
Exercises for the SOCN course
“Behavioral approach to systems theory”

Ivan Markovsky

This document illustrates and extends the material presented in the lectures of the course by providing compu-
tational examples and 44 exercises for independent work. As Richard Hamming said “the purpose of computing is
insight no numbers” [5]. The value of the exercises is not the obtained solutions but the thought process of coming up
with them: the ideas and attempted ideas that one has when doing the exercises. Thus, although sample solutions are
provided, it is important to attempt the exercises independently before consulting with others or reading the solutions.

The exercises are organized thematically and gradually build knowledge and tools. Therefore it is recommended
to do them sequentially. Section 1 gives examples of alternative direct data-driven solutions to model-based ones.
The examples—representation of the restricted behavior B|T , computing the lag of the system, and finding a kernel
representation of a given system B—are meaningful problems on their own. Section 2 is about obtained a model from
data. The data is assumed exact and the model is required to be exact for the data, however, as simple as possible.
This is the concept of most powerful unfalsified model introduced and used in the lectures. Section 3 develops a
fully featured implementation of the data-driven interpolation and approximation algorithm presented in the lectures.
Sections 4–8 show applications of to algorithm to simulation, missing data estimation, errors-in-variables smoothing,
classical Kalman smoothing, state transition, and least-squares optimal tracking control. Appendix A introduces the
Hankel, mosaic-Hankel, and polynomial multiplication matrices, which are used in the exercises.

1 A first glimpse of data-driven methods

The problems considered involve a true data-generating system (sometimes called “plant” in the context of control).
This system may be explicitly given by a parametric representation or it may be implicitly specified by data. The
data consists of one or more trajectories of the system and prior knowledge, such as linear time-invariant dynamics,
the number of inputs, and order. Problems and corresponding solution methods starting from a representation of the
system are called model-based. Problems and corresponding solution methods starting from data are called data-
driven. A data-driven problem can be reduced to a corresponding model-based problem by model identification.
Methods that solve the data-driven problem by first identifying a model and then using a model-based method are
called indirect. Methods that solve the data-driven problem directly without parametric model identification are
called direct. Before diving into data-driven problems, this section shows that some model-based problems have
simple data-driven solution, i.e., even though a parametric model is given, it may be easier to solve the model-based
problem by simulating data and using a direct data-driven method. “Easier” means requiring less human effort (less
thinking and coding). The approach of using simulation and direct data-driven method is computationally inefficient.

Representation of the restricted behavior B|T
Exercise 1 (From (A,B,C,D,Π) to a basis of B|T). Given an input/state/output representation B =Bss(A,B,C,D,Π)
of a linear time-invariant system B and a natural number T , find a basis for the restricted behavior B|T and implement
the solution in a function BT = ss2BT(B). Do the exercise in two different ways:

1. model-based — using the parameters A,B,C,D,Π to obtain an explicit formula for the basis, and

2. data-driven — using a simulated trajectory wd ∈B|Td .

1

https://imarkovs.github.io

Computing the lag of a given system

Exercise 2 (Finding `̀̀(B)). Given an input/state/output representation B = Bss(A,B,C,D,Π), find the lag `̀̀(B) and
implement the solution in a function ell = lag(B). Again, do the exercise in two different ways:

1. model-based — using the parameters A,B,C,D,Π, and

2. data-driven — using a simulated trajectory wd ∈B|Td .

Finding a kernel representation

Exercise 3 (From an input/state/output to a kernel representation ss2r). Given a linear time-invariant system B,
specified by an input/state/output representation Bss(A,B,C,D,Π), find a kernel representation B = ker R(σ) and
implement the solution in a function R = ss2r(B). Again, do the exercise in two different ways:

1. model-based — using the parameters A,B,C,D,Π to obtain an explicit formula for R, and

2. data-driven — using a simulated trajectory wd ∈B|Td .

Summary and discussion

In the data driven solutions of the problems considered, the main tool is the Hankel matrix. In the representation of
the finite-horizon behavior B|T , we used the image of HT (wd). In finding a kernel representation, we used the left
kernel of H`+1(wd), in the lag computation problem we used the rank of H`+1(wd). Basis vectors of image HT (wd)
are called generators of the finite-horizon behavior B|T because they generate it. Basis vectors of the left kernel of
H`+1(wd) are called annihilators of B|`+1 because applied to it the result is zero. The “application” of a basis vector r
to B|`+1 is left-multiplication rH`+1(w), where w ∈B. The multiplication rH`+1(w) can be viewed alternatively
as the action of the polynomial operator r(σ) defined by r on w. Indeed, a basis R for the left kernel of H`+1(wd)
corresponds to the parameter R of a kernel representation ker R(σ) of the system B.

In the model-based solutions we used an input/state/output representation of the system. These problems can be
posed however for any representation. The following extra exercise aims at a representation of the restricted behavior
B|T from a given kernel representation.

Exercise 4 (From a kernel representation to a basis of B|T). Given a kernel representation B = ker R(σ) of a linear
time-invariant system B and a natural number T , find a basis for the restricted behavior B|T and implement the
solution in a function B = r2BT(ss).

2 Most powerful unfalsified model

The most powerful unfalsified model BMPUM(wd) of the data wd is the least complex linear time-invariant system that
fits the the data exactly, i.e.,

BMPUM(wd) := arg min
B̂∈L q

ccc(B̂) subject to wd ∈ B̂|Td . (1)

It was originally defined for infinite data wd in which case the solution of (1) is unique [13].
In case of finite data wd ∈ (Rq)Td , however, the solution of (1) is a (trivial) autonomous system (see Exercise 5).

One way to avoid the trivial solution is to impose an upper bound on the lag, i.e., `̀̀(B̂)≤ `max. The upper bound

`max :=
⌊

Td +1
q+1

⌋
−1, (`max)

Lmax = @(wd) floor((size(wd, 1) + 1) / (size(wd, 2) + 1)) - 1; % <define-Lmax>

does not require hyper-parameters (it is determined only by the data size) and is justified by the fact that for ` > `max
the Hankel matrix H`+1(wd) has more rows than columns and the generalized persistency of excitation condition can
not be satisfied, so that the data-generating system is not identifiable from the data.

