=0 Rτw(t + τ) = 0, for t = 1, . . . , T − l,

it follows thatw ∈ B|[1,T].
By definitionB, is a linear system with lagl(B) ≤ l. The assumption thatRl is full

row rank implies thatR(z) is row proper. Then the number of outputs ofB is p(B) = p

and therefore the number of inputs ism(B) = w− p(B) = m. Let li be the degree of the
ith equation inR(σ)w = 0. The assumption thatRl is full row rank implies thatli = l

for all i. Therefore,n(B) =
∑p

i=1 li = pl.
The next lemma states the reverse implication.

Lemma 11.3. Consider a time seriesw ∈ (Rw)T and assume (without loss of generality)
that there are natural numbersl andm < w and a systemB ∈ L w

m,l, such thatw ∈ B|[1,T].

Let R(σ)w = 0, whereR(z) =
∑l

i=0 Riz
i, be a shortest lag kernel representation ofB.

i

i

i

i

11.2. Approximate identification by structured total least squares 163

Then the matrixR :=
[
R0 R1 · · · Rl

]
annihilates the Hankel matrixHl+1(w), i.e.,

RHl+1(w) = 0. If, in addition,n(B) = pl, thenRl is full row rank.

Proof. Fromw ∈ B|[1,T], it follows thatRHl+1(w) = 0.
Let li be the degree of theith equation inR(σ)w = 0. We haveli ≤ l and

n(B) =
∑p

i=1 li. The assumptionn(B) = pl is possible only ifli = l for all i. Because
R(z) is row proper (by the shortest lag assumption of the kernel representation), the leading
row coefficient matrixL has full row rank. But sinceli = l, for all i, L = Rl.

We have the following main result.

Theorem 11.4. Let B := ker
(
R(σ)

)
∈ L w

m,l, whereR(z) =
∑l

i=0 Riz
i is row proper,

and define the partitioning

Rl =:

m w− m
[

Ql −Pl

]
.

If Pl is nonsingular, then for anyw ∈ (Rw)T ,

w ∈ B|[1,T] ⇐⇒ H
⊤
l+1(w)

[
X
−I

]

= 0, where X⊤ = P−1
l

[
R0 · · · Rl−1 Ql

]
.

Proof. The assumption of the theorem is stronger than the assumptions of Lemmas 11.2
and 11.3 because not only isRl required to be of full row rank but its submatrixPl is
required to have this property. In the direction of assumingw ∈ B|[1,T], by Lemma 11.3,
it follows that RHl+1(w) = 0. SincePl is nonsingular,RHl+1(w) = 0 is equivalent
to H ⊤

l+1(w)
[

X
−I

]
= 0, with X⊤ := P−1

l

[
R0 · · · Rl−1 Ql

]
. In the opposite direc-

tion, by Lemma 11.2,B = ker
(∑l

i=0 Riσ
i
)

with
[
R0 R1 · · · Rl

]
:=

[
X⊤ −I

]
.

Therefore,Pl = I is nonsingular.
Theorem 11.4 states the desired equivalence of the identification problem and the

STLS problem under the assumption that the optimal approximating systemB̂ admits a
kernel representation

B̂ = ker

(l∑

i=0

R̂iσ
i

)

, R̂l :=
[

Q̂l −P̂l

]
with P̂l ∈ R

p×p nonsingular. (∗)

We conjecture that condition (∗) holds true for almost allw ∈ (Rw)T . Define the subset
of (Rw)T consisting of all time seriesw ∈ (Rw)T for which the identification problem is
equivalent to the STLS problem, i.e.,

Ω :=

{

wd ∈ (Rw)T
∣
∣
∣

problem (GlTLS) has a unique global
minimizerB̂ that satisfies (∗)

}

.

Conjecture 11.5. The setΩ is generic in(Rw)T ; i.e., it contains an open subset whose
complement has measure zero.

The existence and uniqueness part of the conjecture (see thedefinition ofΩ) is moti-
vated in [HS99, Section 5.1]. The motivation for (∗) being generic is the following one.

i

i

i

i

164 Chapter 11. Approximate System Identification

The highest possible order of a system in the model classL w
m,l ispl. Then generically

in the data space(Rw)T , n(B̂) = pl. By Lemma 11.3,n(B̂) = pl implies that in a kernel
representation̂B = ker

(∑l

i=0 R̂iσ
i
)
, R̂l is of full row rank. But generically inRp×w the

matrix P̂l ∈ R
p×p, defined byR̂l =:

[

Q̂l −P̂l

]
, is nonsingular. Although the motivation

for the conjecture is quite obvious, the proof seems to be rather involved.

Properties of the Solution

The following are properties of the smoothing problem:

1. ŵ is orthogonal to the correction∆w := wd − ŵ and

2. ∆w is generated by an LTI systemB⊥ ∈ L w
p,l.

Since the identification problem has as an inner minimization problem, the smoothing
problem, the same properties hold in particular for the optimal solution of (GlTLS). These
results are stated for the SISO case in [DR94] and then provenfor the MIMO case in [RH95,
Section VI].

Statistical properties of the identification problem (GlTLS) are studied in the literature.
For the stochastic analysis, the EIV model is assumed and thebasic results are consistency
and asymptotic normality. Consistency in the SISO case is proven in [AY70b]. Consistency
in the MIMO case is proven in [HS99] in the framework of the GlTLS problem. Complete
statistical theory with practical confidence bounds is presented in [PS01] in the setting of
the Markov estimator for semilinear models. Consistency ofthe STLS estimator for the
general structure specification described in Chapter 4 is proven in [KMV05].

Numerical Implementation

A recursive solution of the smoothing problemM(wd,B) is obtained by dynamic program-
ming in Section 10.3 for the special caseD = 0 and exactly known initial condition. An
alternative derivation (for generalD and unknown initial conditions) is derived by isometric
state representation in [RH95]. Both solutions are derivedfrom a system theoretic point of
view. A related problem occurs in the STLS problem formulation. Because of the flexible
structure specification, the inner minimization problem inthe STLS formulation (STLSX)
is more general than the smoothing problemM(wd,B), where a block-Hankel structure is
fixed. In Chapter 4, a closed form expression is derived for the latter problem and a special
structure of the involved matrices is recognized. The structure is then used on the level of
the computation by employing numerical algorithms for structured matrices. The resulting
computational complexity is linear in the lengthT of the given time serieswd.

The outer minimization problemminB∈M M(wd,B), however, is a difficult noncon-
vex optimization problem that requires iterative methods.Two methods are proposed in the
framework of the GlTLS problem. In [RH95] an alternating least squares method is used.
Its convergence is linear and can be very slow in certain cases. In [Roo95], a Gauss–Newton
algorithm is proposed. For the solution of the STLS problem,a Levenberg–Marquardt al-
gorithm is used. The convergence of all these algorithms to the desired global minimum is
not guaranteed and depends on the provided initial approximation and the given data.

Software for solving the GlTLS problem is described in Appendix B.4.

i

i

i

i

11.3. Modifications of the basic problem 165

11.3 Modifications of the Basic Problem
Input/Output Partitionings

A standard assumption in system identification is that an input/output partitioning of the
variables is a priori given. Consider aw×w permutation matrixΠ and redefinew asΠw. The
firstm variables of the redefined time series are assumed inputs andthe remainingp variables
outputs. Withcol(u, y) := w and

[

Q̂(z) −P̂ (z)
]

:= R̂(z), the kernel representation

R̂(σ)w = 0 becomes a left matrix fraction representationQ̂(σ)u = P̂ (σ)y. The transfer
function ofB̂ for the fixed byΠ input/output partitioning iŝG(z) := P̂−1(z)Q̂(z).

Note that under the assumptionn(B̂) = p(B̂)l(B̂), the state space representation

Â =








0 · · · 0 −P̂0

I −P̂1

. . .
...

I −P̂l−1








, B̂ =








Q̂0 − P̂0Q̂l

Q̂1 − P̂1Q̂l

...
Q̂l−1 − P̂l−1Q̂l








, Ĉ =
[
0 · · · 0 I

]
, D̂ = Q̂l

is minimal. Therefore, the transition from̂P andQ̂ (which is the result obtained from the
optimization problem) to an input/state/output representation is trivial and requires extra
computations only for the formation of thêB matrix.

Conjecture 11.5 implies that generically the optimal approximation B̂ admits an
input/output partitioningcol(u, y) := w, with Π = I. Moreover, we conjecture that
genericallyB̂ admits an arbitrary input/output partitioning (i.e.,col(u, y) := Πw for any
permutation matrixΠ).

Exact Variables

Another standard assumption is that the inputs are exact (inthe EIV setting noise-free). Let
û andŷ be the approximating input and output. The assumption thatud is exact imposes
the constraint̂u = ud.

More generally, if some variables ofwd are exact, then the corresponding elements
in ŵ are fixed. In the STLS problem formulation (STLSX), the exact elements ofwd can
be separated in a block ofS (wd) by permuting the columns ofH ⊤

l+1(wd). The STLS
package described in Appendix B.2 allows specification of exact blocks inS (wd) that are
not modified in the solutionS (ŵ). After solving the modified problem, the solution̂X of
the original problem, with exact variables, is obtained by applying the reverse permutation.

With a given input/output partition and exact inputs, the GlTLS problem becomes
the classical output error identification problem. Moreover, in the single output case the
GlTLS misfit is equivalent to the cost function minimized by the prediction error methods.
The following simulation example shows that the GlTLS optimal model is equivalent to the
model computed by thepemfunction from the System Identification Toolbox of MATLAB,
when the output error structure is specified.

Example 11.6 (Output error system identification) We use the data set “Hair dryer” from
[Lju99], available via DAISY [DM05], and search for an approximate system in the model
classL 2

1,5. On the one hand, we use the GlTLS method, implemented by the function

i

i

i

i

166 Chapter 11. Approximate System Identification

Table 11.1.Comparison of the GlTLS and prediction error methods on a SISO output error
identification problem.

Function Time, sec Simulation fit GlTLS misfit
pem 5.5 91.31059766532992 2.27902450157299
stlsident 2.9 91.31059766354954 2.27902450178058

stlsident (see Appendix B.4) with the specification that the input is exact. On the
other hand, we use the functionpem evoked with the following calling sequence, which
corresponds to output error identification:

sys = pem(iddata(y,u),l, ...
’nk’, 0, ...
’DisturbanceModel’, ’None’, ...
’SSParameterization’, ’Canonical’, ...
’InitialState’, ’Estimate’, ...
’LimitError’, 0, ...
’Tolerance’, 1e-5, ...
’MaxIter’, 100);

The identified systems bystlsident andpemare compared in Table 11.1 in terms
of the simulation fit (computed by the functioncompare from the System Identification
Toolbox), the GlTLS misfit, and the computation time. Note that

compare ’s simulation fit= 100(1 − Moe/‖y‖). (FIT)

Multiple Time Series

In certain cases, e.g., the approximate realization problem, multiple observed time series
wd,1, . . . , wd,N are given. Assume that all time series are of the same length and definewd to
be the matrix valued time serieswd =

[
wd,1 · · · wd,N

]
, so thatwd(t) ∈ R

w×N . The only
modification needed in the GlTLS solution for this case is to consider block-Hankel matrix
Hl+1(wd) with size of blocksw× N instead ofw× 1, as for the case of a single observed
time series. The software package described in Appendix B.2treats such problems.

Known Initial Conditions

In the GlTLS problem, no prior knowledge about initial conditions is assumed. Thus the
best fitting trajectoryŵ is sought in the whole behavior̂B. If the initial conditions are
a priori known,ŵ should be searched only among the trajectories ofB̂ generated by the
specified initial conditions. Typical examples of identification problems with known initial
conditions are approximate realization and identificationfrom step response observations.
In both cases, the initial conditions are a priori known to bezero.

