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Preface

The behavioral approach, put forward in the three part payérC. Willems [Wil87],
includes a rigorous framework for deriving mathematicaldels, a field called system
identification. By the mid 80’s there was a well developedksstic theory for linear
time-invariant system identification—the prediction empproach of L. Ljung—which has
numerous “success stories”. Nevertheless, the ratiooalesfng the stochastic framework,
the question of what is meant by an optimal (approximate)eh@hd even more basically
what is meant by a mathematical model remained to some axtetgar.

A synergy of the classical stochastic framework (lineateysdriven by white noise)
and a key result of [Wil87] that shows how a state sequendeatstem can be obtained di-
rectly from observed data led to the very successful sulesgaatification methods [VD96].
Now the subspace methods together with the prediction eredhods are the classical ap-
proaches for system identification.

Another follow-up of [Wil87] is the global total least sqesrapproach due to Roorda
and Heij. In a remarkable paper [RH95], Roorda and Heij askles approximate iden-
tification problem truly in the behavioral framework, i.@,a representation free setting.
Their results lead to practical algorithms that are simitastructure to the prediction error
methods: double minimization problems, of which the innémimization is a smoothing
problem and the outer minimization is a nonlinear least sggiproblem. Unfortunately,
the global total least squares method has gained littlataitein the system identification
community and the algorithms of [RH95, Roo95] did not finditinay to robust numerical
implementation and consequently to practical application

The aim of this book is to present and popularize the behavapproach to mathe-
matical modeling among theoreticians and practitionerse ffamework we adopt applies
to static as well as dynamic and to linear as well as nonlipeaslems. In the linear static
case, the approximate modeling problem considered sjpsab the total least squares
method, which is classically viewed as a generalizatiohefeast squares method to fitting
problemsAx = b, in which there are errors in both the vectoand the matrixA. In the
guadratic static case, the behavioral approach leads twttiegonal regression method for
fitting data to ellipses. In the first part of the book we exarstatic approximation prob-
lems: weighted and structured total least squares probd@m®stimation of bilinear and
guadratic models, and in the second part of the book we exadyinamic approximation
problems: exact and approximate system identification. eXaet identification problem
falls in the field of subspace identification and the appr@tamdentification problem is the
global total least squares problem of Roorda and Heij.
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Most of the problems in the book are presented in a detertitirgstting, although
one can give a stochastic interpretation to the methodseteriThe appropriate stochastic
model for this aim is the errors-in-variables model, whédlretzserved variables are assumed
inexact due to measurement errors added on “true data” gieadey a “true model”. The
assumption of the existence of a true model and the additginahastic ones about the
measurement errors, however, are rarely verifiable in jgeact

Except for the chapters on estimation of bilinear and quadnaodels, we consider
total least squares-type problems. The unifying frameviorlapproximate modeling put
forward in the book is calledhisfit approach In philosophy it differs essentially from the
classical approach, calléatency approachwhere the model is augmented with unobserved
latent variables. Atopic of currentresearchisto clardwtihe misfitand latency approaches
compare and complement each other.

We do not treat in the book advanced topics like statistindlrsumerical robustness
of the methods and algorithms. On the one hand, these togciarently less developed
in the misfit setting than in the latency setting and, on thetlear hand, they go beyond
the scope of a short monograph. Our hope is that robustnesslless recursivity, further
applications, and connections with other methods will h@@ed and presented elsewhere
in the literature.

The prerequisites for reading the book are modest. We assnmmdergraduate
level linear algebra and systems theory knowledge. Fantylizvith system identification
is helpful but is not necessary. Sections with more spe@dlior technical material are
marked with«. They can be skipped without loss of continuity on a first negd

This book is accompanied by a software implementation ofléseribed algorithms.
The software is callable from MATLAB and most of it is writtémMATLAB ® code. This
allows readers who have access to and knowledge of MATLAByt@uit the examples,
modify the simulation setting, and apply the methods orrtheh data.

The book is based on the first author’s Ph.D. thesis at the iapat of Electrical
Engineering of the Katholieke Universiteit Leuven, BelgiuThis work would be impos-
sible without the help of sponsoring organizations andviddials. We acknowledge the
financial support received from the Research Council of K&liven and the Belgian Pro-
gramme on Interuniversity Attraction Poles, projects IUAMR02 (1996-2001) and IUAP
V-22 (2002—-2006). The work presented in the first part of tiekhis done in collaboration
with Alexander Kukush from the National Taras Shevchenkivehsity, Kiev, Ukraine, and
the work presented in the second part is done in collaboratith Paolo Rapisarda from
the University of Maastricht, The Netherlands. We woule lik thank Diana Sima and Rik
Pintelon for useful discussions and proofreading the sli@fthe manuscript.

Ivan Markovsky
Jan C. Willems
Sabine Van Huffel
Bart De Moor

Leuven, Belgium
December 29, 2005
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Chapter 1
Introduction

The topic of this book is fitting models to data. We would like tmodel to fit the data
exactly; however, in practice often the best that can beegeldiis only an approximate fit.
A fundamental question in approximate modeling is how tantifiathe lack of fit between
the data and the model. In this chapter, we explain andiitestwo different approaches
for answering this question.

The first one, callethtency augments the model with additional unobserved variables
that allow the augmented model to fit the data exactly. Maagsital approximate mod-
eling techniques such as the least squares and autoregressving average exogenous
(ARMAX) system identification methods are latency orienteethods. The statistical tool
corresponding to the latency approachegression

An alternative approach, calledisfit resolves the data—model mismatch by correcting
the data, so that it fits the model exactly. The main examplesofnisfit approach is the total
least squares method and the corresponding statistidad &mors-in-variables regression

1.1 Latency and Misfit

Classically a model is defined as a set of equations involiaglata variables, and the lack
of fit between the data and the model is defined as a norm efithation erroy or residual,
obtained when the data is substituted in the equations. idem$or example, the familiar
linear static model, represented by an overdeterminedsyst equationst X ~ B, where
A, B are given measurements, and the classical least squanesé¢t!®d, which minimizes
the Frobenius norm of the residudl:= AX — B, i.e.,

min || £l subjectto AX =B+ E.

The residualE’ in the LS problem formulation can be viewed as an unobsenatent
variable that allows us to resolve the data—model mismagan.approximate model for
the data is obtained by minimizing some norm (e.g., the Frinisenorm) of £. This cost
function is calledatency and equation error based methods are called latency edient
A fundamentally different approach is to find the smallestection on the data that
makes the corrected data compatible with the model (i.gujtiag in a zero equation error).

1



2 Chapter 1. Introduction

Then the quantitative measure, calfeisfit, for the lack of fit between the data and the model
is taken to be a norm of the correction. Applied to the lingatis model, represented by
the equatiomMd X ~ B, the misfit approach leads to the classical total least sgudILS)
method [GV80, VV91]:

min H[AA AB]

subjectto (A+ AA)X =B+ AB.
AA,AB,X

I

HereA A, AB are corrections on the dath B; and X is a model parameter.

The latency approach corrects the model in order to maketithrtae data. The
misfit approach corrects the data in order to make it matchribeel. Both ap-
proaches reduce the approximate modeling problem to exaa¢ling problems.

When the model fits the data exactly, both the misfit and thedstare zero, but when the
model does not fit the data exactly, in general, the misfit hedatency differ.

Optimal approximate modeling aims to minimize some meastithe data—model
mismatch over all models in a given model class. The latemdythe misfit are two
candidate measures for approximate modeling. The clddstcand TLS approximation
methods minimize, respectively, the latency and the misfigflinear static model class,
represented by the equatignX ~ B. Similarly, the algebraic and geometric methods for
ellipsoid fitting minimize the latency and the misfit for a quatic static model class. For
the linear time-invariant (LTI) dynamic model class, theetecy and the misfit approaches
lead to, respectively, the ARMAX and errors-in-variablE$\) identification methods.

In the next section we illustrate via examples the misfit atdricy approaches for
data fitting by linear static, quadratic static, and LTI dynm@amodels.

1.2 Data Fitting Examples

Consideradatasét = { dy,...,dy } consisting oR real variables, denoted lyandb, i.e.,

d; = [‘H =: col(a;, b;) € R?,

and N = 10 data points. This data is visualized in the plane; see FifjureThe order of
the data points is irrelevant for fitting by a static model.r ftting by a dynamic model,
however, the data is viewed adime seriesand therefore the order of the data points is
important.

Line Fitting

First, we consider the problem of fitting the data by a linespasthrough the origiri0, 0).
This problem is a special case of modeling the data by a lisiagic model. The classical
LS and TLS methods are linear static approximation methodsaae applied next to the
line fitting problem in the example.
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Figure 1.1. The dataZ consists o® variables andl0 data points ¢). (e—point(0,0).)

Least Squares Method

If the data pointsgly, . .., d1o were on a line, then they would satisfy a linear equation
a;x =b;, fori=1,...,10 and forsomer € R.

The unknowne is aparameterof the fitting line (which from the modeling point of view is
the linear static model). In the example, the parametes a simple geometric meaning: it
is the tangent of the angle between the fitting line and thizbiotal axis. Therefore, exact
fitting of a (nonvertical) line through the data boils dowrctmosingr € R.

However, unless the data points were on a line to begin witctdit would not be
possible. For example, when the data is obtained from a doatptl phenomenon or is
measured with additive noise, an exact fit is not possibleréctice most probably both
the complexity of the data generating phenomenon and theurgaent errors contribute
to the fact that the data is not exact.

The latency approach introduces an equation ereercol(ey, . . ., e1p), SO that there
exists a corresponding parametee R, satisfying the modified equation

a; T = b; + e, fori=1,...,10.

For any given data se?¥ and a parametet € R, there is a corresponding defined by
the above equation, so that indeed the latency teathows us to resolve the data—model
discrepancy.

The LS solutionis := (322, bia;)/( 32,2, a?) minimizes the latency,

latency:= |e][,

over allz € R. The line corresponding to the parametgyis the optimal fitting line
according to the latency criterion. It is plotted in the lglidt of Figure 1.2.

The LS method can also be given an interpretation of corrgdtie data in order to
make it match the model. The equation err@an be viewed as a correction on the second
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Latency approach Misfit approach

Figure 1.2. Optimal fitting lines (—) and data corrections (---).

coordinateb. The first coordinate, however, is not corrected, so that the LS corrected
data is

CAl|57i :=a; and ZA)|5’¢ =b; + e, fori = 1,...,10.

By construction the corrected data lies on the line giverhieypgarametety, i.e.,
djs s = bisg, fori=1,...,10.

The LS correctiong\djs ; := col(0, e;) are vertical lines in the data space (see the dashed
lines in Figure 1.2, left).

Geometrically, the latency is the sum of the squared vértiistances from the
data points to the fitting line.

Total Least Squares Method

The misfit approach corrects both coordinaieandb in order to make the corrected data
exact. It seeks correctiosd,, . .., Ad;g, such that the corrected data

lies on a line; i.e., witkeol(a;, E,;) := d, there is ani: € R, such that

a;z =b;, fori=1,...,10.

For a given parameter € R, let A% = { Ady, ..., Adyo } be the smallest in the Frobe-
nius norm correction of the data that achieves an exact fie Misfit between the line
corresponding ta: and the data is defined as

misfit := H [Adl s Adlo} HF .
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Geometrically, the misfit is the sum of the squared orthofdiséances from the
data points to the fitting line.

The optimal fitting line according to the misfit criterion atie corresponding data correc-
tions are shown in the right plot of Figure 1.2.

Ellipsoid Fitting

Next, we consider fitting an ellipse to the data. This probigi special case of modeling
the data by a quadratic static model. We show the latency asfit optimal fitting ellipses.
The misfit has the geometric interpretation of finding thé@agbnal projections of the data
points on the ellipse. The latency, however, has no meauliggometric interpretation in
the ellipsoid fitting case.

Algebraic Fitting Method

Ifthe data pointgly, . . . , d1o were on an ellipse, then they would satisfy a quadratic eguat

df Ad; + 87d; +¢=0, fori=1,...,10 and
forsomed e R?*2, A=A", A>0, 3 R? ceR.

The symmetric matrixd, the vector3, and the scalar areparameterf the ellipse (which
from the modeling point of view is the quadratic static m9ddals in the line fitting example,
generically the data does not lie on an ellipse.

The latency approach leads to what is calledalgebraic fitting methodlt looks for
equation errorsy, .. ., e1o and parameterd € R2*2, 3 € R?, ¢ € R, such that

df Ad;+ 3"d;+é=e;, fori=1,...,10.

Clearly, for anyA € R2*2, ﬂ € R?, ¢ € R, i.e., for any chosen second order surface (in
particular an ellipse), there is a corresponding equatimor e := col(es, . .., e19) defined

by the above equation. Therefore, the latency teragain allows us to resolve the data—
model discrepancy. The 2-normeis by definition the latency of the surface corresponding
to the parameterd, 3, ¢ and the data. The left plot of Figure 1.3 shows the latenciyrat
ellipse for the data in the example.

Geometric Fitting Method

The misfit approach leads to what is called the geometriadittnethod. In this case, the
aim is to find the minimal corrections in a Frobenius norm seké,, . . ., Ad;o, such that
the corrected datél, o ,Jlo lies on a second order surface; i.e., there edist R2*2,

B € R2, ¢ € R, for which

d Ad; + p7d;+é=0, fori=1,...,10.

For a given ellipse, the Frobenius norm of the smallest datiections that make the data
exact for that ellipse is by definition the misfit between thipge and the data. The norm
of the correctionAd; is the orthogonal distance from the data painto the ellipse. The
misfit optimal ellipse is shown in the right plot of Figure 1.3
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Latency approach Misfit approach

Figure 1.3. Optimal fitting ellipses (—) and data corrections (---) foetmisfit approach.
(x—centers of the ellipses.)

Linear Time-Invariant System Identification

Next, we consider fitting the data by a dynamic model. In thisecthe dat& is viewed
as a vector time series. Figure 1.4 shows the data in the (ani@ the static case) but
with numbers indicating the data point index, viewed now &ma index. The dynamics
is expressed in a motion (see the arrow lines in the figurejregefrom data point 1, going
to data point 2, then to data point 3 (for the same period oé}jrand so on, until the last
data point 10.

The considered model class consists of LTI systems with mmet iand one time lag.

10

-2 0 2 4 6 8 10

Figure 1.4. The dataZ viewed as a time series. The numbers show the data point,index
or, equivalently, the time index. The arrow lines show theadyics of the model: motion
through the consecutive data points.
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a —=f LTI system———

Figure 1.5. Signal processor interpretation of an LTI system.

Models of this type admit a difference equation represenrtat
Rod; + Rldi-i-l =0, whereRy, R € R1%2,

The vectorsR, and R, are parameters of the model.

Let R; =: [Q; —Pi],i= 1,2, and suppose that # 0. Then the variable acts
as an input (free variable) and the variablects as an output (bound variable). This gives
an input/output separation of the variables

Qoa; + Qiai+1 = Pob; + Pibit

and corresponds to the classical notion of a dynamicalsyase signal processor, accepting
inputs and producing outputs; see Figure 1.5.

Autoregressive Moving Average Exogenous and Output Error | dentification

If the data? were an exact trajectory of an LTI model in the consideredeholdss, then
there would exist vector®y, R, € R'*2 (parameters of the model) adg; € R? (initial
condition), such that

Rod; + R1diy1 =0, fori=1,...,10.

However, generically this is not the case, so that an appratkon is needed. The latency
approach modifies the model equation by adding an equationeer
Rodi + Rldi+1 = ey, fori = 1, ceey 10.

The residuat can be considered to be an unobserved (latent) variabl&igese 1.6.
From this point of view it is natural to further modify the $§m equation by allowing
for atime lag in the latent variable (as in the other varigple

Qoa; + Qra;41 — Poby — Pibiy1 = Moe; + Miejqq. (%)

The real numberd/, and M, are additional parameters of the model.
An interesting special case of the latent variable equatipncalled output error
identificationmodel, is obtained whef/, = P, andM; = P,. Then the latent variable

LTI system——— p

Figure 1.6. LTI system with a latent variable
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Latency (output error) approach Misfit approach

Figure 1.7. Data 2 (—), optimal fitting trajectoryZee (- - -), and data corrections  -).

acts like a correction on the output. The input, howevemigorrected, so that the corrected
data by the output error model is

(Aloe_’i = a,, and Eoei =b; + ey, fori = 1,...,10.
By construction the corrected time serté,s := col(aoe, Eoe) satisfies the equation

Qodoei + Qlaoai-i-l = —Poboei - Plboe,i—i-l-

The optimal output error fitting dat&oe := { doe.1,- - - , doe.10 } OVer the parameters;,
Q; (i.e., over all models with one input and one time lag) is &l&ed in the left plot of
Figure 1.7.

Note the similarity between the output error identificatioethod and the classical
LS method. Indeed,

output error identification can be viewed as a “dynamic LShoet.

Errors-in-Variables ldentification

The misfit approach leads to what is called the global to@dtlsquares method. It is a
generalization of the TLS method for approximate modelipgub LTI dynamic model. In
this case the given time series is modified by the smallesectonsAdy, ..., Adyg, in a
Frobenius norm sense, such that the corrected time séries d; + Ad;, i = 1,...,10

is a trajectory of a model in the model class. Therefore etlage parameters of the model
Ry, R1 € R'*2 and an initial conditionl;; € R, such that

Rod; + Rydipq =0, fori=1,...,10.

The right plot of Figure 1.7 shows the misfit optimal fittinga@.
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1.3 Classical vs. Behavioral and Stochastic vs.
Deterministic Modeling

In what sense can the examples of Section 1.2 be viewddtasnodeling In other words,
what are thenodelsin these examples? In the line fitting case, clearly the misdzline.
The data is a collection of points I&?> and the model is a subset of the same space. In the
ellipsoid fitting case, the model is an ellipse, which is agasubset of the data spaké.
Aline and an ellipse are static models in the sense that thegribe the data points without
relations among them. In particular, their order is not imt@iat for static modeling.

In the system identification examples, the dataés viewed as an entity—a finite
vector time series. A dynamical model is again a subset, herveonsisting of time series.
The geometric interpretation of the dynamic models is mabele than the one of the static
models due to the time series structure of the data spadee stdtic examples of Section 1.2
the data space is 2-dimensional while in the dynamic exasripie 20-dimensional.

The point of view of the model as a subset of the data spacesjgred by the
behavioral approach to system theory.

This point of view has a number of important advantages dweclassical point of view of
a model as a set of equations. In the behavioral approachuatienq is aepresentatiorof
its solution set (which is the model itself). A model has iitély many representations, so
that a particular representation is not an intrinsic chieréstic of the model.

Consider, for example, a linear static modélthat is a one-dimensional subspace
of R2. Perhaps the most commonly used way to defihis via the representation

% ={d:=col(a,b) | axr =b}.
However, the same model can be represented as the kernglxoRamatrix R, i.e.,
B =%ker(R):={d|Rd=0},
or as the image of 2 x 1 matrix P, i.e.,
% = colspan(P) := {d | there isl, such thatl = Pl }.

Moreover, the parametefg and P of a kernel and an image representation are not unique.
Which particular representation one is going to choose igtenaf convenience. Therefore,
an approximate modeling problem formulation in terms of dipalar representation is
unnecessarily restrictive. Note that the representation= b does not exist for all one-
dimensional subspaces&Ff. (Consider the vertical lineol span(col(0, 1)).)

Another feature in which the presentation in this book d&fcom most of the ex-
isting literature on approximate modeling is the use of aeieistic instead of stochastic
assumptions and techniques. Itis well known that the dakkE method has deterministic
as well as stochastic interpretations. The same dualistefand is very much part of the
literature) for other modeling methods. For example, th& Tikethod, introduced by Golub
and Van Loan [GV80] in the numerical linear algebra literatas a tool for approximate
solution of an overdetermined linear system of equatioas, lie viewed as a consistent
estimator in the linear EIV model, under suitable statétassumptions.
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One and the same modeling method can be derived and “jusiifidéterministic
as well as stochastic setting.

Both approaches are useful and contribute to a deeper tadéirsg of the methods. In
our opinion, however, the stochastic paradigm is overuseidsametimes misused. Often
the conceptual simplicity of the deterministic approadcirismportant advantage (certainly
so from the pedagogical point of view). Unlike the stoctmapproach, the deterministic
one makes no unverifiable assumptions about the data gegepaenomenon. As a con-
sequence, however, fewer properties can be proven in teendeistic setting than in the
stochastic one.

Most of the problems in the book are posed in the behaviottihgeand use the
misfit approach. This new paradigm and related theory dteistier development and are
currently far less mature than the classical stochasgatatoriented approach. Our aim is
to popularize and stimulate interest in the presentedmltie approaches for approximate
modeling.

1.4 Chapter-by-Chapter Overview *

The introduction in Sections 1.1-1.3 isinformal. Chaptgiv2s an in-depth introduction to
the particular problems considered in the book. The maim#se—exact and misfit optimal
approximate modeling—are introduced in Sections 2.1 and 2Then we elaborate on
the model representation issue. An important observasidhat the misfit optimal model
is independent of the particular representation chosenthieulatency optimal model in
general depends on the type of representation. In Sectidr®.B we specify the misfit
approximation problem for the linear static, bilinear an@dratic static, and LTI dynamic
model classes. An approximate modeling problem, callagcgired total least squares
(STLS), which can treat various static and dynamic lineasfitmapproximation problems,
is introduced in Section 2.7. Chapter 2 ends with an overwéthe adopted solution
methods.
The book is divided into two parts:

Part | deals with static models and

Part Il deals with dynamic models.

Optional sections (like this section) are marked witiThe material in the optimal sections
is more technical and is not essential for the understanafimghat follows.

Chapter 3: Weighted Total Least Squares The weighted total least squares (WTLS)
problemis a misfitbased approximate modeling problemifiedr static models. The WTLS
misfit is defined as a weighted projection of the dat@n a model#. The choice of the
weight matrices for the projection is discussed in Sectidn ®here two possibilities are
described. The first one leads to a problem, called relative total least squares, and the
second one leads to the problem of maximum likelihood egitiman the EIV model.

The kernel, image, and input/output representations afeali static model are pre-
sented in Section 3.2. We believe that these represendadimhthe links among them are
prerequisites for the proper understanding of all statpreximation problems.
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In Section 3.3, we solve the TLS and the generalized TLS prob] which are special
cases of the WTLS problem. They are treated separately beeaaziesed form solution in
terms of the singular value decomposition (SVD) exists. ifgeedients for the solution
are

1. the equivalence between data consistent with a linetic stedel and a low-rank
matrix, and

2. the Eckart—Young—Mirsky low-rank approximation lemmajch shows how an op-
timal (in the sense of the Frobenius norm) low-rank apprexion of a given matrix
can be computed via SVD.

The solution of the TLS problem is given in terms of the SVDloé tlata matrix and the
solution of the GTLS problem is given in a similar way in terofghe SVD of a modified
data matrix.

The WTLS problem is a double minimization problem. In Secti#, we solve
in closed form the inner minimization, which is the misfit qmmation subproblem. The
results are given in terms of kernel and image representtighich lead to, respectively,
least norm and least squares problems.

In the optional Section 3.5, we consider the remaining saitdpm—minimization
with respect to the model parameters. It is a nonconvex dagdiion problem that in
general has no closed form solution. For this reason, naalesptimization methods are
employed. We present three heuristic algorithms: altérgdéast squares, an algorithm
due to Premoli and Rastello, and an algorithm based on stfwtzl optimization methods.

Chapter 4. Structured Total Least Squares The STLS problem is a flexible tool that
covers various misfit minimization problems for linear misdéWe review its origin and
development in Section 4.1. There are numerous (equiydtanulations that differ in the
representation of the model and the optimization algoritked for the numerical solution of
the problem. The proposed methods, however, have high datgmal complexity and/or
assume a special type of structure that limit their appllitglin real-life applications. Our
motivation is to overcome as much as possible these limitatand propose a practically
useful solution.

In Section 4.2, we define the considered STLS problem. The whatrix is parti-
tioned into blocks and each of the blocks is block-Toepfiaikel structured, unstructured,
or exact. As shown in Section 4.6, this formulation is gehemaugh to cover many struc-
tured approximation problems and at the same time allowsefti solution methods. Our
solution approach is based on the derivation of a closed &xpnession for an equivalent
unconstrained problem, in which a large number of decisairables are eliminated. This
step corresponds to the misfit computation in the misfit agpration problems.

The remaining problem is a nonlinear least squares probfeiisaolved numerically
via local optimization methods. The cost function and itstfiterivative evaluation, how-
ever, are performed efficiently by exploiting the structire¢he problem. In the optional
Section 4.3, we prove that as a consequence of the struattine data matrix, the equiv-
alent optimization problem has block-Toeplitz and blo@t@ied structure. In Section 4.4,
a stochastic interpretation of the Toeplitz and bandedtira of the equivalent problem is
given.
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A numerical algorithm for solving the STLS problem is debed in Section 4.5.
It is implemented in the software package described in AdpeB.2. In Section 4.6, we
show simulation examples that demonstrate the performafiibe proposed STLS solution
method on standard approximation problems. The performahthe STLS package is
compared with that of alternative methods on LS, TLS, mix&dTLS, Hankel low-rank
approximation, deconvolution, and system identificaticosbfems.

Chapter 5: Bilinear Errors-in-Variables Model In Chapter 5, we consider approxi-
mations by a bilinear model. The presentation is motivateahthe statistical point of view
of deriving a consistent estimator for the parameters ofrtreemodel in the EIV setup. The
misfit approach yields an inconsistent estimator in thigcas that an alternative approach
based on the adjustment of the LS approximation is adapted.

An adjusted least squares (ALS) estimator, which is in mpileca latency oriented
method, is derived in Section 5.2, and its statistical priogeare stated in the optional Sec-
tion 5.3. Under suitable conditions, it is strongly consigtand asymptotically normal. In
Section 5.4, we show simulation examples illustrating threscstency of the ALS estimator.

In Section 5.5, we consider a different approximation peablby a static bilinear
model. It is motivated from an application in computer visicalled fundamental matrix
estimation. The approach is closely related to the one ai@e5.2.

Chapter 6: Ellipsoid Fitting The ALS approach of Chapter 5 is further applied for
approximation by a quadratic model. The motivation for édesng the quadratic model is
the ellipsoid fitting problem. In Section 6.1, we introdube ellipsoid fitting problem and
review the literature. As in Chapter 5, we consider the EI\tgi@nd note that the misfit
approach, although intuitively attractive and geomelifaaeaningful, yields a statistically
inconsistent estimator. This motivates the applicatiothefALS approach.

In Section 6.2, we define the quadratic EIV model. The LS apdAhS estimators
are presented, respectively, in Sections 6.3 and 6.4. Ti&estimator is derived from the
LS estimator by properly adjusting its cost function. Undeitable conditions the ALS
estimator yields a consistent estimate of the parametdisedfue model. In the optional
Section 6.6, we present an algorithm for the computatioh®®LS estimator. Simulation
examples comparing the ALS and alternative estimators anhyeark problems from the
literature are shown in Section 6.7.

Chapter 7: Introduction to Dynamical Models Chapter 7 is anintroduction to Part I
of the book. The main emphasis is on the representation ofTarsystem. Different
representations are suitable for different problems, abfamiliarity with a large number
of alternative representations is instrumental for s@\tre problems. First, we give a high
level characterization of an LTI system: its behavior i®én shift-invariant, and closed
in the topology of pointwise convergence. Then we considarael representation of an
LTI system, i.e., difference equation representation. elmwv, we use polynomial matrix
notation. A sequence of equivalence operations on thedifte equations is represented by
premultiplication of a polynomial operator by a unimodutaatrix. Also, certain properties
of the representation such as minimality of the number od&qos is translated to equivalent
properties of polynomial matrices. Special forms of thegpomial matrix display important
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invariants of the system such as the number of inputs and ithienad state dimension.

We discuss the question of what inputs and outputs of thesyate and show repre-
sentations that display the input/output structure. Thesital input/state/output represen-
tation of an LTI system is obtained by introducing, in adutitilatent variables with special
properties. The controllability property of a system isaatuced and a test for it is shown in
terms of a kernel representation. Any system allows a deositipn into an autonomous
subsystem and a controllable subsystem. A controllableesysan be represented by a
transfer function or a convolution operator or as the imd@gmmlynomial operator. Finally,
the latent variable and driving input state space reprasentare presented.

The introduction of the various system representationsnsnsarized by a represen-
tation theorem that states their equivalence. The chapteinties with the related question
of parameterizing a trajectory of the system. The most caewe representation for this
purpose is the input/state/output representation thatadis explicitly both the input and
the initial conditions.

Chapter 8: Exact Identification The simplest and most basic system identification
problem is considered first: given a trajectory of an LTI swyst find a representation of
that system. The data is an exact trajectory and the systeno e recovered exactly. The
problem can be viewed as a representation question: passafisufficiently informative
trajectory to a desirable representation of the system.

We answer the question of when a trajectory is sufficientfgrimative in order to
allow exact identification. This key result is repeatedlgdiand is called theindamental
lemma

The exact identification problem is closely related to thestauction of what is called
the most powerful unfalsified model (MPUM). Under the coiwgiitof the fundamental
lemma, the MPUM is equal to the data generating system, sortlieatan look for algorithms
that obtain specific representations of that system frond#ta. We review algorithms for
passing from a trajectory to kernel, convolution, and ifgtate/output representations.
Relationships to classical deterministic subspace ifieation algorithms are given.

Our results show alternative system theoretic derivatmthe classical subspace
identification methods. In particular, the orthogonal anlique projections from the
MOESP and N4SID subspace identification methods are irgtsgr It is shown that the
orthogonal projection computes free responses and thgualytirojection computes sequen-
tial free responses, i.e., free responses of which thalmgitinditions form a state sequence.
From this perspective, we answer the long-standing questisubspace identification of
how to partition the data into “past” and “future”. The “pas used to set the initial
condition for a response computed in the “future”.

The system theoretic interpretation of the orthogonal aiidjoe projections reveals
their inefficiency for the purpose of exact identificatione YWesent alternative algorithms
that correct this deficiency and show simulation results ithestrate the performance of
various algorithms for exact identification.

Chapter 9: Balanced Model Identification Balancingis often used as a tool for model
reduction. In Chapter 9, we consider algorithms for obtajra balanced representation of
the MPUM directly from data. This is a special exact idergifion problem.
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Two algorithms were previously proposed in the setting efdaterministic subspace
identification methods. We analyze their similarity andetiénces and show that they fall
under the same basic outline, where the impulse responsegodntial zero input responses
are obtained from data. We propose alternative algorithrasrieed weaker assumptions
on the available data. In addition, the proposed algoritarescomputationally more effi-
cient since the block-Hankel structure of certain matregggearing in the computations is
explicitly taken into account.

Chapter 10: Errors-in-Variables Smoothing and Filtering The approximate sys-
tem identification problem, based on the misfit approachabassubproblem the computa-
tion of the closest trajectory in the behavior of a given ni¢ale given time series. Thisis a
smoothing problem whose solution is available in closethfddowever, efficient recursive
algorithms are of interest. Moreover, the filtering problémwhich the approximation is
performed in real time, is of independent interest.

Deterministic smoothing and filtering in the behavioraltisgt are closely related
to smoothing and filtering in the EIV setting. We solve thadaproblems for systems
given in an input/state/output representation. The ogffitter is shown to be equivalent
to the classical Kalman filter derived for a related stodhasgstem. The result shows
that smoothing and filtering in the EIV setting are not funeanally different from the
classical smoothing and Kalman filtering for systems drivgnvhite noise input and with
measurement noise on the output.

Chapter 11: Approximate System ldentification The approximate identification
problem, treated in Chapter 11, is the global total leasasggI(GITLS) problem, i.e., the
misfit minimization problem for an LTI model class of boundsmmplexity. This problem
is a natural generalization of the exact identification peobof Chapter 8 for the case when
the MPUM does not exist.

Because of the close connection with the STLS problem andusecin Part | of the
book numerical solution methods are developed for the STiioBlem, our goal in this
chapter is to link the GITLS problem to the STLS problem. Tikisone in Section 11.2,
where conditions under which the equivalence holds arengiVbe most restrictive of these
conditions is the condition on the order of the identifiedtsys it should be a multiple of
the number of outputs. Another condition is that the optiaggdroximation allows a fixed
input/output partition, which is conjectured to hold geoaity.

In Section 11.3, we discuss several extensions of the GITThBl@m: treating exact
and latent variables and using multiple time series for fr@ximation. In Section 11.4,
the problem is specialized to what is called the approximedézation problem, where the
given datais considered to be a perturbed version of an sepasponse, the related problem
of autonomous system identification, and the problem ofdfitithe />, model reduction.

In Section 11.5, we present simulation examples with datafsem the data base
for system identification DAISY. The results show that thegwsed solution method is
effective and efficient for a variety of identification prebis.



Chapter 2

Approximate Modeling
via Misfit Minimization

This chapter gives a more in-depth introduction to the protd considered in the book:
data fitting by linear, bilinear, and quadrasi@aticas well as linear time-invariamtynamic
models. In the linear case, the discrepancy between theaddtthe approximate model is
measured by theisfit. In the nonlinear case, the approximation is defined as agtically
constrained least squares problem, called adjusted lgastes.

The main notions are data, model, and misfit. Optimal exadtetiag aims to fit the
data and as little else as possible by a model in a given mdakes.cThe model obtained
is called the most powerful unfalsified model (MPUM). The MRUnay not exist in a
specified model class. In this case we accept a falsified mbdefits optimally the data
according to the misfit approximation criterion. The tothdt squares (TLS) problem
and its variations, generalized total least squares (GEb8)weighted total least squares
(WTLS), are special cases of the general misfit minimizatiwblem for the linear static
model. In the dynamic case, the misfit minimization problercdlled the global total least
squares (GITLS) problem.

An overview of the solution methods that are used is givere misfit minimization
problem has a quadratic cost function and a bilinear equaditstraint. This is a nonconvex
optimization problem, for whose solution we employ locatimjization methods. The
bilinear structure of the constraint, however, allows usdtve the optimization problem
partially. This turns the constrained optimization prablento an equivalent nonlinear
least squares problem. The adjusted least squares methaolde @ther hand, leads to a
generalized eigenvalue problem.

2.1 Data, Model, Model Class, and Exact Modeling

Consider a phenomenon to be described by a mathematical n@eféain variables, related
to the phenomenon, are observable, and the observed datafi®or more experiments is
recorded. Using prior knowledge about the phenomenon, &hetabs of candidate models
is selected. Then the model is chosen from the model clasBithaertain specified sense
most adequately describes the available data.

15
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We now formalize this modeling procedure. Call a data paebrded from an ex-
periment aroutcomeand letZ be the universum of possible outcomes from an experiment.
The observed dat& is collected from experiments, so that it is a sub®ett % of the
universum.

Following the behavioral approach to system theory [PW98],

we define a mode#s to be a set of outcomes, i.e4 C % .

Actually, for the purpose, of modeling this definition is atastrictive. Often the outcomes
are functions of the to-be-modeled variables, i.e., thaléas that we aim to describe by the
model. By postulating the model to be a subset of the univeisdoutcomes, we implicitly
assume that the observed variables are the to-be-modeiebles.

If for a particular experiment an observed outcoine % is such thatl € %, then
we say that &8 explainsd” or “ % is unfalsified byd”. In this case the model fits the data
exactly If d ¢ A, we say that the outcoméfalsifiesZ. In this case the model may fit the
data onlyapproximately

Let #, and %, be two models such tha®; C %A,. We say that, is simpler (less
complex) than%,. “Simpler” means allowing fewer outcomes. % is a vector space
and we consider models that are (finite dimensional) sulespdsimpler” means a lower
dimensional subspace. Note that our notion of simplicitgsoot refer to a simplicity of a
representation of3.

Simpler models are to be preferred over more complicated.o@®nsider the two
statementsl € #; andd € B with B; C %,. The first one is stronger and therefore
more useful than the second one. In this seggeis a morepowerfulmodel than%s.

On the other hand, the a priori probability that a given ooted € % falsifies the
model %, is higher than it is for the modeB,. This shows a trade-off in choosing an
exact model. The extreme cases are the m@déhat explains every outcome but “says”
nothing about an outcome and the mogél} that explains only one outcome but completely
describes the outcome.

Next, we introduce the notion of a model class. The set oldists of/ is denoted
by 2% . In our setting2% is the set of all models. A model clasg C 2% is a set of
candidate models for a solution of the modeling problem. heoty, an arbitrary model
class can be chosen. In practice, however, the choice of tlikelnglass is crucial in order
to be able to obtain a meaningful solution. The choice of tlel@hclass is dictated by
the prior knowledge about the modeled phenomenon and byiffiilly of solving the
resulting approximation problem. We aim at general modedses that still lead to tractable
problems.

The most reasonable exact modeling problem is to find the m@&gdg.m € .#
that explains the dat& and as little else as possible. The modglyumis called
the most powerful unfalsified model (MPUM) for the d&tan the model class# .

The MPUM need not exist, but if it exists, it is unique.

Suppose that the dafais actually generated by a mod&l € .#; i.e.,d € £ for all
d € 2. Afundamental question that we address is, Under what tiondican the unknown
model % be recovered exactly from the data? Without any other aigtimwledge (apart
from the given data&Z and model class#), this question is equivalent to the question,
Under what conditions doe&mpum = %472
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2.2 Misfit and Approximate Modeling

The MPUM may not exist for a given data and model class. In factrough data”, e.g.,
data collected from a real-life experiment, if the MPUM égjst tends to beBmpum = % .
Therefore, the exact modeling problem has either no solui@ trivial one. Although the
concept of the MPUM is an important theoretical tool, the patation of the MPUM is not
a practical modeling algorithm. What enables the modelinggdure to “work with rough
data” is approximation.

In an approximate modeling problem, the model is requiregikfain the data only
approximately; i.e., it could be falsified by the data. Nexg define an approximation
criterion called misfit. The misfit between an outcorthe % and a model# C % is
a measure for the distance from the pairtb the set%. As usual, this is defined as the
distance fromi to the pointd* in 2 that is closest td. (The “hat” notation, as i@, means
“an approximation of”.) For example, # is an inner product space atd is a closed
subspace, theii* is the projection ofl on Z.

Underlying the definition of the misfit is a distance@h Let% be a normed vector
space with a nornj - ||z~ and define the distance (induced by the ndr4 ) between two
outcomesl, d € % as||d — d||+ .

The misfit between an outcordeand a model# (with respect to the nori- ||)
is defined as R
M(d,#) := inf ||d —d|%-.
des

It measures the extent to which the mogfails to explain the outcomé.

A global minimum pointd* is the best (according to the distance meadte- d||%)
approximation ofl in A. Alternatively, M (d, %) is the minimal distance betweehand
an approximatiomZ compatible with the model.

For data consisting of multiple outcomés = {d; ...,dy }, we chooseV norms
| - |]; in % and defineM; (d;, ) to be the misfit with respect to the noifn ||;. Then the
misfit between the dat& and the model# is defined as

M({dy ... dn},B) := | col (Mi(dy, B), ..., M (dy, B)) || (M)

In the context of exact modeling, there is a fundamentaktiaifl between the power
and complexity of the model. A similar issue occurs in apprate modeling: an arbitrary
small misfit can be achieved by selecting a complicated mddwed trade-off now is between
the worst achievable misfit and the complexity of the modéie ©ssue can be resolved,
for example, by fixing a maximal allowed complexity. With anstraint on the complexity
(incorporated in the definition of the model class), the aroiminimize the misfit.

For a chosen misfit/ and model class#, the misfit minimization problem aimg
to find a modelZ in the model class that is least falsified by the data, i.e.,

P = arg grapelil// M(2,2). (APR)
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The approximation problem (APR) can be interpreted in tesfiteke MPUM as follows:

Modify the data as little as possible, so that the MP@Mor the modified dat&/
is in a specified model clas# .

Next, we describe the important issue of a representatiamaidel and specify misfit
minimization problems for particular model classes in tehparticular representations.

2.3 Model Representation and Parameterization

The definition of the model as a set of outcomes is general aneul. It allows us to
consider linear and nonlinear, and static and dynamidpsiaty and nonstationary models
in the same conceptual setting. For analysis, howevertiasabstract. It is often more
convenient to work with particular representations of thadei in terms of equations that
capture the essential properties of the model.

For a given mode¥## C %, an equatiory(d) = 0 with solution set equal t&, i.e.,
B={de|fd)=0}, (REPR)

is called a representation &f.

The functionf : % — RY that describes the mod&# is defined in terms of parameters.
Consider, for example, a real vector spage= R"¢ and a linear functiorfy(d) = 0 'd.
The vector € R™ parameterizegy and via (REPR) als®3.

Let fo(d) = 0 be a representation with a parameter veé¢toe R™. Different
values off result in different models?(0). We can view the representation Iy as a
mapping# : R™ — 2% from the parameter space to the set of models. A given set
of parameter® C R™ corresponds to the set of mode®(©) C 2%, i.e., to a model
class. Assume that for a given representatfprand a given model clasg”, there is a
corresponding parameter $8tC R"¢, such that# = %(0).

In terms of the representatigp, the misfit minimization problem (APR) become
the following parameter optimization problem:

n

6 := arg gggM(.@, B(0)). (APR))

The numerical implementation of the algorithms depend enptérticular representation
chosen. From the point of view of the abstract formulatioRE), however, the represen-
tation issue is not essential. This is in contrast with apipnation methods that minimize
an equation error criterion.

Consider a mode## C % with representation (REPR). An outcordes % that
is not consistent with the mode# may not satisfy the equation, yieldirgf) := fy(d),
calledequation error The equation error for a givehis a functione : R" — RY of the
parametef and therefore it depends on the modg(d). Since

fold) =e(0) =0 < deH0),
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we define “equation misfit” (lack of fit in terms of equationpmesenting the model)

Meqn(da 0) := [ fo (d)Heqnv

where|| - ||egniS @ norm defined ifR?. The equation misfit depends on the representation.
In contrast, the “behavioral misfit¥/ is representation independent.

Note 2.1 (Latency) The equation erro# can be viewed as an unobserved, latent variable.
From this alternative point of view the equation misfity, is the latency of Chapter 1.

As before, for multiple observed outcom@s= { d; ..., dy }, we define the equation
misfits Megn;(d;, 0) in terms of the norm§ - ||; in RY, and

Megn({d: ..., dn },6) := || col (Megn1(d1,0), - .., Megnn (dn,0)) || (Meqn)

Given a model class#, represented in the parameter space by the parametér, set
approximation problem that minimizes the equation misfit is

feqn = arg min Meqn(2, 0). (APRegn)
€

Solving (APReqn) is often easier than solving (APR’), bt thain disadvantage is that the
obtained approximation is representation dependent.

2.4 Linear Static Models and Total Least Squares

In the rest of this chapter we consider real valued data. taticproblems, the universum

set7 is defined to bék?. The available dat& consists ofV outcomesiy, ..., dy € R9.
We define the data matri := [d; --- dy]| € R**" and the shorthand notation
dy - dyv|eBCU = dieB, fori=1,...,N.

A linear static model# is a linear subspace & = R9.

Letm := dim(%) be the dimension of the mode¥ and let.%;, be the set of all linear
static models withi variables of dimensioat mostm. (The 0 in the notatio}, indicates
that the models in this model class are static.) The conpleXithe model% is related
to its dimensiom: the model is simpler, and therefore more powerful, whea& $maller
dimension.

The model” imposes linear Iawsde =0, 7; € R?onthe outcomes. W2 is defined
by g linearlawsry, ..., ry, thend € Zifandonly if Rd = 0, whereR := [ry --- rg]T.
Therefore,Z = ker(R). The representation ¥ := ker(R) by the equatiomRd = 0 is
called a kernel representation @&. Any linear model# admits a kernel representation
with a parameteR of full row rank.

The MPUM for the data in the model class/, exists if and only ifrank(D) < m.

If the MPUM exists, it is unique and is given B¥mpum = colspan(D). For “rough” data
and with N > m, typically rank(D) = d, so that the MPUM either does not exist or is the
trivial model Zmpum = R?. In such cases an approximation is needed.
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The misfit minimization problem (APR) with model clas# = .£?, and
2-norms|| - ||,

Pys = arg min (min |D — ﬁ|||:> , (TLS)
#BeLyy \Dez

is called the total least squares (TLS) problem.

The squared TLS misfit
Mi(D, %) := min |D — D|]?
Dez
is equal to the sum of the squared orthogonal distances fnenoitcomesl, ..., dy to
the subspaces. For this reason, the TLS problem is also known as orthog@gaéession.
In terms of a kernel representation, the TLS problem is edeint to

Rys = arg min (min |D — ﬁ|||: subject to RD = 0). (TLSR)
RRT=I\ p

Note 2.2 (Equation labels)(TLS) is the abstract, representation-free definition efthS
problem. Equivalent formulations such as (T4)Sare obtained when a particular repre-
sentation is chosen. We label frequently used equatiorts agitonyms. Approximation
problems, derived from an abstract one, are labeled witadrenym of the abstract problem
with the standard variable used for the parameter in a sigibscr

The variations of the TLS problem, called generalized tet@$t squares (GTLS) and
weighted total least squares (WTLS), are misfit minimizagiosblems (APR) for the model
classZ3, and weighted normis-||;: in the GTLS casé|d||; := ||[vWd||, and in the WTLS
case,||d||; := ||[VW.d||, for certain positive definite weight matricé8 andW;. Clearly,
the TLS problem is a special case of the GTLS problem and tHeS@Foblem is a special
case of the WTLS problem.

The motivation for the weighted norms inthe GTLS and WTLS jois comes from
statistics. Assume that the datais generated according to the EIV model:

D=D+D, where DeBec. L. (EIV)

The model% is called the true model and =: [d, --- dy] is called the measurement
error. The measurement error is modeled statistically a@mean random matrix. As-
suming in addition that the noisg on theith outcome is independent of the noise on the
other outcomes and is normally distributed with covarianee (d;) = o?W;t, the max-
imum likelihood estimation principle leads to the WTLS prl. Therefore, the weight
matricesl¥; in the WTLS problem formulation correspond (up to the scafawor o2) to

the inverse of the measurement error covariance matridég iglV setup.

Note 2.3 (About the notation) We follow the system theoretic notation and terminology
thatare adopted inthe behavioral setting [PW98]. Trarsiatfthe ideas and the formulasto
other equivalentformsis straightforward. For example sstem of linear equatiorsX =

B, which s often the starting point for parameter estimagitoblems in the numerical linear
algebra literature, can be viewed as a special kernel reptason

AT

AX =B <+ [XT -] {BT

]—O —: RD=0.
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Therefore, the model represented by the equatigh= B is Z(X) := ker([X T —I]),

so that#(X) € £, with d = coldim(A) + coldim(B) andm = coldim(A). The

representatio®?(X) is what is called an input/output representation of a liségtic model.
In terms of the representatiohX = B, the TLS problem with a data matrik =

[A B} Tis the following parameter optimization problem:

Xys = argmin (mm |[[A-A B-B]|. subjectto AX = B) . (TLSy)
A,B
Itis not equivalent to (TLS), but genericali(Xys) = ker(Rys), whereRys is the solution
of (TLSg). The nongeneric cases whéfys does not exist occur as a consequence of the
used fixed input/output partitioning of the variables in tepresentatio®(X).

Note 2.4 (Quadratic cost function) Whenever|| - ||; are weighted 2-norms, trexjuared
misfit M2 is a quadratic function of the decision variatile Squaring the cost function
results in an equivalent optimization problem (the optinpoint is not changed), so that the
misfit minimization problem can equivalently be solved bymiizing the squared misfit.

The equation error minimization problem (APReqn) for time&r static model class
Z2, with a kernel representatio®® = ker(R) and 2-normg| - ||; is the quadratically
constrained least squares problem

Ris = arg min ||RD|, (LSRr)
RRT=I

which happens to be equivalent to the TLS problem.
The classical least squares problem

Xjs = arg rr}}n <mjn |B — B||r subjectto AX = B) (LSx)
B

is an equation error minimization problem (APReqn) for thpresentatiod X = B and

for 2-norms|| - ||;. In general Z(Xis) # ker(Rs), whereR;s is the solution of (L$). Itis
well known that the solution of (Lg) can be computed in a finite number of operations by
solving the system of normal equations. In contrast, thetswl of (LSg) is given in terms

of the eigenvalue decomposition 6fD " (or the singular value decomposition b¥), of
which the computation theoretically requires an infinitentuer of operations.