2

For finite data there is a (trivial) exact autonomous model

Exercise 5. Show that for finite length data, BMPUM(wd) is autonomous, i.e., mmm
(
BMPUM(wd)

)
= 0.

Most powerful unfalsified model’s complexity

Exercise 6. Given a trajectory wd ∈ (Rq)Td , find the complexity (m, `,n) of BMPUM(wd) and implement the solution
in a function c = c_mpum(wd).

Kernel representation of BMPUM(wd)

Exercise 7 (Kernel representation of BMPUM(wd)). Given wd ∈ (Rq)Td , find a kernel representation ker R(σ) =
BMPUM(wd) of the most powerful unfalsified model of wd and implement the solution in a function R = w2R(wd).

Summary and discussion

The problem of computing BMPUM(wd) is an exact/deterministic identification problem. The rationale for computing
an exact model can be questioned from a practical engineering perspective: Why studying such a problem when the
data is never exact in practice? There good reasons for doing this:

1. Before one understands the more complicated problem of identification of approximate model, one should under-
stand the simpler problem of exact identification. (Indeed, exact identification is a special case of approximate
identification when the data happens to be exact.)

2. Exact models and therefore exact identification appears as a subproblem of approximate identification problems as
well as in data-driven signal processing and control. For example, one may ask the questions:

“What is the smallest perturbation δw of the given data wd that renders the perturbed data ŵ = wd exact?” and

“What is the smallest auxiliary signal e that makes the extended data wext = [wd
e] exact?”

This is a sound and insightful approach to system identification and data-driven control. In a stochastic setting, the
first question leads to maximum likelihood identification in the errors-in-variables setting, and the second question
to maximum likelihood identification in the Auto-Regressive Moving-Average eXogenous (ARMAX) setting.

3. Minor modification of exact identification methods result in approximate identification methods. This is how the
sub-field of subspace identification came about.

In subspace identification the goal is to find an input/state/output representation of BMPUM(wd) (see, Exercise 7 where
the goal is to find a kernel representation of BMPUM(wd).)

The most powerful unfalsified model BMPUM(w) is defined for any discrete-time signal wd ∈ (Rq)Td . Assuming
that wd is a trajectory of a system B ∈L q, however, the question occurs “What is the relation of BMPUM(w) and B?”
In general, BMPUM(w)⊆B. Under the identifiability condition

rankH`̀̀(B)+1(wd) = mmm(B)
(
`̀̀(B)+1

)
+nnn(B) (2)

powerful unfalsified model coincides with the data-generating system, i.e., BMPUM(w) = B. In this case the data-
generating system can be recovered back from the data by computing the BMPUM(w). The fundamental lemma gives
alternative identifiability conditions in terms of the input and the system only (not on the whole wd). These conditions
are useful for input design, i.e., for collecting data wd that satisfies the identifiability condition (2).

3 Implementation of the algorithm for data-driven interpolation/approximation

The exercises in this section lead to a fully featured implementation of the method for interpolation/approximation of
trajectories of [10]. The interpolation/approximation of trajectories problem is defined as follows:

minimize over ŵ ‖w− ŵ‖S subject to ŵ ∈B|T , (3)

3

where the data-generating system B is implicitly specified by a data trajectory wd ∈B|Td and the cost function

‖w− ŵ‖S := ‖S� (w− ŵ)‖ (4)

is the 2-norm of the element-wise product� between the weights Si(t)≥ 0 and the approximation errors wi(t)− ŵi(t).
Zero weights Si(t) = 0 specify missing data, while infinite weights Si(t) = ∞ specify exact interpolation points.

The method for solving (3) uses the data-driven representation

B|T = image HT (wd), (5)

of the system B, where HT (wd) is the Hankel matrix with T -block-rows, constructed from the data wd. A necessary
and sufficient condition for (5) is that wd is a trajectory of a linear time-invariant system B and

rankHT (wd) = mmm(B)T +nnn(B). (6)

The result of doing the exercises is a Matlab function ddint with the following interface:

function [wh, N, g] = ddint(wd, w, S, m, n, l, L, ell)

The input argument wd corresponds to the data trajectory wd and w corresponds to the to-be-approximated/interpolated
trajectory w. Specifying wd and w is compulsory. The other input arguments are optional. The output argument wh
corresponds to a solution ŵ of (3). In addition to solving (3), ddint implements the following functionality:

– model-based data-driven interpolation/approximation,

– data wd consisting of multiple trajectories wd
1, . . . ,wd

N ,

– specification of the set of all solutions in case of a nonunique solution ŵ,

– preprocessing of the data wd via low-rank approximation, and

– `1-norm regularization.

The extra features are accessible via the optional arguments as described in the exercises.

Exercise 8 (Basic algorithm wh = ddint(wd, w)). Implement and test on simulation examples the basic algo-
rithm for data-driven interpolation and approximation. The first dimension Td of wd is the number of samples and the
second dimension q is the number of variables. The number of samples Td must be bigger than q. The argument w
specifies the to-be-interpolated/approximated trajectory w. Again, the first dimension represents time and the second
dimension corresponds to variables. The missing values of w are specified by NaN’s. If an exact interpolant does not
exist, an approximate one is computed using the unweighted least-squares cost function (4), i.e., Si j = 1, for all i, j.

Exercise 9 (Nonuniqueness of the solution). The interpolation condition is that the interpolant ŵ of w is a trajectory
of B. If the interpolant is not unique the set of all interpolants is given by Ŵ = ŵ+ image N, where ŵ (returned in
the output argument wh) is a particular solution and the matrix N specifies the nonuniqueness via its image. Modify
ddint to compute N and return in the output argument N.

Exercise 10 (Model-based interpolation/approximating). In the basic algorithm, the argument wd implicitly specifies
the data-generating system B by a trajectory. Implement and test on simulation examples an option of ddint to
accept as wd the model B specified by an ss or tf object instead of a trajectory.