Zero initial conditions can be taken into account in the identification problem by
extending the given time serieswd with l zero samples. Letwext be the extended data
sequences obtained in this way. In order to ensure that the approximationŵext is also obtained

i

i

i

i

11.4. Special problems 167

under zero initial conditions, the firstl samples ofwext should be preserved unmodified
in ŵext.

Note 11.7 (Known initial conditions) In the current software implementation of the GlTLS
method, the specification that thel leading data samples are exact isnot possible. This
feature of the identification problem goes beyond the scope of the current STLS solution
method and software.

Latent Inputs

The classical system identification framework [Lju99] differs from the one in this chapter
in the choice of the optimization criterion and the model class. In [Lju99], an unobserved
input is assumed to act on the system that generates the observations and the optimization
criterion is defined as the prediction error.

An unobserved inpute, of dimensione, calledlatent input, can be accommodated in
the setting of Section 11.2 by augmenting the model classM = L w

m,l with e extra inputs
and the cost function‖wd− ŵ‖2 with the term‖e‖2. The resulting identification problem is

min
B∈L

w+e

m+e,l

(

min
ê,ŵ

‖wd − ŵ‖2

︸ ︷︷ ︸

misfit

+ ‖ê‖2

︸︷︷︸

latency

subject to

[
ê
ŵ

]

∈ B

)

. (M+L)

This problem unifies the misfit and latency descriptions of the uncertainty and is put for-
ward by Lemmerling and De Moor [LD01]. In [LD01], it is claimed that the pure latency
identification problem

min
B∈L

w+e

m+e,l

(

min
ê

‖ê‖2 subject to

[
ê
wd

]

∈ B

)

(L)

is equivalent to the prediction error approach.
The misfit–latency identification problem (M+L) can easily be reformulated as an

equivalent pure misfit identification problem (GlTLS). Letwaug := col(e, wd), where
e := 0 is ane dimensional zero time series. Then the misfit minimization problem for
the time serieswaug and the model classL w+e

m+e,l is equivalent to (M+L). The pure latency
identification problem (L) can also be treated in our framework by consideringwd exact
(see “Exact-variables” above) and modifying onlye. Note that the latent input amounts
to increasing the complexity of the model class, so that a better fit is achieved with a less
powerful model.

11.4 Special Problems
In this section we consider three special identification problems in an input/output setting.
In the first one the data is an observed impulse response. In the second one the data is an
observed free response. In the third one the data is an exact impulse response of a high
order system, i.e., a system that is not in the specified modelclass.

i

i

i

i

168 Chapter 11. Approximate System Identification

The Approximate Realization Problem

Identification from exact impulse response is the topic of (partial) realization theory; see
Section 8.7. When the given data (impulse response observations) is not exact, an approx-
imation is needed. Kung’s algorithm is a well-known solution for this problem. However,
Kung’s algorithm is suboptimal in terms of the misfit criterion

Mimp(Hd,B) = ‖Hd − Ĥ‖, where Ĥ is an impulse response ofB.

Note that in this special case the misfit computation does notinvolve optimization because
the initial conditions and the input are fixed. The GlTLS problem can be used to find
an optimal approximate model in terms of the misfitMimp(Hd, ·). Next, we consider the
following approximate realization problem [DM94]:

Given a matrix valued time seriesHd ∈ (Rp×m)T+1 and a natural numberl, find a
systemB̂ ∈ L w

m,l, wherew := m + p, whose impulse responsêH∗ minimizes the

approximation error‖Hd − Ĥ‖ :=
√

∑T
t=0 ‖Hd(t) − Ĥ(t)‖2

F.

The approximate realization problem is a special GlTLS problem and can be treated
as such. Now, however, the given trajectory is an observed impulse response, so that the
input is a pulse and the initial conditions are zeros. For this reason the direct approach
is inefficient. Moreover, known zero initial conditions cannot be specified in the current
software implementation; see Note 11.7. In the rest of this section we describe an indirect
solution that exploits the special features of the data and avoids specification of zero initial
conditions.

The following statement is a corollary of Theorem 11.4.

Corollary 11.8. Let B := ker
(
R(σ)

)
∈ L w

m,l, whereR(z) =
∑l

i=0 Riz
i is row proper,

and define the partitioning

Rl =:

m p
[
Ql −Pl

]
.

If Pl is nonsingular, then for anyH ∈ (Rp×m)T+1,

H is an impulse response ofB ⇐⇒ H
⊤
l+1(σH)

[
X
−I

]
= 0,

whereX⊤ = −P−1
l

[
P0 P1 · · · Pl

]
.

Therefore, under assumption (∗), the approximate realization problem can be solved
as an STLS problem with structured data matrixH ⊤

l+1(σHd). Next, we show how one can

obtain an input/state/output representation of the optimal approximating system̂B from X̂
and thel approximated Markov parameterŝH(1), . . . , Ĥ(l).

By Corollary 11.8,rank
(
H ⊤

l+1(σĤ)
)

=: n = lp. Let

Hl+1(σĤ) = Γ∆

be a rank revealing factorization. SincêH is an impulse response of̂B, Γ and∆ must be
of the form

Γ = Ol+1(Â, Ĉ), ∆ = CT−l(Â, B̂),

i

i

i

i

11.4. Special problems 169

whereB̂ = Bi/s/o
(
Â, B̂, Ĉ, D̂

)
. (The basis of the representation is fixed by the rank

revealing factorization.) We have

H
⊤
l+1(σĤ)

[

X̂
−I

]

= 0 =⇒ (Γ∆)⊤
[

X̂
−I

]

= 0

=⇒
[

X̂⊤ −I
]
Γ = 0,

so thatcol span(Γ) ⊂ ker(
[

X̂⊤ −I
]
). But dim

(
col span(Γ)

)
= n. On the other hand,

dim
(
ker(

[

X̂⊤ −I
]
)
)

= (l + 1)p− p = n,

so thatcol span(Γ) = ker(
[

X̂⊤ −I
]
). Therefore, a basis for the null space of

[

X̂⊤ −I
]

defines an observability matrix of̂B, from whichĈ andÂ can be obtained up to a similarity
transformation.D̂ = Hd(0) andB̂ is the unique solution of the system

Ol(Â, Ĉ)B̂ = col
(
Ĥ(1), . . . , Ĥ(l)

)
.

Example 11.9 (Approximate realization) Consider a simulation example in the EIV setup.
The dataHd = H̄ + H̃ is as a noise corrupted impulse responseH̄ of an LTI systemB̄.
The time horizon isT = 50 and the additive noise standard deviation isσ = 0.25. The
true systemB̄ is random stable (obtained via the MATLAB functiondrss) with m = 2
inputs,p = 2 outputs, and lagl = 2. The approximate model̂B is sought in the model
classL m+p

m,l .
We apply a direct identification from input/output data (theimpulse response is ex-

tended withl zeros) and the indirect procedure described above. In the two cases, the
optimization algorithm converges in 1.13 sec. and 0.63 sec., respectively, which shows the
better efficiency of the indirect algorithm. The relative estimation errors‖H̄ − Ĥ‖/‖H̄‖
in the two cases are 0.2716 and 0.2608, respectively. (The difference is due to the wrong
treatment of the initial conditions in the direct method.) For comparison, the relative error
with respect to the dataHd is 0.9219. Figure 11.2 shows the fitting of the impulse response
of the true system̄B by the impulse response of the approximating systems.

Identification of an Autonomous System

The autonomous system identification problem is defined as follows:

Given a time seriesyd ∈ (Rp)T and a natural numberl, find a systemB̂ ∈ L
p

0,l

and a vectorx∗
ini ∈ R

n(B̂), such that the free responseŷ∗ of B̂ obtained under
initial conditionx∗

ini minimizes the approximation error‖yd − ŷ‖.

This problem is a special case of the approximate realization problem. The shifted
impulse responseσH of the systemBi/s/o(A, xini , C, •) is equal to the free response of
the systemBi/s/o(A, •, C, •), obtained under initial conditionxini . Thus the identification
problem for an autonomous system can be solved as an approximate realization problem
with the obvious substitution. It is easy to generalize the autonomous system identification
problem for multiple time seriesyd,1, . . . , yd,N ; see Note 8.27.

i

i

i

i

170 Chapter 11. Approximate System Identification

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

true

data

appr. 1

appr. 2

t

H
1
1

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

true

data

appr. 1

appr. 2

t

H
1
2

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
true
data
appr. 1
appr. 2

t

H
2
1

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5
true
data
appr. 1
appr. 2

t

H
2
2

Figure 11.2. Identification from impulse response. Solid line—exact impulse responsēH,
dotted line—dataHd, dashed line—approximating impulse responseĤ from the direct ap-
proach, dashed-dotted line—approximating impulse responseĤ from the indirect approach.

Example 11.10 (Identification of an autonomous system)Consider the same simulation
setup as in Example 11.9 with the only difference being that the true datāy is a free
response of lengthT = 20, obtained under random initial condition. The relative error of
approximation‖ȳ−ŷ‖/‖ȳ‖ is 0.4184 versus 0.7269 for the given datayd. Figure 11.3 shows
the fitting of the free response of the true systemB̄ by the approximating free responseŷ
of B̂.

Finite Time ℓ2 Model Reduction

The finite timeT , ℓ2 norm of a systemB ∈ L w
m,l with an impulse responseH is defined as

‖B‖ℓ2,T = ‖H|[0,T]‖ =

√
∑T

t=0 ‖H(t)‖2
F.

For a strictly stable systemB, ‖B‖ℓ2,∞ is well defined and is equal to itsH2 norm.
Assume that the given time seriesHd in the approximate realization problem is the

exactimpulse response of a higher order systemB̄. Such an assumption can be made without
loss of generality because anyfinite time seriesHd ∈ (Rm×p)T+1 can be considered as an
impulse response of a system in the model classL w

m,T . Then the approximate realization
problem can be interpreted as the following finite timeℓ2 model reduction problem:

i

i

i

i

11.5. Performance on real-life data sets 171

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
true
data
appr.

t

y 1

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
true
data
appr.

t

y 2

Figure 11.3.Output-only identification. Solid line—exact trajectoryȳ, dotted line—datayd,
dashed line—approximating trajectorŷy.

Given a system̄B ∈ L w
m,l, a natural numberlred < l, and a time horizonT , find

a systemB̂ ∈ L w
m,lred

that minimizes the finite timeT , ℓ2 norm‖B̄ − B̂‖ℓ2,T of
the error system.

In the model reduction problem, the misfit is due to the low order approximation.
In the approximate realization problem, assuming that the data is obtained from the EIV
model, the misfit is due to the measurement errorsH̃. The solution methods, however,
are equivalent, so in this section we gave an alternative interpretation of the approximate
realization problem.

Example 11.11 (Finite timeℓ2 model reduction) The high order system̄B is a random
stable system (obtained via the MATLABdrss function) withm = 2 inputs,p = 2 outputs,
and lagl = 10. A reduced order model̄B with laglred = 1 is sought. The time horizonT
is chosen large enough for a sufficient decay of the impulse response ofB̄.

Figure 11.4 shows the fitting of the impulse response of the high order system̄B by
the impulse response of the reduced order systemB̂.

11.5 Performance on Real-Life Data Sets
The data base for system identification (DAISY) [DM05] is used for verification and com-
parison of identification algorithms. In this section, we apply the GlTLS method, described
in this chapter and implemented by the software presented inAppendix B.4, on data sets
from DAISY. First, we solve output error identification problems, and then, we consider
the data set “Step response of a fractional distillation column”, which consists of multiple
vector time series.

Single Time Series Data Sets

The considered data sets are listed in Table 11.2. Since all data sets are with a given
input/output partitioning, the only user-defined parameter that selects the complexity of the
model classM = L

m+p

m,l is the lagl.

i

i

i

i

172 Chapter 11. Approximate System Identification

0 10 20 30 40 50 60 70
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
given
appr.

t

H
1
1

0 10 20 30 40 50 60 70
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

given
appr.

t

H
1
2

0 10 20 30 40 50 60 70
−4

−3

−2

−1

0

1

2

given
appr.

t

H
2
1

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

2
given
appr.

t

H
2
2

Figure 11.4. Finite timeℓ2 model reduction. Solid line—impulse response of the given
(high-order) system, dashed line—impulse response of the reduced order system.