2.5 Nonlinear Static Models and Ellipsoid Fitting

An outcomed € % = R¢, consistent with a linear static model, satisfies lineaati@hs
Rd = 0. An outcomed € % = R, consistent with a nonlinear static model, satisfies
nonlinear relationg(d) = 0, wheref : R* — R9. We consider nonlinear models with
representations that are defined by a single bilinear orratiadunction.

The functionf : R — R is bilinear if f(d) = d{ Xda — d3, for alld € R? and
for a certainX € R%1%% whered =: col(dy, ds,d3) (with d; € R%, dy € R%, and
ds € R). For givend; andds, such thatl = d; +ds + 1, a bilinear model with a parameter
X € R¥4*42 j5 defined as follows:

Pon(X) :={ col(d1,da,d3) € R* | d] Xdy = d3 }; (BLN)
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i.e., a bilinear model is a nonlinear model that allows thgresentatiorf (d) = 0, with f a
bilinear function. Let#y,, be the set of all bilinear models of the form (BLN),

Moin = {%bm(X) ‘ X € Rérxdz }

In terms of the parameterization (BLN), the misfit minimipat problem (APR) for the
bilinear model class#yin with 2-norms|| - ||; is

min (mjn |D —D|e subjectto d],Xd;» =d;3, fori=1,... ,N). (BLNTLS)
D

M (D, %uin(X))

The functionf : R — R is quadratic iff (d) = d" Ad 4+ d b+ cfor all d € R and
for certainA € R¥*4, b € RY, andc € R. A quadratic model with parameter§ b, ¢ is
defined as follows:

Baa(A,b,c) = {deR*|d"Ad +d b+ c=0}. (QD)

The set of outcomes consistent with the quadratic modellipseads, paraboloids, hyper-
boloids, etc., ifR?. Let.#yq be the set of all quadratic models,

Md = {%qd(A, b, c) ’ [lﬁ I;] is a symmetridqd + 1) x (d+1) matrix}.

In terms of the parameterization (QD), the misfit minimiaatproblem (APR) for the model
class.#yq and 2-normg| - |; is

a1l A b2 [d]"
Ln}l)nl(mjjlnHD—DFSUb]eCttO[l} {bT/Z c] [1} =0, fOI’Z:l,...,N).

Is)

A0

M(D,Bqy(A,b,c))
(QDTLS)

Problems (BLNTLS) and (QD TLS) have the same geometric pm&tation as the
TLS problem—minimize the sum of squared orthogonal distarfican the data points to
the estimated model. In the special case wHen 0 and4c < b' A1, Bqy(A, b, c) is
an ellipsoid and the approximation problem becomes arseliipfitting problem. Because
of the geometrically appealing cost function, the misfitimization problem for ellipsoid
fitting attracted much attention in the literature. Nevel#lss, in the nonlinear case, we
do not solve the misfit minimization problems (BLNTLS) andO®LS) but alternative
modeling problems, called adjusted least squares (ALS).réasons are

1. the minimization problems (BLNTLS) and (QD TLS) are exgiga to solve, and

2. the solutions of these problems do not define consisténtasrs.

In the EIV setting, i.e., assuming that the outcomes conma faidrue model with stochastic
measurementerror, the aimisto find consistent estimafeorestimator is consistentwhen it
converges asymptotically to the true model as the numiVoafrobserved outcomes increases.
The estimators defined by the orthogonal regression prab(&boN TLS) and (QDTLS)
are not consistent, but the estimator defined by the ALS ndegthoonsistent. In addition,
the computation of the ALS estimator reduces to a genechéigenvalue computation and
does not require expensive optimization methods.
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2.6 Dynamic Models and Global Total Least Squares

Indynamic problems, the data consists of one or rtiote seriesvg = (wq(1), . .., wa(T)).

Note 2.5 (Notationwg) The letter “d”in subscript stands for “data”. Itis used tstaiguish
a general time serias from a particular given oney.

In the context of dynamic problems, we associatavith the set of sequencéR¥)”. The
dynamic nature of a mode# is expressed in the existence of relations among the values
of a time seriesv € % at consecutive moments of time. Restricting ourselvesnieali
constant coefficient relations, this yields the followiriffetence equation:

Row(t) + Ryw(t+ 1)+ -+ Rw(t+1) =0, fort=1,...,T —1. (DE)

Forl = 0 (no time shifts in the linear relations), (DE) describesnadir static model. As
in the static case, (DE) is called a kernel representatidgheo$ystentThe system induced
by (DE) is denoted as follows:

% = ker (R(0)) := {w € (R")T | (DE) holds}, whereR(z) := "\_ Riz, (KR)

ando is the shift operator(ocw)(¢) = w(t + 1).

LetZ = ker (R(c)) with arow proper polynomial matrik(z) € RP*¥[z] and define
1:= deg(R),m := w—p. Itcan be shown that fdF sufficiently largedim(#) < Tm+ 1p.
Thus the complexity of the system, which is relatediia (%), is specified by the maximum
lag1 and the integeti. Under the above assumptianis equal to the input cardinality of the
system, i.e., the number of inputs in an input/output resarttion of the system. We denote
by Zy, the class of all linear time-invariant (LTI) systems witlariables, maximum input
cardinalitym, and maximum lag. Note that the class of systen#§’,, described by zero
lag difference equations, is the set of linear static systeiwlimension at mostas defined
before.

Modeling a dynamic system from data is called system ideatifin. We consider
the identification problem for the LTI model clasg = .Z;, and treat first the exact
identification problem: given datag, such thatwg € £ € £, find a representation
of 8. Under certain identifiability conditions on the data anel thodel class, the MPUM
Prmpum Of wy in the model class; exists and is equal t&.

We consider algorithms for passing frang to a kernel or input/state/output represen-
tation of Zmpum. The algorithms are in the setting of what are called sutesjantification
methods; i.e., the parameters of the system are retrieget dertain subspaces computed
from the given data. We do not emphasize the geometric irg&ion and derivation of
the subspace algorithms and give instead more system tbeented derivations.

In their pure form, exact identification algorithms are niaiof theoretical interest.
Most system identification problems start from rough dai#at the approximation element
is critical. The exact identification algorithms can be nfiedi so that they can “work” with
rough data. We do not pursue this approach but considemith¢tee misfit approximation
problem (APR), which is optimization based.

1We do not distinguish between model and system but prefers@ymodel in the static context or in general
discussions and system in the dynamic context.
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The misfit minimization problem (APR) with model clagg = £, and2-norm

| - || is called the global total least squares problem (GITLélehms of the
kernel representation (KR), the GITLS problem is

%1(ir)l (mjn |lwg — | s.t. v € A :=ker (R(U)) ) s.t. R full row rank

M (wa,ker(R(0)))

(TLSk(»))

The constrain®(z) full row rank, deg(R) = [ is equivalent toZ := ker (R(0)) € £,
and the constraint € #is equivalentto (DE). Inturn, (DE) can be written as thected
system of equations

[Ro R - Rl] w() w() o w( — +1) o
w(l + 1) w(l Jr 2) .- w(T)

which makes a link with the structured total least squareblpm.

2.7 Structured Total Least Squares

The GITLS problem (TLR.)) is similar to the TLS problem, the main difference being
that the generally unstructured matfixin the TLS problem is replaced by a block-Hankel
structured matrix in the GITLS problem. In this section, vedide a general approximation
problem with a constraint expressed as rank deficiency aliatstred matrix.

Let.” : R™ — R™*(»+d) pe an injective function. A matrix' € R™*("+4) js
said to be-structured ifC' € image(.#). The vectorp for which C = .7 (p) is called
the parameter vector of the structured matrixRespectivelyR"» is called the parameter
space of the structure’.

The structured total least squares (STLS) problem aimsdafiroptimal structured
low-rank approximations’(p) of a given structured matrix”(p); i.e., given a
structure specificatiory’, a parameter vectgr, and a desired rank, find

Pstis = argmin |[p — p|| subjectto rank (7 (p)) < n. (STLS)
2

By representing the rank constraint in (STLS) as “there isllarbw rank matrix R €
R4 (n+d) 'sych thatk. " () = 07, the STLS problem can be written equivalently as

Rsgs = arg min min |p — p|| subjectto R (p) =0, (STLSR)
RRT=I4; D

which is a double minimization problem, similar to the gexienisfit minimization prob-
lem (APR). The STLS formulation, however, is not linked wétlparticular model class: it
is viewed as a flexible tool that can match different misfitimization problems.

Table 2.1 gives a summary of the misfit minimization probletascribed up to now.
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Table 2.1. Misfit minimization problems.

Name 4 M Problem
TLs | BT 7%, “min_[D-DJr
DexneZy,
GTLS | R 22 min /X, IVW(d; - d)?
Dexnezy,
WTLS | RS 2l min /S VI - o)
i DexseZzy,
Bilinear | R i ~min  ||D—-Dl
DeRBe Mon R
Quadratic| R? Ay min [|[D — D||¢
ﬁG@G/ﬂqd
GITLS (RT 5 - min  |Jwg — @|[e,
depe sy,

2.8 Algorithms
Optimization Methods

The approximate modeling problem (APR) is a double minitidzeproblem: on the inner
level is the misfit computation and on the outer level is treraefor the optimal model. In
the linear case, the modé is a subspace &, so that the misfit computation is equivalent
to projection of the dat& on 4. In this case, itis possible to express the mixfit7, %)

in a closed form. The outer minimization probleminge_», M (2, %), however, is a
nonlinear least squares problem. We emptmal optimization methods for its numerical
solution. The local optimization methods require initippeoximation and find only one
locally optimal model.

Importantissues we deal with are finding good and compurtalkipinexpensive initial
approximations and making the misfit function and its firsh@ive evaluation numerically
efficient. By solving these issues, we obtain an “engineeslution” of the problem, i.e.,
a solution that is effective for real-life applications.

Caveat: We aim at efficient evaluation of the misfit function, whictsares efficiency
only with respect to the amount of given data: in the statsecthe numbeN of observed
outcomes and in the dynamic case the lerigthf the observed time series. In this book,
we do not address the related question of achieving effigiencthe level of the outer
minimization problem, i.e., with respect to the number ofdeloparameters. Thus an
implicit assumption throughout this work is that a simpl@@gximate model we aim for.
Dealing with large scale nonlinear least squares probléimsgever, is a well developed
topic (see, e.g., [BHN99]) so that general purpose solst@@am be used.

Adjusted Least Squares Method

In the nonlinear case not only the outer minimization bub alee misfit computation is a
nonconvex problem and requires iterative solution methddds makes the misfit mini-
mization problem numerically rather expensive. In additioom a statistical point of view
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Table 2.2. Problems, algorithms, and application fields.

Problem Algorithm Application field
WTLS optimization | chemometrics
STLS optimization | system identification
bilinear model approximation | ALS motion analysis
guadratic model approximation ALS ellipsoid estimation

the obtained solution is not attractive, because in the Eitiirgy, it is inconsistent. For
these reasons, we adopt an alternative approach.

The ALS method is a quadratically constrained least squaethod. Its solution is
obtained from a generalized eigenvalue decomposition.pfbielem is motivated and de-
rived from the consideration of obtaining a consistenneator in the EIV setting. Knowing
the noise variance, the bias of the ordinary least squarésoohé removed. This involves
adding a correction to the sample covariance matrix. If thieenvariance is unknown, it
can be estimated together with the model parameters.

Benchmark examples show that the ALS estimator gives goothéit are comparable
with those obtained from the orthogonal regression meth®de advantage over the misfit
approximation problem, however, is that the ALS approxioradoes not depend on a
user-supplied initial approximation and is computatibnkdss expensive.

Table 2.2 gives a summary of the problems, algorithms, apticapions considered

in the book.
Software Implementation

The algorithms in the book have documented software imphatien. Each algorithm is
realized by one or more functions and the functions are agg@dim the following packages:

* MATLAB software for weighted total least squares approaiion,
« C software for structured total least squares approxonati
* MATLAB software for balanced model identification, and
* MATLAB software for approximate system identification.

Many of the simulation examples presented in the book adeded in the packages as
demo files. Thus the reader can try out these examples andyntioglisimulation settings.
Appendix B gives the necessary background informationtftiag to use the software.
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Chapter 3

Welighted Total Least
Squares

We start this chapter with the simplest of the approximatdefing problems—the ones for
the linear static model. The kernel, image, and input/autguresentations of a linear static
model are reviewed in Section 3.2. The misfit criterion isrklias a weighted projection
and the corresponding misfit approximation problem is daleighted total least squares
(WTLS). Two interpretations of the weight matrices in the WTth8nulation are described
in Section 3.1. The TLS and GTLS problems are special cast®dVTLS problem and
are considered in Section 3.3.

In Section 3.4, we start to discuss the solution of the géNgid_S problem. First,
the misfit computation is explained. It is a quadratic mization problem, so that its
solution reduces to solving a linear system of equationg rémaining part of the WTLS
problem is the minimization with respect to the model pari@nse This problem is treated
in Section 3.5, where three different algorithms are presenin Section 3.6, we show
simulation results that compare the performance of therigigos.

3.1 Introduction

In this chapter, we consider approximate modeling by a tis&gtic model. Therefore, the
universum of possible outcomesds = R¢, the available data is the set &f outcomes
2 ={dy,...,dy} C %, and the model class is# = .. The parametet specifies
the maximum allowed complexity for the approximating model

The matrixD := [dy --- dy] is called the data matrix. We use the shorthand
notation
dy - dyv|eBCU = dieB, fori=1,...,N.
The WTLS misfit between the data and a model# € £ is defined as follows:
N ~ ~
Mygs([dv -+ dn],B) = o J;(di —d;)TWi(di — d;),  (Mwtls)
whereWy, ..., Wy are given positive definite matrices.
29
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Problem 3.1 (WTLS). Given the data matri¥) = [d; -+ dn]| € R**Y, a complexity
boundm, and positive definite weight matric&g,, . . ., Wy, find an approximate model

Bunis := arg min  Myys(D, B). (WTLS)
BELY

Note 3.2 (Element-wise weighted total least squares)he special case when all weight
matrices are diagonal is called element-wise weighted teést squares (EWTLS). Let
Wi = diag(wi ;- .., wa,) and define thel x N matrix X2 by ¥;; := ,/w;; for all j,4.
Denote by® the element-wise produet © B = [aijbij]. Then

N
> Ad]W;Ad; = S © AD|3,

i=1

whereAD := [Ad; --- Ady]isthe correctionmatri—D. InNote 3.7, we comment
on a statistical interpretation of the EWTLS problem and ineN&17 on a relation with a
GTLS problem.

Note 3.3 (TLS as an unweighted WTLS)The extreme special case whér, = [ for
all 7 is called unweighted. Then the WTLS problem reduces to the pildBlem. The
TLS misfit Mys weights equally all elements of the correction mathi¥). It is a natural
choice when there is no prior knowledge about the data. litieddthe unweighted case
is computationally easier to solve than the general weihbése.

In the unweighted casd) tends to approximate better the large elementd dfian
the small ones. This effect can be reduced by introducinggrreeights, for example the
reciprocal of the entries of the data matrix. The resultielgtive error TLS problem is a
special case of the WTLS problem withi; := diag(1/d3,, ..., 1/d3,) or, equivalently, an
EWTLS problem with®;; = 1/d;;.

Problem 3.4 (Relative error TLS). Given the data matrixD € R¥>*" and a complexity
boundm, find an approximate model

N d ~

B := arg min min —_— RTLS
rtls & BeL3, De® ; ; D]Zi ( )

The misfit function of the relative error TLS problem is

Mus(D, #) = min |[S© (D — D)||r, whereX := [1/d;;] .
DeRB

Example 3.5 (Relative errors) Consider the data matrix

_|5.4710 0.2028 0.5796 0.6665 0.6768

b= 0.9425 0.7701 0.7374 0.8663 0.9909|’
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obtained from an experiment with= 2 variables andV = 5 observed outcomes. We aim
to model this data, using the model cld£’§0 Note that the elements @f, except forD 1,
are approximately five times smaller thﬁnl The matrices of the element-wise relative

errors
|dji — djil
ADyg :=
rel [ |dji‘

for the TLS and relative error TLS solutions are, respebtjve

0.3711  0.8859 0.7673 0.7711 0.7907

0.0153 0.8072 0.2342 0.2404 0.2777
ADrel,tls:

and

AD ~ [0.8711 0.2064 0.0781 0.0661 0.0030
relrs = 10,1019 0.5322 0.0674 0.0584 0.0030]

Note thatA Dye1s 11 = 0.0153 is small but the other elementsAfD, ys are larger. This is
a numerical illustration of the above-mentioned undesgrafiect of using the TLS method
for approximation of data with elements of very differentgnaude. The corresponding
“total” relative errors| A Dyei||F, i.€., the misfitsMys(D, Q), are||ADyelus|lF = 1.89 and
[|ADrelms|le = 1.06. The example illustrates the advantage of introducing eferwise
scaling in the approximation criterion, in order to achiagequate approximation. Nl

Another situation in which weights are needed is when the ohttrix is a noisy mea-
surement of a true matrix that satisfies a true modet £, inthe model class. Intuition
suggests that the elements perturbed by noise with Iarganm should be weighted less in
the cost function. The precise formulation of this intugtieasoning leads to the maximum
likelihood criterion for the EIV model. The EIV model for tA@TLS problem is defined
as follows.

Definition 3.6 (WTLS EIV model). The data is a noisy measuremédnt= D + D of true
dataD € % € £, whereZ is atrue model in the model class, ahds the measurement

error. In addition, the vector of measurement errets;(D) is zero mean and Gaussian,
with covariance matrix?-diag(V, . .., Vi), i.e.,vec(D) ~ N (0,52 -diag(V1, ..., Vi)).

In the estimation problem, the covariance matriégs. . ., Vv are assumed known bat
need not be known.

Note 3.7 (Statistical interpretation of the EWTLS problem) From a statistical point of
view, the EWTLS problem formulation corresponds to a WTLS E&fup in which all
measurement errors are uncorrelated. We refer to this Eldeinas the EWTLS EIV
model.

By choosingV; = V7!, the approximatiom,,s is the maximum likelihood estimate
of Zinthe WTLSEIV model Under additional assumptions (see [K)®it is aconsistent
estimator of%.
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Figure 3.1. Relative error of estimation as a function ofV for four estimators.

Note 3.8 (Noise variance estimation)The optimal solutionZyys does not depend on a
scaling of the weight matrices by the same scaling facter; ithe optimal solution with
weightso—21; does not depend om?. It turns out that the normalized optimal misfit
M(D, %’Wus)/N is an estimate of the noise variangein the EIV model.

Example 3.9 (Consistency)We set up a simulation example corresponding to the WTLS
EIV model withd = 3, m = 2, and N ranging from 75 to 750. LelV(u, %) be a matrix
of independent and uniformly distributed elements in therival [u,7]. The true data
matrix is D = U(0,1) and the measurement error covariance matricessareV; =
diag(cr?l, 0'1-227 0'1»23), Wherea,;l =02 = U(OOI, 026), anda'ig = U(OOL 0035)

For a fixedN € [75, 750], 500 noise realizations are generated and the estimates are
computed with the following methods:

TLS total least square$i(; = W = I),
GTLS generalized total least squart (= W = V', whereVay := (X1 | /Vi/N)?),
WTLS weighted total least squardd’( = V[l), and

WLS weighted least squares (that minimizes a weighted nortineoéquation error of an
input/output representation; see Section 3.2).

Arelative error of estimationthat measures the distance from the estimated m@delthe
true oneZ (in terms of the parametée¥ in an input/output representation; see Section 3.2)
is averaged for th&00 noise realizations and plotted as a function/ofin Figure 3.1.
Convergence of the relative error of estimation to zer&Vascreases indicates consistency
of the corresponding estimator.

The stochastic framework gives a convincing interpretatithe weight matriced’;.
Also, it suggests possible ways to choose them. For exartipy, can be selected by
noise variance estimation from repeated measurementsrargrior knowledge about the
accuracy of the measurement devices.



3.2. Kernel, image, and input/output representations 33

A practical application of the WTLS problem occurs in chemtins, where the aim
is to estimate the concentrations of certain chemical amloss in a mixture from spectral
measurements on the mixture. For details see [WAH SMWVO05].

3.2 Kernel, Image, and Input/Output Representations

In this section we review three common representationsiotat static model: kernel, im-
age, and input/output. They give different parameteregtiof the model and are important
in setting up algorithms for approximate modeling with thedal classZ;?,.

Kernel Representation

Let# € £2,;i.e.,#isasubspace @ with dimension at most. A kernel representation
of Z is given by a system of equatioris! = 0, such thatZ = {d € R | Rd = 0} or,
equivalently, by%Z = ker(R). The matrixRR € R9*?¢ is a parameter of the modé?.

The parameter is not unique. There are two sources for the nonuniqueness:

1. R might have redundant rows, and
2. for a full-rank matrixU, ker(R) = ker(UR).

The parameteR having redundant rows is related to the minimality of therespntation.
For a given linear static modek, the representatioRd = 0 of % is minimal if R has the
minimal number of rows among all parametétshat define a kernel representationsf
The kernel representation, defined Byis minimal if and only ifR is full row rank.

Because of item 2, a minimal kernel representation is stillunique. All minimal
representations, however, are related to a given one venaystiplication of the parametét
with a nonsingular matriX/. In a minimal kernel representation, the rowsidére a basis
for 1, the orthogonal complement o#, i.e., % = rowspan(R). The choice ofR is
nonunique due to the nonuniqueness in the choice of basi'of

Assuming thatZ € £, anddim (%) = m, the minimal number of laws necessary to
defineZisp := d—m;i.e.,inaminimal representatio® = ker(R) with row dim(R) = p.

Image Representation
The dual of the kernel representatigh= ker(R) is the image representation
#B={deR*|d=Pl, 1R}

or, equivalently,Z8 = col span(P). Again, for a givenZ € £, an image representation
% = colspan(P) is not unique because of the possible nonminimalityP@nd the choice
of basis. The representation is minimal if and onlyiis a full column rank matrix. In a
minimal image representatiotpl dim(P) = dim (%) and the columns oP form a basis
for . Clearly, colspan(P) = colspan(PU), for any nonsingular matrix/ € R***,
Note that

ker(R) = colspan(P) = # € 4y = RP =0,

which gives a link between the parametérand R.
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Input/Output Representation

Both the kernel and the image representations treat akbims on an equal footing. In
contrast, the more classical input/output representation

Bio(X) = {d =: col(di, do) € R* | X Tdi = do } (IOrepr)

distinguishes free variables € R™, called inputs, and dependent variahfgs RP, called
outputs. In an input/output representatidncan be chosen freely, whil&, is fixed byd;
and the model.

The partitioningl = col(d;, dy) gives an input/output partitioning of the variables: the
firstm := dim(d;) variables are inputs and the remaining= dim(d,) = d—mvariables are
outputs. An input/output partitioning is not unique. Gigekernel orimage representation,
finding an input/output partitioning is equivalent to séileg ap x p full-rank submatrix
of R or anm x m full-rank submatrix ofP. In fact, generically, any splitting of the variables
into a group ofp variables (outputs) and a group of remaining variablesufisipdefines a
valid input/output partitioning. In nongeneric casestaierpartitionings of the variables
into inputs and outputs are not possible.

Note that in (I/Orepr), the firsh variables are fixed to be inputs, so that givEn
the input/output representatiofy,(X) is fixed and vice versa; gives € £, the
parametelX (ifit exists) is unique. Thus, as opposed to the paramétensd P in the kernel
and the image representations, the parametigrthe input/output representation (1/Orepr)
is unique.

Consider the input/output representatigiy, (X ) of £, € #. The matrices

T I ]
R=[X" —I| and P= [XT

are parameters of, respectively, kernel and image repgaTs of 4, i.e.,

[T
Bijo(X) = ker ([XT —I]) = colspan ( _XT}) )
Conversely, given the parameters

P

R=: [Ri Ro]; Ro € RP*P and P =: {Po

} , B eR™™,

of, respectively, kernel and image representation® af fﬁo: and assuming thdt, andP,
are nonsingular,
X" =—-Ry'Ri = P,P"

is the parameter of the input/output representation (IfDref 4, i.e.,
m P P
ker ( [Ri Ro} ) = col span <[P(I)] I;) = %i/o((nglRi)T) = %i/o((PoPi_l)T).

Figure 3.2 shows the links among kernel, image, and inptlaguepresentations.



3.3. Special cases with closed form solutions 35

RP=0

P = ker(R) P = colspan(P)

B = ﬂi/o(X)

Figure 3.2. Links among kernel, image, and input/output representatuf. % € .,iﬂmd,o.

Note 3.10 (Weighted least squaresYhe input/output latency minimization problem

N
Xuis = arg HQHJ Z(XTdi,i —dos) "TWi(X Tdi; — dos), (WLSx)

=1
corresponding to problem (APReqn) with||; = ||[v/W;e/|, is the weighted LS problem.

Note 3.11 AX = B notation) A standard notation adopted inthe numerical linear algebra
literature for the input/output linear static model regmstion (I/Orepr) iss ' X = b7,
i.e.,a = di andb = do. For repeated observatiods = [d; --- dy], the statement

D € %yo(X) is equivalent to the linear system of equatioh& = B, where[A B] :=

DT with A € RV*® andB € RV*P,

3.3 Special Cases with Closed Form Solutions

The special cases

e W; =1, i.e., the total least squares problem, and
* W; = W, i.e., the generalized total least squares problem,

allow closed form solution in terms of the singular valueataposition (SVD) of the data
matrix D = [d1 dN]. For general weight matricé¥;, however, the WTLS problem
has no closed form solution and its solution is based on nigaleyptimization methods
that are less robust and efficient. For this reason, recogyiize special cases and applying
the special methods is important.

The following lemmas are instrumental for the solution & LS problem.

Lemma3.12.For D e R*N andm e N, D € # € £, <= rank(D) <m.

Proof. Let D € # € £, and consider a minimal kernel representation®f= ker(R),
where R € RP*¢is full row rank. ThenD € # € 4}y =— RD =0 —
rank(D) < m.

Now let D be rank deficient witlrank(D) < m. Then there is a full row rank matrix
R € RP*4 p :=d — m, that annihilatesD, i.e., RD = 0. The matrixR defines a model in
the classZ via # := ker(R). ThenRD =0 — D € # € £, O
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Lemma 3.12 shows that the approximation of the data matrixith a model in the
classoiﬂm‘fo is equivalent to finding a matri¥o € R¥*" with rank at most. In the case
when the approximation criterion js&0 — D||r (TLS problem) or|D — D||5, the problem
has a solution in terms of the SVD &f. The result is known as the Eckart—Young—Mirsky
low-rank matrix approximation theorem [EY36]. We statenithe next lemma.

Lemma 3.13 (Matrix approximation lemma). LetD = ULV T be the SVD oD € R¥*V

and partition the matrice®/, ¥ =: diag(o1,...,04), andV as follows:
m p
P > 0] m S
U=[U; U] ¢, S=|" and V=[V; V»] N, (SVDPRT)
0 2

wheren € N is such that) < m < min(d, N) andp := d — m. Then the ranks matrix

D* =U %V,

1D~ Dle= min D~ Dlr=fols+- ok

The solutionD* is unique if and only ifry, 1 # on.

is such that

The solution of the TLS problem (TLS) trivially follows frolremmas 3.12 and 3.13.

Theorem 3.14 (Solution of the TLS problem). LetD = UXV ' be the SVD oD and
partition the matriced/, ¥, and V" as in (SVDPRT). Then a TLS approximation/of
in.Z2is

Dys = U1 V)", %Bus = ker(U,") = colspan(U7),

and the corresponding TLS misfit is

|D — Dyslle = \/02,1 + -+ 03, where ¥y =: diag(out1,. - ., 0q).

A TLS approximation always exists. It is unique if and onby,it£ oy 1.

Note 3.15 (Efficient computation oféﬁﬂs) Ifoneisinterested inan approximate mod&l,
and not in an approximated dats, the computation can be done more efficiently. A TLS
model %ys depends only on the left singular vectorsiof Therefore, for any orthogonal
matrix (), a TLS approximation computed for the data matfix) is still Bys (the left
singular vectors are not affected by the multiplicationhwt). LetD = [R; 0] QT be
the QR factorization oD. A TLS approximation of?; is the same as a TLS approximation
of D. For N > d, computing the QR factorizatioP = [R; 0] Q" and the SVD ofR,

is a more efficient alternative for ﬁndir@ﬂs than computing the SVD ab.

Note 3.16 (Nongeneric TLS problems)The TLS problem formulation (TL§) suffers
from the drawback that the optimal approximating mogigl might have no input/output
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representation (I/Orepr). In this case (known as nongeriér§ problem), the optimiza-
tion problem (TLS) has no solution. By suitable permutation of the variabiesyever,
(TLSx) can be made solvable, so th&§s exists andZys = Hijo(Xis)-

The issue of whether the TLS problem is generic or not is nated to the ap-
proximation of the dat@er sebut to the possibility of representing the optima
model s in the form (I/Orepr), i.e., to the possibility of imposinggazenin-
put/output partition oAys.

The solution of the GTLS problem can be obtained from thetwiwf a TLS problem
for a modified data matrix. In fact, with the same transfoioratechnique, we can solve
a more general WTLS problem than the previously defined GTldblpm. Define the
following misfit criterion:

Mgis2(D, B) = l];)ni?g |[VWi(D = D)/ Wi| (Mgtls2)
S

With W, = W andW; = I the misfit minimization problem

PBgisr = arg min Mgy (D, B) (GTLS2)
BELY,

reduces to the previously defined GTLS problem. The righgttematrix 17, however,
gives additional degrees of freedom for choosing an apfatpweighting pattern.

Note 3.17 (EWTLS with rank-one weight matrix 3) LetW, = diag(w;)andiW, = diag(wy),
wherew, € Ri andw, € ]Rf are given vectors with positive elements. Then

Mgio(D, %) = min [|Squs © (D — D)||lr,  where Ygie = wiw, ;

Dez?,

i.e., the GTLS problem (GTLS2) with diagonal weight matsi¢® andV; corre-
sponds to an EWTLS problem with rank-one weight malttix

Theorem 3.18 (Solution of the GTLS problem). Define the modified data matrix

D := /W D\/W,

and IetDm,ﬂS, f@mm = ker(Rmus) = colspan(Pmys) be a TLS approximation abpy,
in %d,o- Then a solution of the GTLS problem (GTLS2) is

ﬁgtlsQ = (\/ V[/I)ilbm,tls( V Wr)ila
@gtISQ = ker (Rm,tls V I/VI) = colspan (( V VVI)_IPm,tIs>a
and the corresponding GTLS misfit is

1 = Dawe | = || Pm = Dins | -
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A GTLS solution always exists. It is unique if and on@iﬁ,us is unique.

Proof. The cost function of the GTLS problem (GTLS2) can be written a

H\/WI(D - D)\/WrHF = HDm - \/WID\/WrHF = HDm - ﬁm‘
\5,—/

D

which is the cost function of a TLS problem for the modifiededatatrix D,,. Because the
mappingDp, — D, defined byDy,, = /W, D+/W,, is one-to-one, the above transformation
shows that the GTLS problem f@ is equivalent to the TLS problem fdp,,. The GTLS
solution f)gﬂsg is recovered from the TLS solutioﬁm,uS by the inverse transformation

bgtlsQ = (\/W/I)_lbm,tls(\/W)_l. We have
Bgtisz = col span (ﬁgﬂsg) = col span ((\/ W) 71ﬁm7ﬂs) = col span ((\/ I/V|)71Pm’t|s),

and it follows that#gus; = ker (Rm,usv/Wh). 0

F’

3.4 Misfit Computation

The WTLS problem is a double minimization problem with an inménimization, the
search for the best approximation of the data in a given mada an outer minimiza-
tion, the search for the model. First, we solve the inner mipation problem: the misfit
computation (Mwtls).

Since the model is linear, (Mwtls) is a convex quadraticroptation problem with a
linear constraint. Therefore, it has an analytic solutiororder to give explicit formulas for
the optimal approximatioﬁ)mS andMys(D, %), however, we need to choose a particular
parameterization of the given modet. Three parameterizations—Kkernel, image, and
input/output—are described in Section 3.2. We state thédtsgfen the kernel and the image
representations. The results for the input/output repitagien follow from the given ones
by the substitution® — [XT —I] andP — [ [ ].

Theorem 3.19 (WTLS misfit computation, kernel representatio version). Letker(R)
be a minimal kernel representationaf ¢ .£7,. The best WTLS approximationiofin 4,
i.e., the solution of (Mwtls), is

das; = (I — W, 'RT(RW;'RT)"'R)d;, fori=1,...,N,
with the corresponding misfit

N
Myas(D, ker(R)) = $ S " dl RT(RW;'RT)~'Rd,. (Mwitls )

i=1

Proof. Define the correctiol\D := D — D. The misfit computation problem (Mwtls) is
equivalent to

N

min ZAdIWiAdi subjectto R(d; — Ad;) =0, fori=1,...,N.
Adyoo Ady £
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Observe that this is a separable weighted least norm prolblemit involvesN indepen-
dent weighted least norm subproblems. Defihe= RD and letE =: [61 eN].
Consider the&th subproblem

min Ad] W;Ad; subjectto RAd; = e;.
Its solution is
Ad; =W, 'RT(RW;'R")"'Rd,,
so that the squared minimum misfit is

N N
MV%/TlS(D?‘@) = ZAd:TWzAd;k = ZdIRT(RWZ_lRT)_lez 0

i=1 i=1
Next, we state the result in the special case of a GTLS prablem

Corollary 3.20 (GTLS misfit computation, kernel representdion version). Letker(R)
be a minimal kernel representation & < ;. The best GTLS approximation &f
in % is .

Dygiis = (I - WﬁlRT(RwilRT)ilR)D,
with the corresponding misfit

Maus(D. ker(R)) = /trace (DTRT(RW-1RT)"'RD), (Mgtisr)

The image representation is dual to the kernel representa@orrespondingly, the
misfit computation with kernel and with image representetiof the model are dual prob-
lems. The kernel representation leads to a weighted least pooblem and the image
representation leads to an WLS problem.

Theorem 3.21 (WTLS misfit computation, image representationersion). Letcol span(P)
be a minimal image representation@fc .Z,. The best WTLS approximationofin % is

dwisi = P(PTW;P)"*PTW;d;, fori=1,...,N,

with the corresponding misfit

N
MMS(D,colspan(P)) = J ZdiTWi (I — P(PTWiP)—lPTWi)di. (Mwtls p)

i=1

Proof. In terms of the image representatibh= PL, with L =: [11 ZN}, prob-
lem (Mwitls) is equivalent to
N ~ A ~
min (d; — d;) "Wi(d — d;) subjectto d; = Pl;, fori=1,...,N,

-
betN G
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which is a separable WLS problem. The solution ofdtiesubproblem
H}ln(dz — dAl)TWZ(d — d}) SUbjeCt to dAZ = Pl;

is l: = (PTW7P)71PTWZd7, SO thatdA:( = ]D(PTVVzP)71PTVVldz O

Corollary 3.22 (GTLS misfitcomputation, image representaton version). Letcol span(P)
be a minimal image representationsfc .£,. The best GTLS approximationbfin 2 is
Dgis = P(PTWP)"'PTWD,

with the corresponding minimum value of the misfit function

Mgys(D, colspan(P)) = \/trace (DTW (I — P(PTWP)~"'PTW)D). (Mgtlsp)

3.5 Misfit Minimization *

In Section 3.4, we solved the inner minimization problemtef WTLS problem—misfit
computation. Now we consider the remaining problem—the miration with respect to
the model parameters. This is a nonconvex optimizationlpnolthat in general has no
closed form solution. For this reason, numerical optini@ainethods are employed for its
solution. First, we review the methods proposed in thediteme. Then we present in detail
three algorithms. In Section 3.6, we compare their perfolcaean test examples.

Algorithms Proposed in the Literature

Special optimization methods for the WTLS problem are preddas [DM93, WAH"97,
PR02, MMHO03]. The Riemannian singular value decomposi(RisVD) framework of
De Moor [DM93] is derived for the STLS problem and includes BEWTLS problem with
complexity specification = d — 1 as a special case. The restriction to more general WTLS
problems comes from the fact that the RiSVD framework isvéerfor matrix approximation
problems with rank reduction by one and with diagonal weightrices. In [DM93], an
algorithm resembling the inverse power iteration algonitls proposed for computing the
RiSVD. The method, however, has no proven convergence giegpe

The maximum likelihood principle component analysis (MLlA&)@ethod of Wentzell
et al. [WAHT97] is an alternating least squares algorithm. It applighéogeneral WTLS
problems and is globally convergent. The convergence tetegver, is linear and the
method can be rather slow in practice.

The method of Premoli and Rastello [PR02] is a heuristic &viag the first order
optimality condition of (WTLS). A solution of a nonlinear eafion is searched for instead
of a minimum point of the original optimization problem. Timethod is locally convergent
with superlinear convergence rate. The method is not gpbahvergent and the region of
convergence around a minimum point can be rather small ictipea

The weighted low-rank approximation (WLRA) framework of Man, Mahony,
and Hua et al. [MMHO3] proposes specialized optimizatiorthods on a Grassman man-
ifold. The least squares nature of the problem is not exgddity the algorithms proposed
in [MMHO3].
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Table 3.1. Model representations and optimization algorithms usedhim methods of
[DM93, WAH97, PR0O2, MMHO3].

Method | Representation Algorithm
RiSVD kernel inverse power iteration
MLPCA image alternating projections
PR input/output iteration based on heuristic linearization
WLRA kernel Newton method

The RiSVD, MLPCA, Premoli-Rastello (PR), and WLRA methodSediin the
parameterization of the model and the optimization alparithat are used.

Table 3.1 summarizes the model parameterizations and igption algorithms for the
different methods.

Alternating Least Squares Algorithm

The alternating least squares method is based on an imagseapation of the model, i.e.,
% = colspan(P), whereP € R¥*®, First we rewrite (WTLS) in the form

~ min \/VGCT(D — D)W vec(D — D), where W := diag(Wy,..., Wy).
Desezy,

The constrain) € 4 is equivalent taD = PL, whereL € R™ so that (WTLS) can
further be written as

min  min vec' (D — PL)W vec(D — PL). (WTLSp)
PeRdxm [ eRnxN

The two problems

Jmin vec' (D — PL)W vec(D — PL), (RLX1)
c dXm

min_vec' (D — PL)W vec(D — PL), (RLX2)
LERnXN

derived from (WTLS) by fixing, respectivelyl. and P to given values, are WLS problems
and therefore can be solved in closed form. They can be viasedlaxations of the non-
convex problem (WTL$g) to convex problems. Note that (RLX2) is the misfit compuatati
of (WTLSp) and the solution for the case, whéiéis block-diagonal is (Mwtlg).

The alternating least squares method is an iterative mdttaichlternatively solves
(RLX1) and (RLX2) with, respectivelyl. and P fixed to the solution of the previously
solved relaxation problem. The resulting algorithm is Algom 3.1.

Algorithm 3.1 is given for an arbitrary positive definite \gat matrixW. WhenW
is block-diagonal (WTLS problem) or diagonal (EWTLS problemlgorithm 3.1 can be
implemented more efficiently, taking into account the dtice of 1. For example, in the
WTLS case, the solution of problem (RLX1) can be computedieffity as follows:

li =P TW,P)"'PTWid;, fori=1,... N,
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Algorithm 3.1 Alternating least squares algorithm for WTLS problem wtlsap

Input: data matrixD € R**Y, weight matrixi¥ € RV4*N4d complexity specificatiom
for the WTLS approximation, and relative convergence toleea.

1: Initial approximation: compute a TLS approximationfofin .Z2, and letP(®) := Py,
DO := Dys, L© := Lys, whereLys is the matrix, such thabys = PysLys.

2: k:=0.

3: repeat

4:  Compute the solution of (RLX1)

vee(L*EHD) = (PRT I pM) I pM T vee( D),

whereP®) = Iy @ P(®).
5 M) = /vec! (D — POLOFD)IV vec(D — PRI LKD),
6: k=k-+1.
7. Compute the solution of (RLX2)

vee(P®) = (LOTWLE)TLOTW vee(D),

whereL®) = LT & [,
8 MUE) =\ /vecT (D — POLENW vee(D — PRLE),
. k k—1 k
9: until |M\§mi — My )|/Mv(vtll <&
Output: Pyys := P andDyys = P*) LK),

wherel; is theith column of L. Similarly, (Mwtlsp) takes into account the block-diagonal
structure ofi¥ for efficient solution of problem (RLX2).

The alternating least squares algorithm monotonicallyreeses the cost function
value, so that itis globally convergent. The convergents reowever, is linear and depends
on the distribution of the singular valuesBfMMHO03, IV.A]. With a pair of singular values
that are close to each other the convergence rate can belathe

Note 3.23 (Initial approximation) For simplicity the initial approximation is chosen to be
a TLS approximation oD in 92“‘{0. The weight matri¥?’, however, can partially be taken
into account in the computation of the initial approximatid_et the vectorw € RiN be
the diagonal of¥ and letl¥ € R¥N be defined a$l’ := vec™!(w), where the mapping

w — W is denoted byec—!. The EWTLS problem with weights;; := 1/W;; can be
viewed as an approximation of the WTLS problem that takesdantmunt only the diagonal
elements ol and ignores all off-diagonal elements. In the EIV settihgs ts equivalent
to ignoring the cross covariance information.

The solution of the EWTLS problem, however, still requiresaiooptimization meth-
ods that have to be initialized from a given initial approaiion. An additional simpli-
fication that results in a GTLS problem and therefore in arcesgalution method is to
approximate the matriX by a rank-one matrix; see Note 3.17.
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Algorithm of Premoli and Rastello

The algorithm of Premoli and Rastello uses the input/outpptesentatior®;,, (X ) of the
model. We have

De#ec%, <= AX =D, whereD' =:[A B],

wherecol dim(A) = m, coldim(B) = p, andd = m + p. The WTLS misfit as a function
of the parameteX is (see (Mwtls;))

N

Mys(X) = \IZdIRT(RWilRT)—le% whereR := [XT —I]. (Mwtlsy)
=1

Then (WTLS) becomes the unconstrained optimization problem

Xutis = arg min Mygs(X). (WTLSx)

DefineV; := W, * and the residual matrix

E(X):=AX-B, E'(X)=[e(X) -+ en(X)],

and partitiond; andV; as follows:

m 1Y
a;| m Vai Vabi| m
d; =: , V= ’ ’ .
|:bi:| p [%a,i Vb,i } P

The first order optimality conditiod/,,,.(X) = 0 of (WTLSy) is (see Appendix A.1)
N
23" (aie] COTTHX) = (VauX = Vana) 17 (X)es(X)e] (OTTH(X)) =0,
i=1

where

I(X):= RW, 'R".
We aim to find a solution of\/,,s(X) = 0 that corresponds to a solution of the WTLS
problem, i.e., to a global minimum point @ffys.

The algorithm proposed in [PR02] uses an iterative procedtarting from an initial
approximationX (*) and generating a sequence of approximati&n®, &k = 0,1,2,.. .,
that approaches a solution 8f,,.(X) = 0. The iteration is implicitly defined by the
equation

F(x®+D x k) =, (LINRLX)

where

N
FXHD x®) =23 (ai (XEH0T g, — ) T (X R)

i=1

= (Vo XBF = Vi I (X )y (X 0] (XD () ).
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Note thatF (X *+1) X (F)) is linear inX (**+1), so thatX (**1) can be computed in a closed
form as a function ofX (*). Equation (LIN RLX) with X (¥) fixed can be viewed as a linear
relaxation of the first order optimality condition of (WTLS, which is a highly nonlinear
equation.

An outline of the PR algorithm is given in Algorithm 3.2. Inmgral, solving the
equation (LIN RLX) forX (*+1) requires vectorization. The identityc(AX B) = (BT ®
A)vec(X) is used in order to transform (LINRLX) to the classical systef equations
G(X®)) vec(X*+1)) = p(X*)), whereG andh are given in the algorithm.

Algorithm 3.2 Algorithm of Premoli and Rastello for the WTLS problem  wtlspr

Input: the data matrix0 € R¥*¥, the weight matrice$W;}¥ ,, a complexity specifica-
tion m for the WTLS approximation, and a convergence tolerance

1: Initial approximation: compute a TLS approximatiefy,(Xys) of D in .Zn‘fo, and let
X .= Xys. (See Note 3.23.)

2: Define: D =: Zl ZN} I; , wherep := d — m.
Lo by

3 k:=0.

4: repeat

5. LetG = Oppymp aNdh = Oppx1-
6. fori=1,...,Ndo

7: e; = X®Tq; —b,.

8 Vi=w "l

7

. _
. ,_ ) (k)
o Mi._<[x_l} Vi[X_ID
10: y; = M;e;.

11: G=G+M; @ (a;a) — (yiy') ® Vai-
12: h = h + vec(a;b] M; — Vapiyiy, ).

13:  end for
14:  Solve the systent’z = h and letX *+1) := vec=!(z).
15: k:=k+1.

16: until | X®) — XD/ XB)||e < ¢
Output: Xyys := X *)

Note 3.24 (Relation to Gauss—Newton-type algorithmsplgorithm 3.2 isnot a Gauss—
Newton-type algorithm for solving the first order optimgldondition because the approx-
imation F' is not the first order truncated Taylor seriesdf,; it is a different linear
approximation. The choice makes the derivation of the d@lgorsimpler but complicates
the convergence analysis.

Note 3.25 (Convergence propertiesAlgorithm 3.2 is proven to be locally convergent with
asuperlinear convergence rate; see [MRP, Section 5.3]. Moreover, the convergence rate
tends to quadratic as the approximation gets closer to anmaimi point. The algorithm,
however, is not globally convergent, and simulation ressuiggest that the region of conver-
gence to a minimum point could be rather small. This requirgsod initial approximation
for convergence.
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An Algorithm Based on Classical Local Optimization Methods

Both the alternating least squares and the PR algorithnieearéstic optimization methods.
Next, we describe an algorithm for the WTLS problem basedassatal local optimization
methods. The classical local optimization methods haveolyneached a high level of ma-
turity. In particular, their convergence properties ard wederstood, while the convergence
properties of the RiSVD, MLPCA, and PR methods are still not.

In order to apply a classical optimization algorithm for gwution of (WTLS), first
we have to choose a parameterization of the model. Possibdengterizations are given
by the kernel, image, and input/output representations.réasons to be discussed later
(see Note 3.26), we choose the input/output represent@dti@mepr), defined on page 34,
so that the considered problem is (WTLS

A quasi-Newton-type method requires an evaluation of the fimction Mys(X)
and its first derivativell,,,(X). Both the misfit and its first derivative are available in
closed form, so that their evaluation is a matter of numémeglementation of the involved
operations. The computational steps are summarized inrifthgo 3.3. The proposed
algorithm, based on a classical optimization method, irad in Algorithm 3.4.

Algorithm 3.3 WTLS cost function and first derivative evaluation  gncostderiv

Input: D € RN {W;}N | m, andX.
. . . . al oo aN
1: Define: D =: [bl by
2: Let f =01x1 andf’ = Opxop.
3:fori=1,...,Ndo

I; , Wherep := d — m.

4 e;:=X"a; —b;.

5 V= Wifl.

6: Solve the systenﬁ[ffl]T V; [3‘1}) yi = e;.
7 f=f+elyi

8 f'=[f4ay — VaiX — Vapi)viy; -

9: end for

Output: Myus(X) = f, Myys(X) = 2f7.

Algorithm 3.4 Algorithm for WTLS based on classical local optimization wtlsopt

Input: the data matrixD € R¥*¥, the weight matrice$W;}¥ ,, a complexity specifica-
tionm for the WTLS model, and a convergence tolerasnce

1: Initial approximation: compute a TLS approximatiéﬁ,o(Xﬂs) of Din .,Zjn‘{o, and let
X .= Xy (See Note 3.23.)

