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About the course

lectures
I give enough background information for the exercises
I extras: optional presentations on special topics

exercises
I this is a core part of the course, not an optional extra
I links to exercises are showing in red in these slides

mini-projects
I to be discussed individually
I compulsory for those who need evaluation
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The classical approach views
system as input-output map

systeminput output

the system is a signal processor

accepts input and produces output signal

intuition: the input causes the output

5 / 81



The input-output map view of the system
is deficient: it ignores the initial condition

example: mass driven by external force
I input ↔ force
I output ↔ position
I ??? ↔ position and velocity at start (initial condition)

input-output maps assume zero initial condition

how to account for nonzero initial condition?
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Taking into account the initial condition
leads to the state-space approach

systeminput output

initial condition

paradigm shift from “classical” to “modern”

classical: scalar transfer function

modern: multivariable state-space
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The modern state-space paradigm brought
new theory, problems, and methods

state-space theory
I manifests the “finite memory” structure of the system
I brought the concepts of controllability and observability
I deals seamlessly with time-varying and MIMO systems

new problems / solution methods
I linear quadratic optimal control (LQ control)
I optimal state estimation (the Kalman filter)
I balanced model reduction

amenable for numerical computations
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A case in point: optimal filtering
(signal from noise separation)

Wiener filter (1942)
I transfer functions approach
I assumes stationarity
I no practical real-time method

Kalman filter (1960)
I state-space approach
I non-stationary processes
I recursive real-time solution
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There are other awkward things
with the input/output thinking

modeling from first principles leads to relations

the input/output partitioning is not unique

interconnection of systems is variables sharing
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First principles modeling leads to relations

natural phenomena rarely operate as signal processors

the variables of interest satisfy relations, not functions

example: planetary orbits
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More basic example: Ohmic resistor
voltage and current satisfy relation

to-be-modeled variables: voltage V and current I

Ohm’s law:
I V = RI, with R the resistance
I I = CV , with C := 1/R the conductance

Q: how to fit the limit cases
I open circuit — R = ∞, C = 0
I short circuit — R = 0, C = ∞

neatly in a unified framework?

A: V , I satisfy (linear) relation
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The behavioral approach was put forward by
Jan C. Willems in the 1980’s

3-part, 70-page, 1986–1987 Automatica paper:

Part I. Finite dimensional linear time invariant systems
Part II. Exact modelling
Part III. Approximate modelling

Jan C. Willems (1939–2013)
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Critical revision of the input/output thinking

simple idea: the system is set of trajectories
I variables not partitioned into inputs and outputs
I the system is separated from its representations

the input/output approach is a special case

relevant for the emerging data-driven paradigm
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The behavior is all that matters

“The operations allowed to bring model equations in a
more convenient form are exactly those that do not change
the behavior. Dynamic modeling and system identification
aim at coming up with a specification of the behavior. Con-
trol comes down to restricting the behavior.”

J. C. Willems, “The behavioral approach to open and interconnected systems: Modeling
by tearing, zooming, and linking,” Control Systems Magazine, vol. 27, pp. 46–99, 2007.
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Analogy with solution of systems of equations

Q: what operations are allowed?

A: the ones that don’t change the solution set

(for linear systems, the “elementary operations”)

the solution set is all that matters
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Classical definition of linear system
S : u 7→ y is linear ⇐⇒ S is linear function

for all u,v and α,β ∈ R,

S : αu + βv 7→ αS(u) + βS(v)
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The classical definition is deficient

(silently) assumes
I zero initial condition
I controllability

doesn’t apply to autonomous systems

relaxing the assumptions requires state-space
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Behavioral definition of linear system
B is linear ⇐⇒ B is subspace

for all w ,v ∈B and α,β ∈ R

αw + βv ∈B

fixes the issues with
I nonzero initial condition
I autonomous systems
I controllable systems
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Separating problems from solution methods

different representations  different methods
I with different properties (efficiency, robustness, . . . )
I their common feature is that they solve the same problem

clarifies links among methods

leads to new methods
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Summary: behavioral approach

detach the system from its representations
I define properties and problems in terms of the behavior
I lead to new, more general, definitions and problems
I avoid inconsistencies of the classical approach

separate problem from solution methods
I different representations lead to different methods
I show links among different methods
I lead to new solutions

naturally suited for the “data-driven paradigm”
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Paradigms shifts

1940–1960 classical SISO transfer function

1960–1980 modern MIMO state-space

1980–2000 behavioral the system as a set

2000–now data-driven using directly the data
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(Rq)T is the space of signals w : T → Rq

T — time axis
I R or R+ or [0,T ] — continuous-time
I Z or N or {1, . . . ,T }— discrete-time

(Rq)T — real-valued q-variate signals

examples:
I w ∈ (R2)N ↔ w =

([
w1(1)
w2(1)