The data is detrended and split into identification and validation data sets. The first
70% of the data, denoted bywid, is used for identification, and the remaining 30%, denoted
by wval, is used for validation.

Approximate models are computed via the following methods:

n4sid : the N4SID method implemented in the System Identification Toolbox of MAT-
LAB;

stlsident : the GlTLS method implemented by the STLS solver; and

pem: the prediction error method of the System Identification Toolbox of MATLAB.

Table 11.2. Examples from DAISY.T—time horizon,m—number of inputs,p—number of
outputs,l—lag.

Data set name T m p l

1 Heating system 801 1 1 2
2 Hair dryer 1000 1 1 5
3 Flexible robot arm 1024 1 1 4
4 Heat flow density 1680 2 1 2
5 Steam heat exchanger4000 1 1 2

i

i

i

i

11.5. Performance on real-life data sets 173

The inputs are assumed exact, so that identification in the output error setting is considered.
The validation is performed in terms of the misfitMoe(wval, B̂) obtained on the validation
data set and the equivalent (see (FIT)) simulation fit computed by the functioncompare .

Note 11.12 (About the usage of the methods)Thepemfunction is called with the option

’DisturbanceModel’, ’None’ ,

which specifies output error model structure. In addition, the options

’nk’, 0, ’LimitError’, 0 ,

and’alg’ are used to disable the default forpem feedthrough term set to zero, robustifi-
cation of the cost function, and stability constraint. (TheGlTLS method does not constrain
the model class by enforcing stability.)

With these options (for the single-output case),pemminimizes the output error mis-
fit Moe. Thestlsident function is called with the specification that the inputs areexact,
so that the GlTLS and prediction error methods solve equivalent identification problems.
For both functions, we set the same convergence tolerance (’Tolerance’,1e-10),
maximum number of iterations (’Maxiter’,100), and initial approximation (the model
obtained byn4sid).

The identified systems byn4sid , stlsident , andpemare compared in Table 11.3.
In all examples there is a good match between the models obtained with thestlsident
andpem functions. In addition, the output error optimal model outperforms the model
computed by the N4SID method. Since the criterion is checkedon a part of the data that is
not used for identification, there is no a priori guarantee that the output error method will
outperform the N4SID method.

Identification from Step Response Measurements

Next, we consider the data set “Step response of a fractionaldistillation column” from
DAISY. It consists of three independent time series, each one with T = 250 data points.
The given data has a fixed input/output partitioning withm = 3 inputs andp = 2 outputs,
so that an approximate model is sought in the model classL 5

2 . We further bound the
complexity of the model class by choosing the lagl = 2, so that the considered model class
is L 5

2,2.
The step response data is special because it consists of multiple time series, the inputs

are exactly known, and the initial conditions are also exactly known. In order to take into
account the known zero initial conditions, we precede the given time series withl zero
samples. In order to take into account the exactly known inputs, we use the modification of
the GlTLS method for time series with exact variables. Multiple time series are processed
as explained in Section 11.3.

Figure 11.5 shows the datay (the measured step response) and the step response of
the optimal approximating system, computed by the GlTLS method.

i

i

i

i

174 Chapter 11. Approximate System Identification

Table 11.3.Comparison of the models obtained byn4sid , stlsident , andpem.

Data set name Function Fit % Misfit
1 Heating system n4sid 51.9971 140.8018

stlsident 76.0491 70.2527
pem 76.0491 70.2527

2 Hair dryer n4sid 88.3265 1.5219
stlsident 90.8722 1.1900
pem 90.8772 1.1893

3 Flexible robot arm n4sid 29.5496 3.2480
stlsident 96.5454 0.1593
pem 96.5454 0.1593

4 Heat flow density n4sid 40.7249 11.2233
stlsident 83.8574 3.0565
pem 83.8574 3.0565

5 Steam heat exchangern4sid 29.6890 25.5047
stlsident 60.4452 14.3481
pem 60.1575 14.4525

11.6 Conclusions
We generalized previous results on the application of STLS for system identification, ap-
proximate realization, and model reduction to multivariable systems. The STLS method
allows us to treat identification problems without input/output partitioning of the variables
and EIV identification problems. Multiple time series, latent variables, and prior knowledge
about exact variables can be taken into account.

The classical identification problem, where the uncertainty is attributed solely to un-
observed inputs and the observed inputs are assumed exact, is a special case of the proposed
method. The relation and comparison with classical identification methods, however, have
not yet been investigated.

The software tool for solving STLS problems, presented in Appendix B.2, makes the
proposed identification method practically applicable. The performance of the software
package was tested on data sets from DAISY. The results show that examples with a few
thousands data points can be solved routinely and the optimization method is robust with
respect to an initial approximation obtained from a nonoptimization based method.

i

i

i

i

11.6. Conclusions 175

50 100 150 200 250
2.39

2.41

2.43

2.45

x 10
4

t

y
1
1
,
ŷ
1
1

50 100 150 200 250
0.284

0.2858

0.2875

t
y
1
2
,

ŷ
1
2

50 100 150 200 250
1.19

1.2

1.21

1.22
x 10

4

t

y
2
1
,

ŷ
2
1

50 100 150 200 250
0.142

0.1428

0.1436

t

y
2
2
,

ŷ
2
2

50 100 150 200 250
1.11

1.14

1.17

1.2
x 10

5

t

y
3
1
,

ŷ
3
1

50 100 150 200 250
1.43

1.44

1.45

t

y
3
2
,

ŷ
3
2

Figure 11.5. Identification from step response measurements. Solid line—given datay,
dashed line—GlTLS approximation̂y. (yij is the step response from inputi to outputj.)

i

i

i

i

176 Chapter 11. Approximate System Identification

i

i

i

i

Chapter 12

Conclusions

We have promoted a framework for mathematical modeling in which

1. models are disentangled from their representations and

2. data–model discrepancy is explained by correction of thedata.

A basic question in our treatment is,

When does a model in a considered model class fit the data exactly and how
can we construct such a model?

This exact modeling problem leads to the notion of the most powerful unfalsified model
and to identifiability conditions, i.e., under what conditions the data generating model can
be recovered from the data. In the generic case when exact fit is not possible, we propose
an approximate model based on misfit minimization.

The misfit approach corrects the data as little as necessary,so that the most powerful
unfalsified model for the corrected data belongs to the modelclass. The approximate model
is falsified whenever the data is not generated by a model in the model class, and the misfit
is a quantitative measure of how much the model is falsified bythe data.

In the errors-in-variables setting, the misfit can be chosento be the negative log
likelihood function. Such an interpretation is appealing and leads to a consistent estimator
for the true model. It requires, however, strong assumptions about the data that are rarely
verifiable in practice. For this reason, the approximation point of view of the modeling
problem is often more appropriate than the stochastic estimation point of view.

Static approximation problems In the simplest special case of a linear static model
class and unweighted misfit function, the misfit minimization problem is the classical total
least squares problem. The abstract formulation is transformed to parameter optimization
problems by choosing concrete representations of the model. The commonly used repre-
sentations are kernel, image, and input/output.

Although concrete representations are indispensable for the actual solution of the
modeling problems, their usage in problem formulations is not natural. The abstract,

177

i

i

i

i

178 Chapter 12. Conclusions

representation-free formulation shows more directly whatthe aim of the problem is and
leaves the choice of the model representation open for the solution.

The classical total least squares problem is generalized intwo directions: weighted
misfit function and structured data matrix. Defining the problem abstractly and then trans-
lating it to concrete parameter optimization problems, we showed links among various,
seemingly unrelated, algorithms from the literature. We presented alternative algorithms
that in one respect or another outperform the existing methods. However, it is a topic of
future work to develop algorithms that combine all the virtues of the existing algorithms.

We presented a new flexible formulation of the structured total least squares problem
that is general enough to cover various nontrivial applications and at the same time allows
efficient solution methods. Algorithms with linear computational complexity in the number
of data points were outlined and implemented in a software package.

Bilinear and quadratic approximation problems are solved by the adjusted least squares
method, which has an analytic solution in terms of an eigenvalue decomposition. The ad-
justed least squares method is a stochastic latency oriented method, so in these problems
we detour from the main line of the book—deterministic misfit approximation. The reason
is that the adjusted least squares method leads to a significant computational simplification.
In addition, although the theory of the adjusted least squares estimation is asymptotic, sim-
ulation results show that the solution is very effective even for small sample size problems.

Dynamic approximation problems In the second part of the book, we considered
exact and approximate identification problems for finite time series. We gave a sharp
sufficient identifiability condition: if the data generating system is controllable and an input
component of the time series is persistently exciting, the most powerful unfalsified model
of the data coincides with the data generating system. Exactidentification algorithms find
the data generating system by computing a representation ofthe most powerful unfalsified
model.

We proposed new algorithms for exact identification of a kernel, convolution, and
input/state/output representation of the most powerful unfalsified model. The latter are
closely related to the deterministic subspace algorithms.However, the algorithms proposed
in the book are more efficient and impose weaker assumptions on the given data. In addition,
we gave system theoretic interpretation of the oblique and orthogonal projections that are
used in the deterministic subspace identification.

For rough data, the exact identification problem generically identifies a trivial system
that explains every time series. When a bound on the complexity of the identified system is
imposed, e.g., via a bound on the model class complexity (number of inputs and lags), the
exact identification problem generically has no solution. The misfit approximate modeling
problem for the linear time-invariant model class is calledthe global total least squares
problem. It is the dynamic equivalent of the classical totalleast squares problem. We
solved the global total least squares problem by relating itto a structured total least squares
problem with a block-Hankel data matrix.

Approximate identification is classically considered in a stochastic setting with the
latency approach. This classical stochastic model (systemwith unobserved noise input),
however, like the errors-in-variables model imposes unverifiable assumptions on the data.
In addition, the stochastic framework addresses very indirectly the approximation issue.

i

i

i

i

Appendix A

Proofs

A.1 Weighted Total Least Squares Cost Function
Gradient

Denote byDiff the differential operator. It acts on a differentiable function Mwtls : U → R,
whereU is an open set inRm×p, and gives as a result another function, the differential of
Mwtls, Diff(Mwtls) : U × R

m×p → R. Diff(Mwtls) is linear in its second argument, i.e.,

Diff(f) := dMwtls(X,H) = trace
(
M ′

wtls(X)H⊤
)
, (A.1)

whereM ′
wtls : U → R

m×p is the derivative ofMwtls, and has the property

Mwtls(X + H) = Mwtls(X) + dMwtls(X,H) + o(‖H‖F), (A.2)

for all X ∈ U and for allH ∈ R
m×p. The notationo(‖H‖F) has the usual meaning

g(H) = o(‖H‖F) : ⇐⇒ g(H)/‖H‖F → 0 as‖H‖F → 0.

We have

Mwtls(X) =

N∑

i=1

e⊤i (X)Γ−1
i (X)ei(X), where Γi(X) :=

[
X⊤ −I

]
W−1

i

[
X
−I

]

.

We find the derivativeM ′
wtls(X) by first deriving the differentialDiff(Mwtls) and then repre-

senting it in the form (A.1), from whichM ′
wtls(X) is extracted. The differential ofMwtls is

dMwtls(X,H)

=
N∑

i=1

(

a⊤
i HΓ−1

i (X)ei(X) + e⊤i (X)Γ−1
i (X)H⊤ai + e⊤i (X)Diff

(
Γ−1

i (X)
)
ei(X)

)

=

N∑

i=1

(

2 trace
(
aie

⊤
i (X)Γ−1

i (X)H⊤
)

+ trace
(

Diff
(
Γ−1

i (X)
)
ei(X)e⊤i (X)

))

.