2: Execute a standard optimization algorithm, e.g., the Beoydrletcher, Goldfarb, and
Shanno (BFGS) quasi-Newton method, for the minimizatioh/@fis over X with initial
approximationX (°) and with cost function and first derivative evaluation parfed via
Algorithm 3.3. LetX be the approximation found by the optimization algorithnomip
convergence.

Output: Xugs = X.
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The optimization problem (WTLS) is a nonlinear least squares problem; i.e.,
Mypis(X) = F ' (X)F(X)

for certainF : R™*®? — RP, Therefore, the use of special optimization methods such as
the Levenberg—Marquardt method is preferable. The veetdf), however, is computed
numerically, so that the JacobiaitX) := [F;/x;], wherez = vec(X), cannot be found

in closed form. A possible workaround for this problem isgmeed in [GP96], where an
approximation called quasi-Jacobian is used instead. Tihsiglacobian can be evaluated
in a similar way to the one for the gradient, which allows ugge the Levenberg—Marquardt
method for the solution of the WTLS problem.

Note 3.26 (Kernel vs. input/output representation) In Note 3.16 we comment that an op-
timal approximationZ might have no input/output representation (I/Orepr). lactice,
even when such a representation exists, the paradieteight be large, which might cause
numerical problems because of ill conditioning. In thigoexs the use of a kernel or image
representation is preferable over an input/output reptasen.

The input/output representation (I/O repr), however, hastlvantage that the param-
eterX is unique, while the parametefsand P in the kernel and image representations are
not. The misfitMyys depends only oler(R) andcol span(P) and not on all elements of
R andP. This makes the optimization problemsn g Myys(R) andminp Myys(P) more
difficult than (WTLSy). Additional constraints such @R = I andP TP = I have to
be imposed and the misfit and its derivative have to be dei@ged function of a unique
parameterization oker(R) andcol span(P). The mathematical structure appropriate to
treat this type of problem is the Grassman manifold. Clasgiptimization methods for
optimization over a Grassman manifold are proposed in [MISHO

3.6 Simulation Examples

We outlined the following algorithms for the WTLS problem:
MLPCA—the alternating least squares algorithm,
PR—the algorithm of Premoli and Rastello,
QN—the algorithm based on a quasi-Newton optimization nathad
LM—the algorithm based on the Levenberg—Marquardt optitioramethod.

In this section, we compare the performance of the algostbma simulation example.
The considered model class.i;', and the experiment has = 25 outcomes. The data
D € R**2% used in the example, is simulated according to the WTLS ENdehavith
a true model%,(X), whereX € R?*? is a random matrix, and with random positive
definite weight matrice$W, }22,.

The algorithms are compared on the basis of the

« achieved misfit\/,qs(D, %), whereZ is the computed approximate mode!;

« number of iterations needed for convergence to the speaéiavergence tolerance;
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Table 3.2. Simulation results comparing four algorithms for the WT&yem.

Method | MLPCA PR QN LM GTLS TLS WLS |
misfit 0.4687 0.4687 0.4687 0.46870.7350 0.7320 1.050
error 0.2595 0.2582 0.2581 0.25820.4673 0.4698 0.591

# iter. 51 6 5 4 — — _
# fun. eval. — — 18 29 — — —
megaflops 54 0.06 0.11 0.15| 0.010 0.005 0.010

time, sec 2.29 0.40 0.59 0.54| 0.004 0.002 0.003

« execution time, measured in seconds;

« relative error of approximatiohX — X ||¢/[| X

£, whereX is suchthat? = %y, (X);
» computational cost, measured in floating point operat{fiops); and
» number of cost function evaluations.

The criteria that are not relevant for a method are markeH #t”. The experiment is
repeated 10 times with different noise realizations andatleraged results are shown in
Table 3.2.

In addition to the four WTLS algorithms, the table shows treutes for the GTLS,
TLS, and weighted least sjc\lfuares (WLS) methods. The GTLS méshapplied by taking
W to be the average/N > ;" , W; of the weight matrices and the WLS method uses only

the information{Wb7i}£\L1, whereW; =: [W:"’i VXV“:} andW, ; € RP*P,

The results indicate that although (in this example) the ¥MILS algorithms con-
verge to the same local minimum of the cost function, themveogence properties and
numerical efficiency are different. In order to achieve tame accuracy, the MLPCA al-
gorithm needs more iterations than the other algorithmsaana result its computational
efficiency is lower. The large number of iterations neededémvergence of the MLPCA
algorithm is due to its linear convergence rate. In contrde& convergence rate of the
other algorithms is superlinear. They need approximatetysame number of iterations
and the execution times and numerical efficiency are simildwe PR algorithm is about
two times more efficient than the standard local optimizasilgorithms, but it has no global
convergence property, which is a serious drawback for ndications.

3.7 Conclusions

In this chapter we considered approximate modeling probl&Emlinear static problems.
The most general problem formulation that we treated is the.8/problem, where the
distance from each of the outcomes to the model is measuredvilsighted norm with

possibly different weight matrix. The WTLS problem is motad by the relative error TLS
and EIV estimation problems, where the weighted misfit ralyioccurs and the weight
matrices have interpretation, e.g., in the EIV estimatiosbfem, the weight matrices are
related to the covariance matrices of the measuremenserror
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We showed the relations among the kernel, image, and ingptibrepresentations.
Except for the nongeneric cases that occur in the inputidugpresentation, one repre-
sentation can be transformed into another one. Thus in rajgfitoximation problems the
choice of the representation is a matter of convenience.e @amputed, the approximate
model % can be transformed to any desired representation. We nieé¢dhte numerical
algorithms proposed in the literature for the WTLS probleffedimainly because they use
different model representations.

We showed how the TLS and GTLS problems are solved by an SMindar algebra
terms, these problems boil down to finding a closest rankideficnatrix to a given matrix.
The main tool for obtaining the solution is the matrix appneation lemma. The solution
always exists but in certain nongeneric cases it could bemqne.

The numerical solution of the general WTLS problem was appgred in two steps:

1. compute analytically the misfit and
2. solve numerically the resulting optimization problem.

We showed two different expressions for the WTLS misfit: oma@fmodel given by a kernel
representation and the other for a model given by an imageseptation. In the first case,
the misfit computation problem is a weighted least norm mobland in the second case,
itis a WLS problem.

Apart from the model representation used, another way dinioig different com-
putational algorithms is the use of a different optimizatinethod in the second step. We
outlined three algorithms: alternating least squaresalterithm of Premoli and Rastello,
and an algorithm based on classical local optimization pugh The alternating least
squares algorithm has a linear convergence rate, whichsiitade¢her slow compared to the
other two algorithms, whose convergence rate is superlifidee algorithm of Premoli and
Rastello is not globally convergent, while the other twooaidnms have this property. For
these reasons, the algorithm based on standard local aptiori methods is recommended
for solving WTLS problems.

The proposed Algorithm 3.4, based on local optimizationhods, however, uses the
input/output representatio, (X ) of the model. As already discussed, this representation
is not general; there are cases when the data such that the optimal approximatics
has no input/output representatiﬁn,o(f(). Such cases are nongeneric, but even whien
exists, it might be large, which might cause ill conditiagnirA solution for this problem is to
use a kernel or an image representation of the model. Theehbba kernel representation
leads to the optimization methods presented in [MMHO3].



Chapter 4

Structured Total Least
Squares

The weighted total least squares problem generalizes tt® groblem by introducing
weights in the misfit function. The structured total leasizags problem generalizesthe TLS
problem by introducing a structure in the data matrix. Theivation for the special type
of block-Hankel structure comes from system identificatidhe global total least squares
problem is closely related to the structured total leastasegiproblem with block-Hankel
structured data matrix.

Section 4.1 gives an overview of the existing literaturecti®a 4.2 defines the type
of structure we restrict ourselves to and derives an eqrivalnconstrained optimization
problem. The data matrix is partitioned into blocks and eatlthe blocks is block-
Toeplitz/Hankel structured, unstructured, or exact. loti®e 4.3, the properties of the
equivalent problem are established. The special struofuhe equivalent problem enables
us toimprove the computational efficiency of the numerioaltion methods. By exploiting
the structure, the computational complexity of the aldpris (local optimization methods)
per iteration is linear in the sample size.

4.1 Overview of the Literature
History of the Problem

The origin of the STLS problem dates back to the work of Aold &ne [AY70a], although
the name “structured total least squares” did not appear 2Btyears later in the liter-
ature [DM93]. Aoki and Yue consider a single-input singlggut system identification
problem, where both the input and the output are noisy (Eftingg and derive a maxi-
mum likelihood solution. Under the normality assumption tfte measurement errors, a
maximum likelihood estimate turns out to be a solution of$fi&.S problem. Furthermore,
Aoki and Yue approach the optimization problem in a similayvto the one we adopt:
they use classical nonlinear least squares minimizaticthads for solving an equivalent
unconstrained problem.

The STLS problem occurs frequently in signal processindiegons. Cadzow
[Cad88] and Bresler and Macovski [BM86] propose heuristititon methods that turn

49
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out to besuboptimal[DM94, Section V] with respect to the STLS criterion. Thesethods,
however, became popular because of their simplicity. Fanmete, the method of Cadzow
is an iterative method that alternates between unstruttiorg-rank approximation and
structure enforcement, thereby requiring only SVD comiperig and manipulation of the
matrix entries.

Abatzoglou, Mendel, and Harda [AMH91] are considered tohaefirst who formu-
lated an STLS problem. They called their approaohstrained total least squaresd
motivate the problem as an extension of the TLS method toiceatwith structure. The
solution approach adopted in [AMH91] is closely relatechdne of Aoki and Yue. Again,
an equivalent optimization problemis derived, butitis/edlnumerically via a Newton-type
optimization method.

Shortly after the publication of the work on the constraiteedl least squares problem,
De Moor lists many applications of the STLS problem and aeslia new framework for
deriving analytical properties and numerical methods [BM™is approach is based on
the Lagrange multipliers and the basic result is an equitgdeblem, calledRiemannian
singular value decompositiorihat can be considered as a “nonlinear” extension of the
classical SVD. As an outcome of the new problem formulatriferative solution method
based on the inverse power iteration is proposed.

Another algorithm for solving the STLS problem (even withand ¢, norms in
the cost function), calledtructured total least normis proposed by Rosen, Park, and
Glick [RPG96]. In contrast to the approaches of Aoki and Yuad &batzoglou et al.,
Rosen et al. solve the problem in its original formulatioheTonstraint is linearized around
the current iteration point, which results in a linearly stained least squares problem. In
the algorithm of [RPG96], the constraint is incorporatedhia cost function by adding a
multiple of its residual norm.

The weighted low-rank approximation framework of Mantonatdny, and Hua
[MMHO03] has been extended in Schuermans, Lemmerling, andivefel [SLV04, SLVO5]
toHankel structured low-rank approximatigmoblems. All problem formulations and solu-
tion methods cited above, except for the ones in the WLRA fraonke, aim at rank reduction
of the data matrixC' by one. A generalization of the algorithm of Rosen et al. wbhpgms
with rank reduction by more than one is proposed by Van Hiifatk, and Rosen [VPR96].
It involves, however, Kronecker products that unnecelysanilate the dimension of the
involved matrices. The solution methods in the WLRA framewi@LV04, SLV05] are
also computationally demanding.

When dealing with a general affine structure, the constraiotadileast squares, Rie-
mannian singular value decomposition, and structured ledat norm methods have cubic
computational complexity in the number of measurementst afgorithms with linear com-
putational complexity are proposed by Lemmerling, Masdrdin and Van Huffel [LMV0O]
and Mastronardi, Lemmerling, and Van Huffel [MLVOO] for sp&l STLS problems with
data matrix.#(p) =: [A b| that is Hankel or composed of a Hankel blodkand an
unstructured columb. They use the structured total least norm approach but neoethat
a matrix appearing in the kernel subproblem of the algoritta®m low displacement rank.
This is exploited via the Schur algorithm.
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Motivation for Our Work

The STLS solution methods outlined above point out the ¥alg issues:

* structure: the structure specification for the data matei(p) varies from general
affine [AMH91, DM93, RPG96] to specific affine, such as Hankadplitz [LMV00],
or Hankel/Toeplitz block augmented with an unstructurddmom [MLVO00],

« rank reduction:all methods, except for the ones of [VPR96, SLV04, SLVOXjuee
the rank of the data matrix by = 1;

« computational efficiencythe efficiency varies from cubic for the methods that use a
general affine structure to linear for the efficient methoidd b\VOO, MLVO0Q] that
use a Hankel/Toeplitz-type structure.

No efficient algorithms exist for problems with block-HallReeplitz structure and rank
reductiond > 1. In addition, the proposed methods lack a numerically bédiand robust
software implementation that would make possible theiimseal-life applications. Due to
the above reasons, the STLS methods, although attractittesforetical studies and relevant
for applications, did not become popular for solving ref-problems.

The motivation for our work is to make the STLS method pradyauseful by deriving
algorithms that are general enough for various applicateomd computationally efficient
for real-life examples. We complement the theoreticalptuda software implementation.

4.2 The Structured Total Least Squares Problem
The STLS problem

min [|p — p|| subjectto rank (.#(p)) < n (STLS)
JZ

defined in Section 2.7 is a structured low-rank approxinmgimblem. The functior” :
R™ — R™*(+d) m > pn, defines the structure of the data as follows: a mattix
R™*(n+d) js said to have structure defined by if there exists gp € R™», such that
C = .“(p). The vectonp is called a parameter vector of the structured magfix

The aim of the STLS problem is to perturb as little as possldéven parameter
vectorp by avectorAp, so thatthe perturbed structured matwiXp+Ap) becomes
rank deficient with rank at most.

A kernel representation of the rank deficiency constnaink (.#(p)) = n yields the
equivalent problem

min min ||p — p|| subjectto R.Z T (p) = 0. (STLSR)
RRT=I, D

In this chapter, we use an input/output representatiorhatdhe considered STLS problem
is defined as follows.
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Problem 4.1 (STLS).Given a data vectop € R"», a structure specificatio” : R"» —
R™*(+d) “and a rank specification, solve the optimization problem

Xetis = arg )I(niAI; [IAp|| subjectto . (p — Ap) [)L] =0. (STLSy)

Define the matrices
Koyt 1= [iﬂ and [A B]:=C:=(p), whered e R™ " andB e R™*%,

and note tha€' Xy = 0 is equivalent to the structured system of equatidds = B.
The STLS problem is said to be affine structured if the fumcti6 is affine, i.e.,

np

F(p)=So+ > _ Sipi, forallpeR" and for somes;, i =1,...,n,. (4.1)
=1

In an affine STLS problem, the constraifit(p — Ap) Xext = 0 is bilinear in the decision
variablesX andAp.

Lemma 4.2. Let.7 : R — R™m*(n+d) he an affine function. Then

S(p—Ap)Xex=0 <= G(X)Ap=r(X),

where
G(X) = [vec ((S1Xex) ") -+ vec ((Sn, Xex) )] € R™4*"r, (4.2)
and
r(X) := vec ((Y(p)Xext)T) e R™,
Proof.

y(p - Ap))(ext =0 < Z SiAp; Xext = y(p)Xext

=1
— Zvec ((SiXext)T)Api = vec ((y(p)Xext)T)
=1
— G(X)Ap=r(X). O
Using Lemma 4.2, we rewrite the affine STLS problem as foltows

min (H&ianApH subject to G(X)Ap = r(X)). (4.3)

The inner minimization problem has an analytic solutionjolhallows us to derive an
equivalent optimization problem.
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Theorem 4.3 (Equivalent optimization problem for affine STLS). Assuming that,, >
md, the affine STLS problem (4.3) is equivalent to

min fo(X), where fo(X) := T (X)IT(X)r(X) and T(X) := G(X)GT(X).
(4.4)

Proof. Under the assumptiom, > md, the inner minimization problem of (4.3) is equiva-
lent to a least norm problem. Its minimum point (as a functdx) is

Ap*(X) = GT(X)(G(X)GT (X)) r(X),
so that

Fo(X) = A(p* (X)) " Ap*(X) =T (X)(G(X)GT (X)) 'r(X) = T(X)TT(X)r(X). O

The significance of Theorem 4.3 is that the constraint andéleesion variablé\p in
problem (4.3) are eliminated. Typically, the number of ed@tsnd in X is much smaller
than the number of elements in the correctiom\p. Thus the reduction in the complexity
is significant.

The equivalent optimization problem (4.4) is a nonlineastesquares problem, so
that classical optimization methods can be used for itdieoluThe optimization methods
require a cost function and first derivative evaluation. rbofes to evaluate the cost functigipn
for a given value of the argument, we need to form the weight matrIx X') and to solve
the system of equation¥ X )y(X) = r(X). This straightforward implementation requires
O(m?) floating point operation (flops). For large (the applications that we aim at) this
computational complexity becomes prohibitive.

It turns out, however, that for special affine structu#s the weight matrix"(X)
has a block-Toeplitz and block-banded structure, whichtmexploited for efficient cost
function and first derivative evaluations. The set of stites of.” for which we establish
the special properties &f(X) is specified next.

Assumption 4.4 (Flexible structure specification) The structure specificatio®’ : R"» —
R™*(n+d) js such that for allp € R"», the data matrix?(p) =: C =: [A B] is of the
type.”(p) = [C* --- (7], whereC'!,forl =1,...,q,is block-Toeplitz, block-Hankel,
unstructured, or exact and all block-Toeplitz/Hankel stared blocksC! have equal row
dimensionK of the blocks.

Assumption 4.4 says that' (p) is composed of blocks, each one of which is block-
Toeplitz, block-Hankel, unstructured, or exact. A blagkthat is exact is not modified in
the solutionC' := .%(p — Ap), i.e.,C! = C'. Assumption 4.4 is the essential structural
assumption that we impose on the problem (ST).SAs shown in Section 4.6, it is fairly
general and covers many applications.
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Example 4.5 Consider the following block-Toeplitz matrix:

5 3 1
6 4 2
7 5 3
¢= 8 6 4
9 7 5
10 8 6

with row dimension of the blockk = 2. Next, we specify the matriceS; that define
via (4.1) an affine function”, such that' = .7 (p) for certain parameter vectpr Let==
be the element-wise comparison operator

1 if Aij = Bij)

(A==B):=C, forallA,B e R™*", whereC;; := .
0 otherwise

Let £/ be the6 x 3 matrix with all elements equal to 1 and defifig := 0gx3 and.S; :=
(C==iE),fori=1,...,10. We have

10 10
0= Si=5+Y Spi=Fp), withp=[1 2 - 10] .
i=1 i=1

The matrixC' considered in the example is special; it allowed us to easilie down a
corresponding affine functiogr’. Clearly with the constructed’, any6 x 3 block-Toeplitz
matrix C' with row dimension of the block{ = 2 can be written ag” = .7 (p) for
certainp € R'°.

We use the notation; for the number oblock columns of the block’*. For unstruc-
tured and exact blocks; := 1.

4.3 Properties of the Weight Matrix *

For the evaluation of the cost functigi of the equivalent optimization problem (4.4), we
have to solve the system of equatidisX )y(X) = r(X), wherel'(X) € R™?*"» with
bothm andn,, large. In this section, we investigate the structure of ti¢rixaI'(X). In
the notation, occasionally we drop the explicit dependearficeandI” on X .

Theorem 4.6 (Structure of the weight matrixI"). Consider the equivalent optimization
problem (4.4) from Theorem 4.3. If, in addition to the asstioms of Theorem 4.3, the
structure. is such that Assumption 4.4 holds, then the weight m&{X) has the block-
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banded and block-Toeplitz structure

e - r! 0]
r
T T
rx)=|" " 7 T | ggmaxma (4.5)
[, e :
N
LO r. -~ rp Iy
wherel, € RIEXIK for = 0,1,...,s, ands = max;—1__,(n; — 1), wheren; is the

number of block columns in the blo€k of the data matrix? (p).

The proof is developed in a series of lemmas. First, we retheeriginal problem
with multiple blocksC' (see Assumption 4.4) to three independent problems—onéador t
unstructured case, one for the block-Hankel case, and orleddlock-Toeplitz case.

Lemma 4.7. Consider a structure specification of the form
Lp)=[LpY) - L], P ER™, YLy =ny,

wherep =: col(p?, ..., p?) and.7(p') := S{+> 07 Sipl forallp! € R, 1=1,...,4q.
Then

I(X)=> T'X), (4.6)
=1

wherel := GY(G") T, G' := [vec (SiXh)T) -+ vec((SL Xéxt)—r)], and

Np,1

Xext =: col(Xgy, -, X&), with XL, e R"*4 S ny=n+d.

Proof. The result is a refinement of Lemma 4.2. L&p =: col(Ap!,..., Ap?), where
Apt € R™t, forl =1,...,q. We have

S (p—Ap)Xex=0 = Y|, St — Ap) X =0
= YL Y SIAp X Ly = 7 (p) Xext
— YL, G'Apl =r(X)

—= [G' -+ GYAp=r(X),
—_——
G(X)
sothall = GG" =Y GY(G)T =X T u|

Next, we establish the structure Bffor an STLS problem with unstructured data
matrix.
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Lemma 4.8. Let
P1 P2 Pn+d
F) = pn—&-.d—&-l pn-l-.d+2 p2(7f+d) € Rmx(n+d).
Pim—-1)(n+d)+1  P(m—1)(n+d)+2 Pm(n+d)
Then

I'=1,® (Xg(tXext)§

(4.7)

i.e., the matrixC has the structure (4.5) with= 0 andly = Iy ® (X g Xext)-

Proof. We have

S (p— Ap)Xext = 0 < vec (X;(tYT(Ap)) = vec ((Y(p)Xext)T)
= (I, ® Xopy) vec (yT(Ap)) =r(X).

G(X)
Thereforel’ = GG = (I, @ X&) (I @ X)) " =

ext

matrix.

Lemma 4.9. Let

Ap

m ® (X(;;tXext)- |:|
Next, we establish the structure Bffor an STLS problem with block-Hankel data

Cq Cy Chn n+d

Oy C3 . On+1 = 7
y(p) — : : : c IRmx(ner)7 -

C(m C(m-i-l C1m—‘,—n—1 m= ?’

whereC; are K x L unstructured blocks, parameterizedffy) € RXL as follows:

(4) (@)

it %
C, = pL.+1 pL.+2
W )
Pk-1yp+1 Pr-1)L+2
Define a partitioning ofXey as X, =: [X1 . ¢

n], WhereX; € R™L. Thenl" has

the block-banded and block-Toeplitz structure (4.5) wita n — 1 and with

n—k

Me=> X;X],,, where X :=Ix ® Xj.

j=1

Proof. Define the residuak := .7 (Ap) Xex and the partitioning? " =: [R1

(4.8)

Rl
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whereR; € R X Let AC := .7 (Ap), with block entriesAC;. We have

jﬂ(p - Ap))(ext =0 < y(Ap)Xext = y(p)Xext

(X, X - X, ACY R/
X1 Xy o X, AC, Ry
= . ) =1 .
i Xy Xy oo Xa] [ACpiaa]  [Ra
X; X - X vec(ACT) vec(R])
X1 Xo - X, vec(ACy ) vec(Ry )
= . ) = .
i Xi Xy oo Xa [vec(ACH n 1) vec(R,)
G(X) Ap r(X)
Therefore' = GG T has the structure (4.5), wiffy,’s given by (4.8). O

The derivation of th@" matrix for an STLS problem with block-Toeplitz data matrix
is analogous to the one for an STLS problem with block-Hadkth matrix. We state the
result in the next lemma.

Lemma 4.10.Let

Cn C'nfl Cl
C'nJrl CVn o CV2

y(p> .= : : : c Rmx(n-{—d)7
C‘m+n71 CYern72 o C'm

with the blocks”; defined as in Lemma 4.9. ThEmas the block-banded and block-Toeplitz
structure (4.5) withs = n — 1 and

n
Me= > XX/ . (4.9)
Jj=k+1

Proof. Following the same derivation as in the proof of Lemma 4.9fine that

Xn anl e Xl
Xn anl T Xl
G= )
Xn anl o Xl
ThereforeI' = GG " has the structure (4.5), wiffy,’s given by (4.9). O

Proof of Theorem 4.6.emmas 4.7—4.10 show that the weight maltior the original
problem has the block-banded and block-Toeplitz strucfdrg) with s = max;—; . 4
(n; — 1), wheren, is the number of block columns in tlith block of the data matrix.
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Apart from revealing the structure 6f the proof of Theorem 4.6 gives an algorithm
for the construction of the blockg, ..., I, that defind:

S X5(X_) T if Clis block-Toeplitz,
S XE(XE )T if Cis block-Hankel,
Sl ® ((Xé) " X&) if Ctis unstructured,

Odx if C!is exact,

q
M, => T}, wherel; = (4.10)
=1

whered is the Kronecker delta functiony = 1 andd, = 0 for k& #£ 0.

Corollary 4.11 (Positive definiteness of the weight matriX”). Assume that the structure
of .7 is given by Assumption 4.4 with the black being block-Toeplitz, block-Hankel, or
unstructured and having at leadtcolumns. Then the matriX(X) is positive definite for
all X € R™x4,

Proof. We will show thatl'?(X) > 0 for all X € R"*<¢. From (4.6), it follows thal™ has
the same property. By the assumptiohdim(C?) > d, itfollows thatXg,, = [ 7, |, where
the x denotes a block (possibly empty) depending’n In the unstructured cas€? =
I ® (X&) T X&) see (4.10). Butank ((Xgy) " X&) = d, so thafl is nonsingular. In
the block-Hankel/Toeplitz casé&;? is block-Toeplitz and block-banded; see Lemmas 4.9
and 4.10. One can verify by inspection that, independet¥ of7?(X) has full row rank
due to its row echelon form. Thdrf = G4(GY) " > 0. O

The positive definiteness bfis studied in a statistical setting in [KMV05, Section 4],
where more general conditions are given. The restrictioAssiumption 4.4 that ensures
I > 0 is fairly minor, so that in what follows we will consider STloblems of this type
and replace the pseudoinverse in (4.4) with the inverse.

In the next section, we give an interpretation of the resolinfa statistical point of
view, and in Section 4.5, we consider in more detail the dlignic side of the problem.

4.4 Stochastic Interpretation *

Our work on the STLS problem has its origin in the field of estiion theory. Consider the
EIV model

AX ~ B, where A=A+ A, B=B+B, and AX = B. (EIVx)

The datad and B is obtained from true value4 and B with measurement errpv& andB
that are zero mean random matrices. Define the extendedkxmatr= [A B} and the

vectoré := Vec(C’T) of the measurement errors. It is well known (see [VV91, Ceaf})
that the TLS problem (TL$) provides a consistent estimator for the true value of the
parameterX in the model (ElVy) if cov(é) = 021 (and additional technical conditions are
satisfied). Ifin addition teov(¢) = o1, ¢is normally distributed, i.eG ~ N(0, 0%I),then
the solutionXys of the TLS problem is the maximum likelihood estimateXof

The model (ElVk) is called structured EIV model if the observed datand the true
valueC := [A B] have a structure defined by a functisfi Therefore,

C=.7(p) and C=.7(p),
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wherep € R" is a true value of the parametgr As a consequence, the matrix of
measurement errors is also structured. zeébe affine and defined by (4.1). Then

Tp
C=> Sp and p=p+p,

i=1

where the random vectgrrepresents the measurement error on the structure pargimete
In [KMVO05], it is proven that the STLS problem (STL§ provides a consistent estimator
for the true value of the paramet&rif cov(p) = %I (and additional technical conditions
are satisfied). Iff ~ N(0,02I) then a solutionX of the STLS problem is a maximum
likelihood estimate ofX .

Let7(X) := vec ((p) Xex) be the random part of the residual

In the stochastic setting, the weight matfixs, up to the scale facter?, equal to
the covariance matri¥; := cov (7).

Indeed; = Gp, so that

Vi:=E(# ) =G E@p )G = GG = oT.

Next, we show that the structure bfis in a one-to-one correspondence with the
structure ofVz := cov(¢). Letl;; € R¥>*4K pe the(s, j)th block of I and letVz ;; €
R+ Ex(n+d)K phe the(i, j)th block of Vz. Define also the following partitionings of the
vectorsr andé:

F=:col(Fy,...,fm), F;€R¥ and &=:col(€,...,Em), € € RPTDK

wherem := m/K. Usingr; = XexcCi, WhereXey := (Ix @ Xgy), we have

o’Ti; = E(FiF] ) = Xex E(&:€] )X,

J ext

= XextVz,ij X oy

ext’

(4.11)

The one-to-one relation between the structure§ and V;z allows us to relate the
structural properties of, established in Theorem 4.6, with statistical propertiethe
measurementerrors. Define stationarity ssttpendence of a centered sequence of random
vectorse := {€;, €y, ...}, €&; € R(TIK as follows:

e C is stationary if the covariance matrixVz is block-Toeplitz with block size
(n+d)K x (n+d)K, and

e C is s-dependentf the covariance matrixVz is block-banded with block size
(n+d)K x (n+ d)K and block bandwidtRs + 1.

The sequence of measurement er@ts. . , ¢, being stationary angtdependent
corresponds td' being block-Toeplitz and block-banded.
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The statistical setting gives an insight into the relatietvieen the structure of the
weight matrixI" and the structure of the data mattix It can be verified that the structure
specification of Assumption 4.4 implies stationarity andependen fo€. This indicates
an alternative (statistical) proof of Theorem 4.6.

The blocks ofT" are quadratic functions ok, I;;(X) = XextWE,ijxg(t, where
We.ij = Veij/o?; see (4.11). Moreover, by Theorem 4.6, we have that undeunigs
tion 4.4, We ;; = W |;—;, for certain matrice$Ve i, k = 1,...,m, andWg ;; = 0, for
li — j| > s, wheres is defined in Theorem 4.6. Therefore,

1
Me(X) = XexWer Xd,, fork=1,...,s, where Wey = — Viy.

)
ext 0-2

In (4.10) we show how the matric¢B, }; _, are determined from the structure specification
of Assumption 4.4. Now we give the corresponding expresdiorthe matrice§We 1 }5_:

(J] )% if Clis block-Toeplitz,
(Jn,x)8% if Clis block-Hankel,

We o := diag(W,, ..., W?), and W\ = Lo
&k gV ) k opln, i if Clis unstructured,

(4.12)

O, 5 if C!is exact,
whereJ,, is then; x n; shift matrix
01 0 0
00 1 0
=00 e T e R
o0 -~ 0 1
00 -~ 0 0

In the computational algorithm described in Section 4.5,use the partitioning of
the matrixT" into blocks of sizel x d. LetI';; € R¥*? be the(i, j)th block of I" and let
Vz i € ROt x(n+d) e the(s, j)th block of Vz. Define the following partitionings of the
vectorsr andé:

F=:col(f1,...,7m), 71 €RY and &=:col(éy,...,ém), & € R

Using7; = Xaci, we have

1 . 1 . 1
Iy == E(fF)) = gXeTxtE(CiCjT)Xext = PX;tVE,inext = XgWzij Xext

4.5 Efficient Cost Function and First Derivative

Evaluation *
We consider an efficient numerical method for solving the STiroblem (STLS) by
applying standard local optimization algorithms to the iegjent problem (4.4). With

this approach, the main computational effort is in the costfion and its first derivative
evaluation.
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First, we describe the evaluation of the cost function: g% computefy(X). For
given X, and with{Il;};_, constructed according to (4.12), the weight malfixXX) is
specified. Then, from the solution of the systB(X )y, (X) = r(X), the cost function is
found asfo(X) = r " (X)y,(X).

The properties of'(X) can be exploited in the solution of the systém, = r.
The subroutineMB02GDfrom the SLICOT library [VSVF04] exploits both the block-
Toeplitz and the block-banded structure to compute a Chplestor of ' in O((dK)?sm)
flops. In combination with the LAPACK subroutir@PBTRSthat solves block-banded
triangular systems of equations, the cost function is etatliinO(m) flops. Thus an
algorithm for local optimization that uses only cost funatevaluations has computational
complexity O(m) flops per iteration, because the computations needed aifeffor the
optimization algorithm do not depend an

Next, we describe the evaluation of the derivative. Thewvddrie of the cost func-
tion fy is (see Appendix A.2)

f(X) =2 am (X)My(X) =2 [T 0] Wey [fﬂ Nji(X),  (4.13)

Q=1 Q=1
whereA" =:[a; -+ ap), witha; € R,

M(X):=T"1X), N(X):=T""X)r(X)r" (X)r (X)),
andM;; € R™4, N;; € R4 are the(i, j)th blocks ofM and N, respectively.

Consider the following two partitionings agf. € R™<:

Ypr =:COl(Yr1s-- s Yrm), Yri € R? and y, =: col(Y, 153 Yrm)s Yri € RIK,
(4.14)

wherem := m /K. The first sum in (4.13) becomes

S apl My = ATY,, where Y," = [y o Y] - (4.15)

4,j=1
Define the sequence of matrices

m—Fk

Nei=> v,y Ne=NT, k=05
i=1

The second sum in (4.13) can be written as

m X s K
Do 0] Wey {—I] Nji= > > (WarijX = Wag i )NLij»

ij=1 k=—s i,j=1

whereWe ;. ;; € R+ x(n+d) jsthe(i, j)th block of W j, € RE(Hd)xKntd) 'y, o e
R™*™ andWy; , .. € R"*? are defined as blocks &z 1 ;; as
Wiak.ij Wéf:,k,ij:|

We k,ij =: [
EL) . ~ ~
Weakii Wonis
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andNy ;; € R¥? s the(i, j)th block of N;, € R K,

Thus the evaluation of the derivativé(X) uses the solution dfy, = r, already
computed for the cost function evaluation and additionarafions ofO(m) flops. The
steps described above are summarized in Algorithms 4.1 2nd 4

The structure of¥(-) is specified by the integek, the number of rows in
a block of a block-Toeplitz/Hankel structured block?, and the arrays €
({T,H,U,E} x N x N)? that describes the structure of the blogks® }7_, .

The ith elements; of the arrays specifies the block?() by giving its types;(1), the
number of columns,; = S;(2), and (ifC® is block-Hankel or block-Toeplitz) the column
dimensiont; = 8;(3) of a block inC® . Therefore, the input data for the STLS problem is
the data matrix”(p) (alternatively the parameter vectorand the structure specification
K ands.

Algorithm 4.1 outlines the steps for the construction of thg, matrices. It re-
quires arithmetic operation only for indexing matrix-v@celements. The + 1 matrices
{Wer}i_, are sparse. For the typical applications that we addresgeves, their dimen-
sion(n + d)K x (n + d)K is relatively small (compared to the row dimensianof the
data matrix), so that we do not take into account their stinect

Algorithm 4.1 From structure specificatiolt, S to {We . } decode_struct
Input: structure specificatioi, S.

1: Defines := max;—1 . 4(n; — 1), wheren; := n;/t;, for block-Toeplitz/Hankel struc-
tured blockC!, andn; := 1, otherwise.
2.fork=1,...,sdo

3 fori=1,...,¢qdo

4 if 5;(1)==T then

5 Wi = ()"

6: else if 5;(1)==Hthen
7 Wi = ()"t

8 else if$;(1)==Uthen
9 W]i = (5/6[”1

10: else

11: Wi =0,

12: end if

13: end for

14: WEJC = diag(Wkl, RN W]g)
15: end for

Output: {Wer}i_,.

Algorithm 4.2 specifies the steps needed for the cost funetia its first derivative
evaluation. The flops per step for Algorithm 4.2 are as foiow
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2. (n+d)(n+2d)dK? 5. md
3. m(n+1)d 8. msd®’K — s(s+1)d>K?/2
4. msd*K? 9. mnd + (2s + 1)(nd + n + 1)dK?

Thus in totalO(md(sdK? +n) +n2dK? + 3nd*> K* + 2d3 K3 + 2snd* K?) flops are
required for cost function and first derivative evaluatidiote that the flop counts depend
on the structure through

Algorithm 4.2 STLS cost function and first derivative evaluation cost

Input: A, B, X, {We 1 }i_o-

1T, =Ug® [XT —I])Wak(IK ® [XT —I])T, fork=0,1,...,s.

2:r =vec ((AX - B)T).

3: Solvel'y, = r exploiting the block-banded and block-Toeplitz structafé’, e.g., by
using the routine®B02GLCfrom the SLICOT library anddPBTRSrom the LAPACK

library.

4: fo=r"y,.

5: If only the cost function evaluation is required, outgiytand stop.

6: Definecol(y,1,. .., Yrm) = yr, Wherey,; € RY col(y, 1,...,¥,m) =: yr, Where
Yri € R 'm:=m/K;andY,’ = [ym ynm].

7N ="y ey fork :2, 1,...,s.

& fh = 24TY, — 23 | >ijm1(Wakii X — Waf),k,ij)NkT,ij’ where We ;5 €
R(+d)x(ntd) s the (i, j)th block of W, € REMFxKntd) iy, 0 c RPX™,
Wib ks € R™*? are defined as blocks oF% ;. ;; as

Wakii Wi

We k,ij =: o ab,k.ij |

o WBa,k,ij Wﬁ,k,ij
andNy ;; € R4*?is the(i, j)th block of N, € RxAK,

Output: fo, f§-

Using the computation of the cost function and its first deike, we can apply the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newiethod. Thus the overall
algorithm for the computation of the STLS solution is Algbm 4.3.

A more efficient alternative, however, is to apply a nonlifeast squares optimization
algorithm, such as the Levenberg—Marquardt
algorithm. LetI’ = U'U be the Cholesky factorization df. Thenf, = FTF, with
F := U~'r. (Note that the evaluation df(X) is cheaper than that ¢ (X).) We do not
know an analytic expression for the Jacobian mafifX') = [0F;/0z;|, but instead we
use the so-called pseudo-Jacobignproposed in [GP96]. The evaluation @f can be
done efficiently, using the approach described abovg“foX ).

Moreover, by using the nonlinear least squares approacthamp$eudo-Jacobiah ,
we have as a byproduct of the optimization algorithm an extnof the covariance matrix
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Algorithm 4.3 Algorithm for solving the STLS problem stls

Input: the structure specificatioR, S and the matricesl and B.

1: Compute the matricegi% .} via Algorithm 4.1.

2: Compute the TLS solutioX (¥ of AX ~ B by, e.g., the functioMB02MDOrom the
SLICOT library.

3: Execute a standard optimization algorithm, e.g., the BFG&igNewton method, for
the minimization off, over X with initial approximationX (°) and with cost function
and first derivative evaluation performed via Algorithm.4.2

Output: X the approximation found by the optimization algorithm upomvergence.

Table 4.1. Standard approximation problems that are special casef®fTLS problem
for particular structure specificatiork, S.

Problem Structures K
Least squares (LS) [[E n],[v d]] 1
Total least squares (TLS) U n+d] 1
Mixed least squares—total least squares (LS-TLSJE  ni],[U ng],[U d]] 1
Hankel low-rank approximation (HLRA) [H n+p m] P
SISO deconvolution ([T n],[u 1]] 1
SISO EIV system identification [[H n+1],[H n+1]] 1

Vi = cov (vec(X)). As shown in [PS01, Chapter 17.4.7, equations (17)—(35)],

Vi~ (JL(X) I (X))

Using V;, we can compute statistical confidence bounds for the ettifia

The solution method outlined in Algorithm 4.3, using the éelierg—Marquardt al-
gorithm, is implemented in C language. A description of tbitvgare package is given in
Appendix B.2.

4.6 Simulation Examples

The approximation problems listed in Table 4.1 are speai#s of the block-Toeplitz/Hankel
STLS problem for particular choices of the structure spegiion i, S. If not given, the
third element o, is by default equal to one.

Our goal is to show the flexibility of the STLS problem formitiden (STLSy) with a
structure of Assumption 4.4. More realistic applicatiohthe STLS package are described
in Chapter 11, where real-life data sets for multi-inputtiralitput (MIMO) system identifi-
cation are used. Special problems such as LS, TLS, and m&€eLLS should be solved by
the corresponding special methods. Still, they serve ashmearks for the STLS package.

We show simulation examples for the problems of Table 4. déta is a perturbed
version of a “true” data generated by a “true” model. True gl@hd true data refer to the
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particular problem (see the description below) and aressdaandomly. The perturbation
is a Gaussian noise with a covariance matix.

Table 4.2 shows the scaled computation timeost function valugfy(X), i.e., error
of approximation, and relative error of estimation

e:=|X — X|e/|X|lr,  whereX is the parameter of the “true” model

for the STLS package and for an alternative computationahauk if there is one. The
scaling is done by the smaller of the two values: the one aetiby the STLS package and
the one achieved by the alternative method.

Next, we describe the simulation setup for the examples.

Least Squares

The LS problemd X ~ B, whereA € R™*™ is exact and unstructured aigl € R”*¢

is perturbed and unstructured, is solved as an STLS problgmstvucture specification
s =[[E n],[u d]]. Inthe simulation example, the solution of the STLS packiage
checked by the MATLAB least squares solVerIn the exampleyn = 100, n = 5, d = 2,
ando = 0.1.

Inthe LS case, the STLS optimization algorithm convergéaaiteration steps. The
reason for this is that the second order approximation uséuki algorithm is actually the
exact LS cost function. Therefore, independent of theahétpproximation, in one iteration
step the algorithm finds the global optimum point. An additiliteration is needed in order
to conclude that the computed approximation in the first steptimal.

Total Least Squares

The TLS problemd X ~ B, wherethe datamatrix := [A B] € R™*("*+4) s perturbed
and unstructured, is solved as an STLS problem with strasjecificatiols = [U n+ d} .
In the simulation example, the solution of the STLS packagehiecked by the function
tls.m that implements the SVD method for the computation of the Bbfition; see
Theorem 3.14. In the example, = 100, n = 5, d = 2, ando = 0.1.

Table 4.2. Comparison of the STLS package and alternative methodsranaion exam-
ples.t—scaled execution tim@—scaled cost function value—scaled error of estimation.
The scaling is the smaller of the values achieved by the dstho

Problem STLS package Alternative method

t fo e t fo e function
LS 40 1 1.0000000 1 1.000000000000 1\
TLS 1 1 1.000000f 2 1.000000000000 1 tls
LS-TLS 1 1 1.000000f 5 1.000000000000 1 Istls
HLRA 1 1 1.000087| 147 1.000000056132 1 faststin2
Deconvolution| 1 1 1.000009] 631 1.000000000002 1 faststinl
Systemident. | 1 1 1.000000f — — — —
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In the TLS case, the STLS algorithm converges in one itaradiep, because the
default initial approximation used in the STLS package &sThS solution.

Mixed Least Squares—Total Least Squares

The mixed LS-TLS problem [VV91, Section 3.5] is defined asofek: AX ~ B, where
A=[Ae Ap], Ap € R™*™ andB € R™* are perturbed and unstructured, afide
R™>"2 js exact and unstructured. This problem is solved as an STat8em with structure
specificatiors = [[E n1],[U n2],[U d]]. In[VV91] an SVD based method for the
computation of the mixed LS-TLS solution is proposed. In $iraulation example the
solution of the STLS package is checked by a MATLAB implenaginhlistls.m  of the
exact mixed LS-TLS solution method. In the exampte= 100, n = 5,d = 2, ny = 1,
ando = 0.1.

Hankel Low-Rank Approximation

The Hankel low-rank approximation problem [DM93, Sectiob]4[SLV04] is defined as
follows:

min |Apll3 subjectto 7 (p — Ap) has given rank. (4.16)
P

Here# is a mapping from the parameter sp&# to the set of then x (n + p) block-
Hankel matrices, with block size<m. Ifthe rank constraintis expressed#y(p) [ *; | = 0,
where X € R™®*P is an additional variable, then (4.16) becomes an STLS prolwith
K =pands = [H n+p m].

The Hankel low-rank approximation problem has a systemr#imomeaning of ap-
proximate realization or (finite-time) model reductione &ection 11.4. In the single-input
single-output (SISO) case, i.e., when=m = 1, the STLS package is checked by a MAT-
LAB implementationfaststin2 of the method of [LMVO0O0]. In the example, the true
parameter vector i§ = col(1,...,12) (to which corresponds = col(—1,2)) and the
given vector i = p + col(5,0,...,0).

The computed solutions by the STLS package fasdstin2 approximate the
same locally optimal solution. In the example, however,3i& S package achieves bet-
ter approximation of the minimum point for 147 times less paation time. The huge
difference in the execution times is due to the MATLAB impkemation offaststinl
m-files that extensively uder loops are executed slowly in MATLAB (versiors 7.0).

Single-Input Single-Output Deconvolution

The convolution of the sequencés.,a_1,ap,a1,...) and(...,x_1,zg, 21,...) is the
sequencé...,b_q,bg,by,...) defined as follows:

bi: Z Tjlj—yj. (417)

j=—o0
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Assume that:; = 0 for all j < 1 and for allj > n. Then (4.17) fori = 1,...,m can be
written as the following structured system of equations:

ao a_1 ce G1—n X1 b1
ay ap co a2 _n €2 bo
= (4.18)
Am—1 Am+4n—2 T Am—n Tn b'm
N——
A T b

Note that the matrid is Toeplitz structured and is parameterized by the vector
a=col(ai—pn,...,0m—1) € RMA—L

The aim of the deconvolution problem is to fingd givena andb. With exact data
the problem boils down to solving the system of equations3}.By construction it has an
exact solution. Moreover, the solution is unique wheneés of full column rank, which
can be translated to a condition erfpersistency of excitation).

The deconvolution problemis more realistic and more chagileg when the data, b is
perturbed. We assume that> n, so that the system of equations (4.18) is overdetermined.
Because both andb are perturbed and thématrix is structured, the deconvolution problem
is an STLS problem with the structure specificat®nr= [[T n],[U 1]]. Moreover,
under the assumption that the observations are obtainedifue values with additive noise
that is zero mean and normal, with covariance matrix a mieltyp the identity, the STLS
method provides a maximum likelihood estimate of the truaes

We compare the solution obtained by the STLS package withdhion obtained by
the MATLAB implementatiorfaststinl of the method of [MLVQQ]. In the particular
simulation examplemm = 200, n = 2, ando = 0.05. The STLS package computes
slightly more accurate approximation of a minimum pointigg31 times less computation
time. The difference in the execution time is again due taMid@ LAB implementation of
faststinl

Single-Input Single-Output Errors-in-Variables System
Identification

Consider the SISO linear time-invariant system descrilyetthé difference equation

Yt + Z ArYt4r = Z bTut+T (419)
=1 7=0

and define the parameter vector
x:=col(bg, ..., by, —ag, ..., —ay_1) € R*®TL

Given a set of input/output data,, y1), - . ., (ur, yr) and an order specificatian we want
to find the parameter of a system that fits the data.
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For the time horizort = 1,...,T, (4.19) can be written as the structured system of
equations
Uy U2 o Unt1l | Y1 Y2 Yn Yn+1
U2 u3 T Unt2 | Y2 Y3 0 Un+l Yn+2
SR R Tole= . @20
Um  Um+1 - ur | Ym Ym+1 0 Yr-1 yr

wherem := T —n. We assume that the time horizon is large enough to emsure2n + 1.
The system (4.20) is satisfied for exact data and a solutibe isue value of the parameter
Moreover, under additional assumption on the input (pesty of excitation) the solution
is unique.

For perturbed data an approximate solution is sought, antht that the system of
equations (4.20) is structured suggests the use of the SELRIh Again, under appropriate
conditions for the data generating mechanism, an STLSisalytrovides a maximum
likelihood estimator.

The structure arising in the SISO identification problem is

S=[[H n+1],[H n+1]],

wheren is the order of the system. Unfortunately, in this case wealdave an alternative
method by which the result of the STLS package can be verifiethe simulation example
we chooser = 3,

a=0.151[1 0.9 049 0.145], b=[1 -12 081 -0.27],

T = 1000, @ white noise with unit variance, and = 0.1. From the compared LS, TLS, and
STLS solutions, the relative error of estimatiois largest for the LS method and is smallest
for the STLS method. (The numerical values are not shown lkeT4.2.) This relation of
the estimation errors can be expected with high probalidityarge sample sizel{ — o)
due to the statistical consistency of the TLS and STLS metlaodl the inconsistency of
the LS method. In addition, the STLS method being a maximdkeliliood method is
statistically more efficient than the TLS method.