]
, . . . ,

[
w1(t)
w2(t)

]
, . . .
)

I w ∈ (R2)T ↔ w =
([

w1(1)
w2(1)

]
, . . . ,

[
w1(T )
w2(T )

])
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It’s a mistake to say “the signal w(t)”

let w ∈ (Rq)N and t ∈ N

then, w(t) ∈ Rq is the value of w at time t

w(t) is not signal (in (Rq)N), but vector (in Rq)

w(·) — specifies explicitly the time dependence of w
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Use short, unambiguous, consistent notation

“w = v ” means

"w(t) = v(t), for all t ∈T "

shift operator σ

(σw)(t) := w(t + 1), for all t ∈T
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For example

`-th order vector difference equation

R0w + R1σw + · · ·+ R`σ
`w = 0

m

R0w(t) + R1w(t + 1) + · · ·+ R`w(t + `) = 0, for all t ∈ N

first order state equation

σx = Ax + Bu

m

x(t + 1) = Ax(t) + Bu(t), for all t ∈ N
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Compact notation for difference equation

R0w + R1σw + · · ·+ R`σ
`w = 0

m
R(σ)w = 0

polynomial operator

R(σ) = R0 + R1σ + · · ·+ R`σ
`

kernel of polynomial operator

kerR(σ) := {w | R(σ)w = 0}
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We identify a dynamical system with
its behavior, i.e., the set of trajectories

real-valued system B with q variables
and time-axis T is a subset of (Rq)T

in particular, we use set theoretic notation

w ∈B ⇐⇒ w is a trajectory of B

⇐⇒ B is an exact model of w
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. . . and specify B by representations

representation of the system B ⊆ (Rq)T

B =
{

w ∈ (Rq)T | "constraints on w"
}

for example
I kernel (KER) representation

B = kerR(σ) :=
{

w | R0w + R1σw + · · ·+ R`σ
`w = 0

}
I input/state/output (I/S/O) representation

B =

{
w = Π

[
u
y

] ∣∣∣∣ ∃ x ∈ (Rn)N,

[
σx
y

]
=

[
A B
C D

][
x
u

]}
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Linearity and time-invariance are
naturally defined in terms of B

B is linear system ⇐⇒ B is subspace

B is time-invariant ⇐⇒ σ τB := B for all τ

σB =
{

σw | w ∈B
}

L q — set of LTI systems with q variables
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Equivalence of representations
and transformations among them

KER I/O I/S/O

impulse response

exact raw data
(determ

inist
ic)

su
bsp

ace
identifi

ca
tio

n(exact/deterministic) identification

realization

state constructionI/O partition

exercise 3 — from I/S/O to KER representation
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How to check if w ∈B?

depends on what representation of B is used

different repr. leads to different methods

for example
I if B is specified by vector difference equation

w ∈B ⇐⇒ R0w + R1σw + · · ·+ R`σ
`w = 0

I if B is specified by input/state/output representation

w ∈B ⇐⇒ ∃ x ∈ (Rn)N,
[

σx
y
]

=
[

A B
C D

]
[ x
u ]
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w ∈B ⇐⇒ system of linear equations

you have to derive them once

1. using I/S/O representation exercise 1

2. using kernel representation exercise 4
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The finite-horizon behavior B|L is used
for both analysis and computations

restriction of w to finite interval [1,L]

w |L :=
(
w(1), . . . ,w(L)

)
∈ (Rq)L

restriction of B to [1,L]

B|L := {w |L | w ∈B } ⊂ (Rq)L

if B is linear, B|L is a subspace of (Rq)L
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B|L can be obtained experimentally
by collecting “informative” data

collect N ≥ qL random trajectories

w1
d , . . . ,w

N
d ∈B|L

by the linearity of B, we have

span{w1
d , . . . ,w

N
d } ⊆B|L

with probability one equality holds
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Discrete-time LTI systems over finite horizon
can be studied using linear algebra only

[
w1

d · · · wN
d

]
︸ ︷︷ ︸

W

∈ RqL×N — “trajectory matrix”

B̂|L = imageW — “data-driven model” of B|L

now, we can do explorations using Matlab
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What is the dimension of B|L?
take a random LTI system
m = 2; p = 5; n = 20; B = drss(n, p, m);

generate qL random trajectories of length L
L = 100; q = m + p; W = []; vec = @(a) a(:);
for i = 1:q*L
u = rand(L, m); xini = rand(n, 1);
y = lsim(B, u, [], xini);
w = [u y]; W = [W vec(w’)];

end

assuming that image W = B|L, find dimB|L
for t = 1:L, d(t) = rank(W(1:q*t, :)); end
stem(d)
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dimB|L is a piecewise affine function of L