Exercise 11 (Data consisting of multiple trajectories). Implement and test on simulation examples an option of ddint
to accept as wd a cell array containing multiple trajectories wd

1, . . . ,wd
N of the system B.

Exercise 12 (Element-wise weighted cost function). Implement and test on simulation examples an option of ddint
to accept an element-wise positive matrix S ∈ RT×q that specifies a weighted cost function (4). The weight matrix
is passed to ddint via the optional argument S. The default value of S is unit weights (ones(T, q)), which
corresponds to the ordinary least-squares approximation.

Exercise 13 (Zeros and infinite weights). Modify ddint so that

1. interpolation conditions can specified by infinite weights S(t, i) = inf, and

2. missing values can be specified by zero weights S(t, i) = 0.

4

Exercise 14 (Noise filtering via low-rank approximation). Include in ddint the optional input parameters m and n
that specify the complexity of the data-generating system B. Use the parameters m and n are, when passed to ddint,
for checking the condition (6) for the data-driven representation. If the condition is not satisfied, issue a warning
message. In case of inexact data wd (i.e., rankHT (wd) > mT + n) use the parameters m and n for preprocessing of
the data matrix HT (wd) by unstructured rank-mT +n approximation.

Exercise 15 (`1-norm regularization). By default, ŵ is computed by solving the weighted least-squares problem ‖w−
Dg‖S with the pseudo-inverse. Modify ddint to allow for specification of the optional parameter l that adds the
regularization term l · ‖g‖1 in the cost function.

Exercise 16 (Recursive computation). Modify the code of ddint to allow for the optional parameters L (block size)
and ell (lag of the system) that trigger a recursive computation of ŵ in blocks of L samples, where 1≤ L≤ T . The
recursive algorithm matches the final conditions of a block with the initial conditions of the following block.

Summary and discussion

In this section, we’ve build the foundation for the experiments in the following sections. Next, we will apply ddint
for solving well-known problems, such as simulation, smoothing, and tracking control, as well as less well-known
problems, such as input estimation and missing data estimation. The mini-projects compare ddint with alternative
model-based methods in case of noisy data, disturbances, and nonlinear system dynamics.

A quick and dirty way of dealing with equality constraints is to replace the infinite weights in S by a large value
(e.g., 108). As an optional exercise, compare the solutions obtain by infinite and large values (but finite) values for
weights corresponding to exact interpolation points in test examples.

In the stochastic setting of errors-in-variables estimation w = w+ w̃, where w ∈B|T is the true value of w and
the measurement noise w̃ is zero mean, uncorrelated, white, Gaussian, with element-wise standard deviations 1 /
S(t, i), finite positive weights S specify the noise standard deviation of to-be-approximated “noisy” elements
of w. The weighted least-squares cost function corresponds then to the maximum-likelihood estimation criterion, i.e.,
the solution ŵ of (3) is the maximum-likelihood estimator of w.

4 Simulation

A basic operation a model is used for is simulation. It is defined for a system B with an input/output partitioning of
the variables w = [u

y] as follows: given the system B, the input u, and the “initial condition”, find the output y. It turns
out that for a linear time-invariant system with lag `, the “initial condition” can be specified by a “prefix” trajectory
wini ∈B|Tini of w with length Tini ≥ `. The result is formally stated in Lemma 1 and visualized in Figure 1.

Lemma 1 (Initial condition specification [11]). Let B ∈L q admit an input/output partition w = (u,y). Then, for any
given wini ∈BTini with Tini ≥ `̀̀(B) and u ∈ (Rm)L, there is a unique y ∈ (Rp)L, such that wini∧ (u,y) ∈B|Tini+L.

t

w

Tini

wini w

≥ `

Figure 1: Initial condition for a trajectory w ∈B are specified in the behavioral setting by a prefix trajectory wini of
length Tini ≥ `̀̀(B). The condition that w is generated from the initial condition specified by wini is then wini∧w ∈B.

From the behavioral point of view, simulation is a way of parametrizing the elements of B. Equivalently, simula-
tion is the problem of selecting an element w∈B of the behavior. The prefix trajectory wini plays the role of the initial
state in the state-space setting. Estimation of wini for a given “future” trajectory w corresponds to state estimation.

5

Example of using ddint for simulation

In order to illustrate the idea on a numerical example, we choose a data-generating system B

n = 5; p = 1; m = 1;
B = drss(n, p, m);

input us, and initial conditions xs_ini for the simulation problem

Ts = 10; us = rand(Ts, m); xs_ini = zeros(n, 1);

In the example, the simulation horizon is Ts = 10 samples, the input is a uniform random process, and the system is
initially at rest (zero initial conditions). Once the system, the input, and the initial conditions are chosen, we obtain
the corresponding response ys by

ys = lsim(B, us, [], xs_ini); ws = [us ys];

In order to do data-driven simulation, we need a “data” trajectory wd of the system B. In the example, wd is a
random trajectories of B with length Td = 100 samples

Td = 100; wd = B2wd(Td)

The length Td = 100 is chosen arbitrarily, however, it must satisfy the lower bound

Td ≥ Tmin := (m+1)T +n−1.

The trajectory w represents the to-be-simulation trajectory ws. Using Lemma 1, the initial conditions are taken
into account by split w into “past” and “future”. The past is of length n and specifies the initial conditions. The future
is of length Ts and contains the simulated response. In the example, the initial conditions are zero, so that the past is
set to zero. The future is the given input us and NaN’s for the to-be-computed output ys.

w = [zeros(n, m + p); [us NaN(Ts, p)]];

With wd and w specified, we are ready to solve the data-driven simulation problem by calling the function ddint

wh = ddint(wd, w);

The simulation output ŷs is obtained from the interpolated samples in wh

ysh = wh(n+1:end, m+1:end);

Finally, we verify that the model-based and the data-driven simulation methods yield the same result

norm(ys - ysh) % -> 1e-15

Exercises

Exercise 17 (Impulse response computation). An important special case of simulation is impulse response compu-
tation. Apply the data-driven simulation method implemented in ddint to compute the first Ts = 10 samples of
the impulse response of the system directly from the data wd. Verify that the result obtained by ddint is exact by
comparing it with the true impulse response computed by model-based simulation.