4.7 Conclusions

We considered an STLS problem with block-wise specifiedcttine of the data matrix.
Each of the blocks can be block-Toeplitz/Hankel structutetstructured, or exact. It is
shown that such a formulation is flexible and covers as spesas many previously studied
structured and unstructured matrix approximation proklem

The proposed numerical solution method is based on an dgofvanconstrained
optimization problem (4.4). We proved that our Assumptiohabout the structure of the
data matrix implies that the weight matiixin the equivalent problem is block-Toeplitz and
block-banded. These properties are used for cost functidrfiest derivative evaluation
with linear in the sample size computational cost.
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Ourresults showthatalarge variety of STLS problems canlbved efficiently with
a single kernel computational tool—efficient Cholesky fa@tion of a block-
Toeplitz and block-banded matrix.

The block-Toeplitz/Hankel structure is motivated by apqimate modeling problems
for MIMO linear time-invariant dynamical systems. For exae) EIV system identification,
approximate realization, and model reduction problem$eawnlved viathe proposed STLS
algorithm.

Useful extensions of the results are

1. weighted STLS problems with cost functidxp " W Ap, whereW > 0 is diagonal,
and

2. regularized STLS problems, where the cost function israrged with the regular-
ization termvec " (X)Q vec(X).

These extensions are still computabléifin) flops per iteration by our approach with small
modifications [MVO06]. For example, the weighted STLS probleads to weight matrik
that is no longer block-Toeplitz but still block-banded lwitandwidth independent of.
This property is sufficient for cost function and first detiva evaluation with computational
complexityO(m,).
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Chapter 5

Bilinear
Errors-in-Variables Model

A bilinear EIV model is considered. It corresponds to an de&rmined set of linear
equationsA X B = C, in which the datad, B, C'is perturbed by errors. An ALS estimator
is constructed that converges to the true value of the pdaesnYeas the number of rows
in A and the number of columns i tend to infinity.

The estimator is modified for an application in computerorisi A pair of corre-
sponding points in two images are related via a bilinear ggiuain which a parameter is
the fundamental matrix. The fundamental matrix contaifisrimation about the relative
orientation of the two images, and its estimation is a cépn@blem in two-view motion
analysis.

5.1 Introduction
In this section, we generalize the linear model
AX ~ B (5.1)
to the bilinear in the measurements model
AXB =~ C. (5.2)
An example where the bilinear model (5.2) occurs is the fmtadluction cost model.

Example 5.1 (Total production cost model) Assume thap production inputs (materials,
parts, labor, etc.) are combined to makproducts. Leby, kK = 1,...,p, be the price per
unit of thekth productioninputand;,, j = 1,...,n,k = 1,...,p, be the number of units
of the kth production input required to produce one unit of jileproduct. The production
cost per unit of thegth product is theith element of the vector

y=Xb, yeR™

Leta;, j = 1,...,n, be a required quantity to be produced of fitle product. The
total quantity needed of thieth production input is théth element of the vector

2T =a'X, z € RP.

71
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The total production costis z b = a "y, which gives a “single measuremest’X B = C
model
a' Xb=c.

Multiple measurements occur when a set of quantitiés . . ., «(¥), to be produced
of then products, a set of prices per ubit), ..., b(V2) of the production inputs, and a set
of total costsc;;, corresponding to all combinations of the required quistiand prices,
are given. Then the model is

a/(l)—r Cll DR clN2
X [b(l) b(Nz)] = : : . |
a(Nl)T B CNll PN CN1N2
A c

Another example that involves the bilinear model (5.2) &sdktimation of the funda-
mental matrix in two-view motion analysis. The fundamentaltrix estimation problem is
treated in detail in the latter sections of this chapter.

The TLS method applied for (5.2) results in the followingioptation problem:

. 2
calin  [l[AA AB AC][E st (A-AA)X(B-AB)=C-AC. (53)

As mentioned in [Ful87], the TLS estimat&ys (a global minimum point of (5.3)) is biased.
Moreover (5.3) is a nonconvex optimization problem, whosleton requires computa-
tionally demanding optimization methods that are not goi@ed to find a global minimum
point.

We use instead an ALS estimator that is consistent and catipoially cheap. A
strong assumption needed for the ALS estimator, howeviiratshe covariance structure of
the measurement noises is known exactly. In contrast, tlafiéthod needs the covariances
up to a scaling factor. In the fundamental matrix estimapooblem, we derive a noise
variance estimation procedure that overcomes this defigien

5.2 Adjusted Least Squares Estimation of a Bilinear
Model

In the model (5.2)A € RN1x" B ¢ RP*4, andC € RN1*7 are observations andl ¢
R™*? is a parameter of interest. We assume that the observatiemosy measurements
of true values, B, andC, i.e.,

A=A4+A, B=B+B, CC=C+C. (5.4)

The true valuesi, B, andC of the observations are assumed to satisfy the bilinear mode
AX B = C for some true valug of the parameter. From the point of view of EIV modeling,
C represents the equation error, whileand B represent the measurement errors.

Looking for asymptotic results in the estimationf we fix the dimensions ok —

n and p—and let the number of measuremenis,and ¢, increase. The measurements
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are represented by the rows 4f the columns ofB, and the elements af. Define the
covariance matrices o o
Vi=EATA, Vz:=EBB'.

The assumptions are enumerated with Roman numerals.

() The elements ofi, B, andC are centered random variables with finite second order
moments. The elements of any one of the matri¢e#, C' are independent of the
elements of the other two matrices. The covariance matligeandV; are known.

Consider first the LS cost function

In the space of matricé&™*?, we introduce a scalar produc, S) := trace(T'ST). The
derivativedQ)s/0X is a linear functional ofR™*?:

l 6le
2 0X

(H) = trace (AXB — C)(AHB)")
= trace (AT(AXB—C)B"H")
=(AT(AXB-C)B", H). (5.6)
We identify the derivative with the matrix that represenis i(5.6), so that we redefine

1 ale
2 0X

= A"(AXB-C)B".

The LS estimatoXs is the solution of the optimization problem
min Qis(X; A, B, C)
or, equivalently, the solution of the score equation
Us(X; A, B,C) := 0Qis/0X = (ATA)X(BBT) - ATCBT =0. (5.7)
For the estimator, we can take
Xis = (ATA)TATCBT(BBT)T,

which satisfies (5.7) ifA" A and BB are nonsingular. In the absence of measurement
errors, i.e., wheml = 0 andB = 0, the LS estimator is consistent.
If A =0, the “partial least squares” estimator

Xpa:= TLSsolution ofXB = (AT A)tATC (5.8)
is consistent. Similarly, i3 = 0, the estimator
Xpp:= TLS solution ofAX = CB'(BB")! (5.9)

is consistent. The partial least squares estima¥ggsand X, are inconsistent when both
A and B are noisy.
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Next, we are looking for a corrected score functibgs, such that
E[Vas(X; A+ A, B+ B,C)|C|=Vs(X;A,B,C), forall X, A, B, andC.
The ALS estimatotX ,s is defined from the equation
Vas(X; A, B,C) = 0. (5.10)

In order to solve (5.2), we look for a correctiga? applied on the LS score func-
tion W5, such thatl 55 = ¥)s — AW. By assumption (i),

E[Vs(X;A+A B+ B,C)|C]
=U,s(X;A,B,0)+EATAXBBT + EATAXBB" +V;XV;

= U5+ A\Ifl(B) + A\IIQ(A) + VAXVB’

where
AV(B):=V;XBB" and AVy(A):= ATAXVj.

To find a proper correction terdh W, consider

EAVU(B+ B)=V;XBB" +V;XVj (5.11)
and
EAUy(A+ A) = ATAXV; + V; X V5. (5.12)
Then
AU(A,B) = AV (B) + AUy(A) — V;XVj
and

‘I/als(XE Av Bv C)
=(ATA)X(BB") -~ ATCBT —V;X(BB") — (ATA) XV +V;XV;
=(ATA-V;)X(BB" -Vz) - A'CB".

As an estimator we can take
Xas:= (ATA-V)NATCBT)(BBT — Vi)' (5.13)
If ATA—V;andBB'" — Vj are nonsingular, then (5.13) satisfies (5.10). These neatric

are nonsingular with probability tending to one as the nundfeneasurements tend to
infinity.
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5.3 Properties of the Adjusted Least Squares
Estimator

We introduce further assumptions.

(i) The rows of A are independent, the columnsBfare independent, and all elements
of C' are independent.

(iii) E&?j < const, El;il < const, andE ¢ < const.
(iv) With V4 := AT AandVy := BBT,

Am'}x(‘/A) +m =0 ale oo and max(VB) +q

0 asN: .
mln(VA) )\1211111(VB) - S

Assumption (iv) corresponds to the condition of weak cdesisy, given in [Gal82]
for the maximum likelihood estimator in the linear modell{5.

Theorem 5.2 (Weak consistency).Under assumptions (i) to (iv), the ALS estimalys
converges toX in probability asN; — oo and Ny — oc.

Proof. See [KMV03, Theorem 1]. O
Under more restrictive assumptions than (iii) and (iv), 85 estimator is strongly
consistent.

iy E|a;;|>" < const, E|by|>” < const, andE |¢;|?" < const for a fixed real number
J
r> 2.

(iv’) ForafixedN{ > 1,

> r/2 r _
Z < Nl +)‘max(v ))<OO,

r 2r _
N1=N{ )\mln( ) Amln( A)

and for a fixedV, > 1,

= N2 L (Ve)
2 (A, Vo) a2, <VB>><°°’

NQ_N/ min min
-2

wherer is defined in assumption (iii").

Theorem 5.3 (Strong consistency). Under assumptions (i), (ii), (iii"), and (iv’), the ALS
estimatorX s converges toX almost surely agV; — oo and Ny — oc.

Proof. See [KMV03, Theorem 2]. d
In [KMVO03, Section 5], we prove the following rate of convertge:

||Xals_ X”F _ \/Nl + Amax(VrA) + \/ 2+ \/ max VB (1) .
)\Inin(VA) Anrnn(‘/B) P
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Under additional assumptions, the ALS estimator is asytigatity normal; see [KMVO03,
Section 6]. It turns out that the asymptotic covariance ixaif the estimator does not
depend upon the covariance structur&of

In [KMVO03, Section 7] a heuristic small sample modificationtloe ALS estimator
is proposed. The approach is similar to the one of [CSTO0O0g mMiodified ALS estimator
has the same asymptotic properties as the ALS estimatomipubves the results for small
sample size.

5.4 Simulation Examples

In this section, we apply the ALS estimator to a hypotheteample. Consider the bilinear
model (5.2) withV; = = Nandn =p=2,i.e.,
A X B =_C

~ N
Nx2 2x2 2xN NxN

The true data is

I Iy - I
A=|:|, B=[L - L], and C=|: o
I Iy - I

so that the true value of the parametettis= I,. The perturbationsi, B, andC are
selected in three different ways.

» Equally sized errorsAll errors a;, b1, Gy are independent, centered, and normally
distributed with common variande01.

« Differently sized errorsAll errorsa;;, b, & are independent, centered, and normally
distributed. The elements in the first column®dfiave variance.05 and the elements
in the second column ofl have varianc#.01. The elements in the first row d§
have varianc®.01 and the elements in the second rowhave variance.05. All
elements of” have varianc®.01.

 Correlated errors.All errors a;;, by, Gy are independent and normally distributed.
All rows of A have covariance.01[3 ] and the elements are independent from row
to row. All columns ofB have covariance.01 [ ! 1] and the elements are independent
from column to column.

The estimation is performed for increasing number of mesamentsV. As a measure
of the estimation quality, we use the empirical relative meguare error

ZHX X2
IXIE

whereX (%) is the estimate computed for thth noise realization.
The following estimators are compared:
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Xas—the ALS estimator,
Xn—the small sample modified ALS estimator [KMV03, Section 7],
X<—the LS estimator, and

Xpaand X ,—the partial least squares estimators (5.8) and (5.9).

Figure 5.1 shows the relative mean square e¢rfor N ranging from 20 to 100. The
consistency properties of the ALS estimators and the bidseobther estimators is most
clearly seeninthe experimentwith correlated errors. Hwtthe small sample modification
indeed improves the relative mean square error and for Eagele size converges to the
original ALS estimator.

10°

Equally sized errors

X

Differently sized errors
0.02 T T T

0.015¢

0.005¢

20 40 60 80 100

Figure 5.1. Relative mean square erreras a function ofV.
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5.5 Fundamental Matrix Estimation

Suppose that two images are captured by a mobile camer& andtching pairs of pixels
are located. Let

) = col(ugi),ugi), 1) and v® = col(vgi),vg)7 1), fori=1,...,N,

be the homogeneous pixel coordinates in the first and secoadeis, respectively. The
so-called epipolar constraint

’U(Z)TFU(Z) =0, 1=1,...,N, (514)

relates the corresponding matching pixels, wheére R3*3, rank(F) = 2 is the funda-
mental matrix. Estimation of” from the given data(?), v, i = 1,..., N, is called
structure from motion problem and is a central problem in gotar vision. We adapt the
ALS estimator (5.13) to the fundamental matrix estimatioobtem.

The fundamental matrix estimation problem is not a speais¢ ©f the bilinear model
considered in Sections 5.1-5.4. Note that with

A= oM .. U(N)}T, B:=[u ... uWM] and C:=0,

(5.14) represents only the diagonal elements of the equdtioB = C. Moreover, the”
matrix is noise-free, and the parameteiis of rank two and normalized. Thus the ALS
estimator derived for the bilinear model (5.2) cannot bedwlieectly for the estimation of
the fundamental matri¥'.

As in Section 5.1, we assume that the given points are noisgraations

u =g +a® and v =5 4@ for i=1,...,N (5.15)
of true valuesi(¥ ands(” that satisfy the model
oWTEa®W =0, for i=1,...,N (5.16)

for some true valué’ € R3*3, rank(F') = 2 of the parameteF'. In addition, we assume
that I is normalized by|| F'||¢ = 1.

In the absence of noise, equations (5.14) have an exacisoliit The so-called
eight-point algorithm [Har97] computes it frodév = 8 given pairs of points. A lot of
techniques have been proposed to improve the accuracy efghepoint algorithm in the
presence of noise [TM97, MM98, LM00]. From a statisticalmadf view, however, the
corresponding estimators are inconsistent. We review irerdetail the estimator proposed
in [MM98].

In [MM98], the model (5.14) is transformed into the form

(u? @v® ) vee(F) =0, for i=1,...,N. (5.17)
N——— ——

al®) f

Defining the matrixA := [a() ... a(N>]T, (5.17) becomes the system of equations
Af = 0. The normalization conditiofF'||r = 1 for F' implies the normalization condi-
tion || f|] = 1 for f. With noisy data, an estimate ¢gfcan be computed by solving the
optimization problem

m}nHAfH% subjectto || f|| =1, (5.18)
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which is a quadratically constrained least squares probdenthat its global solutionﬂs,l
can be computed from the SVD of. The corresponding estimaﬁs’l is constructed
from fis.1 in an obvious way. We denote this constructionffy; := vec ™' (fis.1). Finally,
the rank constraint is enforced by approximatfﬁgl with the nearest (in Frobenius norm)
rank-deficient matrixjs. This requires another SVD.

For statistical analysis dfls, the vectors:() are interpreted as observations

a® = 3@ @50 1 g, (5.19)

The estimatois is consistent under the assumption that the ed@trs. .., a™¥) are zero
mean independent and identically distributed (i.i.d.)d@mn vectors. Such an assumption,
however, is not satisfied for the EIV model (5.15). Suppose the measurements?
andv(?) are obtained with additive errof$”) ands(?) that are independent zero mean i.i.d.
normal random vectors. Then the vectaf8 are not normally distributed because their
elements involve the product of two coordinates. It can lmsvshthat

Ea®g®T — (Eﬂ(i)a(i) ) ( (OF ()T) ( (g ) (E (@) p@T )
(Ev(l)f]() )@ (Eﬂ() ()T)'

In [MM98], the estimatorEis is called the TLS estimator. In fackjs is the TLS
estimator for the transformed modé)f = 0, || f|| = 1. The TLS estimator for the original
problem (5.14) is (compare with (5.3))

N
min Z(||Au<i>||2+||m<i>\|2) subjectto  (u® + Au®)TF(u(® + Av®) =0

AuM AW i=1 fori = 1,...,N
Av(l),..,Av(N)

)

(5.20)
which is a different problem. It is a nonconvex optimizatmoblem. Moreover, as noted
in Section 5.1, the TLS estimatdf;s (a global minimum point of (5.20)) is also biased. We
refer to Fjs as the LS estimator because in terms of the bilinear mode#)& minimizes
the equation erroA f.

We make the following assumptions on the err@f$ ands(® in (5.15).

(i) @ ando@, fori =1,..., N, are zero mean independent random variables.

(i) cov(@®) = cov(v®) = &2 - diag(1,1,0), fori = 1,..., N and certairg > 0.

Let 49 .= col( D as) aly. Assumption (i) means that the componentsi6? are
uncorrelatediy is noise-free, andar (") = var (i) = 52. The same holds far(®).

These are more natural assumptions for the applicatiomatthan the assumptions afi)
needed for consistency of the LS estimator.
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5.6 Adjusted Least Squares Estimation of the
Fundamental Matrix

The LS cost function is
N . .
Qis(F) :== ZQIs(F;u(l),v(’)), where gs(F;u,v) == (vTFu)g.
=1
Next, we construct an adjusted cost funct@gs(F') that leads to a consistent estimator. It
is defined by the identity
E Qas(F) = Qis(F) forall F € R**3 anda'?, 5 e R®.
By assumption (i),
N
Qals(F) = Z Qals(F; U(i)a U(i))a
=1
whereg,s satisfies the identity
E qus(F; @+ @,v 4+ 9) = qs(F; u,v), forall F € R**3 andu,v € R,

anda ~ N(0,V), o ~ N(0, V) independent, with’ := o2 diag(1, 1, 0).
The solution of (5.6) is

qais(F, u, v) := trace ((va — V)F(uuT — V)FT). (5.21)
Indeed,
E qus(F;u + 4,0 + 0)

= Etrace (0 + )@ +9) " = V)F((a+a) (@+a)" - V)FT)

VRS

— Etrace (007 + 2057 + (557 — V) F(ua" +2ai + (@’ —V))F).

After expanding the right-hand side and applying the exatémt operator to the summands,
assumptions (i) and (ii) imply that all summands except ffier first one are equal to zero.
Thus

E qas(F, @ + @, 7 + 0) = trace ((MT)F(MT)FT).
But
trace ((@ET)F(aaT)FT) — (aTFTo) (v Fa) = (o7 Fa)® = qs(F, ,0).
Then the solution of (5.6) is given by

N

Qas(F) = trace <Z (v(i)v(i)T — V)F(u(j’)u(i)—r — V)FT).

i=1
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With f := vec(F),

Que(F —fT<Z () ()T _ )@(U(i)v(i)T_V)>f_

i=1

2

Denote N
Sy =3 (@u®T V) @ (1Do®T V) (5.22)
i=1
and let R
fais1 € argmin fT Sy f subjectto ||f|| = 1. (5.23)

The matrixSy is symmetric, so that the ALS estimatfmsl is a normalized eigenvector
of Sy associated with thg smallest eigenvaluesgf.

Let Fam := vec ! (fas1). If rank(Fys1) = 3, itis approximated by a rank-deficient
matrix. LetFys, = USV T, whereX = diag(ay, 09, 03) andU, V € R3*3 are orthogonal
matrices, be an SVD dﬂim. The ALS estimator on the second stage is defined as

Fus:=U diag(o1, o9, O)VT,

e., the best low-rank approximation (ﬁgm, according to the Eckart—Young—Mirsky
theorem [EY36].

5.7 Properties of the Fundamental Matrix Estimator ~ *

Consistency ofthe estimatét“sl implies consistency of the estimatés. Indeed, suppose
that||Fa|31 — F||r < e. Becauseank(F) = 2, for the estimatof-ys on the second stage,
we have R X R B
||Falsl - FaIsHF < ||Fals,1 - FHF <e. (5.24)
Then R R R R
||Fals* F”F S HFaIs* FalslHF + ||Falsl - FHF S 2e.
Note that the matrix-F' also satisfies (5.16), arjl— F||r = ||F||r = 1. Therefore we

estimateF’ up to a sign.
Introduce the matrix

N
Z (D g@OT (1)@(1'”), (5.25)

For the vectorf := vec(F), we have (see (5.16))

N
| N
£ - DT pr@gOT BTy
T INf= N Eﬁltrace(v oW Fa\Wa T F ) =0,
andZ#y > 0. Thus\,in(-Zn) = 0. We require that there exishé’ such thatank(Fy) =

8 for N > N’. Moreover, we need a stronger assumption.
Let \i(Zn) > Xo(Fn) > -+ > Ag(Zn) = 0 be the eigenvalues of .
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(iii) There existN’ > 1 andcy > 0, such that for allvV > N’, A\s(Fn) > co.

The minimization problem (5.23) could have a nonunique tsmhy but due to as-
sumption (iii), for NV > N’(w) the smallest eigenvalue 6fy will be unique and then the
estimatorfam will be uniquely defined, up to a sign.

The next assumptions are needed for the convergence

1

NSN — Zn — 0 almostsurely asN — oo. (5.26)

(iv) LN [a@]* < const and L SN [[6@)||* < const.
(v) Forfixeds > 0, E [|a** < const andE [|[o()[|*+® < const.

For two matricesd and B of the same size, define the distance betwéemd B as
the Frobenius norm of their difference, i.e.,

dist(A, B) := ||A — B||r.
Theorem 5.4 (Strong consistency).Under assumptions (i) to (v),

dist(Fys, {—F,+F}) — 0 almostsurely asN — oc. (5.27)

Proof. See [KMV02, Theorem 1]. O
The computation of the ALS estimator needs knowledge of thisenvariancer>.
Whena? is unknown, it can be estimated as follows:

6% = arg min ’)\min (SN(O'2))| .
In [KMVO02, Section 3], the ALS estimator using the noise sacde estimaté? instead of
the true noise variang#’ is proven to be consistent.

5.8 Simulation Examples

In this section, we present numerical results with the esttins 7' and 2. The data is
simulated. The fundamental matri is a randomly chosen rank two matrix with unit
Frobenius norm. The true coordinateéd andz(®) have third components equal to one, and
the first two components are vectors with unit norm and randioaction. The perturbations
@ and 3 are selected according to the assumptions stated in this heq the third
componentslg) = ﬂé”) =0, andﬂgz)jj(.” ~ N(0,5?), are independent far= 1,..., N
andj = 1,2. In each experiment, the estimation is repeated 1000 tinteshe same true
data and different noise realizations.

The true value of the paramet&ris known, which allows evaluation of the results.
We compare three estimators:

Fals(52)—the ALS estimator using the true noise variagée

Fus(62)—the ALS estimator using the estimated noise variaiicend
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Figure 5.2. Left: relative error of estimatior := ||F — F||¢/||F||r as a function of the

sample sizéV. Right: convergence of the noise variance estindétéo the true valuer2.
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Figure 5.3. Left: distance frorrFmSl to the set of rank-deficient matrices. Right: conver-
gence of- Sy to Zy.

Fis—the LS estimator.

Figure 5.2 shows the relative error of estimation= || F — F||z/| F || as a function
of the sample siz&/ in the left plot and the convergence of the estindtén the right plot.
Figure 5.3, left plot, shows the convergence of the estini%eﬁgl to the set of rank-deficient
matrices. This empirically confirms inequality (5.24). Tright plot in Figure 5.3 confirms
the convergence OJ%SN — Fy asN — oo; see (5.26).

Figure 5.4 shows the functiofiy (o2), used in the estimation @f?, for N = 500
in the left plot and forV = 30 in the right plot. In generalSy (0?) is a nonconvex, non-
differentiable function with many local minima. Howevergwbserved empirically that
the number of local minima decreasesMincreases. For larger sample sizes and smaller
noise variance, the functio$iy (0?) becomes unimodal.
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Figure 5.4. The functionSy (o2) used for the estimation @f*. Left: large sample size.
Right: small sample size.

5.9 Conclusions

We considered the bilinear modélX B = C. The TLS estimator is inconsistent in this
case. We constructed the ALS estimator, which is consistedtcomputationally cheap.
Conditions for weak and strong consistency were listed.

An open question is, What are the optimality properties ofth8 estimator? For the
linear modeldAX = B, in [KMOQ] it was shown that the ALS estimator is asymptollica
efficient whenl/; is known exactly andt b7, are known up to a constant factor. It would
be interesting to check the following conjecture:

In the modelAX B = C, the ALS estimator is asymptotically efficient when
V; andVj are known exactly anf ¢, are known up to a constant factor.

Estimation of the rank-deficient fundamental matrix, yietginformation about the
relative orientation of two images in two-view motion arg$y was considered. A consistent
estimator was derived by minimizing a corrected contrasttion in a bilinear EIV model.
The proposed ALS estimator was computed in three steps: dgtitnate the measurement
error variance; second, construct a preliminary matrixvegte; and third, project that
estimate onto the space of singular matrices.



Chapter 6

Ellipsoid Fitting

A parameter estimation problem for ellipsoid fitting in thegence of measurement errors
is considered. The LS estimator is inconsistent and, dueetoanlinearity of the model, the
orthogonal regression estimator is inconsistent as wel|;these estimators do not converge
to the true value of the parameters as the sample size teimdimity. A consistent estimator
is proposed, based on a proper correction of the LS estimahar correction is explicitly
given in terms of the true value of the noise variance.

In Section 6.2, we define the quadratic EIV model. The LS an® &ktimators are
defined in Sections 6.3 and 6.4. Ellipsoid estimates areetkfrom the general quadratic
model estimates in Section 6.5. An algorithm for ALS estiorats outlined in Section 6.6.
We show simulation examples in Section 6.7.

6.1 Introduction
In this chapter, we consider the ellipsoid fitting probleriveg a set of data points

e N,

ol where (¥ ¢ R,

find an ellipsoid
E(Aec) ={zeR": (z—¢) Ae(z —c) =1}, Ae= Al >0, (6.1)

that “best matches” them. The freedom in the choice of thehirad criterion gives rise to
different estimation methods.
One approach, called algebraic fitting, is to solve the ogtition problem

N
r}xlin ((:c(i) — )T Ae(z) —¢) — 1)2 (6.2)
=C i=1
and to define the estimate as any global optimal point. Wereiéir to (6.2) as the LS
method for the ellipsoid model.

85
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Another approach, called geometric fitting, is to solve tpgmization problem
N 4 2
gl:g Z; (dist (x(l), & (Ae, c))) , (6.3)

wheredist(z, &) is the Euclidean distance from the pointo the setf’. In the statistical
literature, (6.3) is called the orthogonal regression meth

Note 6.1 (Orthogonal regressior= TLS) The TLS method applied to the ellipsoid model
(6.1) results in the following optimization problem:

N
min Z HAx(i)Hgsubject to (z(V + Az(® — c)TAe(w(i) + Az —¢) =1

Ae,c .
Ac) . Az =1 fori=1,...,N.
(6.4)
Clearly,
dist(x, &) = arg (rrAnn |Az||? subjectto (x4 Az —c)" Ae(z + Az —¢) = 1)
and (6.4) is separable inz(D, ... Az(N), so that the TLS problem (6.4) is equivalent to

the orthogonal regression problem (6.3). In (6.3), thelaryivariablesAz™) ... Az(V)
are “hidden” in thedist function.

We assume that all data points are noisy measureménts= z(9) + (9 of some true
pointsz™, ... z(N) that lie on a true ellipsoid’ (A, ¢); i.e., the model is a quadratic EIV
model. The measurement errars), ..., z(N) are centered, independent, and identically
distributed (i.i.d.), and the distribution is normal withriance-covariance mat@ I, where
&2 is the noise variance.

Due to the quadratic nature of the ellipsoid model with resfethe measurememnt
both the algebraic and the geometric fitting methods arensistent in a statistical sense,
see [NS48] and the discussion in [Ful87, page 250]. We pmpasALS estimator that is
consistent.

The LS estimator, defined by (6.2), is a nonlinear least sguproblem. We use a
computationally cheap, but suboptimal method to solve hieozation problem (6.2). The
equation defining the ellipsoid model is “embedded” in thadyatic equation

T Az +bTa4+d=0, A=A"T >0, (6.5)

which is linear in the parameters, b, andd, so that a linear least squares estimation
is possible. For given estimates b, andd of the parameters in (6.5), assuming that
A= AT >0, the estimates of the original parameters in (6.2) are dgiyen

1. 4 A 1 S

¢:i=——A"1 and Ag:=——— A (6.6)

2 ¢TAe—d
The necessary computation for the (suboptimal) LS estinvatolves finding an eigenvector
associated with the smallest eigenvalue of a symmetricixnatve use the same indirect
approach to compute the ALS estimator.
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The correction needed for the ALS estimator is given exghjiéi terms of the noise
variances?. We give an algorithm for ellipsoid fitting that implementsettheoretical
results. Its computational cost increases linearly withdhmple sizév. In [KMV04], we
present the statistical properties of the estimator arad the case whe#? is unknown.

The orthogonal regression estimator, on the other hanaynguated via a local op-
timization method and scales worse withand with the dimension of the vector space.
In addition, due to the nonconvexity of the cost function 63, the computed solution
depends on the supplied initial approximation. In degarearases (see [Nie02, pages 260—
261]) the global minimum of (6.3) is not unique, so that thare several “best” fitting
ellipses.

We point out several papers in which the ellipsoid fitting kpemn is considered.
Gander, Golub, and Strebel [GGS94] consider algebraic enthgtric fitting methods for
circles and ellipses and note the inadequacy of the algefitan some specific examples.
Later on, the given examples are used as benchmarks fordkéralc fitting methods.
Fitting methods, specific for ellipsoids, as opposed to tlreengeneral conic sections,
are first proposed in [FPF99]. The methods incorporate tligtieity constraint into the
normalizing condition and thus give better results whenliptie fit is desired. In [Nie01]

a new algebraic fitting method is proposed that does not hesmgularity the special case
of a hyperplane fitting; if the best fitting manifold is affifeetmethod coincides with the
TLS method.

A statistical point of view on the ellipsoid fitting problesitaken in [Kan94]. Kanatani
proposed an unbiased estimation method, called a rena@atiah procedure. He uses an
adjustment similar to the one in the present chapter, buapsoach of estimating the
unknown noise variance is different from the one presemd&MV04]. Moreover, the
noise variance estimate proposed in [Kan94] is still incstest; the bias is removed up to
the first order approximation.

6.2 Quadratic Errors-in-Variables Model

A second order surface IR" is the set
B(A,b,d) :={zcR" |z Az +b 'z +d=0}, (6.7)

where the symmetric matri® € S, the vectob € R", and the scalai € R are parameters
of the surface. IfA = 0 andb # 0, then the surface (6.7) is a hyperplane, and ifs
positive definite andd < b" A~'b, then (6.7) is an ellipsoid. Until Section 6.5, we will
only assume tha¥ (A, b, d) is a nonempty set, but in Section 6.5, we will come back to the
ellipsoid fitting problem, so that the parameters will bernieted.

Let A € S,b € R", andd € R be such that the se#(A, b, d) is nonempty and let the

pointsz(M, ..., (V) lie on the surface# (A, b,d), i.e.,
zOT Az 457z yd=0, fori=1,...,N. (6.8)
The pointsz™V, ..., z(N) are measurements of the pointd), ..., z(V), respectively, i.e.,
@ =z® 4+ 30 fori=1,...,N, (6.9)
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wherez) ... #(™) are the corresponding measurement errors. We assumeetmaeth
surement errors form an i.i.d. sequence and the distribatia:(”), foralli = 1,..., N, is
normal and zero mean, with variance-covariance matti,, i.e.,

E g7 =0, foralliy,io =1,...,N, i1 # is,

and
W ~ N(0,5°1,), fori=1,...,N,

wheres? > 0 is called the noise variance.

The matrixA is the true value of the parametdr while b andd are the true values
of the parameters andd, respectively. Without additional constraints imposedtioa
parameters, for a given second order surfael, b, d), the model parameter$, b, andd
are not unique:Z(t A, tb, 7d) is the same surface for any real nonzerdrhis makes the
quadratic model, parameterized By b, andd, nonidentifiable. To resolve the problem,
we impose a normalizing condition; e.g., the true valuethefgarameters are assumed to
satisfy the constraint

IAJ2 + 1B + d? = 1. (6.10)

Then the estimates are unique up to a sign.

Note 6.2 (Invariance of the LS and ALS estimators)As shown in [Boo79, page 59],
[GGS94, page 564, equation (3.5)], and [Pra87, page 14&]cdmstraint (6.10) is not
invariant under Euclidean transformations. As a resudt[18 estimator is not invariant un-
der Euclidean transformations. Such a dependence on théicate system is undesirable.
Suggestions for making the LS estimator invariant can baddno [Nie01].

The following question arises. Are the ALS estimators datiwith the constraint
(6.10) invariant? If the noise variancefised, the answer is negative. However, if we are
allowed to modify the noise variance after the transfororatif the data, then the ALS
estimator can be made invariant.

A modification of the noise variance that ensures invariamcker Euclidean transfor-
mations is the noise variance estimation procedure denivg§dMV04]. We demonstrate
the invariance properties of the ALS estimator with estedatoise variance by a simulation
example in Section 6.7. Rigorous analysis is presenteddiv$05].

6.3 Ordinary Least Squares Estimation

The LS estimator for the second order surface model (6.Bjestito the normalizing con-
dition (6.10), is defined as a global minimum point of thedaling optimization problem:

min

Ab.d

N
(6.11)

IAIE + [lo]* + d? = 1.

K2

AT
(x(i)TAz(i) +b"T2® 4 d)2 subject to {A =A%
1

The LS cost function is

N
QlS(Aa b7 d) = Z qls(Aa b7 d7 x(i))a

i=1
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where the elementary LS cost function
as(A, b, d;z) = (xT Az 4+ bz + d)?

measures the discrepancy of a single measurementpé@iom the surface?(A, b, d).

In order to derive the solution of (6.11), we introduce a pater vectoy containing
all decision variables. Letecs : S — R(™+17/2 be an operator, a symmetric matrix
vectorizing operator, that stacks the upper triangular giad in a vector. The vector of
decision variables is

6 := col (VecS(A), b, d), (6.12)

an element of the parameter sp&€, ng := (n + 1)n/2 +n + 1.
Define the symmetric Kronecker produgt by

' Ar = (z®@sx) " vecs(A) forallz € R" andA € S. (6.13)
We have for the elementary LS cost function

as(B;x) = (xT Az + bz 4 d)?

vees(A) | 2
= ( [(x @sz)! " 1] b ) (6.14)
d
yT
=W'B?*=8"yy'p
and for the LS cost function
N ) N )
Qis(B) =Y _as(Biz) =" (O1)B)" =|[Yp|* =pTY Y8,
=1 =1
where
20 g (0 yT
y® = 2@ , fori=1,...,N, and Y := ;
1 y(N)T
Let H € R™"8*"5 pe a matrix, such that
|HB|? = ||Al|Z + ||b]|* + d?, forall AcS, beR", dcR, (6.15)

where( is defined in (6.12).
The LS estimation problem (6.11) is equivalent to the follmy\classical quadratically
constrained least squares problem:

mﬁin |Y3||> subjectto |Hp|* = 1. (6.16)

ThelLS estimato/ﬁs is H 'vin, Wherev,,,;, isanormalized eigenvector &~ 7Y Y H 1,
corresponding to the smallest eigenvalue.
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In order to avoid the computation of the Gram malfiXY’, one can obtain the solution
from the SVD ofY H~!. Let

YH '=UxVT, with U'U=1I, V'V=1I, and
¥ = diag(o1,...,00), 01> >0, >0. (6.17)

ThenéﬁS is H ™ Yumin, Wherev,,;, is the last column of the matrik.

Note 6.3 The matrixH that ensures (6.15) is a diagonal matrix with diagonal efesequal

to 1 or/2, where the latter correspond to the off-diagonal elemehtd;see Note 6.5.
Since the normalizing condition (6.10) is arbitrary, hoeewe can choose any nonsingular
matrix H in (6.16). Particularly simple ig/ = I. The LS and ALS estimators depend
on the normalizing condition, but the ALS estimator is ceteit for any nondegenerate
normalizing condition, i.e., for any full-rank matri¥ .

Note thatvecs(rz ") # = ®sx. One can verify that ®sz = D vecs(zx ), whereD
is a diagonal matrix with diagonal elements equal to 1 or &;ldtter corresponds to the
off-diagonal elements afz " appearing in the produd® vecs(zx " ); see Note 6.5.

6.4 Adjusted Least Squares Estimation

The LS estimator is readily computable but it is inconsistéfe propose an adjustment
procedure that defines a consistent estimator. The promgedach is due to [KZ02] and
is related to the method of corrected score functions; sRSES, Section 6.5].
The ALS estimato;@a|S is defined as a global minimum point of the following opti-
mization problem:
rnﬁin Qais(B) subject to HHﬂHQ =1,

where the ALS cost functio®gs is

N
Qals(ﬂ) = Z Qals(ﬁé x(i)) forall 3 € R"7.
=1

Letz = z + &, wherez is normally distributed with zero mean and variance-c@rae
matrix521. The elementary ALS cost functiaps is defined by the identity

Eqas(8, T+ ) = qs(8,z), forall g € R" andz € R™. (6.18)

We motivate the definition of the ALS cost function as follows
Qis(B) ==Y _as(8:z2"), forall g eR"™,
i=1

has as a global minimum point the true value of the parametetoy

B := col (vecs([l), b, CZ)
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Indeed,Q,s > 0 and by definition)s(3) = 0. From

E Qals = aly

we see that, as the sample size gro@gs approximates),.. Provided that), has3 as a
unique global minimum (the contrast condition of [KMVO04f)e ALS estimator is strongly
consistent.

Next, we derive an explicit expression for the ALS cost fimtt),s. From (6.18)
and (6.14), we have

E qas(3,7) = qs(8,%) = BT 55" B =: B is(T) B,

where
g:=col (z®s7),7,1) and s(z) =79y .
Thus the ALS elementary cost functiggs is quadratic ing3,
Gas(f; ) = 5T¢als(x)ﬂa
where
E Yais(z) = this(2). (6.19)

Under the normality assumption for the noise ter(6.19) yields the following convolution
equation:

()" Z 5 O; Yas( + :E)f[lexp ( - ji) Ay - dip = ts(2).

Solving for the unknown),s is a deconvolution problem.

The deconvolution problem can be solved independentiytientries of)as. The
elements of the matrixs(z) are monomials of at most fourth orderin Consider the
generic term

ms(Z) = T;,Z;TpTq, Wherei,j,p,qg € {0,1,...,n}.

We formally setzy = 1 and allow any of the indices to be zero, in order to aligyto be
of order less than four.

Letr(s),s = 1,...,n, denote the number of repetitions of the indéxthe monomial
T,%,;%,T,. For example, let = 2. In the monomial;;z3, »(1) = 1 andr(2) = 3, and in
the monomiak$, r(1) = 4 andr(2) = 0.

The functions

to(&) =1, t():=¢ 18 =& -a%
t3(€) ;= €3 — 3632,  and  t4(¢) == € — 66262 + 351 (6.20)

have the property

Et, (%, + &,) = %, forallz, e Randk =0,1,2,3,4,
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wherei, ~ N(0,5%). Thus the polynomial
Nais(x) 1= H tr(s) () (6.21)
s=1

has the property
E nas(z) = 7;T;T,T, = ns(z) forallz e R™.

This shows that)ys is the desired solution. The matrixs is constructed element-wise in
the described way.
The ALS cost functior),s is quadratic in3,

Qas(B) = BT WasB, forall g e R™,
where

N .
Vals = Z waIS(x(l))~

i=1

Thus the functior@Q s is described thoroughly.

Example 6.4 ( The matrixqs for n = 2) The model parameters are= [l 522 ], b =
[Zb’; ] and the scalad. The parameter space is 6-dimensional with
6 := col (vecs(A), b, d) = [au a1 422 b1 b2 d] T

From (6.13), we have

T T T
(11 @2] ®s[z1 2] =[wim1 2m1my @ows| |
so that
-
y := col ((a: ®sT), T, 1) = [:171391 2T1T9  ToTy X1 To 1] ,
4 3 2,.2 3 2 2
T 2z7T2 TITY xy TiT2 x]
*  4x?2? 2xywd 22%xe 2m922 2119
ve(@) =gy = | * * vy 1123 x3 x3
s * * * x% T1T2 Ty ’
* ES * * .’L‘% €T9
* * * * * 1

with *’s indicating the symmetric elements.
The adjusted matrixys is 1¥as = ¥is + Athas, Where the correctiot\yys is

35t — 65222 —66221 29 Atbais 13 —362%x4 —52x4 —52
* Awa|322 —65‘2.’L‘1$2 —25’2$2 —25‘2$1 0
% * 361 — 6523 —52r —362%2, —52
* * —52 0 0o |’
* * * * —52 0
* * ES * O
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Atpais1z = 6* — 6% (2 +23), and Avpagon = 46* — 467 (2? + 23).

The correction matriX\i,s, without the fourth order terms i, is derived in [Zha97,
Section 7]. The derivation in [Zha97], however, appliesydol the two-dimensional case.
[ |

The recommended way of computing the LS estimator is via¥e & Y H 1. For
the ALS estimator we use the less accurate eigenvalue desitiop because the correction
is derived for¥;s = Y TY and cannot be determined for the factor

6.5 Ellipsoid Estimation

The ALS estimatofysis derived for the general quadratic EIV model (6.8)—(6M9w we
specialize it for the ellipsoid fitting problem; i.e., we as® that the true surface belongs
to the class of surfaces

B(Aeyc) ={z €R": (x —¢) Ag(x —c) =1} (6.22)

for some true valuede € S, A = Al > 0, andc of the parameterd, andc. The equation
defining.Z(Ae, ©) can be written as

x" At — 2(Ael) Tz + T At — 1 =0,
or, with 0 := (|| A2 + (2462 + (€7 Aet — 1)2)"/?,
x' (Ae/0)x — 2(Aec/0) Tz + (¢" Aec — 1)/0 = 0.
Introduce the new parameters

- A Y - €l Aec—1
A-— 77 b.— _277 and d— T
As defined.A, b, andd satisfy the normalizing condition (6.10). )
We can go back to the original parametdgsande from A, b, andd that satisfy (6.10)
by
c— 1A% and A= L A (6.23)
‘T2 *T T Ac—d '
Note that) = ¢" Ac — d is nonzero. Letd, b, d be the ALS estimator of the parametets
b, d. The estimator of the parametets andc is given by the transformation (6.6).
If the obtained estimaté, is indefinite, we impose a posteriori positive definiteness
by the projection R R
Ae2 =3 15,50 Noyd, (6.24)

wherede = 37, iy, is the eigenvalue decomposition . Indefinite estimatel.
can be obtained because the estimator does not enforcddhkrmmwledged, = AJ > 0.
Clearly, the two-stage proceduredzobtained on the first stage amﬂ,g on the second
stage—is suboptimal. Empirical results, however, sugdest the event of having the
constraintd, > 0 active is rare. Typically, it occurs for a small sample sizénwonuniform
data point distribution and for data with outliers. Duetg= AGT > 0 and the consistency
of the estimatorde, we expect that for large sample sizk, > 0.
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6.6 Algorithm for Adjusted Least Squares
Estimation *

In this section, we summarize the estimation procedureritestabove by giving Algo-
rithm 6.1 for its computation. Notation similar to the MATIBAsyntax for indexing the
elements of a matrix is used. For exampl;:is, ji:j2) stands for the submatrix of
obtained by selecting the elements with first index in the{sgti; + 1,...,i2} and with
second index in the sétj1,j1 + 1,..., 2}

Note 6.5 If a general quadratic model is estimated, the normaliziogddion is given
as prior knowledge, see Note 6.3. If an ellipsoid is estighat®wever, the normalizing
condition is arbitrary. In Algorithm 6.1, we sét = I, which corresponds to a normalizing
condition

| vecs(A)||2 + ||b]|> + d? = 1.

The matrixH corresponding to the normalizing condition (6.10) is
VD
H = In )
1

whereD is a diagonal matrix with diagonal elements

D, — 2 ifiej,
1 otherwise.

Note 6.6 (Known blocks of the matrixW,s) Algorithm 6.1 can be improved by setting
certain elements o¥ 55 in advance and not by following the general adjustment ghoce
Consider a block partitioning of the matriceg, a5, andW¥ 55 according to the partitioning
of the vector

[(z®sz)T | 2T | 1

wls,ll 7/45,12 7/45,13
s =: * Yis22 Yis,23 | -

e.g., forys, denote

* *  this33
All elements ofyys are monomials in:; moreover all elements of:
* 15,11 (x) are of fourth order,
* 1s12(x) are of third order,
* 1s,13(x) andis 22 () are of second order,
(z)

* 11s.23() are of first order, and

* the scalaws 33(x) = 1 is independent at.
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Algorithm 6.1 ALS ellipsoid fitting als_fit

Input: amatrixX := [z ... 2(M] e R"*V and the noise variance?.

1: Formthe tensdf’ € R5*"*N T'(k,1,4) := ¢, (X (1,7)),fork =0,....4,1=1,...,n,
andi = 1,..., N, where the functionsy, k = 0,1, 2, 3,4, are given in (6.20).

2: Define the vectorg, 1 € R* ™! by 1 := col(1,...,1,1),1:= col(1,...,n,0), and form
the matrix € R"#*2, ng = (n+1)n/2+n+1, M := [vecs(11") vecs(117)].
We uselM to find the indices of: in the entries ofis(z). Note that(M (p, 1), M (p, 2))
are the indices af in thepth entry ofy := z ®sZ. Recall that)is(z) := 75 ' . Thus the
indices ofz in the (p, ¢)th entry ofyys(z) are (M (p, 1), M (p,2), M (q, 1), M(q,2)).

3: Define a binary operatoe= by (l;==Is) := 1 if [y = I, and 0, otherwise, for all
11,1 € R. Form the tensoR € R"s>nsx",

R(p,q,1) = (M(p,1)==l) + (M (p,2)==1) + (M (q, 1)==1) + (M (q, 2)==1),

forall¢ > pandl = 1, ..., n, which contains the number of repetitions of an index
an entry(p, ¢)th of ¢s(z). In terms of the functiom, defined in Section 6.4R stores
(r(1),...,7(n)) for the entries of/ys(z).

4: Compute
N n

nas(p. @) = »_ [[T(R(p.q.1),1,i) forallg>p.
1=11=1
This step corresponds to the correction (6.21) from Se@&idn
5: Form the set# of the indices of the vectorecs(A), corresponding to the off-diagonal
elementsofd, .7 = {1,...,(n+1)n/2} = {Il(l+1)/2:1=1,....,n}. (J1— F
denotes the set difference of the seétsand.#;.) Note that{ I(I+1)/2|l=1,...,n}
are the indices ofecs(A), corresponding to the diagonal elementsiof
6: Form the symmetric matriw 45 by

dnais(p,q) if p e # andg € .7,

Vais(p, q) := { 1nas(p,q) ifp ¢ 7 andqg & .7,
2nais(p, q) otherwise,

for all ¢ > p, andW,s(p, q) := Vas(q, p), for all g < p.
7: Find an eigAenvgctq@a@assogiated with the smallest eigenvalualgg.
8: Normalizeﬁal& ﬂals = 5als[||pals”- . R
9: Reconstruct the estimatels b, andd from the vectorsys,

A = vecg ! (Bals(l sn(n + 1)/2)), b= Bms(n(n +1)/24+1:ng— 1)7 d:= Bals(”6)7

wherevecs™! : R™"*+1)/2 _, S forms a symmetric matrix out of the vector of the
elements in its upper triangular part.

10: Obtain the estimates of the ellipsoid parametésandeé by (6.6).

11: If A¢ < 0, projectA on the positive definite cone by (6.24).