L

dimB|L

`0 `1 `2 `p−1 `p = `

qL

(q
−1)L

. . .
(q−p + 1)L mL

n

irregular increase regular increase

in particular, dimB|L = mL + n, for all L≥ `
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The set of linear time-invariant systems L
has structure characterized by set of integers

the dimension of B ∈L is determined by

m(B) — number of inputs

`̀̀(B) — lag (= observability index)

n(B) — order (= minimal state dimension)

exercise 2 — find `̀̀(B) for given B

exercise 6 — find m(B), `̀̀(B), n(B) from wd ∈B|Td
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B1 less complex than B2 ⇐⇒ B1 ⊂B2

in the LTI case, complexity↔ dimension

complexity: (# inputs, order, lag)

c(B) :=
(
m(B),n(B), `̀̀(B)

)
Lc — bounded complexity LTI model class

L q
c := {B ∈L q | c(B)≤ c }
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Finite vs infinite dimensional LTI systems

B ∈L q finite-dimensional :⇐⇒ m(B) < q
n(B) < ∞

equivalently
I B has bounded complexity c(B)
I B admits KER and I/S/O representations
I B admits rational transfer function representation

parametric representations of B ∈L q
c
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Summary

w ∈ (Rq)T — q-variate signal

B ∈L q — q-variate LTI system

dimB|L = m(B)L + n(B), for all L≥ `̀̀(B)

exercise 1 — state-space proof of the formula
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Initial conditions specified by “past” trajectory

w = wp∧wf

t

w

wp wf

exercise 23 — dealing with nonzero initial conditions
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How long should wp be in order to
specify the initial conditions for wf?

answer: at least `̀̀(B) samples

in general, there are infinitely many wp’s
that specify the same initial condition

wp is a non-minimal state vector
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Input/output partitioning of the variables

w =: Π[ u
y ], with Π permutation, such that

u is input := free variable
y is output := uniquely defined by B, wini, and u

simulation problem: (B,wini,u) 7→ y

section 4 of the exercises

parametrization of w by u and wini
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Finding initial conditions (observer)

given B and wf ∈B|Tf
, find wp ∈ (Rq)Tp, s.t.

wp∧wf ∈B|Tp+Tf

exercise 23 — finding initial conditions

feasibility problem, solution always exists (why?)

in general, it is not unique (is this an issue?)
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Initial conditions estimation (smoothing)

given B and wf ∈ (Rq)Tf, find wp ∈ (Rq)Tp that

minimize over ŵp, ŵf ‖wf− ŵf‖
subject to ŵp∧ ŵf ∈B|Tp+Tf

section 6 of the exercises

as byproduct we find “smoothed” trajectory ŵf

errors-in-variables (EIV) smoother
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Projection on B

given B and w ∈ (Rq)T , find ŵ ∈ (Rq)T that

minimize over ŵ ‖w − ŵ‖
subject to ŵ ∈B|T

equivalent to the EIV smoothing problem

prior knowledge about the initial conditions
I completely unknown
I uncertain (mean value and covariance are given)
I given exactly
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Most powerful unfalsified model of Bmpum(wd)

exact identification problem

Bmpum(wd) := arg min
B̂∈L

c(B̂)︸ ︷︷ ︸
most powerful

subject to wd ∈ B̂︸ ︷︷ ︸
unfalsified model

multi-objective optimization problem
I complexities are compared in the lexicographic order
I more inputs imply higher complexity irrespective of order

feasibility and uniqueness are guaranteed

Bmpum(wd) := span{wd,σwd,σ
2wd, . . .}
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There is a problem with Bmpum(wd)

in case of finite data wd ∈ (Rq)Td

B̂ := Bmpum(wd) is autonomous exercise 5

solution: impose the upper bound

`̀̀(B̂)≤ `max :=

⌊
Td + 1
q + 1

⌋
−1

exact identification — Bmpum(wd) computation

exercise 7 — find kernel repr. of Bmpum(wd)
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Summary

“past” trajectory — specifies initial conditions

simulation: with w =: Π[ u
y ], (B,wini,u) 7→ y

inverse problem: wd 7→Bmpum(wd)
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More system properties

controllability

autonomy

stability
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What means that B is controllable?

controllability is the property of “patching”
any past trajectory with any future trajectory

wp∧wc∧wf ∈B

t

w

wp

wc wf

T1 T2

"sufficiently"
long
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Compare with the classical definition:
transfer from any initial to any terminal state

property of a state-space representation of B

I is lack of controllability due to a “bad” choice of the state
or due to an intrinsic issue with the system?

I in the LTI case, does it make sense to talk about
controllability of a transfer function representation?