The System Identification Toolbox of Matlab provides a function impulseest for estimation of impulse re-
sponse from data. Apply it to the problem at hand using the data wd. Compare the estimation accuracy and computa-
tional efficiency of ddint and impulseest.

Exercise 18 (Step response computation). Another special case of simulation is step response computation. Apply
ddint to compute the first Ts = 10 samples of the step response of the system directly from the data wd. Verify that
the result obtained by ddint is exact by comparing it with the step response computed by model-based simulation.

Exercise 19 (Minimum number of data samples Td). Verify that the minimum number of samples Td for which ddint
yields correct (i.e., exact up to the numerical precision) result is Tmin := (m+1)T +n−1.

6

Exercise 20 (Multivariable systems). Compare the model-based (lsim) and data-driven (ddint) simulation methods
on multivariable systems.

Exercise 21 (Multiple data trajectories wd
1, . . . ,wd

N). Try out the feature of ddint to use as data wd multiple tra-
jectories. This allows one to reduce the length Td of the experiments. How small can Td be made by using multiple
experiments? How many experiments are needed then?

Exercise 22 (Computational time as a function of the simulation horizon T). Increase the number of samples Ts (using
the minimum number of data samples Td, see Exercise 19) and observe how the computational time grows. Compare
the result with the one of model-based methods.

Exercise 23 (Nonzero initial conditions). Explain how to deal with nonzero initial conditions. Compare the model-
based (lsim) and the data-driven (ddint) simulation methods in case of nonzero initial conditions.

Exercise 24 (Autonomous system). Compare the model-based and data-driven simulation on autonomous systems.

Exercise 25 (Recursive data-driven simulation). Experiment with the option of ddint to computate recursively
blocks of L samples, where ` < L ≤ T . Show that the recursive computation allows to reduce the data limit Tmin :=
(m+1)T +n−1. What is the minimum number of data samples Td needed in case of recursive computation of ŵ?

Summary and discussion

This section shows that ddint is applicable to the simulation problem and results in a general and practical data-
driven simulation method. Exercises 17, 18, and 24 demonstrate the data-driven simulation method based on ddint
in the special cases of impulse response computation, step response computation, and simulation of an autonomous
system. For impulse response computation of a finite impulse response system, the System Identification Toolbox
of Matlab provides an alternative direct data-driven method impulseest. For all other cases, the available data-
driven simulation methods are indirect, i.e., they involve an explicit model identification. Exercise 20 demonstrates
that ddint works correctly in case of general multivariable systems. Exercise 23 shows how initial conditions can
be obtained also by using ddint for solving a data-driven version of the classical observer problem. Exercise 21
demonstrates the possibility of using data from multiple experiments. Exercise 19 verifies formula (m+1)T +n−1
for the minimal amount of data samples Td and Exercise 22 shows empirically the computation time of ddint as a
function of the simulation horizon T . In comparison with model-based methods ddint is less efficient, however, on
a modern computer the difference is noticeable only at relatively large simulation horizons.

The idea of data-driven interpolation and approximation as well as the method of [10] are inspired by [11], where
data-driven methods for simulation and control are presented. Apart from generalization of the problem, an important
new development compared to [11] is the use of low-rank approximation [7] and regularization for dealing with
inexact data [2]. These developments allowed practical application of the methods.

5 Missing data estimation

Simulation is a special interpolation problem. In this section, we consider two other interpolation problems: input
estimation and estimation of periodically missing values. The latter example demonstrates the full flexibility of
ddint to treat missing values among inputs as well as outputs at arbitrary moments of time.

Input estimation

Consider a system B with two inputs—u1 and u2—and one output:

n = 5; p = 2; m = 1;
<<random-data-generating-system-B>>

implicitly specified by a trajectory wd

Td = 100;
<<random-data-trajectory-wd>>

The goal is to estimate u1, given u2 and y.

7

T = 20; u0 = rand(T, m); x_ini = zeros(n, 1);
y0 = lsim(B, u0, [], x_ini); w0 = [u0 y0];

In order to solve the data-driven input estimation with ddint, we pose it as a missing data estimation problem
w = [NaN(T, 1) u0(:, 2:end) y0];
wh = ddint(wd, w); u1h = wh(:, 1);

Finally, we verify that the estimate u1h matches the true input u1

norm(u0(:, 1) - u1h) % -> 1e-14

Periodic missing values

The given values w are sampled from w0 with a period of n+1 samples:
w = w0; w(3:n+1:end, :) = NaN;

The interpolated trajectory by ddint
wh = ddint(wd, w);

matches exactly the true trajectory ws
norm(w0 - wh) % -> 1e-12

A model-based method for missing data estimation is implemented in the function misdata of the System
Identification toolbox of Matlab. Applying it to the data in the example
wh_mb = misdata(iddata(w(:, 2:3), w(:, 1)), idss(B));
wh_mb = [wh_mb.InputData wh_mb.OutputData];
norm(w0 - wh_mb) % -> 1e-15

it also recovers exactly the missing data.
Exact recovery of the missing data, however, is not guaranteed. General necessary and sufficient conditions are

not available. Necessary conditions and special cases are explored in the exercises.

Exercises

Exercise 26 (Necessary condition for uniqueness). Argue that a necessary condition for unique solution of the inter-
polation problem is that at least mT +n elements in w are given. Is it also sufficient?
Exercise 27 (Condition for uniqueness of the input estimation problem). When does the input estimation problem
have a unique solution? Give separately the cases of known initial conditions and unknown initial conditions. Start
with the single-input single-output case.

The following problems explore the impact of the missing elements location on the uniqueness of the completion.
Exercise 28 (Smallest number of given elements in w guaranteeing unique interpolation). Give examples of interpo-
lation problems with as few given elements in w as possible that result in unique completion. Consider separately the
cases of scalar autonomous system, single-input single-output system, and general multivariable system.
Exercise 29 (Smallest number of missing elements in w leading to nonuniqueness). Give examples of interpolation
problems with as few missing values as possible that result in nonunique completion. Consider separately the cases
of scalar autonomous system, single-input single-output system, and general multivariable system.