Output: the estimatesl,, ¢ of the ellipsoid parameters.
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For the blocks of order zero and one, there is no correctipliegpin the formation of the
matrix as. The correction for the elements of the blocks of order twedgI,,. Thus for
the corresponding blocks ofys, we have

7/}als,22(1') =zz' — 5'2171’ ¢ala23($) =,
1

walsw(m) =xRsk — VeCs(52In)a 1/’a|s,33(1') =
Finally, the corresponding blocks &f,s are

Vaisoo = Yo,0; 2027 — No21,, Waisos = iy o,
\I'als,13 - ZZJ\LI x(l) ®sx(l) - VeCS(Na-QIn)? \I’a|333 = Na

and only the upper triangular part of the blodls;; and the blockV,s12 need to be
computed in steps 4 and 5 of Algorithm 6.1.

6.7 Simulation Examples

We show the ALS, LS, and orthogonal regression (OR) estisrfairea test example from
[GGS94], called “special data”. It is designed to illustréthe inadequacy of the algebraic
fitting method and to show the advantage of the OR method.

Only data points are given; even if they are generated withermodel, we do not
know it. For this reason the comparison is visual. Since tiisenvariance needed for the
ALS estimator is unknown, we estimate it via the proceduoppsed in [KMVO04].

Figure 6.1 shows the data points with the estimated ellipapsrimposed on them.
The OR estimator is computed by a general purpose optiraizaigorithm (MATLAB
functionfmincon ). The cost function is evaluated as explained in [Zha97ti&e&.2].

For the first test example (see Figure 6.1, left) the OR estima influenced by
the initial approximation. Using the LS estimate as iniipproximation, the optimization
algorithm converges to a local minimum. The resulting eatanis the dashed-dotted ellipse
closer to the LS estimate. Using the ALS estimate as inifigreximation, the obtained
estimate is the dashed-dotted ellipse closer to the AL&ast. Next, we will consider the
better of the two OR estimates.

Although the sample size is only = 8 data points, the ALS estimator gives good
estimates that are comparable with the OR estimate. The dlthe OR cost function
(see (6.3)) is 3.2531 for the LS estimator, 1.6284 for the Ais8mator, and 1.3733 for
the OR estimate. The ALS estimator is less than 19% suboptiv@areover, the volume
of the OR estimate is 62.09 square units, while the volumé®fALS estimate is 34.37
square units, which is nearly twice as small. Visually (a8 ain other senses), “smaller”
estimates are preferable.

Inasecond example, taken from [Sp&97], the ALS estimateseto the OR estimate;
see Figure 6.1, right. In terms of the OR cost function, th&SAdstimate is less than 25%
suboptimal. The volume of the ALS estimate is comparabléab of the OR estimate.

Figure 6.2 illustrates the invariance properties of the As8mator with estimated
noise variance. The data used is again the “special datai’ f[@GS94]. The figure shows
translated, rotated, scaled, and translated and rotatadpdints with the corresponding
ALS estimates.
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Example from [Spa97].
12 :

Test example “special data” from [GGS94]. 10r

T

Figure 6.1. Test examples. dashed—LS, dashed-dotted—OR, solid-e-Ald@fa points,
x—centers of the estimated ellipses.

30 1

25r translated

and rotated
20+

15

)

10

(0,0)  original

-15 -10 -5 0 5 10 15 20 25 30 35
T

Figure 6.2. ALS estimates of the original, translated, rotated, scasedl translated and
rotated data pointso—data points x—centers of the estimated ellipses;-point(0, 0).
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6.8 Conclusions

The LS estimation of the ellipsoid parameters from noisy sueaments of points on its
boundary is a nonlinear least squares problem. An indidboptimal approach was
used that transforms the ellipsoid model to a general gtiadreodel and applies linear
least squares estimation. Due to the measurement errorgvln the LS estimator is
inconsistent.

Assuming that the measurement errors are normally diséiba correction is derived
that uses the true measurement error variance and adjestsStitost function, so that
the resulting ALS estimator is consistent. An algorithm thoe necessary computation is
outlined.

The ALS estimator isiillustrated via simulation examplesni{pared to the orthogonal
regression estimator, it has the advantage of being chéapmempute and independent
of initial approximation. The computational efficiency isicial for higher dimensional
ellipsoid fitting and for problems with large sample size.
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Chapter 7

Introduction to
Dynamical Models

With this chapter, we start to consider modeling problemdif@ar time-invariant (LTI)
systems. First, we give anintroduction to the LTI model€lasing the behavioral language.
Asinthe static case, a key question is the representatiie ofiodel, i.e., how itis described
by equations. Again, the kernel, image, and input/outpgutagentations play an important
role, but other representations that bring additionakstme into evidence are used as well.

Dynamical systems are much richer in properties than stgsitems. In the dynamic
case, the memory of the system is central, i.e., the factiiegpast can affect the future.
The intuitive notion of memory is formalized in the definitiof state. In addition, a key
role is played by the controllability property of the systeBvery linear static system has an
image representation. In the dynamic case this is no longer A necessary and sufficient
condition for existence of an image representation is cdlatyility.

7.1 Linear Time-Invariant Systems

Dynamical systems describe variables that are functiomsefindependent variable, re-
ferred to as “time”. In Chapter 2, a system was defined as asubef a universum set/ .

In the context of dynamical systen®, is a set of functionsy : T — W, denoted byWw™.
The setsW andT C R are called, respectively, signal space and time axis. Tdeabi
space is the set where the system variables take on the&svahd the time axis is the set
where the time variable takes on its values. We use the foilpaefinition of a dynamical
system [Wil86a].

A dynamical systenX is a 3-tupleX = (T, W, %), with T C R the time axisW
the signal space, ang C W the behavior.

The behaviorz C W' is the set of all legitimate functions, according to the sgsE,

from the universum se% = WT. When the time axis and the signal space are understood

from the context, as is often the case, we may identify théegy® = (T, W, %) with
its behavior#. As with any set, the behavior can be described in a numberagbw
In the context of dynamical systems, most often used areeseptations by equations
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W - R e, # ={weW'| f(w) =0} The equationg’(w) = 0 are called
annihilating behavioral equations.
Of interest are systems with special properties. In the\dels setting,

a property of the systert is always defined in terms of the behavior and then
translated to equivalent statements in terms of partigelamresentations.

Similarly, the statement that is a trajectory ofy, i.e., w € 4, is translated to more
convenient characterizations for numerical verificatioterms of representations kf

Note 7.1 (Classical vs. behavioral theory)n the classical theory, system properties are
often defined on the representation level; i.e., a propeitth® system is defined as a
property of a particular representation. (Think, for exéanpf controllability, which is
defined as a property of a state space representation.) ahithh drawback that such a
definition might be representation dependent and therefor@ genuine property of the
system itself. (For example, a controllable system (se&8@et.5) for definition, may have
uncontrollable state representation.)

It is more natural to work instead the other way around.

1 Define the property in terms of the behavigr

2 Find the implications of that property on the parameterthefsystem in particular
representations. On this level, algorithms for verificaidd the property are derived.

The way of developing system theory as a sequence of stebZliaicharacteristic for the
behavioral approach.

A static system %, #) is linear when the universum sé¥ is a vector space and
the behaviorZ is a linear subspace. Analogously, a dynamical system (T, W, %) is
linear when the signal spad® is a vector space and is a linear subspace &7" (viewed
as a vector space in the natural way).

The universum séfV" of a dynamical system has special structure that is not ptese
in the static case. For this reason dynamical systems drerrin properties than static
systems. Next, we restrict ourselves to the case when thediis is eithefl = N or
T = Z and define two properties—time-invariance and completenés&eeping with
tradition, we call a functionw € W' a time series.

A systemX = (N, W, %) is time-invariantif  C 0%, whereo is the backward
shift operator(cw)(t) := w(t + 1) andoB = {ow | w € £ }. Inthe casel = Z, a
system¥ = (Z, W, ) is time-invariant if 2 = 0. Time-invariance requires that if a
time seriesw is a trajectory of a time-invariant system, then all its haakd shiftso’w,

t > 0, are also trajectories of that system.

Therestriction of the behaviog C (R*)T tothetime intervalt;, t,], wheret;, to € T

andt; < to, is denoted by

Blity 1= {w € (R¥)*"+1| there arev_ andw, such thatcol(w_,w,w;) € A}
A systemX = (T, W, %) is completef

U}l[to’tl]e *%Hto,tl] for all to,t1 €T, tog <ty — wE e@,
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i.e., by looking at the time seriesthrough a window of finite width, — ¢y, one can decide
if it is in the behavior or not. Moreover, if the window can lakén to have a fixed width
t; — tog = I, then the system is calldecomplete. It turns out that a system is complete if
and only if its behavior is closed in the topology of pointe/onvergence, i.e., it; € 4
fori € Nandw;(t) — w(t), forallt € T, impliesw € #. Also, a system i$-complete
if and only if there is a difference equation representatibtihat system witli time shifts.
For LTI systems, the completeness property is also céiléte dimensionality

We consider the class of discrete-time complete LTI systes generic notation
for the signal space & = R".

The class of all complete LTI systems withvariables is denoted hy.

Next, we discuss representations of the cla&s

7.2 Kernel Representation

Consider the difference equation
Row(t) + Ryw(t+ 1)+ -+ Rw(t+1) =0, where R, € RI*". (DE)

It shows the dependence among consecutive samples of taedinesw. Assuming that
R; # 0, the maximum number of shifts is The integet is called thdag of the equation.
Since in general (DE) is a vector equationis the largest lag among the lags. . ., [, of
all scalar equations.

Obviously, (DE) induces a dynamical system via the reprasiem

% = {w € (R*)? | (DE) holds}.

One can analyze# using the difference equation. It turns out, however, th& more
convenient to use polynomial matrix algebra for this pugpd®E) is compactly written in
terms of the polynomial matrix

R(Z) =Ry + Rlzl —+ R222 R RlZl c RQXW[Z]

asR(o)w = 0. Consequently, operations on the system of differencetreumsaare repre-
sented by operations on the polynomial matkix The system induced by (DE) is

ker (R(0)) :={w € (R)N | R(o)w=10}. (KERTepr)

We call (KER repr) a kernel representation of the syst@m= ker (R(a)).
The following theorem summarizes the representation-¢tesracterization of the
class of complete LTI systems, explained in the previous@®cand states that

without loss of generality one can assume the existence efreekrepresentation
% = ker (R(0)) of a system# € £~.
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Theorem 7.2 (Willems [Wil86a]). The following are equivalent:
() X =(Z,R", Z) is linear, time-invariant, and complete.
(iiy A is linear, shift-invariant, and closed in the topology ofitavise convergence.

(iiiy There is a polynomial matrix? € R**¥[2], such thatZ = ker (R(c)).

The linearity of the system induced by (DE) follows from theehrity of (DE)
with respect tow. The shift-invariance follows from the time-invariance tbe coeffi-
cientsRy, ..., R;, and the completeness follows from the fact that (DE) inesla finite
number! shifts of the time series. Thus (iig=- (i) is immediate. The reverse implication
(i) = (iii), on the other hand, requires proof; see [Wil86a, Tlezoi5].

A kernel representation associated with a givgne ¥ is not unique. The non-
uniqueness is due to:

1. linearly dependent equations (which refergtaot being full row rank) and

2. equivalence of the representatides (R(c)) = 0 andker (U(o)R(c)) = 0, where
U € R9%9[z] is a unimodular matrix.

A square polynomial matrix/ is unimodularif it has a polynomial inverse. A necessary
and sufficient condition fot/ to be unimodular is its determinant to be a nonzero constant.
Two kernel representations of the same behavior are caljeidadent.

Premultiplication of R with a unimodular matrix is a convenient way to repr
sent a sequence of equivalence transformations on thewsydtdifference equa-
tions (DE).
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For a given systen¥¥ c .7, there always exists a kernel representation in which
the polynomial matrixk has full row rank [Wil91, Proposition I11.3]. Such a kernejare-
sentation is called minimal kernel representatiorin a minimal kernel representation, the
number of equationg := row dim(R) is minimal among all possible kernel representa-
tions of . All minimal kernel representations of a given system arfaat unimodularly
equivalent; i.e., ifR’'(¢) = 0 andR” (o) = 0 are both minimal, then there is a unimodular
matrix U, such thatR’ = UR".

There exists a minimal kernel representatign= ker (R(c)), in which the number
of equationg = row dim(R), the maximum lag := max;—, ., /;, and the total lag :=
>P_, 1; are simultaneously all minimal over all possible kernelresgntations [Wil86a,
Theorem 6]. Such a kernel representation is cadledrtest lag representationA kernel
representationd = ker (R(c)) is a shortest lag representation if and onlyzifz) is row
proper. The polynomial matrig = [r; --- rp]T, deg(r;) =: 1, is row properif the
leading row coefficient matrix (i.e., the matrix of which ttiej)th entry is the coefficient

of the term with powet; of R;;(z)) is full row rank. It can be shown that thg’s are the
observability indices of the system.

The minimal and shortest lag kernel representations quoresto special prop-
erties of theR matrix: in a minimal representatioi is full row rank, and in a
shortest lag representatioR,is row proper.
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A shortest lag representation is a special minimal reptetien, because a row proper
matrix is necessarily full row rank. A shortest lag repreagaon, however, is still not
unique.

The minimal number of equations the lagl, and the total lagh are invariants
of #. It turns out thap is equal to the number of outputs, called output cardinglityn
input/output representation. Correspondingly, the iateg:= w — p is also an invariant
of # and is called the input cardinality. Itis equal to the nunddénputs in an input/output
representation. The total lagis equal to the state dimension in a minimal state space
representation of2. We use the following notation:

m(%) for the input cardinality of#,
p(#) for the output cardinality of3,
n(#) for the minimal state dimension o#, and

1(#) for the lag of #.

7.3 Inputs, Outputs, And Input/Output
Representation

Consider a projection operatbr € R"*¥ and a partitioning of the time series ¢ (R¥)Z
into time series; andy as follows:

{:ﬂ =T1"w, where dim (u(t)) =:m, dim (y(t)) =:p, with m+p=mw.
Respectively a behavio® € £ is partitioned into two subbehavio®, and%,. The
variables inu are called free i, = (R™)Z. If, in addition, any other partitioning results
in no more free variables, the#, is called maximally free iZ8. A partitioning in which
A, is maximally free is called an input/output partitioninghvi: an input and; an output.
There always exists an input/output partitioning of theialsles of Z € £¥, in
fact a componentwise one; see [Wil86a, Theorem 2]. It is majue, but the number of
free variablesn and the number of dependent variabteare equal to, respectively, the
input cardinality and the output cardinality 68 and are invariant. In a minimal kernel
representatioker (R(c)) = 4, the choice of such a partitioning amounts to the selection
of a full-rank square submatrix @. The variables corresponding to the columngdhat
form the full-rank submatrix are dependent variables ardther variables are free.
The inputs together with the initial conditions determihe butputs. This property
is calledprocessing/Wil91, Definition VIII.2]. Also the inputs can be chosen doat
they are not anticipated by the outputdonanticipationis also called causality [Wil91,
Definition VI11.4].
Letker (R(0)) be a minimal kernel representation®f< .. One can always find
a permutation matriXI € R¥<¥, such that” € RP*P[2], defined byRII =: [Q —P], has
a nonzero determinant and the rational polynomial matrix

G(2) := P71(2)Q(z) € RP*™(2) (TF)
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is proper. This requires selecting a submatfixamong all full-rank square submatrices
of R that has determinant of maximal degree. Then the correspgpartitioning ofw,
col(u,y) := IITw, is an input/output partitioningG being proper implies that is not
anticipated byy; see [Wil91, Theorem VIIL.7].

The difference equation

P(o)y = Q(o)u (O eqn)

with an input/output partitioningl is called an input/output equation, and the matrix
defined in (TF), is called the transfer function of the syst@m= ker (R(0)).

The class of LTI complete systems witlvariables and at mostinputs is denoted
by £¥.

The systenZ € ¥ induced by an input/output equation with parameté?sq))
(and input/output partitioning defined bi) is

Bio(P,Q, 1) := {w := Tl col(u,y) € (RN | P(o)y = Q(o)u}. (/Orepr)

(I/Orepr) is called an input/output representation of h&tam.# := By, (P, Q,I1). If I
is the identity matrixZ,, it is skipped in the notation of the input/output repreatioh.

7.4 Latent Variables, State Variables, and State Space
Representations

Modeling from first principles invariably requires the atitol to the model of other variables
apart from the ones that the model aims to describe. Suciblas are called latent, and we
denote them by (not to be confused with the lag of a difference equation)k Vdriablesv
that the model aims to describe are called manifest vagahlerder to distinguish them
from the latent variables.

An important result, called the elimination theorem [W#8@ heorem 1], states that
the behavior

B(R,M) = {we R |31 e R, suchthatR(o)w = M(c)l}  (LVrepr)
induced by the latent variable equation
R(o)w = M(o)l (LVeqn)

is LTI. The behaviorZ(R, M) is called manifest behavior of the latent variable system.
The behavior of the manifest and latent variables togethealied the full behavior of the
system. The elimination theorem states that if the full baras LTI, then the manifest
behavior is LTI; i.e., by eliminating the latent variablése resulting system is still LTI.

A latent variable system isbservableif there is a mapw — [, i.e., if the latent
variables can be inferred from the knowledge of the systedrtlammanifest variables. The
kernel representation is a special case of the latent Janiapresentation fok = 1.
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State variablesare special latent variables that specify the memory of yistes.
More precisely, latent variables are called state variables if they satisfy the following
axiom of state [Wil91, Definition VII.1]:

(wy,21), (we,x2) € B, t €N, andxy(t) = z2(t) = (w,z) € B,

where
(wi(7),z1(7)) forT <t
(wg(r),xg(r)) for = > ¢.

(w(T),:E(T)) = {

A latent variable representation of the system is a stateblarrepresentation if there exists
an equivalent representation whose behavioral equatierisst order in the latent variables
and zeroth order in the manifest variables. For examplegdiation

ocx=Ax+Bv, w=Cz+Dv

defines a state representation. Itis called state repeggEntvith a driving input because
acts like the inputw is free and, together with the initial conditions, deteresia trajectory
w € A. The system induced by the parametets B’,C’, D') is

Bs(A,B',C", D) == {we R |Fve (R andz € (R*)",
such thatz = A’z + B'v, w = C'z 4+ D'v }.

Any LTI systemZ € £¥ admits a representation by an input/state/output equation
ox =Ax+ Bu, y=Cx+ Du, w=IIcol(u,y), (I/S/0 eqgn)

in which both the input/output and the state structure ofdpstem are explicitly dis-
played [Wil86a, Theorem 3]. The systesd, induced by an input/state/output equation
with parameters A, B, C\, D) andIl, is

Bisio(A, B,C, D, TI) := {w := I col(u,y) € (RN | Tz € (RM)N,
such thavae = Ax 4+ Bu, y = Cx + Du}. (1/S/Orepr)

(I/SIOrepr) is called an input/state/output represeoitati the systen® := Byso( A, B, C,
D, 1I). Again,II is skipped whenever it if.

An input/state/output representation is not unique. Th@mml state dimension =
dim(x) among all input/state/output representationsgfhowever, is invariant (denoted

by n(2)).

We denote the class of LTI systems witlariables, at most inputs, and minimal
state dimension at most by ",
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7.5 Autonomous and Controllable Systems

A system% is autonomousf for any trajectoryw € 4 the past

w_ = (..., w(-2),w(-1))

of w completely determines its future

wy = (w(0),w(1),...).

A system is autonomous if and only if its input cardinality (%) equals). Therefore,
an autonomous LTI system is parameterized by the pair oficeatd andC' via the state
space representation

or=Ax, y=Cx, w=y. (AUT)

The system induced by the state space representation wampterg A, C') is
Bisio(A, C) = {w € (RPN | T2 € (R*)Y, such thavz = Az, w = Cx }.

The behavior of an autonomous system is finite dimensionatdt, dim(2) = n(%).
Alternatively, an autonomous LTI system is parameterinedninimal kernel representation
% = ker (R(0)) by a square and nonsingular matfixi.e., R € RP*P[z], det(R) # 0.

The systen#Z is controllableif for any two trajectoriesv,, wo € %, there is a third
trajectoryw € &, such thatw,(t) = w(t), for all t < 0, andws(t) = w(t), for all
t > 0. The subset of controllable systems contained in thez8eis denoted byZ7,. A
noncontrollable systemw® can be represented [Wil91, Proposition V.8Vas= B.trb® Paut,
where%.pis the largest controllable subsystenvand%,:is a (honunique) autonomous
subsystem.

A test for controllability of the syster® in terms of the parametdt € R9*¥[z] in a
kernelrepresentatio® = ker (R(a)) isgivenin[Wil91, Theorem V.2]Z s controllable if
and only if the matrix?(z) has a constant rank for alle C. Equivalently,Z is controllable
if and only if a matrixR that defines a minimal kernel representatiow®fs left prime. In
terms of the input/output representatigh= %, (P, Q), % being controllable is equivalent
to P and( being left coprime.

The controllable subsyste#, of 2 can be found via the factorizatiat = F' R/,
whereF € R9*9[z] and R’ is prime: B, = ker (R/(c)). In general, left multiplication
of R with a nonsingular polynomial matrix changes the behavitamounts to adding an
autonomous subbehavior. Only left multiplication with amadular matrix does not alter
the behavior because it adds the trivial autonomous behéfjo

7.6 Representations for Controllable Systems

The transfer functiols parameterizes the controllable subsyster®gf( P, Q). Let 2 be
the Z-transform
Z(w) =w(0) +wl)z +w(®2)z72+ -

and consider the input/output equation

Z(y) = G(2)Z (u). (TFeqgn)
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(TFeqn) is known as a frequency domain equation becéi(s&”) describes how the
sinusoidal input(t) = sin(wt) is “processed” by the system:

y(t) = |G(e?)|sin (wt + LG(e7*)).
The system induced b¥ (with an input/output partition defined by) is
Biio(G,11) := {w =T col(u,y) € (R |y =27 (G(2)Z(u)) }.  (TFrepr)
(TFrepr) is called a transfer function representation & $ystem% := %o (G,II).

In terms of the parameters of the input/state/output remtesion %ysx(A, B,C, D) =
Piio(G), the transfer function is

G(z)=C(Iz—A)~'B+D. (TF—I1/S/O)
Define the matrix valued time seriés € (RP*®)N by H := 271(G), i.e.,
G(z)=H(0)+H(1)z ' + H(2)z > +---. (TF—CONV)

The time seried/ is a parameter in an alternative, time-domain representafithe system
Pio(G,T1). Letx be the convolution operator. Then

t—1

y(t) = (H*u)(t) = Z H(rm)u(t — 7). (CONVeqn)

7=0

The system induced b#f (with an input/output partition defined Qy) is
Bijo(H,T) := {w = col(u,y) € R |y =H~*u}. (CONV repr)

(CONVrepr) is called a convolution representation of theten% := %, (H, 1II).

The matricesH(t), t > 0, are called Markov parameters of the representation
Pio(H). In terms of the parameters of the state space representdjia,(A, B,C, D) =
Pijo(H), the Markov parameters are

H(0)=D, H(t)=CA™'B, t>1. (CONV«1/S/0)

In addition to the transfer function (TF repr) and convaat{CONV repr) representa-
tions, a controllable syste# € ¥ allows an image representation [Wil91, Theorem V.3];
i.e., there is a polynomial matrix/ € R¥*9[2], such thatZ = image (M (c)), where

image (M (0)) := {w e (R")" |31 e (R")", suchthatw = M(c)l}. (IMGrepr)
The image representation is minimal if the numbef latent variables is minimal; i.e., there

are no extraexternal variables in the representation the@ssary. Theimage representation
image (M (o)) of 2 is minimal if and only ifM is full column rank.
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7.7 Representation Theorem

The following theorem summarizes the results presentetlérptevious sections of this
chapter.

Theorem 7.3 (LTI system representations)The following statements are equivalent:

(i) & is acomplete LTI system withvariables,m inputs, andp := w — m outputs, i.e.,
% € L" andm(HB) = m;

(i) thereis a (full row rank) polynomial matri® € RP*¥[z], such thatZ = ker (R(a));

(iii) there are polynomial matrice§) € RP*®[z] and P € RP*P[z], det(P) # 0, P~1Q
proper, and a permutation matrid € R"*¥, such that#? = %, (P, Q,11);

(iv) there is a natural numbet, matricesA € R***, B € R**", C € RP**, andD €
RP*" and a permutation matrikl € R"*¥, such that® = %Bis0(A, B, C, D, 11);

(v) there is a natural number € N and polynomial matrice® € RP*"[z] and M €
RP*1[z], such that® = #(R, M);

(vi) there is a natural numbetr € N and matricesd’ € R***, B’ € R**® C’ € RP*™,
and D’ € RP*", such thatZ = %s(A’, B',C", D).

If in addition £ is controllable, then the following statement is equivaten(i)—(vi):
(vii) there is a full column rank matrid/ € R¥*®[2], such thatZ = image (M (c)).

A controllable systen¥8 has transfer function%;,(G,II) and convolution%,(H,II)

representations. These representations are unique wharpat/output partitioning of the
variables is fixed.

The proofs of most of the implications of Theorem 7.3 can henébin [Wil86a]
and [Wil91]. These proofs are constructive and give expétgorithms for passing from
one representation to another.

Figure 7.1 shows schematically the representations disdusp to now. To the left
of the vertical line are representations that have no exjtiput/output separation of the
variables and to the right of the vertical line are represtmts with input/output separation
of the variables. In the first row are state space represensatThe representations below
the second horizontal line exist only for controllable syss.

Transition from a latent variable representation to a regméation without latent
variables, for exampleZ(R’, M’) — ker(R), involves elimination. Transition from a
representation without an input/output separation to eessgmtation with such a separation,
for exampleker(R) — %yo(P,Q), involves input/output selection. Transitions from a
representation in the second or third rows to a representatithe first row is a realization
problem.

In principle, all transitions from one type of represertatio another are of interest
(and imply algorithms that implement them). Moreover, efpresentations have special
forms such as the controller canonical form, the observeomiaal form, balanced rep-
resentation, etc. Making the graph in Figure 7.1 conneaiéfctss in order to be able to
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derive any representation, starting from any other one irgga specialized algorithm that
does not derive intermediate representations, howevegdantages from a computational
point of view.

input/output
\
\
State Space %SS(A/a Bl7 Cl) D/) ! ggi/S/O(Av Bv 07 D)
\
\
________________________ e
\
PB(R',M') — elimination— ker(R) — i/o sef‘ection—> Bio (P, Q)
\
________________________ ‘____________
\
controllable image(M) : PBio(G)
\
\
Bio(H)

Figure 7.1. Representations by categories: state space, input/oudjpdtcontrollable.

7.8 Parameterization of a Trajectory
A trajectoryw of # € £ is parameterized by
1. acorresponding inputand
2. initial conditionszin;.
If Zis givenin aninput/state/output representatidén= Zysio( A, B, C, D), then aninput
is given and the initial conditions can be chosen as theairstatex(1). The variation of
constants formula
t—1
w=col(u,y), yt)=CA o + Z CA"™ ™ 'Bu(r) + Du(t), t>1 (VC)
T=1 H(t—T)
gives a parameterization af. Note that the second term in the expressionfas the
convolution ofH andu. It alone gives the zero initial conditions response. @®hesolumn
of the impulse responsH is the zero initial conditions response of the system totinpu
u = e;0, wheree; is theith unit vector.

For a given pair of matriceé4, B), A € R***, B € R**", andt € N, define the
extended controllability matrix (with block columns)

%(A,B):=[B AB ... A'"!B] (%)
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andleté (A, B) := €~ (A, B). The pair(A, B) is controllable if¢’( A, B) is full row rank.
By the Cayley—Hamilton theorem [Bro70, page %2hk (¢(A4, B)) = rank (¢,(A, B)),
so that it suffices to check the rank of the finite matix A, B). The smallest natural
numberz, for which %;(A, B) is full row rank, is denoted by (A, B) and is called the
controllability index of the paif A, B). The controllability index is an invariant under state
transformation; i.e.y(A, B) = v(SAS—!,SB) for any nonsingular matrixs. In fact,
v(A, B) is an invariant of any system#sio( A, B, e, e), so that it is legitimate to use the
notationv (%) for # € .£¥. Clearly,v(#) < n(%).

Similarly, for a given pair of matricegA, C), A € R**®, C € RP*?, andt € N,
define the extended observability matrix (withlock rows)

Oy(A,C) = col(C,CA,...,CA™Y) G

and let0(A,C) := O (A,C). The pair(A, C) is observable i7' (A, C) is full column
rank. Again,rank (0(A,C)) = rank (0,(A, C)), so that it suffices to check the rank of
On(A, C). The smallest natural numbgrfor which €;( A, C) is full row rank, is denoted
by (A, C) and is called the observability index of the péit, C'). The observability
index is an invariant under state transformation; €4, C) = u(SAS~t,CS~1) for any
nonsingular matrixS. In fact,v(A, C) is equal to the lag of any systefisio(A, e, C, o),
so that it is invariant and it is legitimate to use the notatid.#) for Z € £¥. Clearly,
(B) = v(B) < n(B).

If the pairs(A, B) and (A, C) are understood from the context, they are skipped in
the notation of the extended controllability and obsemigtinatrices.

We define also the lower triangular block-Toeplitz matrix

"H(0)
H(1)  H(0)

T (H) = H(2) HFl) H(0) (7)
H4) H(-1) ... H(1) H(©)

and let7 (H) = 9. (H). With this notation, equation (VC) can be written compaeidy

[Z - [ﬁ’(z‘(l), C) ﬁ(IH)] [x;m] (VC)

If the behaviorZ is not given by an input/state/output representation, therpa-
rameterization of a trajectory € 4 is more involved. For example, in an input/output
representatio’? = %, (P, Q), w can be parameterized by the inptaind thel = deg(P)
values of the time seriesiy := (w(—1+ 1),...,w(0)) precedingw as follows:

y = Oyowini + -7 (H)u. (VCilo)

Heredj, is a matrix that induces a mapping framy, to the corresponding initial conditions
response. Letyso(A, B,C, D) = SBin(P, Q). Comparing (VC') and (VC), we see that
the matrix&j, can be factored a8y, = (A, C)X, whereX is a matrix that induces the
mapwini — xini, called a state map [RW97].

The graph in Figure 7.2 illustrates the two representatiomeduced in this section
for a trajectoryw of the systen¥ € £,
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weRBeLm

/ \

B = Bijo(P, Q,11), wini B = Bisio(A, B,C, D,1I), ini

Figure 7.2. Links amongw € # € Z® and its parameterizations in input/output and
input/state/output form.

7.9 Complexity of a Linear Time-Invariant System

In Chapter 2, we introduced the complexity of a linear syst8ras the dimension o# as
a subspace of the universum set. For an LTI syst#m ¥ and forT > 1(4),

dim(%|(1.17) = m(B)T + n(2), (dim )

which shows that the pair of natural numbgia(%),n(%)) (the input cardinality and
the total lag) specifies the complexity of the system. Theehothss.Z» contains LTI
systems of complexity bounded by the pairn).

In the context of system identification problems, aiming &eenel representation
of the model, we need an alternative specification of the d¢exity by the input cardinal-
ity m(#) and the lad(#). In general,

((2) — 1)p(#) < n(#) < UB)p(%),

so that
dim(%|(1,17) < m(B)T + 1(#)p(%)

and the pair(m(%), 1(%’)) bounds the complexity of the syste#.

The class of LTI systems with variables, at most inputs, and lag at modt is
denoted byZy, .

This class specifies a set of LTI systems of a bounded contylexi

7.10 The Module of Annihilators of the Behavior *

Define the set of annihilators of the systethe #* as
Ng = {rcRz]|r"(6)B =0}
and the set of annihilators with length less than or equab®

Ny i={r € Ng| deg(r) <1}.
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The sets 4z and.#, are defined as subsets&f[z]. With some abuse of notation, we
consider also the annihilators as vectors; i.e.yfa) =: ro + 71z + - - + 72! € Az, we
also writecol(rg, 71, ...,77) € Np.

Lemma7.4.Letr(z) =ro+riz + -+ 11271 Thenr € 47, if and only if

col " (rg,71,. .. ;71-1)Bly= 0.

The set of annihilatorst is the dual%# of the behavior#.

The proof of the following facts can be found in [Wil86a]. Th&ucture of 4z
is that of the module oR|[z] generated by polynomial vectors, say'"), ... ,r®  The
polynomial matrixR := [r(1) ... +®)]T yields a kernel representation of the behavigyr
i.e., % = ker (R(U)).

Without loss of generality, assume thfais row proper; i.e.ker (R(c)) is a shortest
lag kernel representation. By the row propernes&ofhe set of annihilators/}, can be
constructed from the(®)’s and their shifts

Az = image (rV(2), z2rM(2),... 27D (2) 5y
T(p)(z)a ZT(p) (2)7 R Zli'upilr(p) (Z)) :
The dimension of#,} isl — p1 +1— po + - +1—pp = pl —n.

In the proof of the fundamental lemma (see Appendix A.3), wedthe following
simple fact.

Lemma 7.5. Letr(M), ... r® wheredeg(r;) =: u;, be independent over the ring of
polynomials. Then

rW(2),2rW(2),..., 27 W) @ (), 2r®(2), . 2R (y)

are independent over the field of reals.



Chapter 8
Exact Identification

With this chapter, we start to consider identification peshs. The first problem is the
simplest of this type: given a trajectory of an LTI systemgfrrepresentation of the system
that produced this trajectory. The problem is defined andvatted in Sections 8.1-8.3.

Exact identification is closely related to the constructibthe most powerful unfal-
sified model (MPUM). In Section 8.2, we define the MPUM, and éct®n 8.3, we define
the identifiability property. Under identifiability, the MM of the data, which is explicitly
constructible from the data, coincides with the data gamgyaystem. This allows us to
find the data generating system from data. An identifiabiést in terms of the given data
is presented in Section 8.4. This key result is repeatediy irswhat follows and is called
the fundamental lemma.

In Section 8.5, we review algorithms for exact identificatiocSection 8.6 presents
algorithms for passing from data to a convolution represt@m. Section 8.7 reviews real-
ization theory and algorithms. Section 8.8 presents alyois for computation of sequential
free responses, which are a key ingredient of direct algmstfor the construction of an
input/state/output representation of the MPUM.

In Section 8.9, we explain the relation of the algorithmsspreed to classical algo-
rithms for deterministic subspace identification. In pardar, the orthogonal and oblique
projections correspond to computation of, respectivege fesponses and sequential free
responses of the system. We comment on the inherent inefficief the orthogonal and
oblique projections for the purpose of exact identificatiBimulation results that compare
the efficiency of various exact identification algorithme ahown in Section 8.10.

8.1 Introduction

In this chapter, we consider the following problem:

Given a trajectorywy of an LTI system#, find a representation ¢#.

We refer to this most basic identification problem as an eidaettification problem. It is
of interest to find algorithms that make the transition frogndirectly to any one of the
various possible representations®f cf., Figure 7.1.

115
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identification——— model

Bisio(A, B,C, D)

—

data

— 10
de = (ud, ya) € &

realization———

Figure 8.1. Data, input/output model representations, and links amtegn.

1. G(z) = C(Iz— A)~'B+D 3. H=2"G)

N

. Realization of a transfer function 4. G = Z(H) =Y H(t)=""

. Convolutionyg(t) = >0 H(T)uga(t — )
. Exact identification; see Algorithms 8.6 and 8.7
. H(0)=D,H(t)=CA""'B,fort > 1

. Realization of an impulse response; see Algorithm 8.8

© 00 N o O

. Simulation of the response under the inpgt
10. Exact identification; see Algorithm 8.1
11. Simulation of the response under the inpgand initial conditionse(1) = xini

12. Exact identification; see Algorithms 8.4 and 8.5

Figure 8.1 shows the representations with an input/outpttitipn of the variables
that we considered before and the trajectegy=: (uq4,yq). The transitions fromug to
convolution, transfer function, and input/state/outgypresentations are exact identification
problems. The transitions among the representations #leessare representation prob-
lems. Most notable of the representation problems are tzatdion ones: passing from
an impulse response or transfer function to an input/stateiit representation.

The exact identification problem is an important systemréigoproblem. Itincludes
as a special case the classical impulse response realizatblem and is a prerequisite
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for the study of more involved approximate, stochastic, stodhastic/approximate identi-
fication problems (e.g., the GITLS misfit minimization prefsl, which is an approximate
identification problem). In addition, numerical algoritafior exact identification are useful
computational tools and appear as subproblems in othetifidation algorithms. By itself,
however, exact identification is not a practical identifizatproblem. The data is assumed
to be exact and unles# is the trivial system = (R")Y, a randomly chosen time series
wq € (R¥)Y is a trajectory of# with probability zero.

Modified exact identification algorithms can be applied oradaat is not necessarily
generated by a finite dimensional LTI system by replacingekaear algebra operations
with approximate operations. For example, rank deternginas replaced by numerical
rank determination (via SVD) and solution of a system ofdinequations by LS or TLS
approximation. A lot of research is devoted to the problenegtfiblishing alternatives
to wyq € %A, under which such modified algorithms have desirable ptigger Often this
problem is treated in the stochastic setting of the ARMAX elahd the properties aimed
at are consistency and asymptotic efficiency.

Note 8.1 (Multiple time series) In general, the given data for identification is a finite set
of time serieswq 1, ..., wq . IN the presentation, however, we define and solve the iden-
tification problems for a single time series. The genertibrafor multiple time series of
equal length is trivial and the one for nonequal length is penoproblem.

Note 8.2 (Finite amount of data) An important aspect of the identification problems that
we address is the finiteness of the available data. Previadges of exact identification
either assume an infinite amount of data or do not addressghe of finiteness of the data.

Note 8.3 (Given input/output partitioning) Although the exact identification problem is
defined in the behavioral setting, most of the establishedlt® are in the input/output
setting. In our treatment, some problems are also solvetkimput/output setting.

Software implementation of the algorithms presented mahid the following chapter
is described in Appendix B.3.

8.2 The Most Powerful Unfalsified Model

The notion of the most powerful unfalsified model (MPUM) igroduced in [Wil86b,
Definition 4]. It plays a fundamental role in the exact id&atition problem.

Definition 8.4 (MPUM in the model class.#¥ [Wil86b]). The systen® C (R¥)" is an
MPUM of the time seriesq € (R¥)T in the model class#™ if it is

1. finite dimensional LTI, i.e% € ¥,
2. unfalsified, i.e.wq € %|;1 1), and
3. most powerful among all finite dimensional LTI unfalsifsgdtems, i.e.,

B e L"andwy € %/|[17T] = 4@|[1)T]g ﬂ/‘[l,T}
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The MPUM ofwyq is denoted byZmpum(wd). We skip the explicit dependencewgnwhen
wq IS understood from the context.

The existence and uniqueness of the MPUM are proven in tlmwiolg theorem.

Theorem 8.5 (Existence and uniqueness of the MPUM [Wil86b])The MPUM ofwy €
(R¥)T" exists and is unique. Moreover,

%mpum(wd) = Ny €Bl,1 B;
BeL”

i.e., Bmpum(wa) is the smallest shift-invariant closed in the topology ahpeise
convergence subspace (@)™ that containswg.

Proof. Define %’ := Nuye|,, ,%- We will show that%’ is an MPUM.
BeL”

Lemma 8.6 (Intersection property of £¥). B, B> € LV — B1 N By € L.

Proof. See [Wil86b, Proposition 11]. a

Lemma 8.6 implies tha®?’ € #¥. Obviously,wyq € %', so that#’ is unfalsified.
Moreover,%’ is in the intersection of all finite dimensional LTI unfalsifi models, so that
it is most powerful. Thereforez’ is an MPUM.

We proved the existence of an MPUM. In order to prove unigesyessume that there
is #" + %' thatis also an MPUM ofvy. By Lemma 8.6 % := "' N %' € ¥ andZ is
obviously unfalsified. Butz c %', so that#’ is not an MPUM, which is a contradiction.
O

The next proposition shows another characterization oMR&M for infinite wyq.

Proposition 8.7. Letwg € (R¥)N. Then

Brmpum(wd) = closure( image(wg, cwg, c2w, . . )),

i.e., Bmpum(wq) is the closure of the span afy and all its shifts.

Proof. Let %’ := closure(image(wq, cwg, o*wy, ...)). By definition, %’ is a closed,
linear, and shift-invariant subspace. Then [Wil86a, Tkeob] implies that?’ € .£¥. By
definition,wq € #’, so that%’ is unfalsified. From conditions 1 and 2 of Definition 8.4, it
is easy to see that any unfalsified model contaitis Therefore, %’ is the MPUM ofwy.

O

Note 8.8 (Algorithms for construction of the MPUM) Proposition 8.7 shows that the
MPUM Znpum(wy) is explicitly constructible from the given date. However, algorithms
that pass fromug to concrete representations @fn,um(wq) are needed. Such algorithms
are described in Section 8.5.
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Note 8.9 (GenericallyZmpum(wq) = (R¥)N for infinite data wq € (R¥)Y) The existence
of the MPUM is guaranteed in the model clag¥ of unbounded complexity. For “rough”
datawg € (R¥)" (the generic case ifR*)Y), the MPUM is the trivial systemBmpum(wa) =
(RN, i.e., a system withr inputs. Therefore, generically the MPUM of an infinite time
series does not existin a model clgg8 withm < w. Therefore, an approximation is needed
in order to find a nontrivial model. Approximate identificatiis treated in Chapter 11.

Note 8.10 (GenericallyZmpum(wa)|1,71= (R¥)* for finite data wqy € (R¥)T)

For finite datavy € (R¥)”, the MPUM always exists in a model clagg’ with any number
0 <m < wofinputs. For rough data the solution is still a trivial SSt%mpum(wa)[1,7)=
(R")T. Now, however, the possibility of fitting an arbitrafy samples long time series is
achieved by the initial conditions as well as the inputs ek any observable syste#e
2% of ordern(%) > p(%)T is unfalsified by any” samples long time serieg; € (R¥)7.

8.3 Identifiability

Not every trajectorywy of a system# € £¥ allows the reconstruction o8 from wy.
For example, the trajectoryy = 0 € 2 does not carry any information about because
any LTI system is compatible with the zero trajectory. Thegibility of identifying £
from wyq is a property of bothwyg and 4. In order to formalize the notion of the “possibility
of identifying a system from exact data”, we define the idatiility property as follows.

Definition 8.11 (Identifiability). The systen#z C (R")Y is identifiable from the data
wy € (R¥)™ in the model classz,y" if

1. e L7,
2. wq € ‘%|[1-,T]' and
3. there is no other system’ € .}, #' # %, that fits the data, i.e.,

B ey and wyge Bl — X =2

Identifiability in.Z,"}" implies that the MPUM of the datay is in %} and coincides
with the data generating systev

Theorem 8.12.1f 2 C (R*)" is identifiable in the model clasg;’;" from the datawq €
(R")™ in the model classZ;' )", then? = Bnpum(wa).

Proof. The first condition forZ being identifiable fromuy implies the first condition for

% being the MPUM ofwq, and the second conditions are equivalent. Condition 34or

being identifiable fromuwy implies that there is a unique unfalsified system in the model

class.%,y'. Therefore % is the MPUM ofuwy. O
Since the MPUM is explicitly computable from the given dated Note 8.8) identi-

fiability indeed implies the “possibility of identifying thsystem from exact data”. In Sec-

tion 8.5, we list algorithms for passing fromy to kernel, convolution, and input/state/output
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representations of the MPUM. For example, consider Algari8.1, which constructs a ker-
nel representation of the MPUMSmpum(wa).
Next, we define the considered exact identification problem.

Problem 8.13 (Exact identification). Givenwy € # € £¥ and complexity specification
(m, Limax, Dmax), determine whethe# is identifiable fromwg in the model classz,’y,
and if so, find an algorithm that computes a representatiogof

8.4 Conditions for Identifiability

The block-Hankel matrix witlt; block rows andt, block columns, constructed from (in
general matrix valued) time series= (w(1),w(2),...), is denoted by

w(1) w(2) w(3) w(ts)
w(2)  w(3) wd) o w(ta+1)

'%1,t2 (w) = w(S) w(4) ’LU(5) ce ’LU(tg + 2) . (%)
wt) et 1) W+ w1

If both block dimensiong; andt, are infinite, we skip them in the notation; i.e., we define
H(w) = Hx (w). Ifthe time series is finitey = (w(1),...,w(T)), i.e., thens, (w)
denotes the Hankel matrix with block rows and as many block columns as the finite time
horizonT allows; i.e.,. 74, (w) := J¢, +,(w), whereto =T — t; + 1.

With some abuse of notation (s viewed as both the matripw(1) w(2) ---] and
the vectorcol (w(1),w(2),...), the infinite Hankel matrix#’(w) can be block partitioned
in the following two ways:

which shows that it is composed efand its shiftsy‘w, t > 1, stacked next to each other.
Therefore,w € 2 implies thatcol span (/#(w)) C 2. We establish conditions om
and % under which equality holds, i.e., conditions under whickpecifies#Z exactly.

Definition 8.14 (Persistency of excitation).The time seriesiq = (ug(1),...,uq(T)) is
persistently exciting of ordek if the Hankel matrixs#7, (uq) is of full row rank.

Lemma 8.15 (Fundamental lemma [WRMMO05]). Let

1. wyq = (uq,yq) be aT samples long trajectory of the LTI systes i.e.,

wo= o] = (o] [se())) € #ams
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2. the systen® be controllable; and
3. the input sequenaegy be persistently exciting of orddr + n(.%).

Then anyL samples long trajectory = (u, y) of 2 can be written as a linear combination
of the columns of#7 (wq) and any linear combination#7,(wq)g, g € RT-E+1 is a
trajectory of 4, i.e.,

colspan (1 (wa)) = Bl1,1)-

Proof. See Appendix A.3. a

The fundamental lemma gives conditions under which the Elamatrix 77, (wq)
has the “correct” image (and as a consequence the “correfttkérnel). For sufficiently
large L, namelyL > 1(#) + 1, it answers the identifiability question.

Theorem 8.16 (ldentifiability conditions). The system4 ¢ ¥ is identifiable from the
exact datawq = (ug,yq) € £ if £ is controllable anduq is persistently exciting of order
1(B) +1+n(AB).

Note that for applying Theorem 8.16, we need to know a prieidrder and the lag
of # andthatZ is controllable. These assumptions can be relaxed as f®llBwowledge of
upper bounds,,.x andl .. of, respectivelyn(%) andl(%) suffice to verify identifiability.
Moreover, the condition % controllable andug persistently exciting of ordet .. +
1 + nnax” is the sharpest necessary condition for identifiabilitattis verifiable from
the datapmax, andl,.x only. In other words, ifug is not persistently exciting of order
Lmax + 1+ nmax, then there is a controllable systefhe £, such thatwy € % and
2 is not identifiable fromuy. '

We will need the following corollary of the fundamental leram

Corollary 8.17 (Willems et al. [WRMMO5]). Consider the minimal input/state/output
representation of the controllable syste# %yso(A, B,C, D), and letz4 be the state
sequence ofis0( A, B,C, D), corresponding to the trajectoryq = (ug, yq) Of A.

(i) If uq is persistently exciting of ordai(%) + 1, then

rank ([z4(1) z4(2) -+ 2q4(T)]) = n(2B)
" m (1)
rank [xj(l) o xZ(T) =n(HA) +mn.

(i) If uqis persistently exciting of ordai(#) + L, then

rank {%X(Zd)] =n(#) + Lm, where Xg:= [z4(1) -+ xg(T —L+1)].

Therest of the chapter is devoted to the second part of thet iedeantification problem:
algorithms that compute a representation of the MPUM.
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8.5 Algorithms for Exact Identification

If the conditions of Theorem 8.16 are satisfied, then theeeatgorithms that compute a
representation of the data generating systgrirom the datavy. In fact, such algorithms
compute the MPUM of the datay. In this section, we outline four classes of algorithms for
exact identification. The first one derives a kernel repriegiem and the second one derives
a convolution representation. Composed with realizatigoraghms, they give (indirect)
algorithms for the computation of state space represensti The last two classes of
algorithms construct (directly) an input/state/outpytresentation.