179

i

i

i

i

180 Appendix A. Proofs

Using the rule for differentiation of an inverse matrix valued function, we have

Diff
(
Γ−1

i (X)
)

= −Γ−1
i (X)Diff

(
Γi(X)

)
Γ−1

i (X).

Using the defining property (A.2), we have

Diff
(
Γi(X)

)
= Diff

(
[
XT −I

]
W−1

i

[
X
−I

])

= trace

(
[
H⊤ 0

]
W−1

i

[
X
−I

]

+
[
X −I

]
Wi

[
H
0

])

= 2 trace

(
[
H⊤ 0

]
W−1

i

[
X
−I

])

.

Let Vi := W−1
i and define the partitioning

Vi =:

m p
[

Va,i Vab,i

Vba,i Vb,i

]
m

p
.

Then
Diff

(
Γi(X)

)
= 2 trace

(
H⊤(Va,iX − Vab,i)

)
.

Substituting backwards, we have

dMwtls(X,H) =

N∑

i=1

(

2 trace
(
aie

⊤
i (X)Γ−1

i (X)H⊤
)

− 2 trace
(
Γ−1

i (X)H⊤(Va,iX − Vab,i)Γ
−1
i (X)ei(X)e⊤i (X)

))

= trace

((

2
N∑

i=1

(

aie
⊤
i (X)Γ−1

i (X)

− (Va,iX − Vab,i)Γ
−1
i (X)ei(X)e⊤i (X)Γ−1

i (X)
))

H⊤

)

.

Thus

M ′
wtls(X) = 2

N∑

i=1

(

aie
⊤
i (X)Γ−1

i (X) − (Va,iX − Vab,i)Γ
−1
i (X)ei(X)e⊤i (X)Γ−1

i (X)
)

.

A.2 Structured Total Least Squares Cost Function
Gradient

The differentialDiff(f0) is

Diff(f0) := df0(X,H) = trace
(
f ′
0(X)H⊤

)
(A.3)

i

i

i

i

A.3. Fundamental lemma 181

and has the property

f0(X + H) = f0(X) + df0(X,H) + o(‖H‖F)

for all X ∈ U and for allH ∈ R
n×d. The functionf ′

0 : U → R
n×l is the derivative off0.

As in Appendix A.1, we compute it by deriving the differential Diff(f0) and representing
it in the form (A.3), from whichf ′

0(X) is extracted.
The differential of the cost functionf0(X) = r⊤(X)Γ−1(X)r(X) is (using the rule

for differentiation of an inverse matrix)

df0(X,H) = 2r⊤Γ−1






H⊤a1

...
H⊤am




 − r⊤Γ−1

(
dΓ(X,H)

)
Γ−1r.

The differential of the weight matrix

Γ = Vr̃ = E r̃r̃⊤ = E






X⊤ã1 − b̃1

...
X⊤ãm − b̃m






[

ã⊤
1 X − b̃⊤1 · · · ã⊤

mX − b̃⊤m
]
,

whereÃ⊤ =:
[
ã1 · · · am

]
, ãi ∈ R

n andB̃⊤ =:
[

b̃1 · · · bm

]
, b̃i ∈ R

d is

dΓ(X,H) = E






H⊤ã1

...
H⊤ãm




 r̃⊤ + E r̃

[
ã⊤
1 H · · · ã⊤

mH
]
. (A.4)

With Mij ∈ R
d×d denoting the(i, j)th block ofΓ−1,

df0(X,H) = 2





N∑

i,j=1

r⊤i MijH
⊤aj −

m∑

i,j,k,l=1

r⊤l MliH
⊤ E ãic̃

⊤
j XextMjlrl





= 2 trace





(m∑

i,j=1

ajr
⊤
i Mij −

m∑

i,j,k,l=1

[
I 0

]
Vc̃,ijXextMjlrlr

⊤
l Mli

)

H⊤



 ,

so that

f ′
0(X) = 2





m∑

i,j=1

ajr
⊤
i Mij −

m∑

i,j=1

[
I 0

]
Vc̃,ijXextNji



 ,

whereNji(X) :=
∑m

l=1 Mjlrl ·
∑m

l=1 r⊤l Mli.

A.3 Fundamental Lemma
Of course,N l

B
⊆ ker

(
H ⊤

l (w̃)
)
. Assume by contradiction thatker

(
H ⊤

l (w̃)
)
6= N l

B
.

Then there is a lowest degree polynomialr ∈ R
w[z], r(z) =: r0 + r1z + · · · + rl−1z

l−1,
that annihilatesH ⊤

l (w̃), i.e.,

col⊤(r0, r1, . . . , rl)Hl(w̃) = 0,

i

i

i

i

182 Appendix A. Proofs

but is not an element ofN l
B

.
ConsiderHl+n(w̃). Then

ker
(
H

⊤
l+n(w̃)

)
= image

(
r(1)(z), zr(1)(z), . . . , zl+n−µ1r(1)(z) ; . . . ;

r(p)(z), zr(p)(z), . . . , zl+n−µp−1r(p)(z) ; r(z), zr(z), . . . , znr(z)
)
.

Note thatr(z), zr(z), . . . , znr(z) are additional elements due to the extra annihilatorr.
If all these polynomial vectors were linearly independent on R, then the dimension of
ker

(
Hl+n(w̃)

)
would be (at least)p(l+n)+1. But the persistency of excitation assumption

implies that the number of linearly independent rows ofHl+n(w̃) is at leastm(l+n), so that

dim
(

ker
(
Hl+n(w̃)

))

≤ p(l + n).

Therefore, not all of these elements are linearly independent. By Lemma 7.5 and the
assumption thatR is row proper, the generatorsr(1), . . . , r(p) and all their shifts are linearly
independent. It follows that there is1 ≤ k ≤ n, such that

zkr(z) ∈ image
(
r(1)(z), zr(1)(z), . . . , zl+n−µ1r(1)(z) ; . . . ;

r(p)(z), zr(p)(z), . . . , zl+n−µp−1r(p)(z) ; r(z), zr(z), . . . , zk−1r(z)
)
.

Therefore, there areg ∈ R[z] of degreek ≥ 1 andf ∈ R
1×p[z], such that

g(z)r(z) = f(z)R(z).

Let λ be a root ofg(z). Thenf(λ)R(λ) = 0, but by the controllability assumption,
rank

(
R(λ)

)
= p for all λ ∈ C and, consequently,f(λ) = 0. Therefore, with

g(z) = (z − λ)g′(z) and f(z) = (z − λ)f ′(z),

we obtain
g′(z)r(z) = f ′(z)R(z).

Proceeding with this degree lowering procedure yieldsr(z) = f(z)R(z) and contradicts
the assumption thatr was an additional annihilator ofHl(w). Therefore,Hl(w) had the
correct left kernel and thereforeN l

B
= ker

(
H ⊤

l (w̃)
)
.

A.4 Recursive Errors-in-Variables Smoothing
By the dynamic programming principle (10.9),

Vt

(
x̂(t)

)
= min

û(t)

([
û(t)
1

]⊤ [
V −1

ũ −V −1
ũ ud(t)

∗ ud(t)
⊤V −1

ũ ud(t)

] [
û(t)
1

]

+

[
x̂(t)
1

]⊤ [
C⊤V −1

ỹ C −C⊤V −1
ỹ yd(t)

∗ yd(t)
⊤V −1

ỹ yd(t)

] [
x̂(t)
1

]

+ Vt+1

(
Ax̂(t) + Bû(t)

)

)

, (A.5)

i

i

i

i

A.4. Recursive errors-in-variables smoothing 183

where the∗’s indicate the symmetric blocks in the matrices. Using induction, we prove that
the value functionVt is quadratic for allt. At the final moment of timeT , VT ≡ 0 and thus
it is trivially quadratic. Assume thatVt+1 is quadratic fort ∈ {0, 1, . . . , T}. Then there are
Pt+1 ∈ R

n×n, st+1 ∈ R
n×1, andvt+1 ∈ R

1×1, such that

Vt+1

(
x̂(t)

)
=

[
x̂(t)
1

]⊤ [
Pt+1 st+1

s⊤t+1 vt+1

] [
x̂(t)
1

]

, for all x̂(t). (A.6)

From (A.5) and (A.6), we have

Vt

(
x̂(t)

)
= min

û(t)

([
û(t)
1

]⊤ [
V −1

ũ −V −1
ũ ud(t)

∗ ud(t)
⊤V −1

ũ ud(t)

] [
û(t)
1

]

+

[
x̂(t)
1

]⊤ [
C⊤V −1

ỹ C −C⊤V −1
ỹ yd(t)

∗ yd(t)
⊤V −1

ỹ yd(t)

] [
x̂(t)
1

]

+

[
Ax̂(t) + Bû(t)

1

]⊤ [
Pt+1 st+1

s⊤t+1 vt+1

] [
Ax̂(t) + Bû(t)

1

])

. (A.7)

The function to be minimized in (A.7) is a convex quadratic function ofû(t),

[
û(t)
1

]⊤




B⊤Pt+1B + V −1
ũ B⊤Pt+1Ax̂(t) + B⊤st+1 − V −1

ũ ud(t)

∗
[
x̂(t)
1

]⊤

M(t)

[
x̂(t)
1

]





[
û(t)
1

]

,

where

M(t) :=

[
A⊤Pt+1A + C⊤V −1

ỹ C A⊤st+1 − C⊤V −1
ỹ yd(t)

∗ vt+1 + yd(t)
⊤V −1

ỹ yd(t) + ud(t)
⊤V −1

ũ ud(t)

]

so the minimizinĝu(t) is

û(t) = −
(
B⊤Pt+1B + V −1

ũ

)−1(
B⊤Pt+1Ax̂(t) + B⊤st+1 − V −1

ũ ud(t)
)
. (A.8)

Substituting (A.8) back into (A.5), we have

Vt(x̂(t)) =

[
û(t)
1

] [
B⊤Pt+1B + V −1

ũ B⊤Pt+1Ax̂(t) + B⊤st+1 − V −1
ũ ud(t)

∗ ud(t)
⊤V −1

ũ ud(t)

] [
û(t)
1

]

+

[
x̂(t)
1

]⊤ [
A⊤Pt+1A + C⊤V −1

ỹ C A⊤st+1 − C⊤V −1
ỹ yd(t)

∗ vt+1 + yd(t)
⊤V −1

ỹ yd(t)

] [
x̂(t)
1

]

,

which is a quadratic function of̂x(t),

Vt(x̂(t)) =

[
x̂(t)
1

]⊤ [
Pt st

s⊤t vt

] [
x̂(t)
1

]

, for all x̂(t),

with Pt andst given in (10.11) and (10.12), respectively. By induction,Vt is quadratic for
t = 0, 1, . . . , T .

i

i

i

i

i

i

i

i

Appendix B

Software

This appendix describes a software implementation of the algorithms in the book. Except
for the STLS solver, presented in Section B.2, all functionsare written in MATLAB code.
For maximum efficiency, the STLS solver is written in C with calls to BLAS, LAPACK, and
SLICOT. The C function, however, is also callable from MATLAB via a mex file interface.

The software and related information are available from thefollowing address:

http://www.esat.kuleuven.be/˜imarkovs/book.html

B.1 Weighted Total Least Squares
Introduction

The weighted total least squares toolbox, presented in thissection, contains MATLAB
functions (m-files) for data approximation by linear staticmodels. The data is a col-
lection of N , d-dimensional real vectorsd1, . . . , dN ∈ R

d, gathered in a matrixD :=
[
d1 · · · dN

]
∈ R

d×N , and a linear static modelB for D is a subspace ofRd. The
natural numberm := dim(B) is a measure of the model complexity andL d

m,0 denotes the
set of all linear static models withd variables of dimensionat mostm.

A linear static modelB ∈ L d
m,0 can be represented as a kernel or image of a matrix

or in an input/output form; see Section 3.2. A representation of the model yields a param-
eterization. The model is described by equations that depend on parameter, and to a given
parameter corresponds a unique model. For a given model and achosen representation,
however, the corresponding parameter might not be unique. The parametersR andP in
a kernel and image representation are in general not unique,but the parameterX in the
special input/output representationBi/o(X) is unique.