Summary and discussion

This section demonstrates the flexibility of ddint to estimate missing elements in arbitrary configuration of input
as well as output variables. This is another viewpoint of the trajectory interpolation aspect of the basic problem (3)
that ddint solves. The key question in missing data estimation is “under what conditions the completion is unique?”
General necessary and sufficient conditions for uniqueness of the interpolant is an open problem. The exercises
explored some special cases thus developing intuition about the general question.

Dealing with missing values in the data trajectory wd (as well as in the to-be-interpolated trajectory w) makes the
problem much harder. A subspace-type method is proposed in [8]. Other methods are based on local optimization [12]
and convex relaxations [3].

8

6 Errors-in-variables smoothing

In the examples reviewed so far the given samples are exact and the goal is interpolation, or, equivalently, missing
values recovery. Existence of an exact completion of the missing values is guaranteed by the exactness of the data.
Moreover, uniqueness of the completion guarantees correct recovery of the missing values, so it is the critical property.

The new aspect in this section is that w is inexact. This can be due to

1. additive measurement noise on w (errors-in-variables setup),

2. unobserved disturbances acting on the system and measurement noise on the output y (ARMAX setup),

3. the data-generating system is not linear time-invariant,

or a combination of the three. The data trajectory wd however is still assumed exact. (Inexact wd is considered in the
mini-projects.)

In case of inexact data w, exact solution of (3) generically does not exist. The problem involves then an approx-
imation. In case of additive measurement noise (errors-in-variables setup) and disturbances (ARMAX setup), which
are modeled as stochastic processes, the goal is to obtain the maximum-likelihood estimator of the true value of w.

The errors-in-variables smoothing problem is defined as

minimize over ŵ ‖w− ŵ‖S subject to ŵ ∈B|T . (7)

The least-squares approximation ŵ is the maximum-likelihood estimator of the true value w0 of w in the errors-in-
variables setup assuming zero mean white Gaussian noise.

Exercises

Exercise 30 (Errors-in-variables smoothing). Solve the errors-in-variables smoothing problem (7) and implement the
solution in a function eiv_smoothing, using the two approaches:

1. model-based — assuming that an input/state/output representation of the system is given, use the parameters
A,B,C,D,Π to obtain an explicit formula for the smoothed trajectory ŵ, and

2. data-driven — find ŵ using a trajectory wd ∈B|Td .

Exercise 31 (Monte-Carlo simulation). In order to reduce the randomness of the result, average the relative approxi-
mation errors over N = 100 noise realizations.

Exercise 32 (Approximation error as a function of the noise level). Plot the average relative approximation error as a
function of the noise level for noise in the interval [0%, 50%]. Is the result what you expected? Can you explain it?

Exercise 33 (Smoothing with exactly known initial conditions). Do the errors-in-variables smoothing experiment with
known zero initial conditions. Compare the accuracy of the solutions (with respect to the true value) with and without
using the prior knowledge about the initial conditions.

Exercise 34 (Errors-in-variables smoothing with exact interpolation points). Redo the errors-in-variables smoothing
experiment with unknown initial conditions for an autonomous system with 1, . . . ,n− 1 interpolation points that are
randomly chosen and for which the given data points are noise free. Verify that the approximation error with respect
to the true trajectory is decreasing as more exact interpolation points are added.

Summary and discussion

Errors-in-variables smoothing can be viewed alternatively as computing the distance, called misfit, of w to B

misfit(w,B) := min
ŵ
‖w− ŵ‖S subject to ŵ ∈B|T .

The misfit quantifies the lack of fit between w and B. It is the size (measured in the ‖ · ‖S-norm) of the smallest
perturbation on w that renders w an exact trajectory of B. A recursive algorithm for model-based errors-in-variables
smoothing is given in [9, Section 3].

9

The opposite of missing data is exactly known data. Exactly known data is imposed by equality constraints. They
are the strongest type of prior knowledge about the data—complete confidence in the data. Exercises 33 and 34
demonstrates how adding interpolation points in the smoothing problem (i.e., adding prior knowledge) improves the
estimation accuracy. The next section imposes the priori knowledge that the input is known exactly, which results in
the ordinary Kalman smoother.

7 Kalman smoothing

In this section, we consider optimal smoothing in the ARMAX setup. The problem is known as Kalman smoothing
because it was first solved by the celebrated Kalman smoother.

The Kalman smoothing problem differs from the errors-in-variables smoothing problem in to ways:

1. the input u is exactly known while the output y is still observed with additive noise, and

2. an unobserved input e, called disturbance, that is a zero-mean white Gaussian stochastic process acts on the system.

Let Bext be the behavior of the extended variable wext := [w
e].

The disturbance e is not observed, however, the assumption that it is a zero-mean white Gaussian stochastic
process makes it different from the missing input e considered before. The estimate ê of a missing input does not
appear in the cost function and is determined only from the interpolation condition (w, ê) ∈Bext, while the estimate ê
of a stochastic input appears in the cost function with the term ‖ê‖Se and is estimated from the prior knowledge that
it is as small as possible in the ‖ · ‖Se-norm. More pragmatically, using ddint, a missing input is specified by ed =
NaN, while a stochastic input is specified by ed = 0 and the block Se of the weight matrix S that corresponds to e.