Algorithms for Computation of a Kernel Representation

Under the assumption of the fundamental lemma,

ker (%max+1(wd)) =%

0,1max]
Therefore, a basis for the left kernel.&f; 11 (wq) defines a kernel representationsgfc
Ly, Let

[Ro Rl s R]_ ] %_max+1(wd) = 07

whereR; € R9*¥ with g = p(1max + 1) — n(%4). Then

max

Lmax
P = ker (R(a)), where R(z) = Rz
=0

This (in general nonminimal) kernel representation can la@lenminimal by standard
polynomial linear algebra algorithms: find a unimodular fixat/ € R9*9[z], such that
UR = [£], whereR is full row rank. Therker (R(0)) = 0is a minimal kernel represen-
tation of £.

The above procedure is summarized in Algorithm 8.1.

Note 8.18 (Approximate identification) The SVD in step 2 of Algorithm 8.1is used forthe
computation of the left kernel of the block-Hankel matsi% . 11 (wq). Other algorithms
can be used for the same purpose as well. The SVD, howevesinhagortant advantage
when an approximate model is desired.

Suppose thatank (A4, +1(wg)) = w(Limax + 1), S0 thatBmpumis the trivial model
(R")T. Nevertheless, one can proceed heuristically with stepgl®an order to compute
a nontrivial approximate model. The paramejaran either be chosen from the decay of
the singular values (e.g., the number of singular valuedlsniban a user-given tolerance)
or be fixed. The selection gfdetermines the number of inputs of the identified model and
thus its complexity. The motivation for this heuristic fggpmoximate modeling is thdf,
spans a space that in a certain sense is an “approximatetetlkof 74 ___ 11 (wq).

In [Wil86b, Section 15], Algorithm 8.1 is refined. An efficierecursive algorithm
for the computation of a kernel representation of the MPUMrizposed. Moreover, the
algorithm of [Wil86b] computes a shortest lag kernel repregation and as a byproduct
finds an input/output partition of the variables.
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Algorithm 8.1 Kernel representation of the MPUM w2r
Input: wq € (R™)T andl,ax.

1: Compute the SVD of4 . 1 1(wg) = USV " and letr be the rank of4 11 (wq).
2:if r = w(lmax + 1) then

30 R(2) = 014, {the MPUM is the trivial modeR¥)T}.

4

: else
rog
5. LetU:=[U; U] anddefind/) =:[Ry, R, --- Ri,..] whereR; € RI*¥
6: Compute a unimodular matriX € R9*9[z], such that
o 357 R(z)
U(z)( ; Riz’> = [ 0 ] ., whereR is full row rank.
7: end if

Output: R(z)—a minimal kernel representation of the MPUM.

Algorithm 8.2 is an indirect algorithm for computation of aput/state/output rep-
resentation of the MPUM that uses Algorithm 8.1 for compuitankernel representation
first. The transition from a kernel representation to an ifgbate/output representation is
a standard one. First, a maximal-degree, full-rank subrmatre RP*P of R is selected
and@ is defined as the complementaryfosubmatrix ofR. Then the left matrix fraction
description(P, Q) is realized by standard realization algorithms.

Algorithm 8.2 1/S/O representation of the MPUM via a kernel represenatiow2r2ss

Input: wq € (R™)T andl,ax.

1: Compute a minimal kernel representation of the MPUM via Alldpon 8.1.

2: Select a maximal-degree, full-rank submatftxe RP*P of R and let@ be the comple-
mentary toP submatrix ofR {select an input/output partition of the variables}.

3: Realize( P, Q) via a state space syste#sio(A, B, C, D).

Output: (A, B, C, D)—a minimal input/state/output representation of the MPUM.

If an input/output partition of the time serieg is a priori given, then step 2 is skipped.
For the computation of the transfer functitr ! (2)Q(z) of %, matrix polynomial linear
operations are needed that are not an integral part of mpsiggonumerical linear algebra
packages and libraries such as MATLAB.

Algorithms for Computation of a Convolution Representatio n

The convolution representation is parameterized by thelisgpresponse. Algorithm 8.7
from Section 8.6 computes the impulse response directiy lata. This algorithm is a
consequence of the fundamental lemma with the refinemetiteratively sequential pieces
of the impulse response are computed.

The impulse response is used in the algorithms for balancedkhidentification,
presented in Chapter 9. Previously proposed algorithmbdtanced model identification
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compute a Hankel matrix of the Markov parameters and thusmpate most samples of
the impulse response many times. The algorithm present8ddtion 8.6 avoids this and
as a result is more efficient.

Algorithm 8.3 is an indirect algorithm for computation of mput/state/output repre-
sentation of the MPUM that uses Algorithm 8.7 for computirapavolution representation
first. The transition from a convolution representationtagut/state/output representation
is a standard problem of realization theory; see Section 8.7

Algorithm 8.3 1/S/O representation of the MPUM via an impulse responseuy2h2ss

Input: ug, Yd, Dmax, N1 ax.

1: Compute the firsl .« + 1 + n,ax Samples of the impulse respongeof the MPUM
via Algorithm 8.7.

2: Compute a realizatio®ys;o(A, B, C, D) of H via Algorithm 8.8.

Output: (A, B, C, D)—a minimal input/state/output representation of the MPUM.

Algorithms Based on Computation of an Observability Matrix

Let B = HBisio(A, B, C, D). If, in addition towg = (ug, ya), the extended observability
matrix ¢, +1(A, C) were known, we could findA, B, C, D) by solving two linear
systems of equations. The first block row®@f . (A, C') immediately gives”, and A

is computed from the so-called shift equation

(O'* ﬁlr:xax+1(A7 C))A = (Uﬁlxxlax+l(A7 C)) .

(o0 ando*, acting on a block matrix, remove, respectively, the first tire last block rows.)
OnceA andC' are known, computin@, B, and the initial conditior;,;, under whichwg
is obtained, is also a linear problem. The system of equai(i®ee (VC))

t—1
ya(t) = CAlwini + Y CA"™' "7 Bug(7) + D(t +1), fort=1,..., 1max + 1, (8.1)

=1

is linear in the unknown®, B, andzj, and can be solved explicitly by using Kronecker
products.

Thus the identification problem boils down to the computatd &1, 11 (A, C).
Observe that the columns 6, __1(A, C) aren(4) linearly independent free responses
of Z. Moreoveranyn(%) linearly independent free responges. . . , yn () of %, stacked
next to each other, determine the extended observabilityixmep to a similarity transfor-
mation. Letry, ...,y %) be the initial conditions foy, . .., yn (). The matrix

Xini == 11 -+ nm)] € R1(#) xn(2)
is full rank because, by assumption, the correspondingress are linearly independent.
Then

Yo=[11  Un@®)] = Orna+1(4,C) Xini,
which shows that, is equivalentta?y _, +1(A, C).
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We have further reduced the identification problem to theblerm of computing
n(%) linearly independent free responses of the MPUM. Under fseraptions of the
fundamental lemma, such responses can be computed in tleevgayras the one used for
the computation of the impulse response directly from datae details are described in
Section 8.8.

Sincen(#) is unknown, howevenm,, ., free responseg, ..., y, .. are computed
such that the corresponding mati% := [y1 - ¥n,..| has its maximal possible
rankn(Z). The matrixYj in this case can be viewed as an extended observability ma-
trix 0,,._41(A,C) for a nonminimal input/state/output representationsfwith A ¢
RemaxXmmax gndC' e RP*2max  In order to find a minimal representation, a rank revealing
factorizationY; = I' Xj,; of Y} is computed. The matrik is equal toc; . 1(A,C) upto
a similarity transformation. The nonuniqueness of theestpfice basis in whidhand Xy,
are obtained corresponds precisely to the nonuniquendss nk revealing factorization.

The procedure outlined above is summarized in Algorithm &# alternative ap-
proach for computing a state sequence directly from dassan the shift-and-cut map [WR02],
is presented in [MWDO5].

Algorithm 8.4 1/S/O representation of the MPUM via an observability matniy202ss

Input: ug, Yd, Linax, @aNdnax.

1: Computen,,ax, 1max+1 sampleslong free responsgsof the MPUM via Algorithm 8.9.

2: Compute a rank revealing factorizatidh = I' Xjp;.

3: Solve the linear system of equatiofas’T') A = (¢T") for A and defineC' to be the first
block entry ofT".

4: Solve the linear system of equations (8.1) for B, andxip;.

Output: (A, B, C, D)—a minimal input/state/output representation of the MPUM.

Algorithms Based on Computation of a State Sequence

If a state sequencey(1),. .., zq(n(#) +m + 1) of an input/state/output representation of
the MPUM were known, then the parametérs B, C, D) could be computed by solving
the linear system of equations
z9(2) - wan(PB)+m+1)| _[A B |zd(l) -+ 2a(n(%B)+m) (8.2)
ya(l) - yd(n(A) + m) C D| |ug(l) - ug(n(A)+m) '

Therefore, the identification problem is reduced to the lgnmolof computing a state sequence
of the MPUM. This can be done by computing%) +n -+ 1 sequentiafree responses. By
“sequential”’ we mean that the corresponding sequencetialiconditions for the responses
is a valid state sequence. Under the conditions of the fued#ahlemma, such responses
can be computed from data by an algorithm similar to the osed €or the computation of
the impulse response and free responses. Si(g8 is unknown, howeveg, ., +m + 1
sequential free responses should be computed. The detadescribed in Section 8.8.
The procedure outlined above is summarized in Algorithm 8.5
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Algorithm 8.5 1/S/O representation of the MPUM via a state sequence  uy2x2ss

Input: ug, ¥d, Lmax, @Ndngax.

1: Computen,,ax, 1max + 1 Samples long sequential free responggsf the MPUM via
Algorithm 8.9.

2: Compute a rank revealing factorizatidp = I' X.

3: Solve the system of equations (8.2) tér B, C, D, where

[xd(l) <o 2d(Dmax +m A+ 1)} = Xg.

Output: (A, B, C, D)—a minimal input/state/output representation of the MPUM.

8.6 Computation of the Impulse Response from Data

In this section, we consider the following problem:

Given a trajectorywy = (ug, yq) Of @ systemz € £", find the firstt samples of
the impulse response &#.

Under the conditions of the fundamental lemma, we have that
colspan (i (wq)) = Blj -

This implies that there exists a matri, such that’;(yq)G = H. Thus the problem
reduces to finding a particulaf.
DefineUy, Us, Yy, andY; as follows:

U, Y,
I et (Ud) = {Uﬂ v Hptt(ya) = [ 'j ) (8.3)
whererow dim(Up) = row dim(Y}) = Lmax androw dim(Us) = row dim(Y;) = ¢.
Theorem 8.19 (Impulse response from data).Let wqy = (ug,yq) be a trajectory of a

controllable LTI systen¥ ¢ 2" and letuq be persistently exciting of order+
lmax + Dmax. Thenthe system of equations

Up Omlm.dx Xm
Ui G = |0 ] (8.4)
Yp Oplmax Xm

is solvable foiG € R**™. Moreover, for any particular solutiof, the matrixy;G' contains
the firstt samples of the impulse responsesfi.e.,

YiG = H.

Proof. Under the assumptions of the theorem, we can apply the fuadi@inemma with
L = 1.+t Thus

colspan (4, +¢(wd)) = Bl 10044
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First, we show that (8.4) is solvable. The impulse respcqrii§me<tfml)Xm} ,H) is a (matrix
valued) response a¥% obtained under zero initial conditions. Because of the natml
conditions,( [Om(tfml)xm} , H) preceded by any number of zeros remains a respong. of

Therefore, there exists a matii% such that

Up Omlmax Xm
In
Ut G = |:Om(t71)><m
Yo 0
Plmax Xm
Yy H

This shows that there exists a solutiGrof (8.4) and therefor&;G is the impulse response.
Conversely, letz be a solution of (8.4). We have

U Omlmame

p I

gf G= [Omw—mm} (8.5)
P OpLiax xm

Y VG

and the fundamental lemma guarantees that the right-hea(8.5) is a response &4.
The response is identically zero during the firgt,. samples, which (using the assumption

1max > 1(#)) guarantees that the initial conditions are set to zero. ifipet [Om(tf‘“l)m}
is a matrix valued impulse, so that the corresponding outpditis indeed the impulse
responsed. a

Theorem 8.19 gives the following block algorithm for the qartation ofH.

Algorithm 8.6 Block computation of the impulse response from data uy2hblk

Input: ug, yd, Lmax, andt. B
1: Solve the system of equations (8.4). ebe the computed solution.

2: ComputeH = YiG.
Output: the firstt samples of the impulse respongeof the MPUM.

Note 8.20 (Efficient implementation via QR factorization) The system of equations (8.4)
of step 1 of Algorithm 8.6 can be solved efficiently by first figpressing the data” via the
QR factorization

U, 1"

Ui T Ry 0 0
= @R, R = | 55—+

Y @ |:R21 Ry 0}

Ys

whereR;; € RV, j = m(1yax + t) + Plmax, @and then computing the pseudoinverse of
the Ry block. We have

Us]" 0 0
H=Y;|U| |I| =RuaRl, |I
Yol |0 0



128 Chapter 8. Exact Identification

We proceed to point out an inherent limitation of Algorithné 8vhen dealing with
finite amount of data. LetA samples long trajectory be given. The persistency of etkita
assumptionin Theorem 8.19requirestbét ;.. 1n,.. (uq) be full rowrank, whichimplies
that
m(t + 1max + nmax) S T— (t + 1max + nmax) + 1 - t S % - 1max — Dmax-
Thus, using Algorithm 8.6, we are limited in the number of pées of the impulse response
that can be computed. Moreover, for efficiency and accuracyhé presence of noise),
we want to have Hankel matricé, Us, etc., with many more columns than rows, which
implies smallt.

In fact, according to Theorem 8.1&y persistently exciting of ordelr+ 1, + Dmax
is sufficient for computation of the whole impulse resporfsithe system. Indeed, this can
be done by weaving trajectories. (See Figure 8.2 for artilition.)

Lemma 8.21 (Weaving trajectories).Consider a system? € Z¥ and let
1. wq,1 be aT} samples long trajectory o¥, i.e.,wq1 € %|[1,T1];
2. wq,2 be aT, samples long trajectory o, i.e.,wq 2 € %|[1,T2]; and

3. the lastl,.x samples, whera,,,x > 1(#), of wg; coincide with the firstax
samples ofvg 2, i.e.,

(wd,l(Tl — lmax + l)a s 7wd,1(TI)) = (wd,Q(l)a tety wd,?(lrnax))-
Then the trajectory

w = (wd’1(1)7 e ,wd’l(T1)7 ’wd,g(lmax + 1), e 7wd,2(T2)) (86)

obtained by weaving togethey ; andwyq » is a trajectory of%, i.e.,w € &1 1, 41,100,
Proof. Let Td1 = (.TdJ(l), - 7.58,;]71(711 + 1)) and[IJd72 = ([IJdg(l), - ,[IJd72(T2 + 1))
be state sequences®fassociated witlwg 1 andwyg 2, respectively. Assumption 3 implies
thatzg 1 (71 + 1) = z42(1lmax + 1). Therefore, (8.6) is a trajectory of. 0

Algorithm 8.7 overcomes the above-mentioned limitationhaf block algorithm by
iteratively computing blocks of. consecutive samples, where

1< <Lttt

_lmax_ max- 8.7
<L< n ®.7)

Moreover, monitoring the decay @f (provided the system is stable) while computing it
gives a heuristic way to determine a valuefftitat is sufficiently large to show the transient.
In the recursive algorithm, the matricEs, Uz, Yy, andY; defined above are redefined

as follows:
_.|U Y,
‘%-max""L(ud) : |:U?:| 5 %_max+L(yd) = |:}/’f):| 3

whererow dim(Up) = row dim(Y}) = Lmax androw dim(Us) = row dim(Y¥;) = L.
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lmax

wWq,1 € L@\[l,n}

/\/\/\ wq 2 € 33“132]

W € B [1,T) 47> —Liax]

Figure 8.2. Weaving trajectories.

Algorithm 8.7 Iterative computation of the impulse response from data uy2h
Input: ug, yd, Dmaxs Lmax, @nd eithert or a convergence toleranee
1: Choose the number of samplesomputed in one iteration step according to (8.7).

T . (0) Omlmaxxm (0)
2: Initialization: k£ := 0, Fy ' = I, yandFyp = 0p1,,.-
0m(L—1)><mi|
3: repeat
Upl ()
4:  Solve the systen} Us | G(F) = s
Yp y,p
5. Compute the respongdgé(®) := Fy(’f“) =Y;G®),
(k)
6. DefineF" := Fy(,g) :
F,
y.f
L (k)
7. Shift F,andFy: F{FTY = [00 Fy } NUR S
mL Xm
8: Increment the iteration countér:= £ + 1.

kL <t if ¢ is given,
|H* =Yg < e otherwise.
Output: H = col (H®), ..., H*=D).

9: until

Proposition 8.22. Let wy = (ug,yq) be a trajectory of a controllable LTI systes# of
order n(#) < npnax and lagl(#) < l,a.x, and letug be persistently exciting of order
L+ 1. + nmax. Then Algorithm 8.7 computes the fitsamples of the impulse response
of A.

Proof. Under the assumptions of the proposition, we can apply Emed.19, with the
parametet replaced by the parametgr selected in step 1 of the algorithm (Algorithm 8.6).
Steps 4 and 5 of the recursive algorithm correspond to staps 2 of the block algorithm.
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(k)
The right-hand sid% i“(; } of the system of equations, solved in step 4, is initializethat
Y,p

H®O is indeed the matrix of the firdt samples of the impulse response.

The response computed on {ltet 1)st iteration stepk > 1, is a response due to zero
input and its firstL,,,, Samples overlap the last,.. samples of the response computed on
the kth iteration step. By the weaving lemma (Lemma 8.21), theiroatenation is a valid
response. Applying this argument recursively, we have thabmputed by the algorithm
is the impulse response of the system. 0

With L = 1, the persistency of excitation condition required by Psifion 8.22 is
Llnax + 1 4 nmax, Which is the identifiability condition of Theorem 8.16 (Withe unknown
lag1(#) and ordem (%) replaced by their given upper bounts., andn;ax)-

Note 8.23 (Data driven simulation) In [MWRMO05], Theorem 8.19 and Algorithms 8.6
and 8.7 are modified to compute an arbitrary response diréctin data. This proce-
dure is called data driven simulation and is shown to beedl&h deterministic subspace
identification algorithms.

Note 8.24 (Efficient implementation via QR factorization) The most expensive part of
Algorithm 8.7 is solving the system of equations in step 4alt be solved efficiently via
the QR factorization, as described in Note 8.20. Moreowecesthe matrix on the left-hand
side of the system is fixed, the pseudo-inverse can be conhputside the iteration loop
and used for all iterations.

8.7 Realization Theory and Algorithms

The problem of passing from an impulse response to anotpegsentation (typically in-
put/state/output or transfer function) is called real@at Given a sequendd : N — RP*™
we say that a syste®# € 7, w := m+ p, realizesH if # has a convolution representation
with an impulse responsE. In this case, we say thd is realizable (by a system in the
model classZ)’). A sequencéd might not be realizable byfaite dimensional Tl system,
but if it is realizable, the realization is unique.

Theorem 8.25 (Test for realizability). The sequencél : N — RP*™ is realizable by
a finite dimensional LTI system withinputs if and only if the two-sided infinite Hankel
matrix 7# (o H) has a finite rank. Moreover, if the rank o# (o H) is n, then there is a
unique systen® € . that realizesH .

Let H be realizable by a syste®® € .Z with an input/state/output representation
B = Bysio(A, B,C, D). We have that

%’j (JH) = ﬁi(Aﬂ C)ng(fh B)7

and from the properties of the controllability and obseitigtmatrices, it follows that

min(pi,mj) foralli < u(#)andj < v(4),
rank (A (1)) = {n(%) otherwise.
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Therefore, if we know thatf is an impulse response of a finite dimensional LTI syst#m
of ordern(#) < npax and lagl(#) < l,.x, Wheren,,., andl,,., are given, we can
find n(#) by a rank computation as follows:

n(#A) = rank (ji”lmxH#mx (JH)).

This fact is often used in subspace identification. MoredherSVD.# (o H) = ULV T,

t > nnax, allows us to find a finite timeé balanced approximation of the MPUM, so that
the numerical rank computation of the block-Hankel matfithe Markov parameters is a
good heuristic for approximate identification.

Note 8.26 (Realization and exact identification)Clearly, realization is a special exactiden-
tification problem. Realization dff : N — RP*™ js equivalent to exact identification of the

time series
wd,1 = (Ud1,Yd1) = (001(0,561),001(0,h1)),

Wam = (Udm, Ydu) = (col(0, Jey), col(0, hy)),

where[hy ---  hy] := H,§is the Kronecker delta functiog; -+ e, := I,, and
the zero prefix i9,,.x Samples long. (The zero prefix fixes the initial conditionbeaero,
which otherwise are free in the exact identification prob)e®pecial purpose realization
methods, however, are more efficient than a general exadfidation algorithm.

Note 8.27 (Realization and exact identification of an autormaous system)An alterna-
tive point of view of realization is as an exact identificatiof an autonomous system:
realization ofH : N — RP*™ js equivalent to exact identification of the time series

wd,1 = (ud,layd,l) = (Ovahl)a oo ,Wdm = (ud,mayd,m) = (O,U}Lm).

Consider the impulse respon&kof the system

Bisio (A, [br -+ ba],C,o)
and the responses, . . ., y, of the autonomous systef#so(A, C') due to the initial con-
ditionsby, ..., b,. Itis easy to verify that
cH=[y1 - .

Thus, with an obvious substitution,

realization algorithms can be used for exact identificabican autonomous system
and vice versa; algorithms for identification of an autonamgystems can be used
for realization.

Once we know from Theorem 8.25 or from prior knowledge thaitvargtime series
H := (H(0),H(1),...,H(T)) is realizable in the model clasg}, _, we can proceed
with the problem of finding a representation of the system itsalizesH. General exact
identification problems can be used but in the special calsarat there are more efficient
alternatives. Algorithm 8.8 is a typical realization aligiom.
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Algorithm 8.8 Realization algorithm h2ss
Input: H andl,,,, satisfying the conditions of Theorem 8.25.

1: Compute a rank revealing factorization of the Hankel matfx . 1 (cH) = TA.

2: Let D = H(0), C be the first block row of’, and B be the first block column oh.

3: Solve the shift equatio(v*I") A = oT".

Output: parametersA, B, C, D) of a minimal input/state/output realization &f.

The key computational step is the rank revealing factaomadf the Hankel ma-
trix 74, . +1(H). Moreover, this step determines the state basis in whiclpan@meters
A, B,C, D are computed. In case of finite precision arithmetic, it i$l ¥ueown that rank
computation is a nontrivial problem. The rank revealingtdaization is crucial for the
outcome of the algorithm because the rankif .1 (H) is the order of the realization.

When the given time serief is not realizable by an LTI system of ordef,., :=
Plmax, 1-€., 94 . +1(cH) is full rank, the SVD offers a possibility to find approximate
realization in the model clasg}’;  ; see also Note 8.18 on page 122. Replace the rank
revealing factorization in step 1 of Algorithm 8.8 by the S\B___ . (H) = USV T
and the definition®’ := UvY andA := XV . This can be viewed as computation
of an “approximate rank revealing factorization”. Notettiathis case the finite time
controllability and observability gramians are equal,

I'T=AAT =3,

so that the computed realizatiof (A, B, C, D) is in a finite timel,,,.x balanced form.
Algorithm 8.8 with the above modification is Kung's algontKun78].

8.8 Computation of Free Responses

In this section, we consider the following problem:
Givenwqg = (ug, yd) € A, find (sequential) free responsgsof 2.

By “sequential’, we mean that the initial conditions copesding to the columns df;
form a valid state sequence &f.

First, we consider computation of general free responsesinguthe fundamental
lemma, a set of samples long free responses can be computed from data@s<oll

Hi(ug)| ~_ |0

Lﬁ(yd)} “= {Yo] ' ®.8)
Therefore, for any~ that satisfies’; (uq)G = 0, the columns ol := 7 (yq)G are free
responses. The columns@fare vectors in the null space gf;(uq) and can be computed
explicitly; however, in generakank(Y;) < n(#). The conditionrank(Yy) = n(%) is
needed for identification of an input/state/output repnéestéon of the MPUM, as outlined
in Algorithm 8.3.

In order to ensure the rank condition, we use the splittindnefdata into “past” and
“future” as defined in (8.3). The blocks in the past allow usgstrict the matrixG, so that
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the initial conditionsXjn; under which the respons&g are generated satisfynk( Xj,) =
n(#). This impliesrank(Yy) = n(%4). In turns out, however, that in choosing the initial
conditionsXj,;, we can furthermore produce sequential free responses.

Using the fundamental lemma, we know that the right-hane sfdhe equation

Up UP
ul . o
vl ¢ v
Y; Yo

is a trajectory. Therefore, a set of free responses can bputechfrom data by solving the
system of equations

UP UP
Ul G=10 (8.9)
Yo Yo

and settingty = Y;G. Moreover, the Hankel structure of, andY, imply thatYj is a
matrix of sequential responses. System (8.9) End= Y:G give a block algorithm for
the computation of sequential free responses. It is anabgwthe block algorithm for the
computation of the impulse response and again the compnuizdin be performed efficiently
via the QR factorization.

We proceed to present a recursive algorithm for the comipataf Y;, analogous to
Algorithm 8.7 for the computation of the impulse responsa.atlvantage of the recursive
algorithm over the block one is that one is not restrictedngyfinite amount of datayg to
a finite length responsés,.

Proposition 8.28. Under the assumptions of Proposition 8.22, Algorithm 8.8potes a
matrix of sequential free responses#fwith ¢ block rows.

Proof. This is similar to the proof of Proposition 8.22. 0

8.9 Relation to Subspace Identification Methods  *
MOESP-Type Algorithms

The multivariable output error state space (MOESP)-typsgace identification algorithms
correspond to the algorithm based on the computation of ieeponses as outlined in
Section 8.5, Algorithm 8.4. However, in the MOESP algorithistep 1—the computation
of free responses—is implemented via ththogonal projection

-1
Yo := A, +1(Ya) (I - %.I]ax-‘rl(ud)(%max-ﬁ-l(ud)%laxﬁ-l(ud)) %’imaxﬂ(ud))?

L
Hud

(8.10)
i.e., the MOESP algorithms compute the orthogonal prajaaif the rows of74 11 (yd)
on the orthogonal complement of the row space®f . 1 (uq). In subspace identification

itis customary to think in terms of geometric operationjgction of the rows of a certain
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Algorithm 8.9 Iterative computation of sequential free responses uy2y0

Input: ug, ¥Yd, Dmax, Lmax, and either the desired number of samples a convergence
tolerances.

1: Choose the number of samplesomputed in one iteration step according to (8.7).

2: Initialization: k := 0, i\ := {UO"} ,andFy Y = Y.
3: repeat
Up k)
4: Solve the system} Us | G™) = | 1,
Y, yp
5. Compute the respondg” .= £} := ;a®.
(k)
6: DefineFy" := Fy(k :
Fy
. 1) ol FP (k1) (k)
7. Shift Fyy andFy: Fy ::{ u }andFy,p = ol ™.
mL Xm
8: Increment the iteration countér:= k + 1.
. L<t if ¢ is given
9: until

”YO(k_l)”F < e otherwise.
Output: Yo = col (YE)(O)v ERE) YE)(k_l)).

matrix onto the row space of another matrix. The fact thasehmatrices have special
(block-Hankel) structure is ignored and the link with systieory is lost. Still, as we show
next,

the orthogonal projection (8.10) has the simple and usgites theoretic inter-
pretation of computing a maximal number of free responses.

Observe that
%max—‘rl ('U;d) HL — 0
A et 1(Wa) | " [Yo

which corresponds to (8.8) except that now the projeﬂg is a square matrix, while
in (8.8) G is in general a rectangular matrix. In [VD92, Section 3.8]sishown that a
sufficient condition forank(Yy) = n(%) is

rank <[ %Xr'l (Ud)D = (%) + (Lnax + D (8.11)

This condition, however, is not verifiable from the data= (ugq, yq). Therefore, givemy,
one cannot check in general whether the data generatingnsystis identifiable by the
MOESP algorithms. Under the identifiability condition

ug persistently exciting of ordelr,.x + 1 + nmax,

which is verifiable from the data, Corollary 8.17 impliesi(B).
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Finally, note thatthg = T'—1,,,. free responses that the orthogonal projection (8.10)
computes are typically more than necessary for exact iitation, i.e.,j > n(%). There-
fore, in general, the orthogonal projection is a compuredily inefficient operation for
exact identification. This deficiency of the MOESP algorithisipartially corrected on the
level of the numerical implementation. First, the QR faiziation

A (g)]
[%,,axw] = QR

is computed and then only the block enfRy, of the R factor is used, where

NmaxM NmaxP
RT . Rll 0 0 Nmax
' R21 R22 0 NmaxP ’

It can be shown (see [VD92, Section 4.1]) that
col span(Yy) = col span(Ras).

The column dimension aRs; iS nyaxp, Which is (typically) comparable with,,., and is
(typically) much smaller thap.

N4SID-Type Algorithms

The numerical algorithms for subspace state space sysatifidation (N4SID) correspond
to the algorithm based on the computation of a state sequenoatlined in Section 8.5,
Algorithm 8.5. However, in the N4SID-type algorithms, step-the computation of se-
guential free responses—is implemented viadhkque projection Consider the splitting
of the data into “past” and “future”,

U, Y,
A1 +1) (Ud) = [ ﬂ v a1 (Yd) = [Yj ; (8.12)

with row dim(Up) = row dim(U) = row dim(Y}) = row dim(¥;) = lmax + 1, and let

U,
Wy = [Y;ﬂ .

As the key computational step of the MOESP algorithms is tittgogonal projection, the
key computational step of the N4SID algorithms is the oldiguojection ofY; along the
space spanned by the rowslgfonto the space spanned by the row$igf This geometric
operation, denoted by /¢, Wy, is defined as follows (see [VD96, equation (1.4), page 21]):

(8.13)

WoWw.T WU 1T W
YOIZYf/Upr::Yf[Wp—l— UfT][ W p f} { p].

Uuw,  UU:| |0

Tlobl

Next, we show that
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the oblique projection computes sequential free resparfsbe system.

Note that
Wp Wp
Us | op= | O
Y Yy

corresponds to (8.9) except that the oblique projeldtgris a square matrix, while in (8.9),
G is in general rectangular. Therefore, the columns of théqabl projectionYy given
in (8.13) argj := T —21,,,.x — 1 Sequential free responses. However, as with the orthogonal
projection, the oblique projection also computes in gdmatae responses than thg,.., +
m + 2 ones needed for applying Algorithm 8.5.
In [VD96, Section 2, Theorem 2], it is (implicitly) provenaha sufficient condition
for rank(X4) = n(Z%), which is needed for the exact identification Algorithm 8s5,

1. ug persistently exciting of ordédn,,, ., and
2. row span(Xgy) Nrow span(U;) = {0};

see assumptions 1 and 2 of [VD96, Section 2, Theorem 2]. As assumption (8.11)
in the MOESP algorithms, however, assumption 2 is again aofiable from the given
data. Persistency of excitation af of order2(1,,.x + 1) + n(%) (i.e., the assumption
of the fundamental lemma) is a sufficient condition, veriiafoom the datdug, yq), for
assumptions 1 and 2 of [VD96, Section 2, Theorem 2].

8.10 Simulation Examples

Impulse Response Computation

First we consider the problem of computing the firseamples of the impulse responge

of a system# from datawq := (ug,yq). We choose a random stable systéfrof order

n = 4 withm = 2 inputs andp = 2 outputs. The datayy is obtained according to the
EIV modelwq = w + w, wherew := (u, ) € | with T = 500, u is zero mean unit
variance white Gaussian noise, afids a zero mean white Gaussian noise with variance
o?. Varying o, we study empirically the effect of random perturbation lo@ tesuilts.

We apply Algorithm 8.6 witht = 27, nyax = n, andly.x = [Dmax/p|- The
computed impulse response is denotedfbyand is compared with the “true” impulse
responsed obtained from# by simulation. The comparison is in terms of the Frobenius
norme = ||H — H||r of the approximation erroff — H. We also apply Algorithm 8.7
with parameters.x = n, lmax = [Dmax/p|, L = 12, and the functionmpulse from
the System Identification Toolbox of MATLAB that estimategaulse response from data.

Table 8.1 shows the approximation erreesd execution times for four different noise
levels and for the three compared algorithms. (The effigighmeasured by the execution
time and not by the floating point operations (flops) becabseftinctionimpulse is
available only in the latter versions of MATLAB that do nofogort flop counts.)

Inthe absence of noise, both Algorithm 8.6 and Algorithno®mpute up to numerical
errors exactly the impulse resporidewhile the same is not true for the functionpulse
The simulation results show that the iterative algorithrfager than the block algorithm.
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Table 8.1. Error of approximatione = ||H — H||r and execution time in seconds for
Algorithm 8.6, Algorithm 8.7 witli. = 12, and the functionmpulse .
o=20.0 o =0.01 o =0.05 oc=0.1
Method e time,s| e time,s| e time,s| e time, s

Algorithm 8.6 | 10-1*  0.293 | 0.029 0.277| 0.096 0.285| 0.251 0.279
Algorithm 8.7 | 10-'*  0.066 | 0.023 0.086| 0.066 0.068| 0.201  0.087
impulse 0.059 0.584| 0.067 0.546| 0.109 0.573| 0.249 0.558

megaflops

)
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Figure 8.3. Number of flops as a function of the parameter

Also, when the given datay is noisy, the iterative algorithm outperforms the bloclaaithm
and the functionmpulse

Next, we show the effect of the paramefeon the number of flops and the error of
approximatiore. The plotin Figure 8.3 shows the number of flops, measurecigafiops,
as a function ofL. The function is monotonically increasing, so that mostafit is the
computation for. = 1. The plots in Figure 8.4 show the approximation etras a function
of L for four different noise levels. The results are averaged @@ noise realizations. The
functione(t) is complicated and is likely to depend on many factors. Tlaplys, however,
indicate that in the presence of noise, there is a tradeetfiden computational efficiency
and approximation error. For smdllthe computational cost is small, but the eredends
to be large.

Comparison of Exact Identification Algorithms

We compare the numerical efficiency of the following aldumits for deterministic identifi-
cation:

uy2ssmr  Algorithm of Moonen and Ramos [MR93]; see Algorithm 9.6;

uy2ssvd  Algorithm of Van Overschee and De Moor [VD96]; see Algoriti9nb;

“Deterministic algorithm 1” of Section 2.4.1 in [VD96] is otbined with the
choice of the weight matricdd; andWW, given in Theorem 13, Section 5.4.1.
Our implementation, however, differs from the outline af #igorithms given
in [VD96]; see Note 9.4 on page 145;
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Figure 8.4. Error of approximatione = ||H — H || as a function of the parametér for
different noise levels.

det_stat  “Deterministic algorithm 1” of [VD96, Section 2.4.1]I;
(implementatiordet_stat.m  supplementing the book)

det_alt “Deterministic algorithm 2” of [VD96, Section 2.4.2];
(implementatiordet_alt.m  supplementing the book);

projec “Projection algorithm” of [VD96, Section 2.3.1];
(implementatiorprojec.m  supplementing the book);

intersec  “Intersection algorithm” of [VD96, Section 2.3.2];
(implementatiorintersec.m  supplementing the book);

moesp A deterministic version of the MOESP algorithm;

uy2ssbal  The algorithm for deterministic balanced subspace ideatifin proposed in
Chapter 9 (with parametdr = 1); see Algorithm 9.4;

uy2h2ss  Algorithm 8.7 (with L = 1) applied for the computation of the firgt, . +
1 samples of the impulse response, followed by Kung'’s algorifor the
realization of the impulse response; see Algorithm 8.3.

For the experiments we generate arandom stdhlerder systen®d withm = 2 inputs
andp = 2 outputs. The input i§" samples long, zero mean unit variance white Gaussian
sequence and the initial conditiar,; is a zero mean random vector. We assume that the

—P
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Figure 8.5. Number of flops for the algorithms as a function of the lerigtbf the given
time series.

true order is known; i.en.x = n andl,,. is selected a$n,,.x/p|. The parameter
(the number of block rows of the Hankel matrix constructeshfrdata) in the subspace
identification algorithms is selected s [n,.x/p]-

First, we illustrate the amount of work (measured in megalldpr the compared
algorithms as a function df’; see Figure 8.5. The order is chosemas 4 and1 varies
from 100 to 500. The computational complexity of all compbaggorithms is linear i’
but with different initial cost and different slope. Thetial cost and the slope are smallest
(almost the same) fary2ssbal anduy2h2ss .

The second experiment shows the flops for the compared tdgarias a function
of the system orderi; see Figure 8.6. The length of the given time series is chosen
as 50 and the order is varied from 1 to 18. We deliberately chodfesmall to show
the limitations of the algorithms to identify a system fronfidite amount of data. At a
certain value oh, the graphs in Figure 8.6 stop. The valuenafihere a graph stops is the
highest possible order of a system that the correspondgayiiim can identify from the
givenT = 50 data points. (At higher values af the algorithm either exits with an error
message or gives awrong result.) The flops as a functiaracé quadratic for all compared
algorithms but again the actual number of flops depends omtpkmentation. Again,
most efficient arauy2ssbal anduy2h2ss . Also, they outperform all other methods
exceptmoesp in the ability to identify a (high order) system from (smalthount of data.
This is a consequence of the fact that Algorithm 8.7 is morsipenious in the persistency
of excitation assumption than Algorithm 8.6.

8.11 Conclusions

We have presented theory and algorithms for exact iderttdicaf LTI systems. Although
the exact identification problem is not a realistic idendifion problem, it is interesting and
nontrivial from theoretic and algorithmic points of viewn &ddition, it is an ingredient and
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Figure 8.6. Number of flops for the algorithms as a function of the ordef the system.

prerequisite for proper understanding of other more corafdid and realistic identification
problems incorporating uncertainty.

The main result is the answer to the identifiability questidnder what conditions,
verifiable fromwy, does the MPUM coincide with the data generating system?e@his
question is answered positively, one can consider algostfor passing from the data to a
representation of the unknown system. In fact, the algmstcompute a representation of
the MPUM.

We have presented algorithms for exact identification agnainkernel, convolution,
and input/state/output representations. The latter oees analyzed in the most detail. We
showed links and a new interpretation of the classical MOBBE N4SID deterministic
subspace identification algorithms.



Chapter 9

Balanced Model
|dentification

In this chapter, algorithms for identification of a balanctdte space representation are
considered. They are based on the algorithms for computafithe impulse response and
sequential zero input responses presented in Chapter §répesed algorithms are more
efficient than the existing alternatives that compute thele/tiHankel matrix of Markov
parameters. Moreover, using a finite amount of data, thdiegislgorithms compute a
finite time balanced representation, and the identified fsdueve a lower bound on the
distance from an exact balanced representation. The ped@dgorithms can approximate
arbitrarily closely an exact balanced representation. fiffiee time balancing parameter
can be selected automatically by monitoring the decay ofrtipeilse response. We show
what is optimal in terms of the minimal identifiability cotidin partitioning of the data into
“past” and “future” for deterministic subspace identifioat

9.1 Introduction

In this chapter, we consider the following deterministientification problem:

Given al' samples long input/output trajectary = (uq, yq) of an LTI systen €
Zyimex, determine a balanced input/state/output representation

B = Bisio Aval, Boal, Coal, Dbal)
of the system, i.e., a representation such that
0" (Abal, Cbat) O (Aval, Coal) = € (Abal, Boa) € " (Abal, Boal) = X,

whereX = diag(al,. . ,Un(@)) ando; <og; <--- < On(%)-

The problemis to find conditions and algorithms to constfuety, Bpal, Chal, Dpal) directly
from wy. Equivalently, we want to find a balanced input/state/outppresentation of the
MPUM.

141
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Algorithm 9.1 Balanced identification via a state sequence uy2ssbhal
INput: g, Yds Dmax, Lmax, @NAA > npay.

1: Compute the firseA samplesH of the impulse response matrix &f.

2: Computen,,.« +m+ 1, A samples long sequential free responggsf %.

3: Compute the SVD§) = UXV T, of the block-Hankel matri%y = (0 H).

4: Compute the balanced state sequekigg := VXU Y,

Xbal - [xbal(nmax + 1) o xbal(2nmax + 2+ m)] .

5: Compute the balanced realizatidRg;, Bpa, Chal, Dpal By solving the linear system of
equations

xbal(nmax + 2) e xbal(2nmax + 2+ m)
yd(nmax + 1) e yd(2nmax + 1+ m)
_ |Abal Boa| |Zbai(Bmax +1) -+ Zbal2nmax +1+m) 9.1)
Cbal Dbal ud(nmax + 1) e ud(znmax + 1 + m) '

Output:  Apal, Bhal, Chals Dhal-

Although the assumption thaty is exact is mainly of theoretical importance, solving
the exact identification problem is a prerequisite for thelgtof the realistic approximate
identification problem, wherey is approximated by a trajectory of an LTI system. In a
balanced basis, one can apply truncation as a very effdeivestic for model reduction,
which yields a method for approximate identification.

The balanced state space identification problem is studi¢t¥R93] and [VD96,
Chapter 5]. The proposed algorithms fit the outline of Algori 9.1.

In [MR93, VD96], it is not mentioned that the Hankel matrix iiarkov parame-
ters #a (0 H) is computed. Also, in [MR93], it is not mentioned that the mat of
sequential zero input responses is computed. In this chapgenterpret these algorithms
as implementations of Algorithm 9.1 and reveal their stiet

Note 9.1 (Finite time-A balancing) The basic algorithm factors a finitA x A block-
Hankel matrix of Markov parametefs so that the obtained representatidi, Bpai, Chal,
Dyy) is finite timeA balanced For largeA, the representation obtained is close to an
infinite time balanced one. Determining an appropriates/éduthe parametek, however,

is a problem in its own right and is addressed here. The irapbodifference among the
algorithms of [MR93], [VD96], and the ones proposed heréésrhethod of computing the
matrix Yy and the impulse respongé.

Note 9.2 (Model reduction) Identification of a state space model in a balanced basis is
motivated by the effective heuristic for model reductionthyncation in that basis. In
principle it is possible to identify the model in any basisldmen apply standard algorithms
for state transformation to a balanced basis. The direotistigns discussed in this chapter,
however, have the advantage over the indirect approachhbgtallow us toidentify a
reduced order model directly from data without ever commuué full order model.
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Algorithm 9.2 Balanced identification via the impulse response uy2h2ss

InpUt: Ud, Ydy Dmax, andA > Dmax-

1: Find the firs2A samplesH (0),. .., H(2A — 1) of the impulse response o and let
H :=col (H(0),...,H(2A —1)).

2: Compute the SVD§ = UXV T, of the block-Hankel matrix of Markov parameteys=
Hn(oH) € RAPXAR

3: Define Opa := UVE and%pa := VIV .

4: Let Dya = H(0), Bpa be equal to the firah columns ofép4 (the first block column),
Cpal be equal to the firgt rows of Oy, (the first block row), andip, be the solution of
the shift equatiofo™* Opal) Apal = 0 Oba.

Output: Apal, Boal, Cbal, Dpal.

The model reduction can be done in step 5 of Algorithm 9.1. 7L é the desired
order of the reduced model and I&t.q be the truncated to the firstrows balanced state
sequenceXpy. As a heuristic model reduction procedure, we derive theeced model
parameters by solving tHeast squares problem

xred(nmax + 2) e xred(2nmax +2+ m)
yd(nmax + 1) e yd(2nmax + 1+ m)
_ Ared  Bred l’red(nmax + 1) ce wred(2nmax + 1+ m)
Cred Dred ud(nmax + 1) e ud(2nmax + 1+ m)

in place of the exact system of equations (9.1). The obtaimediel ( Ared, Bred, Cred, Dred)

is not the same as the model obtained by truncation of the (finite-tkhbalanced model.
In particular, we do not know about error bounds similar eedhes available for the (infinite
time) balanced model reduction.

Step 1, computation of the impulse response, is the cruc&l @ncef is computed,
a balanced model can be obtained directly via Kung'’s algoritThis gives the alternative
deterministic balanced model identification algorithnilioed in Algorithm 9.2.

In Algorithm 9.2, once the impulse response is computedp#iametersipy, Bhal,
Chpai, and Dy are obtained without returning to the original observeddatet another
alternative for computing a balanced representation tijréom data is to obtain the pa-
rametersdp, andChgy as in Algorithm 9.2 fromo,, and the parameteiByy and Dyy (S
well as the initial conditioncpa(1), under whichwyg is obtained) from the linear system of
equations

-1
Ya(t) = CohaAbapal(l) + Z CpaiAly' ™" Boand(T) + Doad(t + 1), fort=1,...,T,

T=1
(9.2)
using the original data. (By using Kronecker products, ) ®dh be solved explicitly.) The
resulting Algorithm 9.3 is in the spirit of the MOESP-typgatithms.
Simulation results show that in the presence of noise, ‘gbiack to the data”, as
done in Algorithms 9.1 and 9.3, leads to more accurate esiltis gives an indication that
Algorithms 9.1 and 9.3 might be superior to Algorithm 9.2.
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Algorithm 9.3 Balanced identification via an observability matrix uy2h202ss

Input: ug, Yd, Dmax, aNdA > np...

1: Find the firsR A samples(0), ..., H(2A — 1) of the impulse response of the MPUM
and letH := col (H(0),..., H(2A —1)).

2: Compute the SVD§ = ULV T, of the block-Hankel matrix of Markov parameteys=
Hn(cH) € RAPXAR

3: Define Opa := UVY.

4: Let Cpq be equal to the firgt rows of 0y (the first block row) anddp, be the solution
of the shift equatioric™* Opa) Apal = 0 Opal.

5: Solve the system of equations (9.2) ), Dpai, andzpa(1).

Output: Apal, Bhal, Cbal, Dpal.

9.2 Algorithm for Balanced Identification

In Chapter 8, we specified steps 1 and 2 of Algorithm 9.1. Sse@s and 5 follow from
standard derivations, which we now detail. Lsgtbe the Hankel matrix of the Markov
parameters) := %A (0 H). By factoring$ into pha and %y, via therestrictedSVD

H=USV =UVESVIVT,
N ——
Obal Ghal

we obtain an extended observability matriks = Oa(Apa, Cha) @nd a corresponding
extended controllability matrisha = € (Apai, Boal) in a finite time balanced basis. The
basis is finite timeA balanced, because the finite timeebservability gramiaw,, Opa =
¥ and the finite timeA controllability gramiartép, 6,5, = % are equal and diagonal.

The matrix of sequential zero input respondgscan be written a§, = I'’X for a
certain extended observability matiixand a state sequenggin the same basis. We find
the balanced state sequence

Xbal = [Ibal(lmax + 1) e xbal(llnax + 1+ Nmax + m)]
corresponding t@yy = U+v/E from
Yo = OpaXoa = Xpa = VE-IU'Y,.

The corresponding balanced representatiépa, Boal, Chal, Dbal) iS computed from the
system of equations

xbal(lmax + 2) e xbal(lmax + 2+ Nax + m)
yd(lmax + 1) e yd(lrnax + 1 + Nmax + m)
_ Abal Bbal xbal(lmax + 1) e xbal(lmax + 1+ Nax + m) (9 3)
Cbal Dbal ud(lmax + 1) T ud<1max +1+ Nmax + m) '

This yields Algorithm 9.4.
The preceding presentation in this section and Proposi®?2 and 8.28 prove the
following main result.
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Algorithm 9.4 Algorithm for balanced subspace identification uy2ssbal

Input: ug, ¥d, Dmaxs Lmax, @nd eitherA or a convergence toleranee

1: Apply Algorithm 8.9 with inputSug, ¥d, Rmaxs lmax, L, @ndA, in order to compute the
sequential zero input responsgs

2: Apply Algorithm 8.7 with inputSug, ¥d, Dmax, lmax, and eitherA or ¢, in order to
compute the impulse respon&eand, if not given, the parameté.