We use the shorthand notation
[
d1 · · · dN

]
∈ B ⊆ U for di ∈ B, i = 1, . . . , N .

If D ∈ B, the modelB fits the dataD exactly. If D 6∈ B, the modelB fits the dataD
only approximately. For optimal approximate modeling, thefollowing misfit function is

185

i

i

i

i

186 Appendix B. Software

Table B.1. Special cases of the weighted total least squares problem (WTLS).

Special case Name Acronym
Wi = σ2I σ ∈ R+ total least squares TLS
Wi = diag(w) w ∈ R

d
+ element-wise generalized TLS EWGTLS

Wi = W W > 0 generalized total least squares GTLS
Mwtls = Mgtls2 Wl ,Wr > 0 diag. EWGTLS with two side weighting EWGTLS2
Mwtls = Mgtls2 Wl ,Wr > 0 GTLS with two side weighting GTLS2
Wi = diag(wi) wi ∈ R

d
+ element-wise weighted TLS EWTLS

adopted:

Mwtls
([

d1 · · · dN

]
,B

)
:= min

d̂1,...,d̂N∈B

√
√
√
√

N∑

i=1

(di − d̂i)⊤Wi(di − d̂i),

whereW1, . . . ,WN are given positive definite matrices. The weighted total least squares
(WTLS) misfit Mwtls(D,B) between the dataD and a modelB ∈ L d

m,0 is a measure of
how much the model fails to fit the data exactly. The considered approximate modeling
problem is as follows:

Given the data matrixD =
[
d1 · · · dN

]
∈ R

d×N , a complexity boundm, and
positive definite weight matricesW1, . . . ,WN , find an approximate model

B̂wtls := arg min
B̂∈L d

m,0

Mwtls(D, B̂). (WTLS)

The special cases listed in Table B.1 allow for special solution methods and are treated
separately.

Note B.1 (FWTLS) The following weighted total least squares problem, calledfully weighted
total least square (FWTLS) problem

B̂fwtls := arg min
B̂∈L d

m,0

min
D̂∈B̂

vec⊤(D−D̂)W vec(D−D̂), where W ∈ R
dN×dN , W > 0,

is also considered. It includes (WTLS) as a special case withW = diag(W1, . . . ,WN).
The FWTLS problem, however, does not allow for efficient computational methods and its
solution is prohibitive already for small sample size problems (sayd = 10 andN = 100).
For this reason the FWTLS problem is not the central problem ofinterest and is included
only for completeness.

Algorithms

The special cases listed in Table B.1 have increased generality from top to bottom. The
more general the problem is, however, the more computationally expensive its solution is.
The TLS and GTLS problems allow for analytic solutions in terms of the SVD. The more

i

i

i

i

B.1. Weighted total least squares 187

general EWTLS, WTLS, and FWTLS problems have no similar analytic solutions and use
less robust iterative solution methods.

The SVD method is computationally faster than the alternative iterative optimization
methods and theoretically characterizes all globally optimal solutions. In contrast, the
iterative optimization methods (used in the package) compute one locally optimal solution.
(The algorithm of Premoli and Rastello [PR02, MRP+05] is not globally convergent to a
local solution, so that for particular initial approximations this method might not converge
to a local solution. In such cases the algorithm diverges or oscillates.)

The GTLS-type problems (EWGTLS, GTLS, EWGTLS2, and GTLS2) aresolved
in the package via the transformation technique of Theorem 3.18. The data matrix is
appropriately scaled and the corresponding TLS problem is solved for the scaled data. Then
the solution of the original problem is recovered from the solution of the transformed TLS
problem via the inverse transformation.

The general WTLS problem is solved via local optimization methods. The following
algorithms are used/implemented in the package:

1. classical local optimization methods (from the Optimization Toolbox of MATLAB),

2. an alternating least squares algorithm,

3. the algorithm of Premoli and Rastello.

Implementation

The implementation is in MATLAB code. For problems with analytic solution, the MAT-
LAB code is expected to compute a solution nearly as fast as analternative code in C or
FORTRAN. The general WTLS algorithms, however, are expectedto benefit in terms of
execution time if implemented in C or FORTRAN. The MATLAB source code could be
consulted for the implementation details.

Overview of Commands

The package has three main groups of functions: transformations, misfit compu-
tations, and approximations.

The transformation functions convert a given representation of a model to an equivalent
one. The considered representations are image, kernel, andinput/output, so that there are
in total six transformation functions among them (see Figure 3.2). In addition, a kernel
or an image representation might not be minimal, so that functions that convert a given
kernel or image representation to a minimal one are added. The transformation functions
are summarized in Table B.2.

The misfit computation functions are used for validation: they allow the user to verify
how well a given model fits given data in terms of a certain misfit function. Since the
model can be specified by one of the three alternative representations—kernel, image, or
input/output—all misfit functions have three versions. The following naming convention is
adopted: misfit computation functions begin withm(for misfit), followed by the name of the
approximation problem (which identifies the type of misfit tobe computed), followed by a

i

i

i

i

188 Appendix B. Software

Function Description
x2r X 7→ R from input/output to kernel representation
x2p X 7→ P from input/output to image representation
r2p R 7→ P from kernel to image representation
p2r P 7→ R from image to kernel representation
r2x R 7→ X from kernel to input/output representation
p2x P 7→ X from image to input/output representation
minr R 7→ Rmin minimal kernel representation
minp P 7→ Pmin minimal image representation

Table B.2. Transformation functions.

letter indicating the model representation:r for kernel,p for image, andx for input/output.
Instead of a modelB, an approximating matrix̂D ∈ R

d×N can be used for the misfit
computation. In this case the last letter of the function name isdh .

The considered misfit functions are TLS, GTLS, GTLS2, WTLS, and FWTLS. The
element-wise versions of the GTLS, GTLS2, and WTLS misfits arespecified by the size of
the given weight matrices: if vectors are given inmgtls{r,p,x,dh} andmgtls2{r,
p,x,dh} instead of square weight matrices, then the EWGTLS and EWGTLS2misfits
are computed instead of the GTLS and GTLS2 ones. Similarly, if a d × N matrix is
given instead of ad × d × N tensor inmwtls{r,p,x,dh} , then the EWTLS misfit is
computed instead of the WTLS one. The general FWTLS misfit is computed by the functions
mwtls{r,p,x,dh} if the weight matrix is of sizedN × dN . The misfit computation
functions are summarized in Table B.3.

The approximation functions compute a WTLS approximation ofthe data. The special
WTLS problems are called by special functions that are more efficient; see Table B.4. As
in the misfit computation, the element-wise versions of the functions are recognized by the
dimension of the weight matrices. The functionwtls uses the quasi-Newton optimization
algorithm that seems to outperform the alternatives. The alternative methods can be called
by the corresponding functions; see Table B.5.

B.2 Structured Total Least Sqaures
The package uses MINPACK’s Levenberg–Marquardt algorithm[Mar63] for the solution
of the STLS problem (STLSX) with the structure specification of Assumption 4.4 in its

Table B.3. Misfit computation functions.

Function Description
mtlsr mtlsp mtlsx mtlsdh TLS misfit
mgtlsr mgtlsp mgtlsx mgtlsdh GTLS misfit
mgtls2r mgtls2p mgtls2x mgtls2dh GTLS2 misfit
mwtlsr mwtlsp mwtlsx mwtlsdh WTLS misfit

i

i

i

i

B.2. Structured total least sqaures 189

Table B.4. Approximation functions.

Function Description
tls TLS approximation
gtls GTLS approximation
gtls2 GTLS2 approximation
wtls WTLS approximation

equivalent formulation (4.4). There is no closed form expression for the Jacobian matrix
J = [∂ri/∂xj], wherex = vec(X), so that the pseudo-JacobianJ+ proposed in [GP96] is
used instead ofJ . Its evaluation is done with computational complexityO(m).

The software is written in ANSI C language. For the vector-matrix manipulations and
for a C version of MINPACK’s Levenberg–Marquardt algorithm, we use theGNU Scientific
Library (GSL). The computationally most intensive step of the algorithm—the Cholesky
decomposition of the block-Toeplitz, block-banded weightmatrixΓ(X)—is performed via
the subroutineMB02GDfrom the SLICOT library [VSV+04]. By default, the optimization
algorithm is initialized with the TLS solution. Its computation is performed via the SLICOT
subroutineMB02MD.

The package contains

• C-source code:stls.c andstls.h (the functionstls implements Algorithm 4.3);

• MATLAB interface to the C functionstls via C-mex filestls.m ;

• a demo filedemo.m with examples that illustrate the application of the STLS solver;

• user guide and papers that describe the STLS problem in moredetail.

C Function

The functionstls implements the method outlined in Section 4.5 to solve the STLS
problem (STLSX). Its prototype is

int stls(gsl_matrix* a, gsl_matrix* b, const data_struct* s,
gsl_matrix* x, gsl_matrix* v, opt_and_info* opt)

Table B.5. Auxiliary functions.

Function Description
wtlsini initial approximation for the WTLS approximation functions
wtlsap WTLS approximation by alternating projections
wtlsopt WTLS approximation by classical optimization methods
qncostderiv cost function and gradient for the quasi-Newton methods
lmcostderiv cost function and Jacobian for the Levenberg–Marquardt method
wtlspr WTLS approximation by the algorithm of [MRP+05]

i

i

i

i

190 Appendix B. Software

Description of the arguments:

• a and b are the matricesA ∈ R
m×n and B ∈ R

m×d, respectively, such that
[
A B

]
= S (p). We refer to the GSL reference manual for the definition of

gsl_matrix and the functions needed to allocate and initialize variables of this
type.

• s is the structure descriptionK, S of S (p). The typedata_struct is defined in
stls.h as

/* structure of the data matrix C = [A B] */
#define MAXQ 10 /* maximum number of blocks in C */
typedef struct {

int K; /* = rowdim(block in T/H blocks) */
int q; /* number of blocks in C = [C1 ... Cq] */
struct {

char type; /* ’T’-Toeplitz, ’H’-Hankel, ’U’-unstructured ,
’E’-exact */

int ncol; /* number of columns */
int nb; /* = coldim(block in T/H blocks) */

} a[MAXQ]; /* q-element array describing C1,...,Cq; */
} data_struct;

• x on input contains the initial approximation for the Levenberg–Marquardt algorithm
and on exit, upon convergence of the algorithm, contains a local minimum point of
the cost functionf0.

• v on exit contains the error covariance matrix(J⊤
+ J+)−1 of the vectorized estimate

x̂ = vec(X̂). It can be used for deriving confidence bounds.

• opt on input contains options that control the exit condition ofthe Levenberg–
Marquardt algorithm and on exit contains information aboutthe convergence of the
algorithm. The exit condition is

|x(k+1)
j − x

(k)
j | < epsabs + epsrel |x(k+1)

j |, for all j = 1, . . . , nd, (B.1)

wherex(k),k = 1, 2, . . . , iter ≤ maxiter, are the successive iterates, andepsrel ,
epsabs , maxiter are fields ofopt . Convergence to the desired tolerance is indi-
cated by a positive value ofopt.iter . In this case,opt.iter is the number of
iterations performed.opt.iter = -1 indicates lack of convergence.opt.time
andopt.fmin show the time in seconds used by the algorithm and the cost func-
tion f0 value at the computed solution.

The typeopt_and_info is defined instls.h as

/* optimization options and output information structure * /
typedef struct {

/* input options */
int maxiter;

i

i

i

i

B.2. Structured total least sqaures 191

double epsrel, epsabs;
/* output information */
int iter;
double fmin;
double time;

} opt_and_info;

MATLAB Mex-File

The provided C-mex file allows us to call the C solverstls via the MATLAB command

>> [xh, info, v] = stls(a, b, s, x, opt);

The input argumentsa, b, ands are obligatory.x andopt are optional and can be
skipped by the empty matrix[] . In these cases their default values are used.