In order to illustrate the application of ddint to Kalman smoothing, first we choose an extended data-generating
system Bext with variables wext = (u,y,e)

n = 5; p = 1; mu = 1; me = 1; m = mu + me; sy = 0.1; se = 0.1;
Bext = drss(n, p, m); % Bext = Bext * diag(1 ./ dcgain(Bext));

and generate a data trajectory wd

Td = 100;
ud = rand(Td, mu); ed = se * randn(Td, me); xd_ini = rand(n, 1);
yd = lsim(Bext, [ud ed], [], xd_ini); wextd = [ud yd ed];

and a to-be-smoothed trajectory w

T = 10; u = rand(T, mu); e = randn(T, me); x_ini = rand(n, 1);
y0 = lsim(Bext, [u e], [], x_ini); yt = randn(T, p);
y = y0 + sy * norm(y0) * yt / norm(yt);

The Kalman smoothing problem is specified as a data-driven interpolation/approximation problem (3) by setting

wext = [u y zeros(T, me)];
S = [inf(T, mu), (1 / norm(y - y0)) * ones(T, p), (1 / norm(e)) * ones(T, me)];

The smoothed output yh is obtained then by

wexth = ddint(wextd, wext, S); yh = wexth(:, mu+1:mu+p);

In order to verify the result, we use the relative estimation error

error = @(yh) norm(y0 - yh) / norm(y0);

and compare the estimate yh with the estimate obtained by a model-based method implemented in the function
predict from the System Identification toolbox of Matlab

yh_mb = predict(idss(Bext(1,2)), iddata(y, u), T); yh_mb = yh_mb.OutputData;

The results are

[error(yh) error(yh_mb)] % -> 0.0956 0.3544

10

Exercises

Exercise 35 (Kalman smoothing without disturbance). Revise the solution of the Kalman smoothing problem for the
case when w is not exact due to measurement noise on the output only, i.e., when there is no disturbance signal.

Exercise 36 (Kalman smoothing with exactly known initial conditions). In the setup of Exercise 35 (measurement
noise without disturbance), add the prior knowledge that the initial conditions are given and are exact. (You can
assume zero initial conditions.)

Exercise 37 (Kalman smoothing without measurement noise). Revise the solution of the Kalman smoothing problem
for the case when there is no measurement noise on the output.

Summary and discussion

In the errors-in-variables setup the lack of fit between w and B is due to the measurement errors. The appropriate
estimation criterion in this case is the misfit. When the lack of fit between w and B is due to disturbance and the
measurement error on the output, the appropriate estimation criterion is the latency, defined as

latency(w,Bext) := min
(w,ê)∈Bext|T

‖ê‖.

The latency computation corresponds to the Kalman smoothing problem without measurement noise (Exercise 37).
In [6] a combined misfit–latency approach for system identification is proposed. The misfit–latency approach

has as special cases the errors-in-variables and ARMAX setups and allows one to consider the most general problem
where the uncertainty is due to both disturbance as well as measurement errors on both inputs and outputs. Data-driven
smoothing in the combined misfit–latency setting can be done with ddint.

Exercise 38 (Mixed misfit–latency smoothing). Using ddint, solve the data-driven smoothing problem

minimize over ŵ and ê
∥∥∥∥[w− ŵ

ê

]∥∥∥∥
S

subject to
[

ŵ
ê

]
∈Bext|T ,

where the system Bext is implicitly specified by a trajectory wd,ext ∈Bext|Td . Apply the solution on an example.

8 Data-driven control

The control problems considered are open-loop. The design specifications in the first two problems are constraints on
the trajectory, while the design specification of the third problem is an optimality criterion.

State transition

A basic control problem is state transition: transition from a given “past” trajectory wp ∈B|Tp to a given “future”
trajectory wf ∈B|Tf via a “control” trajectory wc ∈B|Tc , i.e., find wc, such that wp∧wc∧wf ∈BTp+Tc+Tf , see Figure 2.

t

w

wp

wc wf

TcTp Tf

Figure 2: The state transition control problem aims to connect the given "past" wp and "future" wf trajectories via a
"control" wc trajectory.

In the simulation example we take a random stable system

11

n = 5; p = 1; m = 1; q = m + p; Tc = 10;
B = drss(n, p, m);

and a random data trajectory
Td = 100; wd = B2wd(B, Td);

The state transition problem is specified by the past and future trajectories
wp = rand(n, q); wf = zeros(n, q);

In order to cast the state transition problem as a missing data estimation problem, we define w := wp∧wc∧wf with
wp and wf the given trajectories and wc as missing/to-be-completed:
w = [wp; NaN(Tc, q); wf];
S = [inf(n, q); zeros(Tc, q); inf(n, q)];
[wh, N] = ddint(wd, w, S); wc = wh(n+1:n+Tc, :);

In the example there is a nonunique control trajectory wc achieving the desired state transition. The set of possible
control trajectories has dimension
size(N, 2) % -> 5

One way of utilizing the control freedom is by choosing the minimum energy control. The minimum energy
control is computed by ddint as follows:
w = [wp; [zeros(Tc, m) NaN(Tc, p)]; wf];
S_me = [inf(n, q); [ones(Tc, m) zeros(Tc, p)]; inf(n, q)];
[wh_me, N_me] = ddint(wd, w, S_me); wc = wh(n+1:n+Tc, :);

Trajectory planning

The problem considered next is to find a trajectory that passes through given interpolation “points” p1, . . . , pK at given
moments of time t1, . . . , tK . By “points” we mean any subset of elements of the variables w (the whole w, the output y,
or any subset of inputs and outputs). Moreover, the subset of variables need not be fixed for all moments of time.

Depending on the number of interpolation points and the number of variables involved, there may be infinitely
many, one, or no feasible trajectory. This is explored in Exercise 39. In control problems, typically there are infinitely
many feasible trajectories, in which case an optimal one is selected by specifying an optimality criterion.