3: Form the Hankel matriy := %A (0 H) and compute the SV = UXV .

4: Compute a balanced state sequeRgg = VX —1U Y},

5: Compute a balanced representation by solving (9.3).

Output: Apai, Bbals Chal, Dpar, andA.

Algorithm 9.5 Algorithm of Van Overschee and De Moor uy2ssvd

Input: ug, yq, and a parameter
Define: {gﬂ := i (uq), whererow dim(Up) = i, and {ﬁ:} .= 4;(yq), Wwhere
row dim(Yp) = 1.
Compute the weight matri¥ := U (UpU, )~'J, where.J is the left-right flipped
identity matrix.

: Compute the oblique projectidr} := Y /¢, [%ﬂ ; see (8.13).

: Compute the matrix) := YoV

: Compute the SVDH = UV .

: Compute a balanced state sequelgg = VXU Y.

: Compute a balanced representation by solving (9.3).
utput: Apai, Boal, Chal, Doar-

[

OQuvu » wnwn

Theorem 9.3. Letwq = (uq, yq) be a trajectory of a controllable LTI systesd of order
n(A) < npax andlagl(#) < li.ax, and letuq be persistently exciting of ordér+1,,.x +

Dmax- Then(Apal, Boal, Chal, Dpal) cOMputed by Algorithm 9.4 is a finite tinde-balanced
representation of4.

9.3 Alternative Algorithms

We outline the algorithms of Van Overschee and De Moor [VDa6f Moonen and
Ramos [MR93].

Note 9.4 (Weight matrix W) The weight matrixiV is different from the one in [VD96].
In terms of the final resul®, however, it is equivalent. Another difference betweendAlg
rithm 9.5 and the deterministic balanced subspace algorith[VD96] is that the shifted
state sequence appearing on the left-hand side of (9.3)dsmeuted in [VD96] by another
oblique projection.

In the algorithms of Van Overschee and De Moor and Moonen add?, the pa-
rameter; plays the role of the finite time balancing parameterNote thati is given and
the “past” and the “future” are taken with equal length
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Algorithm 9.6 Algorithm of Moonen and Ramos uy2ssmr
Input: ug, yg, and a parameter
Define: [U"} := M;(uq), whererow dim(U,) = i, and {};ﬂ = H(yq), where

Ut
row dim(Yp) = 1.

UP
Compute a matriXly 7> 75 Tj], whose rows form a basis for the left kernel[oﬁ:] .
Y:

[

: Compute a matrix of zero input responsgs—= T4T [Ty T3] {liﬂ .

- Compute the Hankel matrix of Markov parametgrs= T} (1,7 T — T}).J.
: Compute the SVD§ = ULV T,

: Compute a balanced state sequelgg = VXU Y.

: Compute a balanced representation by solving (9.3).

utput: Apal, Bbal, Chalr Dhal-

OQu r»wnwn

Both Algorithm 9.5 and Algorithm 9.6 fit the outline of Algdhim 9.1, but steps
1 and 2 are implemented in rather different ways. As showneictiGn 8.8, the oblique

projectionY:/ [({,ﬂ is a matrix of sequential zero input responses. The weighixnid”

in the algorithm of Van Overschee and De Moor is constructethat$) = Y, is an
approximation of the Hankel matrix of Markov parametérsit is the sum of$) and a
matrix of zero input responses.

The most expensive computation in the algorithm of MoonehR&amos is the com-

putation of the annihilatorgfl e T4]. The matrix(T Ts) [Zﬂ is a nonminimal state

sequence (the shift-and-cut operator [RW97]) ﬁijds a corresponding extended observ-
ability matrix. ThuSTj [Ty T3] [5;’} is a matrix of sequential zero input responses. It turns

out that(TgTjTg —Ty)J is an extended controllability matrix (in the same basis)theat
T (TyT] Ty — T1)J is the Hankel matrix of Markov parametefis

A major difference between the proposed Algorithm 9.4, oa lband, and the algo-
rithms of Van Overschee and De Moor and Moonen and Ramos eootlier hand, is that
in Algorithm 9.4 the Hankel matri¥y is not computed butonstructedfrom the impulse
response that parameterizes it. This is a big computatgavahg because recomputing the
same elements df is avoided. In addition, in approximate identification, ey is not
a trajectory of%, the matricesy and$) computed by the algorithms of Van Overschee and
De Moor and Moonen and Ramos are in general no longer Hankdk the matrix$ in
Algorithm 9.4 is by construction Hankel.

9.4 Splitting of the Data into “Past” and “Future” *

In the algorithms of Moonen and Ramos and Van Overschee aiMbidg the block-Hankel
matrices{ gf} and [ly/f} are splitinto “past” and “future” of equal length. Naturalestions

are why Is this necessary and furthermore what is “optimetbading to certain relevant
criteria partitionings. These questions have been opea fong time, in particular in the
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context of the stochastic identification problem; see [DM03

In Chapter 8, we showed that the pagt Y, is used to assign the initial conditions
and the futurd’s, Y; is used to compute a response. By weaving consecutive ségofen
the response, as done in Algorithms 8.7 and 8.9, the numbaook rows in the future
does not need to be equal to the required length of the respdhsis from the perspective
of deterministic identification, the answer to the abovestjoe is as follows:

row dim(Up) = row dim(Yp) = 1lmax, i.€., the given least upper bound on
the system la§(%#), androw dim(Us) = row dim(Y5) € {1,...,7 — Lyax +
nmax }» Wherey is the order of persistency of excitation of the inpyt

By using the iterative algorithms for computation of the utge response and sequential free
responses with parameter= 1, Algorithms 9.2, 9.3, and 9.4 require the same assumption
as the identifiability assumption of Theorem 8.16, so thafghrtitioning “past 4,,,., and
future = 1" is consistent with our previous results.

Using the fundamental lemma, we can prove the followingltesu

Proposition 9.5. Letwy = (ug,yq) be a trajectory of a controllable LTI systes® €
xn“ftin"‘a*, and letuy be persistently exciting of ord&i + n,,,.x. Then the representations
computed by Algorithms 9.5 and 9.6 are equivalentAo Moreover, the representation
computed by Algorithm 9.6 is in a finite tinidvalanced basis.

Proposition 9.5 shows that Algorithms 9.5 and 9.6 are natipeimious with respect
to the available data. In particular, the systéfrcan be identifiable with Algorithms 9.2,
9.3, and 9.4 but not with Algorithms 9.5 and 9.6.

Note that the persistency of excitation required by Aldoris 9.5 and 9.6 is a function
of the finite time balancing parameter. This implies thathwat finite amount of data,
Algorithms 9.5 and 9.6 are limited in the ability to identify balanced representation.
In fact,

. T+1
1 < ,
- {Q(max(m, p)+ 1)J
where|a| denotes the highest integer smaller tharin contrast, the persistency of exci-
tation required by Algorithms 9.2, 9.3, and 9.4 depends onlyhe upper bounds on the

system order and the lag and thus these algorithms can cerapunbfinite time balanced
representation if the identifiability condition holds.

9.5 Simulation Examples

In this section, we show examples that illustrate some ofthentages of the proposed
Algorithm 9.4. In all experiments the syste# is given by a minimal input/state/output
representation with transfer function

0.89172(z — 0.5193)(z + 0.5595)
(z — 0.4314)(z + 0.4987)(z + 0.6154)

The input is a unit variance white noise and the data availédn identification is the
corresponding trajectoryy of 4, corrupted by white noise with standard deviation

C(Iz—A)™'B+D=
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Figure 9.1. Impulse response estimation. Solid red line—exact impetg®nsei, dashed
blue line—impulse respongé computed from data via Algorithm 8.7.

Although our main concern is the correct work of the algarighfor exact data, i.e., with
o = 0, by varying the noise varianee?, we can investigate empirically the performance
under noise. The simulation time7$ = 100. In all experiments the upper bounalg
andl,,., are taken equal to the system ordet 3 and the parametdr is taken equal t8.
Consider first the estimation of the impulse response. Ei@ut shows the exact
impulse respons# of 2 and the estimat& computed by Algorithm 8.7. With exact data,
|H — H||r = 103, so that up to the numerical precision the match is exact.pldts in
Figure 9.1 show the deterioration of the estimates whenakeeid corrupted by noise.
Consider next the computation of the zero input responsele ™1 shows the error
of estimatiore := ||Y;, — Y;||r and the corresponding number of operations, whgris a
matrix of exact sequential zero input responses with ledgth 10 andYj is its estimate
computed from data. The estimate is computed in three way#ldorithm 8.9, imple-
mented with the QR factorization; by the oblique projecticamputed directly from (8.13);
and by the oblique projection, computed via the QR facttionasee Section 8.8.
Algorithm 8.9 needs fewer computations and gives more atewesults than the
alternatives. As already emphasized, the reason for thisaisselecting the parameter
L = ny.c = 3instead ofL = A = 10, as in a block computation, results in a more
overdetermined system of equations in step 4 of Algorith®@c8mpared with system (8.9)
used in the block algorithm. (For the example, the diffeeeisc95 vs. 88 columns.) As
a result, the noise is averaged over more samples, whicls kead better estimate in a
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Table 9.1. Error of estimatione = ||Y, — Yp||r and the corresponding number of opera-
tions f in megaflops, wher&, is an exact sequence of zero input responses)gnd the
estimate computed from data.

Method oc=0.0 oc=0.1 o=0.2 c=04

e f e f e f e f

Alg. 8.9withQR| 10~ 130| 1.2990 131| 2.5257 132| 4.7498 132
formula (8.13) | 10~'° 182 | 1.6497 186| 3.2063 187| 6.0915 189
(8.13)withQR | 10~'* 251 | 1.6497 251| 3.2063 251| 6.0915 252

statistical sense. Solving several more overdeterminsigsys of equations instead of one
more rectangular system can be more efficient, as it is inxample.

All algorithms return afinite time balanced model. The nexteximent illustrates the
effect of the parametek on the balancing. Lét/./1V, be the controllability/observability
gramians of an infinite time balanced model aFigW/, be the controllability/observability
gramians of an identified model. Define closeness to balgrmin

2= |[We — W[ + |[Wo — WonQ:
¢ [[Wel[E + [[Wol[?

Figure 9.2 shows,,, as a function of\ for the three algorithms presented in the chapter. The
estimates obtained by Algorithm 9.4 and the algorithm of Memand Ramos are identical.
The estimate obtained by the algorithm of Van Overschee antlBor is asymptotically
equivalent, but for smald, it is worse. This is a consequence of the fact that this a@lyar
uses an approximation of the Hankel matrix of Markov paransetFigure 9.2 also shows
epal @S a function ofA for noisy data withe = 0.001 and the total number of flops required
by the three algorithms.

9.6 Conclusions

The impulse response and sequential free responses araithéowls for balanced model
identification. First, a (nonbalanced) state sequencetairax from the sequential free
responses. Then a Hankel matrix is constructed from the Isepesponse, and from its
SVD a balancing transformation is obtained. A balance@statiuence is computed via a
change of basis and the corresponding balanced state eafagsn is obtained by solving
a system of equations. We called this procedure the basicitdgn and showed that the
algorithms of Moonen and Ramos and Van Overschee and De Maaofit. Based on the
algorithms for computation of the impulse response andesatipl free responses directly
from data, we proposed alternative algorithms for balameedel identification.

There are a number of advantages of the proposed algorithenshe existing ones.
The algorithms of Moonen and Ramos and Van Overschee and BDeddmpute the whole
Hankel matrix of Markov parametess, while the proposed algorithms compute only the
elements that uniquely specify and thernconstruct$y from them. Because of the Hankel
structure, the algorithms of Moonen and Ramos and Van Olveesand De Moor recompute
most elements af many times. This is an inefficient step in these algorithraswre avoid.
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Figure 9.2. Closeness to balancing,y and computational cost as functions of the fi-

nite time balancing parametek (uy2ssmr —Algorithm 9.5uy2ssvd —Algorithm 9.6,
uy2ssbhal —Algorithm 9.4).

In the algorithms of Moonen and Ramos and Van Overschee addoe the finite
time balancing parameteX is supplied by the user. In the proposed algorithms, it can be
determined automatically on the basis of a desired conmesg®lerance of the impulse
response, which is directly related to the closeness of Hieirted representation to a
balanced one.

The algorithms of Moonen and Ramos and Van Overschee and e ébonpute
finite time-A balanced representation with < | (7 + 1)/( max(m,p) + 1) |, whereT is
the length of the given time serieg. The proposed algorithms have no such limitation and
can thus compute a representation that is arbitrary cloae iofinite time balanced one.

The proposed algorithms have weaker persistency of exxcitabndition than the
one needed for the algorithms of Moonen and Ramos and Vars€heg and De Moor. As

a result, in certain cases, the proposed algorithms arécapfe, while the algorithms of
Moonen and Ramos and Van Overschee and De Moor are not.
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Figure 10.1. Block scheme of the dynamic EIV model.

Chapter 10

Errors-in-Variables
Smoothing and Filtering

State estimation problems for LTI systems with noisy inartd outputs (EIV model, see
Figure 10.1) are considered.

An efficient recursive algorithm for the smoothing problesrderived. The equiva-
lence between the optimal filter and an appropriately matiialman filter is established.
The optimal estimate of the input signal is derived from tipéiroal state estimate. The
result shows that the EIV filtering problem is not fundaméynifferent from the classical
Kalman filtering problem.

10.1 Introduction

The EIV smoothing and filtering problems were first put fordvay Guidorzi, Diversi, and
Soverini in [GDSO03], where a transfer function approachsiscuand recursive algorithms
that solve the filtering problem are derived. The treatmiemever, is limited to the SISO
case and the solution obtained is not linked to the clasKiakhan filter.

The MIMO case is addressed in [MDO03], where the equivalenitk & modified
Kalman filter is established. Closely related to the appiaE#dMDO3] is the one used in
[DGSO03]. The continuous-time version of the EIV state eation problem is explicitly
solved in [MWDO02] by a completion of squares approach.

In this chapter, we consider the EIV model

wg =w +w, where we #Be L™ (EIV)

151
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andw is a white, stationary, zero mean, stochastic process wihiype definite covariance
matrix V; := cov (w(t)) for all ¢; i.e., we assume that the observed time serigss a
noise corrupted version of a true time setiethat is a trajectory of an LTI systei#® with
input cardinalitym and state dimensiom The systen’4 and the noise covariandg; are
assumed known.

We use the input/state/output representatiogof %Bisio(A, B, C, D), i.e.,

@ = col(@,7), where oZ=AZ+ Bu, §=Cz+Du, Z(1)=ZZpn. (10.1)

Correspondingly, the observed time serigsand the measurement errabshave the in-
put/output partitioningsvg = col(ug, y¢) andw = col(w, ). Furthermore, the covariance
matrix V is assumed to be block-diagonl; = diag(V4, V3), whereVy, Vi > 0.

The problem considered is to find the LS estimate of the stdtem the observed
datawgy. We prove that the optimal filter is the Kalman filter for thestgm

o = AT 4+ Bug + vy,

_ (10.2)
yd = CT + Dug + va,
where the process noisg and the measurement noisgeare jointly white
T
U1 (tl) (% (tg) -B 0 VI] -B 0
= Oty —t
cov ({m(h)] ' [W(tz) -D I Vil [-D 1 (h ~t2) (10.3)

- L@T fz} 5(ts — t).

The EIV state estimation problem is treated in [RH95] and [FF}¥9The global
total least squares problem of [RH95] has as a subprobleroaimputation of the closest
trajectory in the behavior of a given system to a given tinmégese This is a deterministic
approximation problem corresponding to the EIV smoothingbfem considered in this
chapter.

10.2 Problem Formulation
Consider the time horizofi, T] and define the covariance matricesiofj, andw:
Vi:=cov(a), Vy:=cov(g), and Vg :=cov(d).

Problem 10.1 (EIV smoothing problem). The EIV smoothing problem is defined by
~ min  (wg—w) V' (wg— ) subjectto
&, =col(w,y) (104)
Z(t+1) = Az(t) + Bu(t), 9(t) = Cz(t) + Du(t), fort=1,...,T,

and theEIV smoothed state estimaté-, T + 1) is the optimal solution of (10.4).

Under the normality assumption fax, (-, 7+ 1) is the maximum likelihood estimate
of z [GDSO03].
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Problem 10.2 (EIV filtering problem). The EIV filtering problem is to find a dynamical
system

0z = Atz + Brwy, T = Csz + Dywy (10.5)

such thati(t) = &(t,t + 1), wherez(-) is the solution of (10.5); i.e., thElV filtered state
estimateandz(-, ¢ + 1) is the EIV smoothed state estimate with a time horizer.

The EIV filtering problem is defined as a state estimation lgrob When the input is
measured with additive noise, an extra step is heeded tdfafiltered input/output signals
from the state estimate. This is explained in Note 10.8.

Note 10.3 (Initial conditions) Problem 10.1 implicitly assumes no prior information about
the initial conditionz(1). Another possibility is that(1) is exactly known. The standard
assumption ist(1) ~ N(ini, Pni), i.e., Z(1) is normally distributed with meai;, and
covarianceP,;. An exactly known initial condition corresponds®y; = 0 and an unknown
initial condition corresponds to information mati;' = 0.

We have chosen the initial condition assumption that reguthe simplest derivation.
With the classical stochastic assumpti&g ~ N(xini, Pni), (10.4) becomes

2

—1

P Zini — Zini Z(t+1) = Az(t)+ Ba(t)
min Vi ug — G subjectto §(¢) = Cz(t) + Du(t)
ot V; Yd — U fort=1,...,T.

10.3 Solution of the Smoothing Problem
Block Algorithms

We represent the input/output dynamics of the system (16v&y the time horizofi, 77,
explicitly as (see (VC))

Y= ﬁT(A7 C')"Eini + yT(H)av

where H is the impulse response oB. Using this representation, the EIV smoothing
problem (10.4) becomes a classical weighted least squesbem

vl (B -lonher sitm] [2])

Alternatively, we represent the input/state/output dyitanof the system, over the
time horizon[1, T}, as

2

min (10.6)

y = AZ + B,
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where
[5(1)] [C 0 ) [D T
0 A —I B
7(2) c 0 D
gi=| 0|, A= A —T B B
y(T) c 0 D
| 0 | i A 1] i B
Substitutingyq — 7 for § andug — @ for @ (see (EIV)), we have
ya -+ Bug = AZ + B + Cg, (10.7)

whereyy is defined analogously tpand

-t (] [])

Using (10.7) and definind\w := col(Au, Ay), (10.4) is equivalent to the problem
min Aw' V;'Aw subjectto yq + Bug = Az + [B  C] Aw, (10.8)

z,Aw

which is a minimum norm-type problem, so that its soluticsodtas closed form.

Recursive Algorithms

Next, we show a recursive solution for the case wheh = Zj; is given andD = 0. The
more general caseé(1) ~ N(xini, Pni) andD # 0, leads to a similar but heavier result.

Define the value functiof, : R* — R, for7 = 1,...,T as follows: V,(z) is
the minimum value of (10.4) ovér= 7,...,T — 1 with Z(7) = z. ThenV;(zin;) is the
optimum value of the EIV smoothing problem. By the dynamiosggamming principle, we
have

Vel = min (Ve 660 =) [+ [V 0 =)
+ Vi (A2 + Ba(T))). (10.9)

The value functiori’/; is quadratic for allr; i.e., there are?(r) € R"*", s(r) € R™, and
v(7) € R, such that
Vi(z) = 2" P(1)z + 25" (1) + v(7).

This allows us to solve (10.9).

Theorem 10.4 (Recursive smoothing)The solution of the EIV smoothing problem with
givenz(1l) = iy andD =0 is

a(t) = —(BTP(t+1)B+V; ) (BT P(t+1)A2(t) + BT s(t+1) — V; "ua(t)),
(10.10)
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Z(t+ 1) = Az(t) + Bu(t), with £(1) = Zini, andg(t) = Cz(t) fort = 0,...,T — 1,
where

P(t)=—ATP(t+1)B(BTP(t+ 1)B+V; ) 'BTP(t+1)A
(t) @
+ATP(t+1)A+CTVIC, (10.11)
fort=T-1,...,0,with P(T") =0, and
s(t) = —ATP(t+1)B(BTP(t+1)B+V; )™
(BTs(t+1) = V3 'ug(t)) + ATs(t+1) — CTV; 'ya(t), (10.12)

fort=T—1,...,0,withs(T") = 0.

Proof. See Appendix A.4. 0
P ands are obtained from the backward-in-time recursions (10ahtl) (10.12), and
the estimateg, 2, andy are obtained from the forward-in-time recursion (10.10).

Note 10.5 (Suboptimal smoothing)With (A, C') observable, (10.11) has a steady state
solution P that satisfies the algebraic Riccati equation

P=—-ATPB(B'"PB+V;)"'B'PA+ ATPA+CTV'C. (10.13)

In a suboptimal solution, the unique positive definite solutP, of (10.13) can be substi-
tuted for P(¢) in (10.12) and (10.10). This is motivated by the typicallgtfaonvergence
of P(t) to P,. Then the smoothing procedure becomes

1. find the positive definite solutioR, of the algebraic Riccati equation (10.13),
2. simulate the LTI system (10.12) with(¢) = P, , for all ¢,
3. simulate the LTI system (10.10) with(t) = P, for all ¢.

10.4 Solution of the Filtering Problem

Analogously to the derivation of (10.7) in Section 10.3, nea/derive an equivalent model
to the EIV model representation in the form (10.2). Subwitu— « for u andy — g for g
(see (EIV)) in (10.1):

o = AT + Bug — B, yg = CT + Dug — Du + .
Then define a “fake” process noisg and measurement noise by
v1:=—Bu and wvy:=-—-Du+7y.
The resulting system

0% = AT+ Bug +v1, yqg= CZ(t) + Dug+ vo (10.14)
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is in the form (10.2), wheré), S, andR are given in (10.3).
The Kalman filter corresponding to the modified system (10wlith the covariance
(10.3)is

oz = Az + Brwyg, T = Cyiz + Dyswy, (10.15)
where
A (t) = (A— K(t)C), Bu(t)=[B—K(t)D K(t)],
Cu(t) = I — P(t)CT(CP(t)CT + R)™'C, (10.16)
Dy(t) = P()CT (CP(t)CT +R)'[-D 1],
K(t) = (AP@)CT +8)(CP()CT + R) ™,
and

P(t+1) = AP(®)AT — (AP(H)CT + S)(CPE)CT + R) " (AP(1)CT +5) +Q.

We call (10.15) thenodified Kalman filter It recursively solves (10.7) (which is equivalent
to (10.14)) for the last block entry of the unknown The solution is in the sense of the
WLS problem

-1
min¢” ([B ]V [B C]') ¢ subjectto yg+ Bug = Az +¢,
which is an equivalent optimization problem to the EIV snimiog problem (10.8). There-
fore, the EIV filtering problem is solved by the modified Kalmféter.

Theorem 10.6.The solution of the EIV filtering problem i& = Ay, Bf = By, Ct = Ckt,
and Ds = Dy, defined in (10.16).

Note 10.7 (Suboptimal filtering) One can replace the time-varying Kalman filter with the
(suboptimal) time-invariant filter, obtained by replacifigt) in (10.15) with the positive
definite solutionP, of the algebraic Riccati equation

P =APAT — (APCT + S)(CPCT + R) " (APCT +9)" + Q.
Equivalently, one can argue that the time-invariant filsepptimal wheri” goes to infinity.

Note 10.8 (Optimal estimation of the input/output signals)Up to now we were inter-
ested in optimal filtering in the sense of state estimatiohe dptimal estimates of the
input and the output, however, can be derived from the mabKi@iman filter. The state
estimatet, the one-step-ahead predictiofi + 1), and the optimal input estimatesatisfy
the equation

z(t+1) = Az(t) + Bu(t). (10.17)

Then we can findi exactlyfrom & and z(¢ 4+ 1), obtained from the modified Kalman
filter (10.15). In fact, (10.17) and the Kalman filter equatiomply that

a(t) = B(t)z(t) + F(t)wq(t), (10.18)
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whereE(t) := —V; DT (CP(t)CT + R(t))”'C and

F(t) = [1-VaDT(CP()CT + R)'D . VaDT(CP(®)CT +R)™'].
The optimal output estimate is
§(t) = (CC(t) + DE(t))2(t) + (CDxi(t) + DE(t))wq(t). (10.19)

Appending the output equation of the EIV filter (10.5) witt®(18) and (10.19), we have
an explicit solution of the EIV filtering problem of [GDS03% a (modified) Kalman filter.

Note 10.9 (Misfit/latency) More general estimation problems occur wheis generated
by the stochastic model (10.2) with a noise covariance matri

Vi 1= cov <[Z;Eiﬂ) )

and the datavgy, available for estimation, is generated by the EIV modeV(EIThe EIV
smoothing and filtering problems can be defined in this caalgausly to Problems 10.1
and 10.2, and the results of the chapter can be repeatedisnuatandis for the new
problems. The final result is the equivalence of the EIV fiteethe modified Kalman
filter (10.15)—(10.16), with the only difference that now

ERH R I -

The more general setup is attractive because the nojseg have different interpretation
from that ofw. The former models thiatencycontribution and the latter models thasfit
contribution; see [LDO1, MWDO02].

10.5 Simulation Examples

We illustrate numerically the results of the chapter. Thepeeters of the input/state/output
representation o8 are

A= {016 00'45] , B= H , C=1[048429 —0.45739], and D = 0.5381.
The time horizon ig" = 100, the initial state istin; = 0, the input signal is a normal white
noise sequence with unit variance, dnd= Vj; = 0.4.

The estimate of the EIV filter is computed directly from thédigon; i.e., we solve a
sequence of smoothing problems with increasing time hariEvery smoothing problem
is as a WLS problem (10.6). The last block entries of the obthsequence of solutions
form the EIV filter state estimate.

We compare the EIV filter estimate with the estimate of the iffexti Kalman fil-
ter (10.15). The state estimaitg obtained by the modified Kalman filter is up to numerical
errors equal to the state estimateobtained by the EIV filter|| &y — #¢|| < 10714, This is
the desired numerical verification of the theoretical restihe absolute errors of estimation
Iz — 2|2, ||& — ||, |7 — y||* for all estimation methods presented in the chapter aregive
in Table 10.1.
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Table 10.1.Comparison of the absolute errors of the state, input, artgutestimates for
all methods (MKF—modified Kalman filter).

Method 2 — 2] | la—al? | ]Iy -yl
optimal smoothing | 75.3981| 29.2195| 15.5409
optimal filtering 75.7711| 35.5604| 16.4571

time-varying MKF 75.7711| 35.5604| 16.4571
time-invariant MKF | 76.1835| 35.7687| 16.5675
noisy data 116.3374| 42.4711| 41.2419

10.6 Conclusions

We considered optimal EIV estimation problems for disctetee LTI systems. A recursive
solution for the smoothing problem is derived. The filteqimgblem is solved via a modified
Kalman filter. The equivalence between the EIV filter and tradified Kalman filter is
established algebraically using explicit state spacessptation of the system. The optimal
estimate of the input is a linear function of the optimal stestimate, so that it is obtained
by an extra output equation of the modified Kalman filter. Téwuits are extended to the
case when the system is driven by a measured and an unobsgsuéed



Chapter 11

Approximate System
|dentification

The following identification problem is considered:

Minimize the2-norm of the difference between a given time series and aroapp
imating one under the constraint that the approximating teries is a trajectory
of an LTI system of a fixed complexity.

The complexity is measured by the input cardinality and #ge The question leads to the
global total least squares problem (T4S)) and alternatively can be viewed as maximum
likelihood identification in the EIV setting. Multiple timseries and latent variables can
be considered in the same setting. Special cases of theepradrle autonomous system
identification, approximate realization, and finite timeiogl /5 model reduction.

The identification problem is related to the structured|ttg@ast squares problem
(STLSy), so that it can be solved in practice by the methods devdlop€hapter 4 and
the software tool presented in Appendix B.2. The proposstksy identification method
and software implementation are tested on data sets frodeth&ase for the identification
of systems (DAISY).

11.1 Approximate Modeling Problems

Figure 11.1 shows three approximate modeling problems. dpng the model reduc-
tion problem: given an LTI system®, find an LTI approximationZ of a desiredower
complexity. A tractable solution that gives very good résin practice is balanced trun-
cation [Moo81]. We consider finite tim& optimal model reduction: the sequence of the
first T Markov parameters of4 is approximated by the sequence of the corresponding
Markov parameters of4 in the2-norm sense.

The identification problem is similar to the model reductmme but starts instead
from an observed responsg. Various data collection models (the down arrows frafto
wg andH in Figure 11.1) are possible. For example, the EIV modelsis= w + w, where
w is a trajectory generated 3 and is measurement noise.

159
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Figure 11.1. Different problems aiming at a (low complexity) modelthat approximates
a given (high complexity) mode¥. The time serieay is an observed response anflis
an observed impulse response.

Of independent interest are the identification problemmfeomeasurement of the
impulse responsé/ = H + H, which is an approximate realization problem, and the
autonomous system identification problem, wherandw are free responses. A classical
solution to these problems is Kung’s algorithm [Kun78].

The key observation that motivates the application of STiuSystem identification
and model reduction is that their kernel subproblem is todibtbck-Hankel rank-deficient
matrix . (w) approximating a given full-rank matrix#’(wq) with the same structure.

Noniterative methods such as balanced model reductiospsige identification,
and Kung’s algorithm solve the kernel approximation prabiga the SVD.

For finite matrices, however, the SVD approximationsf(wg) is unstructured. For this
reason the algorithms based on the SVD are suboptimal vagiess to an induced norm of
the approximation erroAw := wq — w. The STLS method, on the other hand, preserves
the structure and is optimal according to this criterion.

Our purpose is to show how system theoretic problems witHitn@ptimality
criterion are solved as equivalent STLS problems

X =arg min (mjn |wg — | subject to . (w) [ f(]] = o) (STLSy)

and subsequently make use of the efficient numerical metti@dsoped for the
STLS problem.

The constraint of (STLS) enforces the structured mattixX (w) to be rank deficient, with
rank at mostow dim(X) and the cost function measures the distance from the giada
to its approximationy. The STLS problem aims at optimal structured low-rank apipro
mation of.” (wq) by .7 (w); cf. Chapter 4.

The STLS method originates from the signal processing antenigal linear algebra
communities and is not widely known in the area of systemsamdrol. The classical
TLS method is known in the early system identification litara as the Koopmans—Levin
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method [Lev64]. In this chapter, we show the applicabilityiee STLS method for system
identification. We extend previous results [DR94, LD01] loé application of STLS for

SISO system identification to the MIMO case and present nigalaresults on data sets
from DAISY [DMO5].

The Global Total Least Squares Problem

Let.# be a user-specified model class anddgbe an observed time series of len@ite N.
The model class restricts the maximal allowed model conmyteXVithin ., we aim to
find the model# that best fits the data according to the misfit criterion

arg min M(wg, &), with M(wg, %) := min |wa— @]

The resulting optimization problem is known as the globahltéeast squares (GITLS)
problem [RH95].

The approach of Roorda and Heij [RH95] and Roorda [Roo95hied on solving
the inner minimization problem, the misfit computation, fgrmetric state representation of
the system and subsequently alternating least squaresugsQdewton-type algorithm for
the outer minimization problem. They use a state spaceseptation with driving input.
Our approach of solving the GITLS problem is different. We askernel representation of
the system and relate the identification problem to the STioBlpm (STLS).

Link with the Most Powerful Unfalsified Model

In Chapter 8, we introduced the concept of the most powerftdlsified model (MPUM).
A model £ is unfalsified by the observatiany if wq € %. A model %, is more powerful
than%, if %, C %,. Thus the concept of the MPUM is to find the most powerful model
consistent with the observations—a most reasonable anithiatidentification principle.

In practice, however, the MPUM can be unacceptably comgtex.example, in the
EIV setting the observatiomq := (wq(1), ..., wa(T)), wy(t) € R¥, is perturbed by noise,
so that with probability one the MPUM i&npum = (R¥)”'; see Note 8.10. Such a model
is useless because it imposes no laws.

The GITLS problem addresses this issue by restricting théetnmomplexity by the
constraint € .#, where.# is an a priori specified model class. Whenever the MPUM
does not belong to#, an approximation is needed. The idea is to

correct the given time series as little as possible, solledttPUM of the corrected
time series belongs te7.

This is a most reasonable adaptation of the MPUM to appraeirigentification. The
measure of closeness is chosen agtherm, which weights equally all variables over all
time instants. In a stochastic setting, weighted norms @uoded in order to take into
account prior knowledge about nonuniform variance amoagémiables and/or in time.
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11.2 Approximate ldentification by Structured Total
Least Squares

The considered approximate identification problem is ddfamefollows.

Problem 11.1 (GITLS). For given time seriesg € (R¥)T and a complexity specification
(m, 1), wheren is the maximum number of inputs ahé the maximum lag of the identified
system, solve the optimization problem

B = i i — @) . GITLS
os iy, (i o= 1) (@ITLe)

The optimal approximating time seriesds’, corresponding to a global minimum point
of (GITLS), and the optimal approximating systen#s

The inner minimization problem of (GITLS), i.e., the misfif(wq, 2) computation,
has the system theoretic meaning of finding the best appetidmi* of the given time
serieswgq that is a trajectory of the (fixed from the outer minimizatigmoblem) systenss.
This is asmoothing problem

Our goal is to express (GITLS) as an STLS problem (S¥)LSTherefore, we need to
ensure that the constraist (i) [ X, | = 0is equivalenttab € Z € £¥,. As a byproduct
of doing this, we relate the paramet€rin the STLS problem formulation to the systerh
The equivalence is proven under an assumption that is dongecto hold generically in
the data spacgR”)”.

Lemma 11.2. Consider a time seriess € (R*)T and assume (without loss of gener-
ality) that there are natural numbers andp, p > 1, and a matrixR € RP*(1+Dw
such thatR (w) = 0. DefineR =: [Ry Ry --- Ry|, whereR; € RP*¥,
R(z) == Y;_o Riz', and B := ker (R(0)). Thenw € %y 1) and if R, is full rank,
# € LT, wheren == w — p.

Proof. From the identity
RA L (w)=0 <= i  Rw(t+7)=0, fort=1,...,T—1,

it follows thatw € %/ 7).
By definition 4, is a linear system with laf.%) < 1. The assumption tha; is full
row rank implies that?(z) is row proper. Then the number of outputs#fis p(#) = p
and therefore the number of inputsig %) = w — p(#) = m. Let1, be the degree of the
ith equation inR(c)w = 0. The assumption thak; is full row rank implies thatl; = 1
for all i. Thereforen(%) = %_, 1, = pl. 0
The next lemma states the reverse implication.

Lemma 11.3. Consider a time series € (R¥)” and assume (without loss of generality)
that there are natural numbeisandm < w and a systen® € ., such thatv € 4|, 1.

Let R(o)w = 0, whereR(z) = Z}:O R;z', be a shortest lag kernel representationssf
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Thenthe matrix® := [Ry R; --- Ri] annihilates the Hankel matrix# 1 (w), i.e.,
R 1 (w) = 0. If, in addition,n(%) = pl, thenR; is full row rank.

Proof. Fromw € %1 1), it follows that R.7 1 (w) = 0.

Let 1 be the degree of théh equation inR(c)w = 0. We havel; < 1 and
n(#)=>._,1;. The assumption(%) = plis possible only ift, = 1 forall ;. Because
R(z) is row proper (by the shortest lag assumption of the kerpebsentation), the leading
row coefficient matrixZ has full row rank. But sincé; = 1, for all i, L = R;. O

We have the following main result.

Theorem 11.4. Let & := ker (R(0)) € £, whereR(z) = 3_;_, R;z" is row proper,
and define the partitioning
wW—m

R:L:ZI:Q:L —Pl]

If P, is nonsingular, then for amy € (R¥)7,

X

w € Bl = ‘%pl—i-l( w) [—I

} =0, where X" =P " [Ry -+ Ri1 @Qi].

Proof. The assumption of the theorem is stronger than the assumsptioLemmas 11.2
and 11.3 because not only 1% required to be of full row rank but its submatrig is

required to have this property. In the direction of assuming %/, ), by Lemma 11.3,
it follows that R4 1 (w) = 0. SinceP; is nonsingularR74 1 (w) = 0 is equivalent

to AL (w) [XN]=0,withXT:=P ' [Ry - Ri_1 @Q1]. Inthe opposite direc-
tion, by Lemma 11.2% = ker (ZLO Riot)with [Ry Ry -+ Ry :=[XT -—I].
Therefore,P, = I is nonsingular. 0

Theorem 11.4 states the desired equivalence of the idexitfic problem and the
STLS problem under the assumption that the optimal appratimg systemz admits a
kernel representation

1
P = ker (ZRiai>, Ry:=[Q, —PB] with P, € RP*P nonsingular. £
1=0

We conjecture that condition:( holds true for almost allv € (R¥)T. Define the subset
of (R¥)T' consisting of all time series € (R¥)” for which the identification problem is
equivalent to the STLS problem, i.e.,

Q= {wd € (R¥)T problem (GITLS) has a unique globa}

minimizer 2 that satisfies«()

Conjecture 11.5. The sef2 is generic in(R¥)7’; i.e., it contains an open subset whose
complement has measure zero.

The existence and uniqueness part of the conjecture (seletingion of(2) is moti-
vated in [HS99, Section 5.1]. The motivation fei) peing generic is the following one.
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The highest possible order of a system in the model c#§$sis p1. Then generically
in the data spacéR”)”, n(%) = pl. By Lemma 11.3n(#) = pl implies that in a kernel
representationd = ker (Y.1_, R;o"), Ry is of full row rank. But generically ifRP*¥ the
matrix P, € RP*P, defined byR; =: [Q, —P,], is nonsingular. Although the motivation
for the conjecture is quite obvious, the proof seems to beeratvolved.

Properties of the Solution

The following are properties of the smoothing problem:
1. w is orthogonal to the correctioAw := wy — w and
2. Awis generated by an LTI systesd- € .Z,.

Since the identification problem has as an inner minimirapooblem, the smoothing
problem, the same properties hold in particular for therogtisolution of (GITLS). These
results are stated for the SISO case in [DR94] and then pifovéime MIMO case in [RH95,
Section VI].

Statistical properties of the identification problem (GB)lare studied in the literature.
For the stochastic analysis, the EIV model is assumed anitsie results are consistency
and asymptotic normality. Consistency in the SISO caseoiggorin [AY70b]. Consistency
in the MIMO case is proven in [HS99] in the framework of the G8 problem. Complete
statistical theory with practical confidence bounds is @né=d in [PS01] in the setting of
the Markov estimator for semilinear models. ConsistencthefSTLS estimator for the
general structure specification described in Chapter 4oiggorin [KMVO05].

Numerical Implementation

A recursive solution of the smoothing problevfi(wq, %) is obtained by dynamic program-
ming in Section 10.3 for the special caBe= 0 and exactly known initial condition. An
alternative derivation (for gener&l and unknown initial conditions) is derived by isometric
state representation in [RH95]. Both solutions are derfuaah a system theoretic point of
view. A related problem occurs in the STLS problem formualatiBecause of the flexible
structure specification, the inner minimization problenthie STLS formulation (STLS)

is more general than the smoothing probl&fitwy, %), where a block-Hankel structure is
fixed. In Chapter 4, a closed form expression is derived fetdtter problem and a special
structure of the involved matrices is recognized. The stinecis then used on the level of
the computation by employing numerical algorithms for stmwed matrices. The resulting
computational complexity is linear in the lendthof the given time seriegy.

The outer minimization problemin ¢ _, M (wq, %), however, is a difficult noncon-
vex optimization problem that requires iterative methodgo methods are proposed in the
framework of the GITLS problem. In [RH95] an alternatingdeaquares method is used.
Its convergence is linear and can be very slow in certainscdagR0095], a Gauss—Newton
algorithm is proposed. For the solution of the STLS problarhevenberg—Marquardt al-
gorithm is used. The convergence of all these algorithmkealesired global minimum is
not guaranteed and depends on the provided initial approxamatid the given data.

Software for solving the GITLS problem is described in ApgierB.4.
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11.3 Modifications of the Basic Problem
Input/Output Partitionings

A standard assumption in system identification is that antilopitput partitioning of the
variables is a priori given. Considewa w permutation matrixl and redefiney aslTw. The
firstm variables of the redefined time series are assumed inputh@ngimaining variables
outputs. Withcol(u,y) := w and [Q(z) —P(z)] := R(z), the kernel representation
R(o)w = 0 becomes a left matrix fraction representatigtv)u = P(c)y. The transfer
function of Z for the fixed bylI input/output partitioning i¥(z) := P~(2)Q(=).

Note that under the assumptiai%) = p(%)1(%), the state space representation

o - 0 *}:70 Qo*}?oc?l
o _h | 0, — PO ) .
A= YlB= O =0 o 0 1], D=0y
I _P171 Qlfl - plleAl

is minimal. Therefore, the transition frof andQ (which is the result obtained from the
optimization problem) to an input/state/output represtaon is trivial and requires extra
computations only for the formation of tHe matrix. R

Conjecture 11.5 implies that generically the optimal agpration 2 admits an
input/output partitioningeol(u,y) := w, with II = I. Moreover, we conjecture that
generically% admits an arbitrary input/output partitioning (i.eol(u, y) := Hw for any
permutation matrixT).

Exact Variables

Another standard assumption is that the inputs are exattt€ikIV setting noise-free). Let
4 andy be the approximating input and output. The assumptionith#t exact imposes
the constrainti = ug.

More generally, if some variables afy are exact, then the corresponding elements
in w are fixed. In the STLS problem formulation (ST} the exact elements afy can
be separated in a block of’ (wq) by permuting the columns o# |, (wq). The STLS
package described in Appendix B.2 allows specification ateklocks ins (wqy) that are
not modified in the solution” (). After solving the modified problem, the solutidh of
the original problem, with exact variables, is obtained pglging the reverse permutation.

With a given input/output partition and exact inputs, thdIG3 problem becomes
the classical output error identification problem. Moreapwe the single output case the
GITLS misfit is equivalent to the cost function minimized I tprediction error methods.
The following simulation example shows that the GITLS ogtirmodel is equivalent to the
model computed by thgemfunction from the System Identification Toolbox of MATLAB,
when the output error structure is specified.

Example 11.6 (Output error system identification) We use the data set “Hair dryer” from
[Lju99], available via DAISY [DMO05], and search for an apgimate system in the model
class.,fl%. On the one hand, we use the GITLS method, implemented byutineidn
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Table 11.1.Comparison of the GITLS and prediction error methods on ®Si&tput error
identification problem.

Function Time, sec Simulation fit GITLS misfit
pem 55 91.31059766532992 2.27902450157299
stlsident 2.9 91.31059766354954 2.27902450178058

stlsident (see Appendix B.4) with the specification that the input iaatx On the
other hand, we use the functigmem evoked with the following calling sequence, which
corresponds to output error identification:

sys = pem( iddata(y,u),l,

'nk’, 0,
'DisturbanceModel’, 'None’,
'SSParameterization’, 'Canonical’,
‘InitialState’, 'Estimate’,

"LimitError’, 0,

'Tolerance’, le-5,
'Maxlter’, 100 );

The identified systems Istlsident andpemare compared in Table 11.1 in terms
of the simulation fit (computed by the functimompare from the System Identification
Toolbox), the GITLS misfit, and the computation time. Notatth

compare s simulation fit= 100(1 — Moe/||y||)- (FIT)

Multiple Time Series

In certain cases, e.g., the approximate realization pnopiaultiple observed time series
wd1,-..,wd N are given. Assume that all time series are of the same lengttefinewy to

be the matrix valued time serieg = [wq1 -+ wa,n |, SOthatug(t) € R™*N. The only
modification needed in the GITLS solution for this case isansider block-Hankel matrix
+1(wq) with size of blockss x N instead ofw x 1, as for the case of a single observed
time series. The software package described in AppendixrBa2s such problems.

Known Initial Conditions

In the GITLS problem, no prior knowledge about initial cainatis is assumed. Thus the
best fitting trajectoryw is sought in the whole behavigB. If the initial conditions are
a priori known,w should be searched only among the trajectoriea@’(generated by the
specified initial conditions. Typical examples of identfiion problems with known initial
conditions are approximate realization and identificaffom step response observations.
In both cases, the initial conditions are a priori known t@bm.

Zero initial conditions can be taken into account in the tdeation problem by
extending the given time serieg; with 1 zero samples. Letey be the extended data
sequences obtained inthisway. In orderto ensure that greximationiey is also obtained
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under zero initial conditions, the firat samples ofwey; should be preserved unmodified
in Wext-

Note 11.7 (Known initial conditions) Inthe currentsoftware implementation ofthe GITLS
method, the specification that theleading data samples are exachi® possible. This
feature of the identification problem goes beyond the scdplkeocurrent STLS solution
method and software.

Latent Inputs

The classical system identification framework [Lju99] diff from the one in this chapter
in the choice of the optimization criterion and the modekslaln [Lju99], an unobserved
input is assumed to act on the system that generates thevatises and the optimization
criterion is defined as the prediction error.

An unobserved inpwt, of dimensiore, calledlatent input can be accommodated in
the setting of Section 11.2 by augmenting the model class- £, with e extra inputs
and the cost functiofiwg — || with the terml|e||2. The resulting identification problem is

min (min |wa — |2+ ||é]|> subject to {‘1 € ,%’) (M+L)
BeLre e e —r N~ w

mte,l ’

misfit latency

This problem unifies the misfit and latency descriptions eftihcertainty and is put for-
ward by Lemmerling and De Moor [LDO1]. In [LDO1], it is clairdghat the pure latency
identification problem

min (min lé]* subject to { ¢ } € ,%’) (L)
peLyte, e Wd
is equivalent to the prediction error approach.

The misfit—latency identification problem (M+L) can easily teformulated as an
equivalent pure misfit identification problem (GITLS). Letyg := col(e, wq), Where
e := 0 is ane dimensional zero time series. Then the misfit minimizatioobfem for
the time seriesva g and the model claséﬁn"jjl is equivalent to (M+L). The pure latency
identification problem (L) can also be treated in our framdwlmy consideringwy exact
(see “Exact-variables” above) and modifying omrly Note that the latent input amounts
to increasing the complexity of the model class, so that tebét is achieved with a less
powerful model.

11.4 Special Problems

In this section we consider three special identificatiorbfms in an input/output setting.

In the first one the data is an observed impulse responseelseitond one the data is an
observed free response. In the third one the data is an eracise response of a high

order system, i.e., a system that is not in the specified nudss.
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The Approximate Realization Problem

Identification from exact impulse response is the topic afrtjpl) realization theory; see
Section 8.7. When the given data (impulse response obsamsais not exact, an approx-
imation is needed. Kung’s algorithm is a well-known solatfor this problem. However,

Kung'’s algorithm is suboptimal in terms of the misfit critami

Mimp(Hg, B) = |Hg — H||, where H is animpulse response &#.

Note that in this special case the misfit computation doegwotve optimization because
the initial conditions and the input are fixed. The GITLS pesb can be used to find
an optimal approximate model in terms of the migffi,,(Hq, -). Next, we consider the
following approximate realization problem [DM94]:

Given a matrix valued time serig¢& € (RP*®)T+! and a natural numbey, find a
system# € £, wherew := m + p, whose impulse respongé€* minimizes the

approximation erroff Hy — H|| := \/Z;‘»F:o | Ha(t) — H(t)||2.

The approximate realization problem is a special GITLS [gnwband can be treated
as such. Now, however, the given trajectory is an observedlse response, so that the
input is a pulse and the initial conditions are zeros. Fa thason the direct approach
is inefficient. Moreover, known zero initial conditions et be specified in the current
software implementation; see Note 11.7. In the rest of thésien we describe an indirect
solution that exploits the special features of the data &pdla specification of zero initial
conditions.

The following statement is a corollary of Theorem 11.4.

Corollary 11.8. Let % := ker (R(0)) € %%, whereR(z) = >_;_ R;2" is row proper,
and define the partitioning
m p
R, ::[Ql —Pl] .
If P, is nonsingular, then for anyf € (RP*®)T+1,
Hisanimpulse response & < 41, (cH) [ %] =0,

whereX" =—-p '[Py, P, - P

Therefore, under assumptios) (the approximate realization problem can be solved
as an STLS problem with structured data mat#g!, , (¢ Hq). Next, we show how one can
obtain an input/state/output representation of the optipproximating systens# from X
and thel approximated Markov parametef&(1), ..., H(1).