Description of the arguments:

• a andb are the matricesA ∈ R
m×n andB ∈ R

m×d, respectively, where
[
A B

]
=

S (p).

• s is aq×3 matrix or a structure with scalar fieldk and aq×3 matrix fielda. In the first
case,K is assumed to be 1, and in the second case it is specified bys.k . The arrayS,
introduced in Section 4.6, is specified bys in the first case and bys.a in the second
case. The first column ofs (or s.a) defines the type of the blocksC(1), . . . , C(q) (1
block-Toeplitz, 2 block-Hankel, 3 unstructured, 4 exact),the second column defines
n1, . . . , nq, and the third column definest1, . . . , tq.

• x is a user-supplied initial approximation. Its default value is the TLS solution.

• opt contains user-supplied options for the exit conditions.opt.maxiter defines
the maximum number of iterations (default 100),opt.epsrel defines the relative
toleranceepsrel (default1e-5), andopt.epsabs defines the absolute tolerance
epsabs (default1e-5); see (B.1).

• xh is the computed solution.

• info is a structure with fieldsiter , time , andfmin that gives information for the
termination of the optimization algorithm. These fields arethe ones returned from
the C function.

• v is the error covariance matrix(J⊤
+ J+)−1 of the vectorized estimatêx = vec(X̂).

Compilation

The included make file, when called with argumentmex, generates the MATLAB mex file.
The GSL, BLAS, and LAPACK libraries have to be installed in advance. For their location
and for the location of themexcommand and options file, one has to edit the provided make
file. Precompiled mex-files are included for Linux only.

i

i

i

i

192 Appendix B. Software

Table B.6. Elementary building blocks for the exact identification algorithms.

Function Description
w2r from time series to a kernel representation
r2pq from kernel representation to a left matrix fraction representation
pq2ss from left matrix fraction representation to an input/state/output represent.
uy2h computation of the impulse response
uy2hblk block computation of the impulse response
h2ss Kung’s realization algorithm
uy2y0 computation of sequential free responses
uy2hy0 computation of the impulse response and sequential free responses
y02o from a set of free responses to an observability matrix
y02x from a set of sequential free responses to a state sequence
uyo2ss from data and observability matrix to an input/state/output representation
uyx2ss from data and a state sequence to an input/state/output representation
hy02xbal from the impulse response and sequential free responses to abalanced

state sequence

B.3 Balanced Model Identification
This section describes a MATLAB implementation of the algorithms for exact identification,
presented in Chapters 8 and 9. Although the algorithms were originally designed to work
with exact data, they can also be used as heuristic methods for approximate identification;
see Note 8.18. By specifying the parametersnmax andlmax lower than the actual order
and lag of the MPUM, the user obtains an approximate model in the model classL w,nmax

m,lmax
.

Another approach for deriving an approximate model via the algorithms described in this
section is to do balanced model reduction of the MPUM; see Note 9.2.

The exact identification algorithms are decomposed into elementary building blocks
that have independent significance. Table B.6 lists the building blocks together with short
descriptions. More details can be found in the documentation of the corresponding m-files.

Table B.7 shows the implementation of the algorithms in Chapters 8 and 9 in terms of
the elementary building blocks. Exceptions are Algorithms9.5 and 9.6, which are included
for completeness and are implemented as described in the original sources.

B.4 Approximate Identification
We describe MATLAB functions (m-files) for approximate LTI system identification. A
discrete-time dynamical systemB ⊂ (Rw)Z is a collection of trajectories (w-variables time
seriesw : Z → R

w). No a priori distinction of the variables in inputs and outputs is
made and the system is not a priori bound to a particular representation. The variablesw
can be partitioned into inputsu (free variables) and outputsy (dependent variables) and the
system can be represented in various equivalent forms, e.g., the ubiquitous input/state/output
representation

σx = Ax + Bu, y = Cx + Du. (I/S/O)

i

i

i

i

B.4. Approximate identification 193

Table B.7. Implementation of the algorithms in Chapters 8 and 9.

Algorithm 8.1 w2r
Algorithm 8.2 w2r → r2pq →pq2ss
Algorithm 8.3 uy2h →h2ss
Algorithm 8.4 uy2y0 → y02o →uyo2ss
Algorithm 8.5 uy2y0 → y02x →uyx2ss
Algorithm 8.6 uy2h_blk
Algorithm 8.7 uy2h
Algorithm 8.8 h2ss
Algorithm 8.9 uy2y0
Algorithm 9.1 uy2hy0 →hy02xbal → x2ss
Algorithm 9.2 uy2h →h2ss (= Algorithm 8.3)
Algorithm 9.3 uy2h →h2o →uyo2ss
Algorithm 9.4 uy2hy0 →hy02xbal → x2ss (= Algorithm 9.1)

Algorithm 9.5 uy2ssvd
Algorithm 9.6 uy2ssmr

The number of inputsm, the number of outputsp, and the minimal state dimensionn of an
input/state/output representation are invariant of the representation and in particular of the
input/output partitioning.

The class of finite dimensional LTI systems withw variables and at mostm inputs
is denoted byL w

m . The number of inputs and the minimal state dimension specify the
complexity of the system in the sense that the dimension of the restriction ofB to the
interval [1, T], whereT ≥ n, is a (Tm + n)-dimensional subspace. Equivalently, the
complexity of the system can be specified by the input dimension and thelag of the system.
The lag ofB is the minimal natural numberl, for which there exists anlth order difference
equation

R0w(t) + R1w(t + 1) + · · · + Rlw(t + l) = 0 (DE)

representation of the system, i.e.,B = {w | (DE) holds}. The subset ofL w
m with lag at

mostl is denoted byL w
m,l.

The considered identification problem is the global total least squares problem [RH95,
MWV+05]:

Given a time serieswd ∈ (Rw)T and a complexity specification(m, l), find the
system

B̂ := arg min
B∈L w

m,l

M(wd,B), where M(wd,B) := min
ŵ∈B

‖wd − ŵ‖ℓ2 .

(GlTLS)

The numberM(wd,B) is the misfit betweenwd andB. It shows how much the modelB

fails to “explain” the datawd. The optimal approximate modeling problem (GlTLS) aims
to find the system̂B in the model classL w

m,l that best fits the data according to the misfit
criterion.

i

i

i

i

194 Appendix B. Software

The software presented in Section B.2 for STLS problems is the core computational
tool for solving the system identification problem. In fact,the software presented in this
section can be viewed as an interface to the STLS solver for the purpose of LTI system
identification.

The STLS solver gives as a result a difference equation representation of the optimal
approximating system̂B. The functionstlsident , described next, converts the param-
eterX̂ to the parameters(Â, B̂, Ĉ, D̂) of an input/state/output representation ofB̂. The
MATLAB code of the functions in the package can be consulted for the implementation
details.

Usage

The function

• stlsident solves the approximate identification problem (GlTLS), and

the function

• misfit computes the misfitM(wd,B).

Both functions use the input/state/output representation(I/S/O) of the systems that are
returned as an output and accepted as an input, so that they can be viewed as implementations
of the following mappings:

• stlsident : (wd, m, l) 7→ (Â, B̂, Ĉ, D̂); and

• misfit :
(
wd, (A,B,C,D)

)
7→ (M, ŵd).

The following are a special case and extensions:

• the specificationm = 0 corresponds to an output-only system identification (B̂ au-
tonomous);

• the functions work with multiple given time serieswk =
(
wk(1), . . . , wk(T)

)
, k =

1, . . . , N ; and

• some elements ofw can be specified as “exact”, in which case they appear unmodified
in the approximation̂w.

Using a combination of these options, one can solve approximately the realization problem,
the finite timeℓ2 model reduction problem (see [MWV+05, Section 5]), and the output error
identification problem. Examples are given in Sections 11.4and 11.5.

Calling sequences

[sysh, info, wh, xini] = stlsident(w, m, l, opt);

Inputs:

• w, the given time serieswd; a real MATLAB array of dimensionT ×w×N , whereT
is the number of samples,w is the number of variables, andN is the number of time
series;

i

i

i

i

B.4. Approximate identification 195

• m, the input dimension for the identified system;

• l , the lag of the identified system;

• opt , options for the optimization algorithm:

– opt.exct , (default []) a vector of indices for exact variables;

– opt.sys0 , (default total least squares approximation), an initial approxima-
tion: an input/state/output representation of a system, given as the MATLAB
objectss (seehelp ss), with minputs,w-m outputs, and orderl*(w-m) ;

– opt.disp , (default ’notify’), level of displayed information about the
optimization process; the options are’off’ —silent,’notify’ —only if not
converged,’final’ —convergence status,’iter’ —per iteration;

– opt.maxiter (default 100), a maximum number of iterations;

– opt.epsrel , opt.epsabs , andopt.epsgrad (default 10−5) conver-
gence tolerances; the convergence condition is

|X(k+1)
ij − X

(k)
ij | < opt.epsabs + opt.epsrel |X(k+1)

ij |, for all i, j

or ‖M ′(X(k+1))‖ < opt.epsgrad,

whereX(k), k = 1, 2, . . . , info.iter ≤ opt.maxiter, are the successive
iterates of the parameterX andM ′(X(k+1)) is the gradient of the cost function
at the current iteration step.

Outputs:

• sysh , an input/state/output representation of the identified systemB̂;

• info information from the optimization solver:

– info.M , the misfitM(wd, B̂);

– info.time , the execution time for the STLS solver; not equal to the execution
time ofstlsident ;

– info.iter , the number of iterations. Noteinfo.iter = opt.maxiter
indicates lack of convergence to a desired convergence tolerance;

• wh, the optimal approximating time series;

• xini , a matrix whose columns are the initial condition, under which ŵk, k =
1, . . . , N , are obtained.

[M, wh, xini] = misfit(w, sys, exct);

Inputs:

• w, the given time serieswd, a real MATLAB array of dimensionsT × w× N , where
T is the number of samples,w is the number of variables, andN is the number of
time series;

i

i

i

i

196 Appendix B. Software

• sys an input/state/output representation of a systemB, given as the MATLAB object
ss (seehelp ss), with w external variables (inputs and outputs) and of order which
is a multiple of the number of outputs;

• exct (default []), a vector of indices for exact variables.

Outputs:

• M, the misfitM(wd,B);

• wh, optimal approximating time serieŝw;

• xini , a matrix whose columns are the initial condition, under which ŵk, k =
1, . . . , N , are obtained.

The functionsstlsidentuy and misfituy are versions ofstlsident and
misfit that use an a priori given input/output partitioning of the variables. For details on
their usage, see their MATLAB help.

i

i

i

i

Notation

Sets of numbers page

R, R+ the set of real numbers, nonnegative real numbers
Z, N the set of integers, and natural numbers{ 0, 1, 2, . . . }

2, 37
102, 35

Norms and extreme eigenvalue page

‖x‖, x ∈ R
n 2-norm of a vector

√∑n
i=1 x2

i

‖A‖, A ∈ R
m×n induced 2-normmin‖x‖=1 ‖Ax‖

‖A‖F, A ∈ R
m×n Frobenius norm

√

trace(AA⊤)

‖w‖, w ∈ (Rw)T 2-norm of a time series
√

∑T
t=1 ‖w(t)‖2

‖w‖, w ∈ (Rw×N)T 2-norm of a matrix valued time series
√

∑T
t=1 ‖w(t)‖2

F

λmin(A), λmax(A) minimum, maximum eigenvalue of a symmetric matrix

3

36

1

24

168

75

Matrix operations page

A† pseudoinverse
A⊤ transpose of a matrix
vec(A) column-wise vectorization of a matrix
col(a, b) the column vector[a

b]
col dim(A) the number of columns ofA
row dim(A) the number ofblock rows ofA
col span(A) the span of the columns ofA (the image or range ofA)
diag(v), v ∈ R

n the diagonal matrixdiag(v1, . . . , vn)
diag(V1, . . . , Vn) (block-) diagonal matrix with diagonal blocksV1, . . . , Vn

⊗ Kronecker productA ⊗ B := [aijB]
⊙ element-wise (Hadamard) productA ⊙ B := [aijbij]
δ Kronecker delta,δ0 = 1 andδt = 0 for all t 6= 0

53
18
52
2

21
126

9
30
41
41
30
58

Expectation, covariance, and normal distribution page

E, cov expectation, covariance operator
x ∼ N(m,V) x is normally distributed with meanm and covarianceV

59
31

197

i

i

i

i

Fixed symbols page

U universum of outcomes from an experiment
B model behavior
M model class
Hl(w) Hankel matrix withl block rows; see (H)
S structure specification for the STLS problem
Xext :=

[
X
−I

]
extended parameter in an input/output parameterization

16
16
16

120
50
52

LTI model class and invariants page

m(B) number of inputs ofB
p(B) number of outputs ofB
l(B) lag ofB
n(B) order ofB
L

w,n
m,l := {B ⊂ (Rw)Z | B is LTI , m(B) ≤ m ≤ w, l(B) ≤ l, n(B) ≤ n }

105
105
105
105
113

If m, l, or n is not specified, the corresponding invariantm(B), l(B), or n(B) is not
bounded.