In order to illustrate the application of ddint for trajectory planning, we choose a random stable system
n = 5; p = 2; m = 1; q = m + p; Tc = 10;
B = drss(n, p, m);

and a data trajectory
Td = 100; wd = B2wd(B, Td);

In addition to passing through the interpolation points, the desired trajectory is required to start and to end at the zero
state, thus before adding the interpolation conditions the problem is defined by trajectory w and weight S
w = [zeros(n, q); NaN(Tc, q); zeros(n, q)];
S = [inf(n, q); zeros(Tc, q); inf(n, q)];

The interpolation points are y(n+3) =
[

1
0

]
and y(n+6) =

[
0
1

]
. They are added to the problem specification as follows

Iy = (m+1):q
w(n + 3, Iy) = [1 0]; S(n + 3, Iy) = inf;
w(n + 6, Iy) = [0 1]; S(n + 6, Iy) = inf;

Now the set of all trajectories satisfying the constraints can be computed by evoking ddint
[wh, N] = ddint(wd, w, S);

It turns out that is in the particular example there is one dimensional solution set
size(N, 2) % -> 1

In order to find the minimum energy control that satisfies the constraints, we modify the problem as follows
w(n+1:n+Tc, 1:m) = 0; S(n+1:n+Tc, 1:m) = 1;
[wh_me, N_me] = ddint(wd, w, S);

12

Tracking control

The tracking control problem is mathematically equivalent to the errors-in-variables smoothing problem. The differ-
ence is that in the errors-in-variables smoothing problem w is a noise corrupted trajectory of the system, while in the
tracking control problem w together with S specify the control objective and w need not be a trajectory of the system.
In the example, we choose a random stable plant

n = 5; p = 1; m = 1; B = drss(n, p, m);

represented for the data-driven control by a trajectory

Td = 100; wd = B2wd(B, Td);

The to-be-tracked trajectory is zero input (minimum energy control) and constant output (step tracking)

Tc = 10; u = zeros(Tc, m); w = [u ones(Tc, p)];

The cost function minimized by the controller is

S = [ones(Tc, m) 100 * ones(Tc, p)];
e = @(wh) norm(S .* (w - wh), ’fro’) / norm(w);

i.e., the control objective is minimum energy least-squares tracking of a constant unit output with time horizon Tc = 10.
Assuming zero initial conditions, the actual trajectory achieved applying the control input on the plant is

wha = @(wh) [wh(:, 1:m), lsim(B, wh(:, m+1:end))];

so that, the achieved performance is

ea = @(wh) e(wha(wh));

Using ddint we solve the open-loop tracking control problem with zero initial conditions as follows:

wh = ddint(wd, [zeros(n, 2); w], [inf(n, 2); S]);
wh = wh(n+1:end, :);

The objective function and the actual achieved performance coincide:

[e(wh) ea(wh)] % -> 44.4719 44.4719

Exercises

Exercise 39 (Constraints and degrees of freedom). In the state transition and trajectory planning problems, what is
the dimension of the set of solutions? How many interpolation constraints can be added in the trajectory planning
problem retaining feasibility?

Exercise 40 (Uncertain initial conditions). Relax the prior knowledge of exactly known initial condition to uncertain
initial conditions and observe the effect on the performance.

Exercise 41 (Unknown initial conditions). The opposite extreme of exactly known initial condition is unknown initial
conditions. Compare the performance of the tracking control with exact knowledge of the initial condition with the
one of unknown initial conditions.

Summary and discussion

The controllability property defined in the behavioral setting is a necessary and sufficient condition for existence of so-
lution of the state transition problem. The trajectory planning problem occurs in robotics applications [4]. Closed-loop
data-driven control can be achieved by embedding the open-loop data-driven control methods in predictive control.
This led to the data enabled predictive control (DeePC) method [1]. In the mini-projects we consider the case of
inexact data wd and compare the data-driven methods with model-based ones.

13

A Structured matrices

Studying the behavior of discrete-time linear dynamical systems over a finite horizon is an application of linear
algebra. When the systems, in addition to linear, are also time-invariant, the matrices involved have Hankel structure.
The exercises in this section introduce three types of structured matrices—Hankel, mosaic Hankel, and polynomial
multiplication. These structures are used for analysis, identification, and control of linear time-invariant systems.

The term structure in “structured matrix” refers to a function S : Rnp → Rm×n mapping a vector p ∈ Rnp , called
structure parameter vector, to an m× n matrix S. We say that a matrix D has the structure S if it is in the image
of S , i.e., there is a p, such that D = S (p). In the exercises, you will

– prove that the Hankel, mosaic Hankel, and polynomial multiplication structures are linear (i.e., S is linear);

– derive the orthogonal projector ΠS on image S , i.e., a function ΠS : Rm×n→ Rm×n solving the problem

minimize over p̂ ‖D−S (p̂)‖F, (8)

where ‖ · ‖F is the Frobenius norm; and

– write functions that implement S and ΠS .

Hankel structure

A Hankel matrix HL(w) with L block rows, constructed from the finite vector time-series

w =
(
w(1), . . . ,w(T)

)
, w(t) ∈ Rq, (9)

is defined as

HL(w) :=


w(1) w(2) · · · w(T −L+1)
w(2) w(3) · · ·
...

...
...

w(L) w(`+2) · · · w(T)

 ∈ RqL×(T−L+1).

Exercise 42 (Hankel matrix constructor blkhank and projector Pblkhank).

1. Explain how HL defines a matrix structure (i.e., what are S and p).

2. Write a function blkhank that takes as inputs w and L and returns as an output HL(w). (w is represented by a
q×T matrix w, where w(:, t) is equal to w(t).)

3. Show that the Hankel structure HL is linear.

4. Derive the orthogonal projector ΠHL on image HL.

5. Write a function Pblkhank that takes as inputs an qL× (T −L+1) matrix D and an integer L and returns as an
output ŵ, such that HL(ŵ) = ΠHL D.

Mosaic Hankel structure

The mosaic Hankel matrix with L block rows, constructed from the set of finite vector time-series

w := {w1, . . . ,wN }, wi =
(
wi(1), . . . ,wi(Ti)

)
, wi(t) ∈ Rq

is defined as
HL(w) :=

[
HL(w1) · · · HL(wN)

]
∈ RqL×∑

N
i=1(Ti−L+1).

Exercise 43 (Mosaic Hankel matrix constructor moshank and projector Pmoshank).

1. Explain how HL defines a matrix structure (i.e., what are S and p).

14

2. Write a function moshank that takes as inputs w and L and returns as an output HL(w). (The set of time series w
is represented by a 1×N cell array w of q×Ti matrices w{i}, where w{i}(:, t) is equal to wi(t).)