By Corollary 11.8rank (/4 (0 H)) =:n = 1p. Let

A (cH) =TA

be a rank revealing factorization. Sinékis an impulse response &, I and A must be
of the form o o
=0111(A4,C), A=%pr_1(A,B),
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where # = Bysio(A, B,C, D). (The basis of the representation is fixed by the rank
revealing factorization.) We have

i[5 0 = o [3] -
= [XT -] =0,

so thatcol span(I") C ker([XT —I]). Butdim (colspan(T")) = n. On the other hand,

([x
dim (ker([XT ~I]))=(1+1)p—p=n,

so thatol span(I') = ker([XT —1]). Therefore, a basis for the null spacq af T —7]

defines an observability matrix éﬁ’ from whichC and A can be obtained up to a similarity
transformation.D = Hy(0) and B is the unique solution of the system

01(A,C)B = col (H(1),...,H(1)).

Example 11.9 (Approximate realization) Consider asimulation example inthe EIV setup.
The dataHy = H + H is as a noise corrupted impulse respohkef an LTI system%.
The time horizon is" = 50 and the additive noise standard deviatiomris= 0.25. The
true systemZ is random stable (obtained via the MATLAB functiainss ) with m = 2
inputs,p = 2 outputs, and lag = 2. The approximate mode¥ is sought in the model
class ™.

We apply a direct identification from input/output data (thpulse response is ex-
tended withl zeros) and the indirect procedure described above. In thecages, the
optimization algorithm converges in 1.13 sec. and 0.63 sespectively, which shows the
better efficiency of the indirect algorithm. The relativéimstion errors|H — H|| /| H]|
in the two cases are 0.2716 and 0.2608, respectively. (Tfezatice is due to the wrong
treatment of the initial conditions in the direct methodgr Eomparison, the relative error
with respect to the datHy is 0.9219. Figure 11.2 shows the fitting of the impulse respon
of the true systen# by the impulse response of the approximating systems.

Identification of an Autonomous System

The autonomous system identification problem is defined ls\v®:

Given a time seriegq € (R?)” and a natural numbar, find a system# i

and a vector;,; € R™(#), such that the free responge of % obtained under
initial conditionz; minimizes the approximation err@gg — 4|

This problem is a special case of the approximate realizgtioblem. The shifted
impulse response H of the system%sio( 4, zini, C, @) is equal to the free response of
the systemZsio(A, o, C, e), obtained under initial conditiom;;. Thus the identification
problem for an autonomous system can be solved as an ap@atexigalization problem
with the obvious substitution. It is easy to generalize thi®aomous system identification
problem for multiple time serieg 1, . . ., ya,n; See Note 8.27.
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Hyy
Hys

true -0.4

data
----appr.1
==-appr.2 ~08

—true —true
data data

- - -appr.1 - - -appr. 1

== appr. 2 1 == appr.2

Hyy
Hao

Figure 11.2. Identification from impulse response. Solid Iine—e{acumresponsé_{,
dotted line—data{y, dashed line—approximating impulse respoiséom the direct ap-
proach, dashed-dotted line—approximating impulse respéifrom the indirect approach.

Example 11.10 (Identification of an autonomous systemTonsider the same simulation
setup as in Example 11.9 with the only difference being thatttue dataj is a free
response of lengtli’ = 20, obtained under random initial condition. The relativeoeof
approximatior|g—g||/|l7|| is 0.4184 versus 0.7269 for the given dataFigure 11.3 shows
the fitting of the free response of the true systehby the approximating free responge
of A.

Finite Time ¢, Model Reduction

The finite timeT', /> norm of a systen® € £, with an impulse respons# is defined as

|B|es.r = [|Hlp.m | = \/ g | H()|12.

For a strictly stable syster®, || %||¢, ~ is well defined and is equal to it&#% norm.

Assume that the given time seriég in the approximate realization problem is the
exactimpulse response of a higher order syst@mSuch an assumption can be made without
loss of generality because afiite time seriesfly € (R™*P)T+! can be considered as an
impulse response of a system in the model cl&§s.. Then the approximate realization
problem can be interpreted as the following finite tifgenodel reduction problem:
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Figure 11.3. Output-only identification. Solid line—exact trajectgrydotted line—datgy,
dashed line—approximating trajectogy

Given a systens ¢ 1, anatural numbeleq < 1, and a time horizof’, find
a systemz ¢ £

¥ ., that minimizes the finite tim@, ¢, norm||% — %|,, r of
the error system.

In the model reduction problem, the misfit is due to the loweordpproximation.
In the approximate realization problem, assuming that #ita & obtained from the EIV
model, the misfit is due to the measurement eridrs The solution methods, however,
are equivalent, so in this section we gave an alternatierpnétation of the approximate
realization problem.

Example 11.11 (Finite time/, model reduction) The high order systen# is a random
stable system (obtained via the MATLABSss function) withm = 2 inputs,p = 2 outputs,
and lagl = 10. A reduced order mode® with lag 1.4 = 1 is sought. The time horizafi
is chosen large enough for a sufficient decay of the impulsgorese of4.

Figure 11.4 shows the fitting of the impulse response of thh bider systen® by
the impulse response of the reduced order sys&em

11.5 Performance on Real-Life Data Sets

The data base for system identification (DAISY) [DMO05] is di$er verification and com-
parison of identification algorithms. In this section, w@lgphe GITLS method, described
in this chapter and implemented by the software presentégpendix B.4, on data sets
from DAISY. First, we solve output error identification ptems, and then, we consider
the data set “Step response of a fractional distillatiomewl”, which consists of multiple
vector time series.

Single Time Series Data Sets

The considered data sets are listed in Table 11.2. Sinceatdl skts are with a given
input/output partitioning, the only user-defined paramgtat selects the complexity of the
model class# = .Z;7" is the lagl.
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Figure 11.4. Finite time /> model reduction. Solid line—impulse response of the given
(high-order) system, dashed line—impulse response ottheced order system.

The data is detrended and split into identification and eailich data sets. The first

70% of the data, denoted hygy, is used for identification, and the remaining 30%, denoted
by wya, is used for validation.

Approximate models are computed via the following methods:

n4sid : the N4SID method implemented in the System Identificationl@ox of MAT-
LAB;

stlsident  : the GITLS method implemented by the STLS solver; and

pem: the prediction error method of the System Identificationlox of MATLAB.

Table 11.2. Examples from DAISY'—time horizonp—number of inputsp—number of
outputs,1—lag.

# Data set name T m p 1

1 Heating system 801 1 1 2
2 Hairdryer 1000 1 1 5
3 Flexible robot arm 1024 1 1 4
4 Heat flow density 1680 2 1 2
5 Steam heat exchanger4d000 1 1 2
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The inputs are assumed exact, so that identification in tigubarror setting is considered.

The validation is performed in terms of the misfife(wya, %) obtained on the validation
data set and the equivalent (see (FIT)) simulation fit coegbbly the functiocompare .

Note 11.12 (About the usage of the methodsyhepemfunction is called with the option
‘DisturbanceModel’, 'None’ ,

which specifies output error model structure. In additibe, dptions
'nk’, 0, ’'LimitError’, 0 ,

and’alg’ are used to disable the default fmem feedthrough term set to zero, robustifi-
cation of the cost function, and stability constraint. (T3&LS method does not constrain
the model class by enforcing stability.)

With these options (for the single-output cag@mminimizes the output error mis-
fit Moe. Thestlsident function is called with the specification that the inputsexact,
so that the GITLS and prediction error methods solve egeintabentification problems.
For both functions, we set the same convergence tolerdioeance’,1e-10 ),
maximum number of iterationd\laxiter’,100 ), and initial approximation (the model
obtained byn4sid ).

The identified systems bhAsid , stlsident  , andpemare comparedin Table 11.3.
In all examples there is a good match between the modelsnelotavith thestlsident
and pem functions. In addition, the output error optimal model arfprms the model
computed by the N4SID method. Since the criterion is checkea part of the data that is
not used for identification, there is no a priori guarantes the output error method will
outperform the N4SID method.

Identification from Step Response Measurements

Next, we consider the data set “Step response of a fractdistllation column” from
DAISY. It consists of three independent time series, eachwith 7' = 250 data points.
The given data has a fixed input/output partitioning witk= 3 inputs andp = 2 outputs,
so that an approximate model is sought in the model cl&#gs We further bound the
complexity of the model class by choosing thelag 2, so that the considered model class
is Ly,

The step response data is special because it consists gbletifne series, the inputs
are exactly known, and the initial conditions are also dydatown. In order to take into
account the known zero initial conditions, we precede tivergtime series withl zero
samples. In order to take into account the exactly knownts)pue use the modification of
the GITLS method for time series with exact variables. Mulétitime series are processed
as explained in Section 11.3.

Figure 11.5 shows the daga(the measured step response) and the step response of
the optimal approximating system, computed by the GITLShoe:t
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Table 11.3.Comparison of the models obtainedsid , stisident , andpem.

# Data set name Function Fit % Misfit
1 Heating system n4sid 51.9971 140.8014
stlsident 76.0491  70.25271
pem 76.0491  70.25271
2 Hairdryer n4sid 88.3265 1.5219
stlsident 90.8722 1.1900
pem 90.8772 1.1893
3 Flexible robot arm n4sid 29.5496 3.2480
stlsident 96.5454 0.1593
pem 96.5454 0.1593
4 Heat flow density n4sid 40.7249  11.2233
stlsident 83.8574 3.0565
pem 83.8574 3.0565
5 Steam heat exchangemd4sid 29.6890  25.5047
stlsident 60.4452  14.3481
pem 60.1575 14.4525

11.6 Conclusions

We generalized previous results on the application of STar$ystem identification, ap-
proximate realization, and model reduction to multivaiéafystems. The STLS method
allows us to treat identification problems without inputfmut partitioning of the variables
and EIV identification problems. Multiple time series, latteariables, and prior knowledge
about exact variables can be taken into account.

The classical identification problem, where the uncenamattributed solely to un-
observed inputs and the observed inputs are assumed e@spécial case of the proposed
method. The relation and comparison with classical ideatifdbn methods, however, have
not yet been investigated.

The software tool for solving STLS problems, presented ipémlix B.2, makes the
proposed identification method practically applicable.e ferformance of the software
package was tested on data sets from DAISY. The results dietvexamples with a few
thousands data points can be solved routinely and the ggatiioh method is robust with
respect to an initial approximation obtained from a nonojtation based method.
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Figure 11.5. Identification from step response measurements. SolieHgieen datay,
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Chapter 12
Conclusions

We have promoted a framework for mathematical modeling iitivh
1. models are disentangled from their representations and
2. data—model discrepancy is explained by correction ofitia.
A basic question in our treatment is,

When does a model in a considered model class fit the data yxactlhow
can we construct such a model?

This exact modeling problem leads to the notion of the mostepful unfalsified model
and to identifiability conditions, i.e., under what conaiits the data generating model can
be recovered from the data. In the generic case when exagfittipossible, we propose
an approximate model based on misfit minimization.

The misfit approach corrects the data as little as necessatiyat the most powerful
unfalsified model for the corrected data belongs to the mddst. The approximate model
is falsified whenever the data is not generated by a modekimibdel class, and the misfit
is a quantitative measure of how much the model is falsifiethbydata.

In the errors-in-variables setting, the misfit can be chasehe the negative log
likelihood function. Such an interpretation is appealing ¢eads to a consistent estimator
for the true model. It requires, however, strong assumptabout the data that are rarely
verifiable in practice. For this reason, the approximatiompof view of the modeling
problem is often more appropriate than the stochastic eitmpoint of view.

Static approximation problems In the simplest special case of a linear static model
class and unweighted misfit function, the misfit minimizatgroblem is the classical total
least squares problem. The abstract formulation is tram&fd to parameter optimization
problems by choosing concrete representations of the mdded commonly used repre-
sentations are kernel, image, and input/output.

Although concrete representations are indispensableh®@attual solution of the
modeling problems, their usage in problem formulationsas matural. The abstract,
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representation-free formulation shows more directly whataim of the problem is and
leaves the choice of the model representation open for thé@o

The classical total least squares problem is generalizéddrdirections: weighted
misfit function and structured data matrix. Defining the peaibabstractly and then trans-
lating it to concrete parameter optimization problems, Wwewsed links among various,
seemingly unrelated, algorithms from the literature. Wespnted alternative algorithms
that in one respect or another outperform the existing nusthédowever, it is a topic of
future work to develop algorithms that combine all the \@gwof the existing algorithms.

We presented a new flexible formulation of the structureal tebst squares problem
that is general enough to cover various nontrivial applicest and at the same time allows
efficient solution methods. Algorithms with linear compidaal complexity in the number
of data points were outlined and implemented in a softwackage.

Bilinear and quadratic approximation problems are solyatiéadjusted least squares
method, which has an analytic solution in terms of an eigelevdecomposition. The ad-
justed least squares method is a stochastic latency adiemé¢hod, so in these problems
we detour from the main line of the book—deterministic migfipeoximation. The reason
is that the adjusted least squares method leads to a significaputational simplification.
In addition, although the theory of the adjusted least ssgiastimation is asymptotic, sim-
ulation results show that the solution is very effectiverefer small sample size problems.

Dynamic approximation problems In the second part of the book, we considered
exact and approximate identification problems for finiteetiseries. We gave a sharp
sufficient identifiability condition: if the data generaginystem is controllable and an input
component of the time series is persistently exciting, tlstrpowerful unfalsified model
of the data coincides with the data generating system. Edantification algorithms find
the data generating system by computing a representatitne afiost powerful unfalsified
model.

We proposed new algorithms for exact identification of a kgrnonvolution, and
input/state/output representation of the most powerfiidlsified model. The latter are
closely related to the deterministic subspace algorithfwsvever, the algorithms proposed
in the book are more efficient and impose weaker assumptiotiegiven data. In addition,
we gave system theoretic interpretation of the oblique atitbgonal projections that are
used in the deterministic subspace identification.

For rough data, the exact identification problem genegigd#ntifies a trivial system
that explains every time series. When a bound on the complekihe identified system is
imposed, e.g., via a bound on the model class complexity eurof inputs and lags), the
exact identification problem generically has no solutiohe Tisfit approximate modeling
problem for the linear time-invariant model class is calted global total least squares
problem. It is the dynamic equivalent of the classical tt¢alst squares problem. We
solved the global total least squares problem by relatit@atstructured total least squares
problem with a block-Hankel data matrix.

Approximate identification is classically considered intechastic setting with the
latency approach. This classical stochastic model (syst#imunobserved noise input),
however, like the errors-in-variables model imposes ufigble assumptions on the data.
In addition, the stochastic framework addresses veryéatlir the approximation issue.



Appendix A
Proofs

A.1 Weighted Total Least Squares Cost Function
Gradient

Denote byDiff the differential operator. It acts on a differentiable fiioe M,ys : U — R,
whereU is an open set itR™*P, and gives as a result another function, the differential of
M, Diff (Mygs) : U x R™*P — R. Diff (Myys) is linear in its second argument, i.e.,

Diff (f) := d Muus(X, H) = trace (Myys(X)H "), (A1)
whereM s : U — R™*P is the derivative of\/,4s, and has the property
Mus(X + H) = Maus(X) + d Muas(X, H) + o([ H[|F), (A.2)
forall X € U and for allH € R™*?. The notatioro(||H||) has the usual meaning
g(H) =o([|H[[f) :<= g(H)/[|H|F— 0as|H]|r— 0.

We have

a X
Mys(X) =D el ()T (X)es(X),  where Ty(X):= [XT —1] W, [_I} :

=1

We find the derivativél/, (X ) by first deriving the differentiaDiff (Mus) and then repre-
senting it in the form (A.1), from whicli/,,,(X) is extracted. The differential af/ys is

d thls(X> H)

N
> (al HT7H(X)e(X) + €] (X1 (X)H a; + e (X) Diff (17 (X)) ea( X))

i (2 trace (a;e; (X)I;'(X)H") + trace (Diff (I‘il(X))ei(X)e;r(X))).
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Using the rule for differentiation of an inverse matrix vatLfunction, we have
Diff (T; *(X)) = —T; (X)) Diff (I;(X))T; H(X).

Using the defining property (A.2), we have

Diff (I;(X)) = Diff ( [XT —1]w;t [XI} )

= trace ( (=T o)W [f(l] +[x W ﬁ)[] >

= 2 trace < [HT o] w; ! [fﬂ )

LetV; := W, ! and define the partitioning

?

m P
Va i Vab i m
V; =: ’ ’ .
|:%a7i Vb,i } P

Then
Diff (I‘i(X)) = 2 trace (HT(VM-X — Vab7i)).

Substituting backwards, we have

N
d Mws(X, H) = Z (2 trace (aie:(X)Ffl(X)HT)

— 2 trace (I (X)H T (V,, X — Vab,i)r.—l(x)ei(x)eT(X)))

N

— trace ((2 3 (aiej (X)T7(X)

i=1

— (ViiX — vab,i)ri1(X)ei(X)eiT(X)D1(X))> HT>.

Thus

M=

wis(X) =2 Y (aie] (OTTH(X) = (Vaa X = Ve )7 (X)es(X)e] (X)T7 (X))

i 7
=1

A.2 Structured Total Least Squares Cost Function
Gradient

The differentialDiff (fy) is

Diff(fo) := dfo(X, H) = trace (f3(X)H") (A.3)
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and has the property
fo(X + H) = fo(X) +dfo(X, H) + of|[H||r)

forall X € U and for allH € R™*4. The functionf} : U — R"*! is the derivative offy.
As in Appendix A.1, we compute it by deriving the differettlaiff(fy) and representing
it in the form (A.3), from whichf}(X) is extracted.
The differential of the cost functiofy (X) = " (X)I'~!(X)r(X) is (using the rule
for differentiation of an inverse matrix)
HTal
dfo(X,H)=2r"T"! : —r D7 H(dD (X, H))T '

<
H'a,,

The differential of the weight matrix
XTay —by ]

I=V;=Eif =E laf X —b - anLX—b],

m

X T — by

whereA” =: (@, -+ ap],a €R"andBT =:[b; --- by,), b € R%is
H'ay
di(X,H)=E| : |#"+Ef[afH --- a,H|. (A.4)
HTa,,

With M;; € R?*4 denoting the(i, j)th block of 1,

N m
dfo (X, H) =2 (Z rf MijH a; — > rlTMliHTE&iEJTXexthlrl)

i,j=1 W4,k 1=1

=1 gk =1

= 2 trace (( Z (lj?“;rMij — Z [I O] %)inexthlrlrlTMli>HT) ,
i
so that

f(/)(X) =2 (Z ajr;rMij - Z [I 0] ‘/E,inexthi) )

i,j=1 1,5=1
whereN;;(X) == Y My - >0 %, | My,.

A.3 Fundamental Lemma

Of course, 47, C ker (" (w)). Assume by contradiction thatr (4" (w)) # A%,
Then there is a lowest degree polynomiat R¥[z], r(z) =: g + 712 + -+ + 11271,
that annihilates?, " (w), i.e.,

colT(ro,rl, s )G (w) =0,
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but is not an element aff7}.
Consider#,(w). Then

ker (4, (w)) = image (7“(1)(2), W (z), . 2y
r®(2), 2r® (2), ... 2T @ () 1 r(2), 20(2), .., 20(2)).
Note thatr(z), zr(z), ..., z"r(z) are additional elements due to the extra annihilator
If all these polynomial vectors were linearly independentRy then the dimension of

ker (] 1x(w)) would be (atleas)(I+n)+1. Butthe persistency of excitation assumption
implies that the number of linearly independent rowsf_,(w) is at least(l +n), so that

dim (ker (%+n(w))) <p(+n).

Therefore, not all of these elements are linearly independ®y Lemma 7.5 and the
assumption thaR is row proper, the generator§") . .., #(?) and all their shifts are linearly
independent. It follows that there is< k& < n, such that

2Fr(z) € image (r(l)(z), 2rW(z), . My,

r®(2), 2r®(2), ..., 2@ () r(2), 2r(2), . .. ,2F e (2)).

Therefore, there arg € R[] of degreek > 1 and f € R'*P[z], such that

Let A be a root ofg(z). Thenf(A)R(A) = 0, but by the controllability assumption,
rank (R(\)) = p for all A € C and, consequently;(\) = 0. Therefore, with

9(2)=(z=Ng'(z) and f(z) = (2~ Nf(2),
we obtain
9'(2)r(2) = f'(2)R(2).

Proceeding with this degree lowering procedure yields = f(z)R(z) and contradicts
the assumption thatwas an additional annihilator ofj(w). Therefore, 7 (w) had the
correct left kernel and therefore, = ker (7" (w)).

A.4 Recursive Errors-in-Variables Smoothing
By the dynamic programming principle (10.9),

wieo) =gy ([ 5 st [V

u

BT L)), wo
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where thex’s indicate the symmetric blocks in the matrices. Using tain, we prove that
the value functiorV; is quadratic for alt. At the final moment of tim&”, V; = 0 and thus
itis trivially quadratic. Assume that; ., is quadratic fot € {0,1,...,T}. Thenthere are
P € R™*® 5.0 € R andw,, € RY¥!, such that

Vit (2(0)) = F(lt)r {P b1 St“] [ﬁ(“}, for all #(¢). (A.6)

T
St+1 Vi+1 1

From (A.5) and (A.6), we have

vt =y ([ 2 et [4]

N [:ﬁ(t)]T [chg—lc chg—lyd(t)] [m)}

1 * ya(t)TVy tya(t)] | 1
. {A:%(t)—il—Ba(t)]T [Z_tr: Zi] [Ai:(t) Y Bﬁ(t)} ) A7)

The function to be minimized in (A.7) is a convex quadratindtion of (),

a1’ BTP1B+V, ' BTP1A2(t) + B si41 — Vi tug(t) 4
[ (1t)] [ . |:§;(t):|TM(t) [gg(t)] ] { (f)},
1 1
where
_[ATPpA+CTYC ATse = CTV ()
m=| . v+ w(t) TV ) + )V )

so the minimizingi(t) is
a(t) = —(B" Py B+ Vgl)‘l(BTPtHAj:(t) + BT s — Vi 'ug(t)). (A8)

u

Substituting (A.8) back into (A.5), we have

Via() = [a(lt)} [BTPHlf +Vi BTPt+1Ai;(j()t)+T xlj:le(t; Vulud(t)] [ﬁ(lt)}
2] [ATP A+ CTVIC ATsey — CTV  ya(1)] [2(8)
+[ 1 ] [ . Vet +yd(t)Tvglyd(t):| { 1 }

which is a quadratic function af(t),
T R
Vi(i (1) = {x(lt)} L’} Z] [x(lt)}, for all #(t),

with P, ands; given in (10.11) and (10.12), respectively. By inductidpjs quadratic for
t=0,1,...,7T.






Appendix B
Software

This appendix describes a software implementation of therdhms in the book. Except

for the STLS solver, presented in Section B.2, all functiareswritten in MATLAB code.

For maximum efficiency, the STLS solver is written in C withis¢o BLAS, LAPACK, and

SLICOT. The C function, however, is also callable from MATBAia a mex file interface.
The software and related information are available fronfollewing address:

http://www.esat.kuleuven.be/"imarkovs/book.html

B.1 Weighted Total Least Squares

Introduction

The weighted total least squares toolbox, presented insét§on, contains MATLAB
functions (m-files) for data approximation by linear statiodels. The data is a col-
lection of IV, d-dimensional real vectorg,,...,dy € R, gathered in a matridD :=
[di -+ dn] € R¥™Y, and a linear static mode® for D is a subspace dk?. The
natural numben := dim(%) is a measure of the model complexity ag(f, denotes the
set of all linear static models withvariables of dimensioat mostm.

A linear static modelZ € .2, can be represented as a kernel or image of a matrix
or in an input/output form; see Section 3.2. A representaticthe model yields a param-
eterization. The model is described by equations that deparparameter, and to a given
parameter corresponds a unique model. For a given model ahdsen representation,
however, the corresponding parameter might not be unigie perameter® and P in
a kernel and image representation are in general not unimiehe parameteX in the
special input/output representatigfy, (X ) is unique.

We use the shorthand notati{m. dN] ceBCuUford; e B,i=1,...,N.

If D € £, the model# fits the dataD exactly. If D ¢ %, the model# fits the dataD
only approximately. For optimal approximate modeling, tbkowing misfit function is
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Table B.1. Special cases of the weighted total least squares problefm. 8

Special case Name Acronym
W; = oI oc€eRy total least squares TLS
W; = diag(w) w e RY element-wise generalized TLS | EWGTLS
W, =W W >0 generalized total least squares | GTLS
Mus = Mguse W), W, > 0 diag. | EWGTLS with two side weighting EWGTLS2
Muys = Mgy~ Wi, Wy >0 GTLS with two side weighting GTLS2
W; = diag(w;) w; € RS element-wise weighted TLS EWTLS
adopted:
N ~ ~
MW'[|S( [d1 dN} ,c%}) = min Z(dl — dl)TWz(dZ — d1)7
di,....dNERB i=1
whereWy, ..., Wy are given positive definite matrices. The weighted totadtisguares

(WTLS) misfit Myus(D, %) between the dat® and a models € £, is a measure of
how much the model fails to fit the data exactly. The considleqgroximate modeling
problem is as follows:

Given the data matrio = [dy -+ dn]| € RV, a complexity bouneh, and
positive definite weight matricdd’, ..., Wy, find an approximate model

Buis := arg min  Myys(D, B). (WTLS)
BeLY,

The special cases listed in Table B.1 allow for special gmlunethods and are treated
separately.

Note B.1 (FWTLS) The following weighted total least squares problem, cdliéigweighted
total least square (FWTLS) problem

Prtts = arg min min VecT(D—IA))VVVG*C(D—IA))7 where W e RIVXIN 17 > 0,
BELS, DER

is also considered. It includes (WTLS) as a special case With- diag(W1,...,Wy).
The FWTLS problem, however, does not allow for efficient cotagianal methods and its
solution is prohibitive already for small sample size peoh$ (sayd = 10 and N = 100).
For this reason the FWTLS problem is not the central problemtefest and is included
only for completeness.

Algorithms

The special cases listed in Table B.1 have increased gépdram top to bottom. The
more general the problem is, however, the more computdljoergensive its solution is.
The TLS and GTLS problems allow for analytic solutions imterof the SVD. The more
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general EWTLS, WTLS, and FWTLS problems have no similar aradglutions and use
less robust iterative solution methods.

The SVD method is computationally faster than the alteveaterative optimization
methods and theoretically characterizes all globallyrogtisolutions. In contrast, the
iterative optimization methods (used in the package) cdaepne locally optimal solution.
(The algorithm of Premoli and Rastello [PR02, MRF5] is not globally convergent to a
local solution, so that for particular initial approximattis this method might not converge
to a local solution. In such cases the algorithm divergesoillates.)

The GTLS-type problems (EWGTLS, GTLS, EWGTLS2, and GTLS2) sowed
in the package via the transformation technique of Theorel.3 The data matrix is
appropriately scaled and the corresponding TLS problewlved for the scaled data. Then
the solution of the original problem is recovered from thkigon of the transformed TLS
problem via the inverse transformation.

The general WTLS problem is solved via local optimizationmoels. The following
algorithms are used/implemented in the package:

1. classical local optimization methods (from the Optinticia Toolbox of MATLAB),
2. an alternating least squares algorithm,

3. the algorithm of Premoli and Rastello.

Implementation

The implementation is in MATLAB code. For problems with aytad solution, the MAT-
LAB code is expected to compute a solution nearly as fast adtamative code in C or
FORTRAN. The general WTLS algorithms, however, are expetidenefit in terms of
execution time if implemented in C or FORTRAN. The MATLAB gcg code could be
consulted for the implementation details.

Overview of Commands

The package has three main groups of functions: transfansatmisfit compu-
tations, and approximations.

The transformation functions convert a given represemtati a model to an equivalent
one. The considered representations are image, kerneinandoutput, so that there are
in total six transformation functions among them (see Fg8l2). In addition, a kernel
or an image representation might not be minimal, so thattfons that convert a given
kernel or image representation to a minimal one are added.tréihsformation functions
are summarized in Table B.2.

The misfit computation functions are used for validatioreythllow the user to verify
how well a given model fits given data in terms of a certain misfinction. Since the
model can be specified by one of the three alternative reptasens—kernel, image, or
input/output—all misfit functions have three versions. Toifving naming convention is
adopted: misfit computation functions begin witifor misfit), followed by the name of the
approximation problem (which identifies the type of misfibewcomputed), followed by a
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Function Description

Xx2r X — R frominput/output to kernel representation
X2p X — P from input/output to image representation
r2p R— P from kernel to image representation

p2r P+— R  fromimage to kernel representation

r2x R~ X  from kernel to input/output representation
p2x P— X from image to input/output representation
minr R — R, minimal kernel representation

minp P — Punim  Mminimal image representation

Table B.2. Transformation functions.

letter indicating the model representationfor kernel,p for image, anc for input/output.
Instead of a models, an approximating matrixD € R%*Y can be used for the misfit
computation. In this case the last letter of the function easxlh.

The considered misfit functions are TLS, GTLS, GTLS2, WTLS] BWTLS. The
element-wise versions of the GTLS, GTLS2, and WTLS misfitssaezified by the size of
the given weight matrices: if vectors are givermigtls{r,p,x,dh} andmgtls2{r,
p,x,dh} instead of square weight matrices, then the EWGTLS and EWGThiSfits
are computed instead of the GTLS and GTLS2 ones. Simildrlg,d x N matrix is
given instead of @ x d x N tensor inmwtls{r,p,x,dh} , then the EWTLS misfit is
computed instead ofthe WTLS one. The general FWTLS misfitigeaed by the functions
mwtls{r,p,x,dh} if the weight matrix is of sizelN x dN. The misfit computation
functions are summarized in Table B.3.

The approximation functions compute a WTLS approximatidheflata. The special
WTLS problems are called by special functions that are mdieieft; see Table B.4. As
in the misfit computation, the element-wise versions of theefions are recognized by the
dimension of the weight matrices. The functietis uses the quasi-Newton optimization
algorithm that seems to outperform the alternatives. Ttezradtive methods can be called
by the corresponding functions; see Table B.5.

B.2 Structured Total Least Sqaures

The package uses MINPACK's Levenberg—Marquardt algorifiktar63] for the solution
of the STLS problem (STLS) with the structure specification of Assumption 4.4 in its

Table B.3. Misfit computation functions.

Function Description |
mtlsr mtlsp mtlsx mtlsdh TLS misfit
mgtlsr  mgtlsp mgtlsx ~ magtlsdh GTLS misfit
mgtls2r mgtls2p mgtls2x  mgtls2dh GTLS2 misfit
mwtlsr mwtlsp mwtlsx mwtlsdh WTLS misfit
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Table B.4. Approximation functions.

Function Description

tls TLS approximation
gtls GTLS approximation
gtls2 GTLS2 approximation
wtls WTLS approximation

equivalent formulation (4.4). There is no closed form espien for the Jacobian matrix
J = [0r;/0x;], wherex = vec(X), so that the pseudo-Jacobidn proposed in [GP96] is
used instead aof . Its evaluation is done with computational complexitym,).

The software is written in ANSI C language. For the vectotsirananipulations and
for a C version of MINPACK’s Levenberg—Marquardt algorithwe use th&NU Scientific
Library (GSL) The computationally most intensive step of the algorithihe-€holesky
decomposition of the block-Toeplitz, block-banded weiglatrix I'( X )—is performed via
the subroutindB02Gfrom the SLICOT library [VSV04]. By default, the optimization
algorithm s initialized with the TLS solution. Its comptitan is performed via the SLICOT
subroutineMB02MD

The package contains

e C-sourcecodestls.c andstls.h  (thefunctiorstls implements Algorithm 4.3);

« MATLAB interface to the C functiorstls via C-mex filestls.m ;

a demo filedemo.m with examples that illustrate the application of the STLVaQ

¢ user guide and papers that describe the STLS problem in dedad.

C Function

The functionstls implements the method outlined in Section 4.5 to solve theSST
problem (STLS). Its prototype is

int stls(gsl_matrix* a, gsl_matrix* b, const data_struct* S,
gsl_matrix* x, gsl_matrix* v, opt_and_info* opt)

Table B.5. Auxiliary functions.

Function Description

wilsini initial approximation for the WTLS approximation functions
wtlsap WTLS approximation by alternating projections

witlsopt WTLS approximation by classical optimization methods
gncostderiv cost function and gradient for the quasi-Newton methods
Imcostderiv cost function and Jacobian for the Levenberg—Marquardhoakt
wtlspr WTLS approximation by the algorithm of [MRF5]
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Description of the arguments:

« a andb are the matricest ¢ R™*" and B ¢ R™*4, respectively, such that
[A B] = #(p). We refer to the GSL reference manual for the definition of
gsl_matrix  and the functions needed to allocate and initialize vaesolf this

type.
* s is the structure descriptioR, S of . (p). The typedata_struct is defined in
stls.h as

[* structure of the data matrix C = [A B] */
#define MAXQ 10 /* maximum number of blocks in C */
typedef struct {

int K; [* = rowdim(block in T/H blocks) */
int q; /* number of blocks in C = [C1 ... Cq] */
struct {

char type; /* 'T’-Toeplitz, 'H'-Hankel, 'U’-unstructured ,
'E’-exact */
int ncol; /* number of columns */
int nb; /* = coldim(block in T/H blocks) */
} a[MAXQ];  /* g-element array describing C1,...,Cq; */
} data_struct;

e X oninput contains the initial approximation for the LevergséMarquardt algorithm
and on exit, upon convergence of the algorithm, containgal lminimum point of
the cost functiory.

* Vv on exit contains the error covariance maifik’ J,)~! of the vectorized estimate

& = vec(X). It can be used for deriving confidence bounds.

e opt on input contains options that control the exit conditiontled Levenberg—
Marquardt algorithm and on exit contains information abihetconvergence of the
algorithm. The exit condition is

|w§-k+1) — 1§k)| < epsabs + epsrel |LL‘§-k+1)|, forallj=1,...,nd, (B.1)
wherex®) &k =1,2,...,iter < maxiter, arethe successive iterates, apdrel
epsabs , maxiter are fields ofopt . Convergence to the desired tolerance is indi-
cated by a positive value @ipt.iter . In this caseppt.iter is the number of
iterations performedopt.iter = -1 indicates lack of convergencept.time
andopt.fmin  show the time in seconds used by the algorithm and the cost fun
tion f, value at the computed solution.

The typeopt_and_info  is defined instls.h  as

[* optimization options and output information structure * /
typedef struct {

[* input options */

int maxiter;
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double epsrel, epsabs;
[* output information */
int iter;
double fmin;
double time;

} opt_and_info;

MATLAB Mex-File

The provided C-mex file allows us to call the C solgdls  via the MATLAB command
>> [xh, info, v] = stls(a, b, s, x, opt);

The input argumenta, b, ands are obligatory.x andopt are optional and can be
skipped by the empty matrfk . In these cases their default values are used.
Description of the arguments:

« aandb are the matricesl € R™*" andB € R™*, respectively, whered B]| =
7 (p)-

¢ sisagx 3 matrix or a structure with scalar fiekdand a; x 3 matrix fielda. In the first
case// isassumed to be 1, and in the second case itis specifistt byThe arrays,
introduced in Section 4.6, is specified $yn the first case and by.a in the second

case. The first column &f (or s.a ) defines the type of the blockg®), ..., C(@ (1
block-Toeplitz, 2 block-Hankel, 3 unstructured, 4 exattt® second column defines
ni,...,nq, and the third column defines, . . . , ¢,.

e X is a user-supplied initial approximation. Its default \&als the TLS solution.

e opt contains user-supplied options for the exit conditiomst. maxiter defines
the maximum number of iterations (default 100p;.epsrel defines the relative
toleranceepsrel (defaultle-5 ), andopt.epsabs defines the absolute tolerance
epsabs (defaultle-5 ); see (B.1).

 xh is the computed solution.

e info isastructure with fieldder ,time , andfmin that gives information for the
termination of the optimization algorithm. These fields #re ones returned from
the C function.

« v is the error covariance matrix/ | J,)~! of the vectorized estimate = vec(X).

Compilation

The included make file, when called with argumerex, generates the MATLAB mex file.
The GSL, BLAS, and LAPACK libraries have to be installed ivadce. For their location
and for the location of thmex command and options file, one has to edit the provided make
file. Precompiled mex-files are included for Linux only.
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Table B.6. Elementary building blocks for the exact identificationaithms.

Function Description

w2r from time series to a kernel representation

r2pq from kernel representation to a left matrix fraction repraation

pg2ss from left matrix fraction representation to an input/stateput represent

uy2h computation of the impulse response

uy2hblk block computation of the impulse response

h2ss Kung's realization algorithm

uy2y0 computation of sequential free responses

uy2hyO computation of the impulse response and sequential frpemness

y020 from a set of free responses to an observability matrix

y02x from a set of sequential free responses to a state sequence

uyo2ss from data and observability matrix to an input/state/otitppresentation

Uyx2ss from data and a state sequence to an input/state/outpesergation

hy02xbal from the impulse response and sequential free responsdsalareced
state sequence

B.3 Balanced Model Identification

This section describes a MATLAB implementation of the aitlons for exact identification,
presented in Chapters 8 and 9. Although the algorithms weg@ally designed to work
with exact data, they can also be used as heuristic methodpfooximate identification;
see Note 8.18. By specifying the parameters, andl,,.,. lower than the actual order
and lag of the MPUM, the user obtains an approximate modéleémiodel clas.éfm‘ff;":.
Another approach for deriving an approximate model via fgeréghms described in this
section is to do balanced model reduction of the MPUM; see N@.

The exact identification algorithms are decomposed intmefeary building blocks
that have independent significance. Table B.6 lists thelimglblocks together with short
descriptions. More details can be found in the documematiche corresponding m-files.

Table B.7 shows the implementation of the algorithms in @B and 9 in terms of
the elementary building blocks. Exceptions are Algorittthtsand 9.6, which are included
for completeness and are implemented as described in tiearsources.

B.4 Approximate ldentification

We describe MATLAB functions (m-files) for approximate LTystem identification. A
discrete-time dynamical systes C (R¥)Z is a collection of trajectories:fvariables time
seriesw : Z — R¥). No a priori distinction of the variables in inputs and autpis
made and the system is not a priori bound to a particular septation. The variables
can be partitioned into inputs(free variables) and outpugg(dependent variables) and the
system can be represented in various equivalent formstteegibiquitous input/state/output
representation

or =Ax+ Bu, y=Cz+ Du. (I/s/O)
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Table B.7. Implementation of the algorithms in Chapters 8 and 9.

Algorithm 8.1
Algorithm 8.2
Algorithm 8.3
Algorithm 8.4
Algorithm 8.5
Algorithm 8.6
Algorithm 8.7
Algorithm 8.8
Algorithm 8.9
Algorithm 9.1
Algorithm 9.2
Algorithm 9.3
Algorithm 9.4

Algorithm 9.5
Algorithm 9.6

w2r

W2r —r2pgq — pg2ss
uy2h — h2ss

uy2y0 — y020 — uyo02ss
uy2y0 — y02x — uyx2ss
uy2h_blk

uy2h

h2ss

uy2y0

uy2hy0 — hy02xbal
uy2h — h2ss

uy2h — h20 — uyo2ss
uy2hy0 — hy02xbal — x2ss

uy2ssvd
uy2ssmr

— X2SS
(= Algorithm 8.3)

(= Algorithm 9.1)

The number of inputs, the number of outputs, and the minimal state dimensiarof an
input/state/output representation are invariant of tipeagentation and in particular of the
input/output partitioning.

The class of finite dimensional LTI systems withvariables and at most inputs
is denoted by%y. The number of inputs and the minimal state dimension speb#
complexity of the system in the sense that the dimension efdistriction of% to the
interval [1,T], whereT > n, is a(Tm + n)-dimensional subspace. Equivalently, the
complexity of the system can be specified by the input dintenand thdag of the system.
The lag of% is the minimal natural numbér, for which there exists anth order difference
equation

Row(t) + Riw(t+1)+ -+ Riw(t+1) =0 (DE)

representation of the system, i.¢4, = { w | (DE) holds}. The subset ofZ with lag at
most1 is denoted byZy,.

The considered identification problem is the global to@astesquares problem [RH95,
MWV +05]:

Given a time seriesny € (R¥)T and a complexity specificatiofn, 1), find the
system

% :=arg min M (wq, B),

where M ) := mi — |y, .
Jnin (wg, ) = min_|wa — i,

weRB
(GITLS)

The numbeM (wq, £) is the misfit betweemwy andZ. It shows how much the mode¥
fails to “explain” the datavq. The optimal approximate modeling problem (GITLS) aims
to find the systen¥ in the model class/}; that best fits the data according to the misfit
criterion.
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The software presented in Section B.2 for STLS problemseistite computational
tool for solving the system identification problem. In faitte software presented in this
section can be viewed as an interface to the STLS solver ®pthpose of LTI system
identification.

The STLS solver gives as a result a difference equation septetion of the optimal
approximating systen®. The functionstisident , described next, converts the param-
eter X to the parameteréA, B, C, D) of an input/state/output representationsf The
MATLAB code of the functions in the package can be consultadlie implementation
details.

Usage
The function

* stlsident solves the approximate identification problem (GITLS), and
the function

» misfit  computes the misfid/ (wq, B).

Both functions use the input/state/output representati8i1O) of the systems that are
returned as an output and accepted as an input, so that thbg vg&ewed as implementations
of the following mappings:

. stlsident  : (wg,m, 1) — (A, B,C, D); and
o misfit (wd7 (A, B,C, D)) — (M, yq).
The following are a special case and extensions:

* the specificatiom = 0 corresponds to an output-only system identificatiﬁha(u-
tonomous);

« the functions work with multiple given time series, = (wy(1),...,wy(T)), k =
1,...,N;and

» some elements @b can be specified as “exact”, in which case they appear unreddifi
in the approximationo.

Using a combination of these options, one can solve appmteimthe realization problem,
the finite time/, model reduction problem (see [MWAD5, Section 5]), and the output error
identification problem. Examples are given in Sections Ahd 11.5.

Calling sequences

[ sysh, info, wh, xini ] = stlsident( w, m, I, opt );

Inputs:

» w, the given time seriesq; a real MATLAB array of dimensiofi’ x w x N, whereTl’
is the number of samples,is the number of variables, ard is the number of time
series;



B.4. Approximate identification 195

» m the input dimension for the identified system;
|, the lag of the identified system;
 opt , options for the optimization algorithm:

— opt.exct , (default []) a vector of indices for exact variables;

— opt.sysO , (default total least squares approximation), an initigraxima-
tion: an input/state/output representation of a systexsgrgas the MATLAB
objectss (seehelp ss ), with minputs,w-m outputs, and orddt(w-m) ;

— opt.disp , (default’notify’ ), level of displayed information about the
optimization process; the options ao#’ —silent,’notify’ —only if not
converged;final’ —convergence statuster’  —per iteration;

— opt.maxiter (default 100), a maximum number of iterations;

— opt.epsrel , opt.epsabs , andopt.epsgrad  (default 10~?) conver-
gence tolerances; the convergence condition is

(k+1)‘
ij )

or ||M'(X**D)|| < opt.epsgrad,

\sz(fﬂ) - Xi(f)| < opt.epsabs + opt.epsrel |X forall 7, j

where X(*)| k = 1,2,...,info.iter < opt.maxiter, are the successive
iterates of the parametéf and M/’ (X (*+1)) is the gradient of the cost function
at the current iteration step.

Outputs:
* sysh , an input/state/output representation of the identifieﬂlem@;
« info information from the optimization solver:

— info.M , the misfitM (wq, A);

— info.time  , the execution time for the STLS solver; not equal to the etien
time of stlsident  ;

— info.iter , the number of iterations. Noitgfo.iter = opt.maxiter
indicates lack of convergence to a desired convergencetule;

» wh, the optimal approximating time series;
e Xini , a matrix whose columns are the initial condition, underclhiy,, £ =
1,..., N, are obtained.
[ M, wh, xini ] = misfit( w, sys, exct );
Inputs:

* w, the given time seriesy, a real MATLAB array of dimension$' x w x N, where
T is the number of samples,is the number of variables, and is the number of
time series;



196 Appendix B. Software

e Sys aninput/state/output representation of a syst#éngiven as the MATLAB object
ss (seehelp ss ), withw external variables (inputs and outputs) and of order which
is a multiple of the number of outputs;

» exct (default[]), a vector of indices for exact variables.
Outputs:

* M the misfitM (wq, 4);

» wh, optimal approximating time series,

e Xini , a matrix whose columns are the initial condition, underchhiy;,, & =
1,..., N, are obtained.

The functionsstlsidentuy and misfituy are versions oftlsident and
misfit  that use an a priori given input/output partitioning of ttagisbles. For details on
their usage, see their MATLAB help.



Sets of numbers

Notation

R, R, the set of real numbers, nonnegative real numbers
Z,N  the set of integers, and natural numbgés 1,2, ...}

Norms and extreme eigenvalue

[|z|l, = € R™
[|A]l, A€ R™>m
||A||F, A e Rm)(n

lwl, w e (R")F

Jwll, w e (R™N)T
>\min(A)i Amaux(fl)

Matrix operations

At

AT

vec(A)
col(a,b)
coldim(A)
row dim(A)
colspan(A)

diag(v), v € R™

diag(V1, ...
&

O]
)

V)

2-norm of a vector/> ;" | 7

induced 2-normmin;j,—; || Az||
Frobenius norm/trace(AAT)

2-norm of a time serieg/>",_, ||w(t)]?

2-norm of a matrix valued time seri Zthl lw(t)||2

page

2,37
102, 35

page
3
36
1
24

168

minimum, maximum eigenvalue of a symmetric matrix 75

pseudoinverse

transpose of a matrix

column-wise vectorization of a matrix

the column vectof§ ]

the number of columns of

the number oblock rows of A

the span of the columns of (the image or range of)
the diagonal matrixiag(vy, . . .,v,)

(block-) diagonal matrix with diagonal blockg, ..., V,,
Kronecker productl @ B := [a;; B]

element-wise (Hadamard) produ€t® B := [a;;b;;]
Kronecker deltajg, = 1 andd; = 0 forall ¢ #£ 0

Expectation, covariance, and normal distribution

E, cov

x ~ N(m,V)

expectation, covariance operator

x is normally distributed with meam and covarianc&”
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page
53
18
52
2
21
126
9
30
41
41
30
58

page
59
31



Fixed symbols page

4 universum of outcomes from an experiment 16

B model behavior 16

M model class 16

A (w) Hankel matrix withl block rows; see ¢7°) 120

S structure specification for the STLS problem 50

Xex:= %] extended parameter in an input/output parameterization 52
LTI model class and invariants page
105

m(Z%#) number of inputs of#

p(#) number of outputs a2 105
(%) lagof® 105
n(#) order of % 105
L ={Bc R BisLTl, m(#B) <m<w, I(#) <1, nH) <n} 113

If m, 1, or n is not specified, the corresponding invarian{%), 1(%#), or n(%) is not
bounded.

Miscellaneous page
: <= left-hand side is defined by the right-hand side 19
<= right-hand side is defined by the left-hand side 20
o the backwards shift operatotf (t) = f(t + 1) 23
Acting on a vector or matrixy removes the first block row.
o* the forward shift operator™ f (¢t) = f(t — 1) 124

Acting on a vector or matrixg* removes the last block row.

Abbreviations
ALS adjusted least squares
DAISY data base for system identification
EIV errors-in-variables

EWTLS element-wise weighted total least squares
GTLS generalized total least squares

GITLS  global total least squares

LS least squares

LTI linear time-invariant

MIMO  multi-input multi-output

MPUM  most powerful unfalsified model

SISO single-input single-output

STLS structured total least squares
SVD singular value decomposition
TLS total least squares

WLS weighted least squares

WTLS  weighted total least squares
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