Miscellaneous page

: ⇐⇒ left-hand side is defined by the right-hand side
⇐⇒ : right-hand side is defined by the left-hand side
σ the backwards shift operatorσf (t) = f(t + 1)

Acting on a vector or matrix,σ removes the first block row.
σ∗ the forward shift operatorσ∗f (t) = f(t − 1)

Acting on a vector or matrix,σ∗ removes the last block row.

19
20
23

124

Abbreviations

ALS adjusted least squares
DAISY data base for system identification
EIV errors-in-variables
EWTLS element-wise weighted total least squares
GTLS generalized total least squares
GlTLS global total least squares
LS least squares
LTI linear time-invariant
MIMO multi-input multi-output
MPUM most powerful unfalsified model
SISO single-input single-output
STLS structured total least squares
SVD singular value decomposition
TLS total least squares
WLS weighted least squares
WTLS weighted total least squares

i

i

i

i

Bibliography

[AMH91] T. Abatzoglou, J. Mendel, and G. Harada. The constrained total least squares
technique and its application to harmonic superresolution. IEEE Trans. Signal
Process., 39:1070–1087, 1991.

[AY70a] M. Aoki and P. Yue. On a priori error estimates of someidentification methods.
IEEE Trans. Automat. Control, 15(5):541–548, 1970.

[AY70b] M. Aoki and P. Yue. On certain convergence questionsin system identification.
SIAM J. Control, 8(2):239–256, 1970.

[BHN99] R. Byrd, M. Hribar, and J. Nocedal. An interior pointalgorithm for large-scale
nonlinear programming.SIAM J. Optim., 9(4):877–900, 1999.

[BM86] Y. Bresler and A. Macovski. Exact maximum likelihoodparameter estimation
of superimposed exponential signals in noise.IEEE Trans. Acust., Speech,
Signal Process., 34:1081–1089, 1986.

[Boo79] F. L. Bookstein. Fitting conic sections to scattered data.Computer Graphics
and Image Processing, 9:59–71, 1979.

[Bro70] R. Brockett. Finite Dimensional Linear Systems. John Wiley, New York,
1970.

[Cad88] J. Cadzow. Signal enhancement—A composite propertymapping algorithm.
IEEE Trans. Signal Process., 36:49–62, 1988.

[CRS95] R. Carroll, D. Ruppert, and L. Stefanski.Measurement Error in Nonlinear
Models. Chapman & Hall/CRC, London, 1995.

[CST00] C. Cheng, H. Schneeweiss, and M. Thamerus. A small sample estimator for
a polynomial regression with errors in the variables.J. R. Stat. Soc. (Ser. Stat.
Methodol. B), 62:699–709, 2000.

[DGS03] R. Diversi, R. Guidorzi, and U. Soverini. Kalman filtering in symmetrical
noise environments. InProceedings of the 11th IEEE Mediteranean Confer-
ence on Control and Automation, Rhodes, Greece, 2003.

[DM93] B. De Moor. Structured total least squares andL2 approximation problems.
Linear Algebra Appl., 188–189:163–207, 1993.

199

i

i

i

i

200 Bibliography

[DM94] B. De Moor. Total least squares for affinely structured matrices and the noisy
realization problem.IEEE Trans. Signal Process., 42(11):3104–3113, 1994.

[DM03] B. De Moor. On the number of rows and columns in subspace identification
methods. InProceedings of the 13th IFAC Symposium on System Identifica-
tion, pages 1796–1801, Rotterdam, The Netherlands, 2003.

[DM05] B. De Moor. DaISy: Database for the identification of systems. Dept. EE,
K.U.Leuven,www.esat.kuleuven.be/sista/daisy/ , 2005.

[DR94] B. De Moor and B. Roorda.L2-optimal linear system identification structured
total least squares for SISO systems. InProceedings of the 33rd Conference
on Decision and Control, pages 2874–2879, Lake Buena, FL, 1994.

[EY36] G. Eckart and G. Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1:211–218, 1936.

[FPF99] A. Fitzgibbon, M. Pilu, and R. Fisher. Direct least-squares fitting of ellipses.
IEEE Trans. Pattern Anal. Machine Intelligence, 21(5):476–480, 1999.

[Ful87] W. Fuller.Measurement Error Models. Wiley, New York, 1987.

[FW97] F. Fagnani and J. C. Willems. Deterministic Kalman filtering in a behavioral
framework.Control Lett., 32:301–312, 1997.

[Gal82] P. Gallo. Consistency of regression estimates whensome variables are subject
to error.Comm. Statist. A—Theory Methods, 11:973–893, 1982.

[GDS03] R. Guidorzi, R. Diversi, and U. Soverini. Optimal errors-in-variables filtering.
Automatica, 39:281–289, 2003.

[GGS94] W. Gander, G. Golub, and R. Strebel. Fitting of circles and ellipses: Least
squares solution.BIT, 34:558–578, 1994.

[GP96] P. Guillaume and R. Pintelon. A Gauss–Newton-like optimization algorithm
for “weighted” nonlinear least-squares problems.IEEE Trans. Signal Pro-
cess., 44(9):2222–2228, 1996.

[GV80] G. Golub and C. Van Loan. An analysis of the total leastsquares problem.
SIAM J. Numer. Anal., 17:883–893, 1980.

[Har97] R. Hartley. In defense of the eight-point algorithm. IEEE Trans. Pattern Anal.
Machine Intelligence, 19(6):580–593, June 1997.

[HS99] C. Heij and W. Scherrer. Consistency of system identification by global total
least squares.Automatica, 35:993–1008, 1999.

[Kan94] K. Kanatani. Statistical bias of conic fitting and renormalization.IEEE Trans.
Pattern Anal. Machine Intelligence, 16(3):320–326, 1994.

[KM00] A. Kukush and E.-O. Maschke. The efficiency of adjusted least squares in the
linear functional relationship. DP–208, SFB 386, Univ. of Munich, 2000.

i

i

i

i

Bibliography 201

[KMV02] A. Kukush, I. Markovsky, and S. Van Huffel. Consistent fundamental matrix
estimation in a quadratic measurement error model arising in motion analysis.
Comput. Statist. Data Anal., 41(1):3–18, 2002.

[KMV03] A. Kukush, I. Markovsky, and S. Van Huffel. Consistent estimation in the bi-
linear multivariate errors-in-variables model.Metrika, 57(3):253–285, 2003.

[KMV04] A. Kukush, I. Markovsky, and S. Van Huffel. Consistent estimation in an
implicit quadratic measurement error model.Comput. Statist. Data Anal.,
47(1):123–147, 2004.

[KMV05] A. Kukush, I. Markovsky, and S. Van Huffel. Consistency of the structured
total least squares estimator in a multivariate errors-in-variables model.J.
Statist. Plann. Inference, 133(2):315–358, 2005.

[Kun78] S. Kung. A new identification method and model reduction algorithm via
singular value decomposition. InProceedings of the 12th Asilomar Confer-
ence on Circuits, Systems, and Computers, pages 705–714, Pacific Grove,
CA, 1978.

[KV04] A. Kukush and S. Van Huffel. Consistency of elementwise-weighted total
least squares estimator in a multivariate errors-in-variables modelAX = B.
Metrika, 59(1):75–97, 2004.

[KZ02] A. Kukush and S. Zwanzig. On consistent estimators innonlinear functional
EIV models. In Van Huffel and Lemmerling [VL02], pages 145–155.

[LD01] P. Lemmerling and B. De Moor. Misfit versus latency.Automatica, 37:2057–
2067, 2001.

[Lev64] M. Levin. Estimation of a system pulse transfer function in the presence of
noise.IEEE Trans. Automat. Control, 9:229–235, 1964.

[Lju99] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Upper
Saddle River, NJ, 1999.

[LM00] Y. Leedan and P. Meer. Heteroscedastic regression incomputer vision: Prob-
lems with bilinear constraint.Int. J. Comput. Vision, 37(2):127–150, 2000.

[LMV00] P. Lemmerling, N. Mastronardi, and S. Van Huffel. Fast algorithm for solv-
ing the Hankel/Toeplitz structured total least squares problem. Numerical
Algorithms, 23:371–392, 2000.

[Mar63] D. Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters.SIAM J. Appl. Math., 11:431–441, 1963.

[MD03] I. Markovsky and B. De Moor. Linear dynamic filtering with noisy input and
output. InProceedings of the 13th IFAC Symposium on System Identification,
pages 1749–1754, Rotterdam, The Netherlands, 2003.

i

i

i

i

202 Bibliography

[MLV00] N. Mastronardi, P. Lemmerling, and S. Van Huffel. Fast structured total
least squares algorithm for solving the basic deconvolution problem.SIAM J.
Matrix Anal. Appl., 22:533–553, 2000.

[MM98] M. Mühlich and R. Mester. The role of total least squares in motion analy-
sis. In H. Burkhardt, editor,Proceedings of the 5th European Conference on
Computer Vision, pages 305–321. Springer-Verlag, 1998.

[MMH03] J. Manton, R. Mahony, and Y. Hua. The geometry of weighted low-rank
approximations.IEEE Trans. Signal Process., 51(2):500–514, 2003.

[Moo81] B. Moore. Principal component analysis in linear systems: Controllability,
observability and model reduction.IEEE Trans. Automat. Control, 26(1):17–
31, 1981.

[MR93] M. Moonen and J. Ramos. A subspace algorithm for balanced state space
system identification.IEEE Trans. Automat. Control, 38:1727–1729, 1993.

[MRP+05] I. Markovsky, M.-L. Rastello, A. Premoli, A. Kukush, andS. Van Huffel. The
element-wise weighted total least squares problem.Comput. Statist. Data
Anal., 50(1):181–209, 2005.

[MV06] I. Markovsky and S. Van Huffel. On weighted structured total least squares.
In I. Lirkov, S. Margenov, and J. Waśniewski, editors,Proceedings of the 5th
International Conference on "Large-Scale Scientific Computations", volume
3743 ofLecture notes in computer science, pages 695–702. Springer–Verlag,
Berlin, 2006.

[MWD02] I. Markovsky, J. C. Willems, and B. De Moor. Continuous-time errors-in-
variables filtering. InProceedings of the 41st Conference on Decision and
Control, pages 2576–2581, Las Vegas, NV, 2002.

[MWD05] I. Markovsky, J. C. Willems, and B. De Moor. State representations from
finite time series. InProceedings of the 44th Conference on Decision and
Control, pages 832–835, Seville, Spain, 2005.

[MWRM05] I. Markovsky, J. C. Willems, P. Rapisarda, and B. De Moor. Data driven
simulation with applications to system identification. InProceedings of the
16th IFAC World Congress, Prague, Czech Republic, 2005.