3. Show that the mosaic Hankel structure HL is linear.

4. Derive the orthogonal projector ΠHL on image HL.

5. Write a function Pmoshank that takes as inputs an qL×∑
N
k=1 ni, ni := Ti−L+1 matrix D and n =

[
n1 · · · nN

]
and returns as an output ŵ, such that HL(ŵ) = ΠHL D.

Polynomial multiplication structure

The multiplication matrix MT (R) with T block columns related to the polynomial

R(z) = R0 +R1z+ · · ·+R`z` =

R1(z)
...

Rg(z)

=

R1
0 +R1

1z+ · · ·+R1
`1

z`1

...
Rg

0 +Rg
1z+ · · ·+Rg

`g
z`g

 ∈ Rg×q[z] (10)

is defined as

MT (R) :=

MT (R1)
...

MT (Rg)


where

MT (r) :=


r0 r1 · · · r`

r0 r1 · · · r`
. . .

. . .
. . .

r0 r1 · · · r`

 ∈ R(T−`)×qT . (11)

In Matlab, the polynomial R is represented by a g×q(`+1) matrix
[
R0 R1 · · · R`

]
.

Exercise 44 (Polynomial multiplication matrix constructor mulmat and projector Pmulmat).

1. Explain how MT defines a matrix structure (i.e., what are S and p).

2. Write a function multmat that takes as inputs R and T and returns as an output MT (R).

3. Show that the polynomial multiplication structure MT is linear.

4. Derive the orthogonal projector ΠMT on image MT .

5. Write a function Pmultmat that takes as inputs g(T −`)×qT matrix D, p, and q and returns as an output R̂, such
that MT (R̂) = ΠMT D.

Summary and discussion

We focused on the “mechanics” of the matrix structures HL and MT without explanation why they are important.
The Hankel and mosaic Hankel matrices are used in the data-driven representation of the finite horizon behavior of a
linear time-invariant system. The polynomial multiplication matrix MT , as its name suggests, is used for computing
the product of polynomials. Indeed, c := bMT (a) defines the product of the polynomials defined by a and b. Check
it numerically:

a = 1:4; b = 1:4;
c = conv(a, b); % -> 1 4 10 20 25 24 16
c_ = b * multmat([1 2 3 4], 7) % -> 1 4 10 20 25 24 16

A polynomial (10) is represented by the matrix of its coefficients, which can represent also the matrix-valued
sequence (R0,R1, · · · ,R`). With some abuse of notation, we use the same letter R to denote the polynomial, the matrix,
and the corresponding sequence of coefficients. Depending on the context, either the polynomial or the sequence are
the primary object of interest, while the matrix is the way of store and manipulate it analytically and computationally.

15

B new/undeveloped

1. detecting the model complexity from data

2. why is stability not an issue in rendom kernel representation?

3. minimality does not imply controllability

4. from data to state (is nonminimality an issue?)

5. unknown vs stochastic input

6. continuoues time data-driven representation

References

[1] J. Coulson, J. Lygeros, and F. Dörfler. “Distributionally robust chance constrained data-enabled predictive
control”. In: IEEE Trans. Automat. Contr. 67 (2022), pp. 3289–3304.

[2] F. Dörfler, J. Coulson, and I. Markovsky. “Bridging direct & indirect data-driven control formulations via
regularizations and relaxations”. In: IEEE Trans. Automat. Contr. (2023). DOI: 10.1109/TAC.2022.
3148374.

[3] P. Dreesen and I. Markovsky. “Data-Driven Simulation Using The Nuclear Norm Heuristic”. In: In Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing. Brighton, UK, 2019. DOI: 10.
1109/icassp.2019.8682993.

[4] E. Frazzoli, M. A. Dahleh, and E. Feron. “Real-time motion planning for agile autonomous vehicles”. In: Proc.
American Control Conf. Vol. 1. 2001, pp. 43–49.

[5] R. Hamming. Numerical Methods for Scientists and Engineers. Dover Publications, 1962.

[6] P. Lemmerling and B. De Moor. “Misfit versus latency”. In: Automatica 37 (2001), pp. 2057–2067.

[7] I. Markovsky. Low-Rank Approximation: Algorithms, Implementation, Applications. 2nd edition. Springer,
2019. ISBN: 978-3-319-89619-9. DOI: 10.1007/978-3-319-89620-5.

[8] I. Markovsky. “On the most powerful unfalsified model for data with missing values”. In: Systems & Control
Lett. 95 (2016), pp. 53–61. DOI: 10.1016/j.sysconle.2015.12.012.

[9] I. Markovsky and B. De Moor. “Linear dynamic filtering with noisy input and output”. In: Automatica 41.1
(2005), pp. 167–171.

[10] I. Markovsky and F. Dörfler. “Data-driven dynamic interpolation and approximation”. In: Automatica 135
(2022), p. 110008. DOI: 10.1016/j.automatica.2021.110008.

[11] I. Markovsky and P. Rapisarda. “Data-driven simulation and control”. In: Int. J. Control 81.12 (2008), pp. 1946–
1959.

[12] I. Markovsky and K. Usevich. “Structured low-rank approximation with missing data”. In: SIAM J. Matrix
Anal. Appl. 34.2 (2013), pp. 814–830. DOI: 10.1137/120883050.

[13] J. C. Willems. “From time series to linear system—Part II. Exact modelling”. In: Automatica 22.6 (1986),
pp. 675–694.

16

https://doi.org/10.1109/TAC.2022.3148374
https://doi.org/10.1109/TAC.2022.3148374
https://doi.org/10.1109/icassp.2019.8682993
https://doi.org/10.1109/icassp.2019.8682993
https://doi.org/10.1007/978-3-319-89620-5
https://doi.org/10.1016/j.sysconle.2015.12.012
https://doi.org/10.1016/j.automatica.2021.110008
https://doi.org/10.1137/120883050

	A first glimpse of data-driven methods
	Most powerful unfalsified model
	Implementation of the algorithm for data-driven interpolation/approximation
	Simulation
	Missing data estimation
	Errors-in-variables smoothing
	Kalman smoothing
	Data-driven control
	Structured matrices
	new/undeveloped