[MWV +05] I. Markovsky, J. C. Willems, S. Van Huffel, B. De Moor, andR. Pintelon. Ap-
plication of structured total least squares for system identification and model
reduction.IEEE Trans. Automat. Control, 50(10):1490–1500, 2005.

[Nie01] Y. Nievergelt. Hyperspheres and hyperplanes fitting seamlessly by algebraic
constrained total least-squares.Linear Algebra Appl., 331:43–59, 2001.

[Nie02] Y. Nievergelt. A finite algorithm to fit geometrically all midrange lines, circles,
planes, spheres, hyperplanes, and hyperspheres.Numer. Math., 91:257–303,
2002.

i

i

i

i

Bibliography 203

[NS48] J. Neyman and E. Scott. Consistent estimates based onpartially consistent
observations.Econometrica, 16(1):1–32, 1948.

[PR02] A. Premoli and M.-L. Rastello. The parametric quadratic form method for
solving TLS problems with elementwise weighting. In Van Huffel and Lem-
merling [VL02], pages 67–76.

[Pra87] V. Pratt. Direct least-squares fitting of algebraicsurfaces.ACM Computer
Graphics, 21(4):145–152, 1987.

[PS01] R. Pintelon and J. Schoukens.System Identification: A Frequency Domain
Approach. IEEE Press, Piscataway, NJ, 2001.

[PW98] J. Polderman and J. C. Willems.Introduction to Mathematical Systems Theory.
Springer-Verlag, New York, 1998.

[RH95] B. Roorda and C. Heij. Global total least squares modeling of multivariate
time series.IEEE Trans. Automat. Control, 40(1):50–63, 1995.

[Roo95] B. Roorda. Algorithms for global total least squares modelling of finite mul-
tivariable time series.Automatica, 31(3):391–404, 1995.

[RPG96] J. Rosen, H. Park, and J. Glick. Total least norm formulation and solution of
structured problems.SIAM J. Matrix Anal. Appl., 17:110–126, 1996.

[RW97] P. Rapisarda and J. C. Willems. State maps for linear systems.SIAM J. Control
Optim., 35(3):1053–1091, 1997.

[SKMH05] S. Shklyar, A. Kukush, I. Markovsky, and S. Van Huffel. On the conic section
fitting problem.Journal of Multivariate Analysis, 2005.

[SLV04] M. Schuermans, P. Lemmerling, and S. Van Huffel. Structured weighted low
rank approximation.Numer. Linear. Algebra Appl., 11:609–618, 2004.

[SLV05] M. Schuermans, P. Lemmerling, and S. Van Huffel. Block-row hankel
weighted low rank approximation.Numer. Linear. Algebra Appl., to appear,
2005.

[SMWV05] M. Schuermans, I. Markovsky, P. Wentzell, and S. VanHuffel. On the equiv-
alence between total least squares and maximum likelihood PCA. Analytica
Chimica Acta, 544:254–267, 2005.

[Spä97] H. Späth. Orthogonal least squares fitting by conic sections. In S. Van Huffel,
editor, Recent Advances in Total Least Squares Techniques and Errors-in-
Variables Modeling, pages 259–264. SIAM, Philadelphia, 1997.

[TM97] P. Torr and D. Murray. The development and comparisonof robust methods for
estimating the fundamental matrix.Int. J. Computer Vision, 24(3):271–300,
1997.

i

i

i

i

204 Bibliography

[VD92] M. Verhaegen and P. Dewilde. Subspace model identification, Part 1: The
output-error state-space model identification class of algorithms.Int. J. Con-
trol, 56:1187–1210, 1992.

[VD96] P. Van Overschee and B. De Moor.Subspace Identification for Linear Systems:
Theory, Implementation, Applications. Kluwer, Boston, 1996.

[VL02] S. Van Huffel and P. Lemmerling, editors. Kluwer, 2002.

[VPR96] S. Van Huffel, H. Park, and J. Rosen. Formulation andsolution of struc-
tured total least norm problems for parameter estimation.IEEE Trans. Signal
Process., 44(10):2464–2474, 1996.

[VSV+04] S. Van Huffel, V. Sima, A. Varga, S. Hammarling, and F. Delebecque. High-
performance numerical software for control.IEEE Control Systems Magazine,
24:60–76, 2004.

[VV91] S. Van Huffel and J. Vandewalle.The total least squares problem: Computa-
tional aspects and analysis. SIAM, Philadelphia, 1991.

[WAH+97] P. Wentzell, D. Andrews, D. Hamilton, K. Faber, and B. Kowalski. Maximum
likelihood principle component analysis.J. Chemometrics, 11:339–366, 1997.

[Wil86a] J. C. Willems. From time series to linear system—Part I. Finite dimensional
linear time invariant systems.Automatica, 22(5):561–580, 1986.

[Wil86b] J. C. Willems. From time series to linear system—Part II. Exact modelling.
Automatica, 22(6):675–694, 1986.

[Wil87] J. C. Willems. From time series to linear system—PartI. Finite dimensional
linear time invariant systems, Part II. Exact modelling, Part III. Approximate
modelling.Automatica, 22, 23:561–580, 675–694, 87–115, 1986, 1987.

[Wil91] J. C. Willems. Paradigms and puzzles in the theory ofdynamical systems.
IEEE Trans. Automat. Control, 36(3):259–294, 1991.

[WR02] J. C. Willems and P. Rapisarda. Balanced state representations with polyno-
mial algebra. In A. Rantzer and C. I. Byrnes, editors,Directions in mathemat-
ical systems theory and optimization, chapter 25, pages 345–357. Springer-
Verlag, 2002.

[WRMM05] J. C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor. A note on per-
sistency of excitation.Control Lett., 54(4):325–329, 2005.

[Zha97] Z. Zhang. Parameter estimation techniques: A tutorial with application to
conic fitting. Image and Vision Computing Journal, 15(1):59–76, 1997.

i

i

i

i

Index

adjusted least squares, 22, 25–26, 72–77,
80–83, 90–93

algebraic fitting, 5, 85
alternating least squares, 41–42, 161, 164
annihilating behavioral equations, 102
annihilator, 113, 146, 163, 182
approximate

identification, 122, 142, 159–174, 192
left kernel, 122
rank revealing factorization, 132
realization, 132, 160, 168

ARMAX, 2, 7, 117
autonomous,seemodel, autonomous
axiom of state, 107

backward shift operator, 23
balanced

approximation, 131
error bounds, 143

finite time, 142
representation, 141
truncation, 159

behaviorB, 16, 101
dual, 114
full, 106
manifest, 106

behavioral approach, 9, 16
behavioral equations, 102
bilinear model, 21, 71–84

causality, 105
Cayley–Hamilton theorem, 112
chemometrics, 26, 33
Cholesky factor, 61
confidence bounds, 64
consistency, 21, 32, 75, 82, 93, 164
constrained total least squares, 50

controllability
extended matrix, 111
gramian, 132
index, 112

convolution, 109

DAISY, 161, 171–173
data driven simulation, 130
deconvolution, 66
delta function,δ, 58, 131
displacement rank, 50
dual behavior, 114, 164
dynamic programming, 154, 182

eigenvalue decomposition, 22, 93
eight-point algorithm, 78
element-wise product⊙, 30
element-wise WTLS, 30
elimination theorem, 106
epipolar constraint, 78
equation

error, 1, 18
misfit, 19

errors-in-variables model, 20
bilinear, 72
element-wise weighted, 31
quadratic, 86
state estimation, 151
structured, 58
weighted, 31

exact identification, 115, 120

filtering, 153
frequency domain, 109
fully weighted TLS, 186
fundamental lemma, 120
fundamental matrix, 78

205

i

i

i

i

206 Index

generalized TLS, 20
misfit computation, 39
solution, 37

geometric fitting, 4, 86
global TLS, 24, 161
GNU scientific library, 189

Hankel low-rank approximation, 66
Hankel matrix, 120

identifiability, 119–121
Identification Toolbox of MATLAB, 136,

165
image representation,seerepresentation,

image
impulse response, 109, 125, 136
input cardinality, 105
input/output partitioning, 34, 116, 165
inverse power iteration, 40

Kalman filter, 151
kernel representation,seerepresentation,

kernel
Koopmans–Levin’s method, 161
Kung, 132, 138, 160, 168, 192

lag, 103
LAPACK, 61
latency, 1, 19, 157, 167
latent variables, 106
least squares, 21, 88–90
left prime, 108
Levenberg–Marquardt algorithm, 64, 188
linear time-invariant systems, 101
low rank approximation

structured, 160
low-rank approximation

Hankel, 66
structured, 50
weighted, 40

manifest variables, 106
Markov parameters,seeimpulse response
MATLAB, 123, 185
matrix approximation theorem, 36, 81
matrix fraction representation, 123, 165
maximally free variable, 105

maximum likelihood, 20, 31, 49, 58, 152,
159

maximum likelihood principle component
analysis, 40

measurement error, 20
minimal representation, 105
MINPACK, 188
mixed LS–TLS, 66
model

autonomous, 108, 131, 169
bilinear, 21, 71–84
causal, non-anticipating, 105
complete, 102
complexity, 113
controllable, 108
EIV, seeerrors-in-variables
exact, unfalsified, 16
linear time-invariant, 101–103
most powerful unfalsified, 16, 117
observable, 106
quadratic, 22
time-invariant, 102

model classM , 16
model reduction, 142, 170
module, 114
MOESP, 133, 143
motion analysis, 26

N4SID, 135
nonanticipation, 105
nongeneric TLS problem, 36

oblique projection, 135, 146
observability

extended matrix, 112
gramian, 132
index, 112

observability matrix, 124
Optimization Toolbox of MATLAB, 187
orthogonal projection, 133
orthogonal regression, 20, 86, 96
outcome, 16
output cardinality, 105
output error identification, 165

parameter optimization, 18

i

i

i

i

Index 207

parameters, 18
partial least squares, 73
persistency of excitation, 120
pointwise convergence, 103
prediction error methods, 165, 172
processing, 105
pseudo-Jacobian, 63

QR factorization, 127, 135
quadratic model, 22
quasi-Newton method, 45, 63

rank
numerical, 117, 131
revealing factorization, 125, 132

realizability, 130
realization theory, 130–132, 168
recursive smoothing, 154
regularization, 69
relative error TLS, 30
representation, 18, 33–34

balanced, 141
convolution, 109, 123
image, 33

minimal, 33, 109
input/output, 21, 34, 105–106
input/state/output, 107, 165
isometric, 161, 164
kernel, 19, 33, 103–105, 122

equivalent, 104
minimal, 33, 104

matrix fraction, 123, 165
shortest lag, 104
state space, 106–107

response
free, 124
parameterization, 111
sequential free, 125

Riccati equation, 155
Riemannian SVD, 40, 50
row proper matrix, 104

s-dependence, 59
Schur algorithm, 50
score equation, 73
shift equation, 124, 132, 143

shift operator, 23
shift-and-cut operator, 146
signal space, 101
SLICOT, 61, 189
smoothing, 152, 162
state

axiom, 107
map, 112
variables, 107

state estimation, 153
state space representation,seerepresen-

tation, state space
stationarity, 59
structure from motion, 78
structured EIV model, 58
structured matrixS (p), 24
structured TLS, 24, 49–69
structured total least norm, 50
structured weighted TLS, 69
system identification, 23

time-invariant,seemodel, time-invariant
Toeplitz matrix, 112
total least squares, 20

efficient computation, 36
nongeneric, 36
solution, 36

transfer function, 165

unimodular matrix, 104
unit vectorei, 111
universumU , 16

validation, 187
variable

bound, 105
free, 105
latent, 106, 167
manifest, 106
state, 107

variation of constants formula, 111

weighted least squares, 35
weighted structured TLS, 69
weighted TLS, 20, 29–48

Z-transform,Z , 108