I how to quantify the “distance” to uncontrollability?

does not apply to infinite dimensional system
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Methods for checking controllability

how to check controllability of an LTI system?

using state-space representation:
1. ensure minimality (in the behavioral sense)
2. perform rank test for the controllability matrix

using matrix fraction representation:

B =
{

w = Π
[u

y
]
∈ (Rq)N | N(σ)u = D(σ)y

}
I facts: B is controllable ⇐⇒ N and D are co-prime
I  rank test for the (generalized) Sylvester matrix
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B autonomous ⇐⇒ B has no inputs

autonomy: most extreme uncontrollability

any system has decomposition

B = Bcontrollable +Bautonomous

B ∈L q and autonomous if and only if

w ∈B is sum of polynomials times exponentials
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Stability is naturally property of the behavior

B stable ⇐⇒ w(t)→ 0 as t → ∞, for all w ∈B

stability implies autonomy

B ∈L q and stable if and only if

w ∈B converges exponentially to 0
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Summary

controllability: patching past/future trajectories

autonomy: no inputs (m(B) = 0)
I decomposition into controllable and autonomous
I B ∈L q autonomous ⇐⇒ w = ∑

n
i=1 polynomiali × expλi

I λ1, . . . ,λn — poles of the system B

stability: w(t)→ 0 as t → ∞, for all w ∈B

I BIBO stability is not a property of B
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The new “data-driven” paradigm obtains
desired solution directly from given data

given
data

model

desired
solution

model

identifi
ca

tio
n

model-based
design

data-driven design
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Data-driven does not mean model-free

data-driven problems do assume model

however, specific representation is not fixed

the methods we review are non-parametric
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wd of B ∈L

B̂ = Bmpum(wd) = span{wd,σwd,σ
2wd, . . .}

identifiability condition: B = B̂
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Consecutive application of σ on finite wd

results in Hankel matrix with missing values

σ0wd σ1wd · · · σTd−1wd

wd(1) wd(2) · · · wd(Td)

wd(2)
... . .

.
?

... wd(Td) . .
. ...

wd(Td) ? · · · ?

for wd =
(
wd(1), . . . ,wd(Td)

)
and 1≤ L≤ Td

HL(wd) :=
[

(σ0wd)|L (σ1wd)|L · · · (σTd−Lwd)|L
]
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Data-driven representation (finite horizon)

the finite horizon data-driven representation

B|L = B̂|L := imageHL(wd) (DD-REPR)

holds if and only if

rankHL(wd) = Lm(B) + n(B) (GPE)

GPE — generalized persistency of excitation

exercise 1 — from I/S/O representation to B|L
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Identifiability condition
verifiable from wd ∈B|Td and

(
m, `,n

)
fact: B = B′ ⇐⇒ B|`+1 = B′|`+1, then

B̂ = B ⇐⇒ B̂|`+1 = B|`+1

⇐⇒ dimB̂|`+1 = dimB|`+1

B is identifiable from wd ∈B|Td if and only if

rankH`+1(wd) =
(
`+ 1

)
m + n
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The “fundamental lemma”
is an input design result

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325–329, 2005

sufficient conditions for (DD-REPR)
1. wd =

[ud
yd

]
2. B controllable
3. HL+n(ud) full row rank (PE)

PE — persistency of excitation
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Generic data-driven problem:
trajectory interpolation/approximation

given:
“data trajectory” wd ∈B|Td

and elements w |Igiven

of a trajectory w ∈B|T

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|T

ŵ = HT (wd)
(
HT (wd)|Igiven

)+w |Igiven (SOL)
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Special cases

simulation section 4
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing sections 6 and 7
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control section 8
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation
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Generalizations
multiple data trajectories w1

d , . . . ,w
N
d

B̂|L = image
[
HL(w1

d ) · · · HL(wN
d )
]

︸ ︷︷ ︸
mosaic-Hankel matrix

wd not exact / noisy mini-projects
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems mini-projects
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .
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Summary: data-driven signal processing

data-driven representation
leads to general, simple, practical methods

interpolation/approximation of trajectories
simulation, filtering and control are special cases
assumes only LTI dynamics; no hyper parameters

dealing with noise and nonlinearities
nonlinear optimization
convex relaxations
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The data wd being exact vs inexact / “noisy”

wd exact and satisfying (GPE)
I “systems theory” problems
I imageHL(wd) is nonparametric finite-horizon model
I data-driven solution = model-based solution

wd inexact, due to noise and/or nonlinearities
I naive approach: apply the solution (SOL) for exact data
I rigorous: assume noise model ML estimation problem
I heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wd = wd + w̃d

I wd — true data, wd ∈B|Td , B ∈L q
c

I w̃d — zero mean, white, Gaussian measurement noise

ML problem: given wd, c, and w |Igiven

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|Td and B̂ ∈L q
c
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|Td and B̂ ∈L q
c

m

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd
‖wd− ŵd‖

subject to rankH`+1(ŵd)≤ (`+ 1)m + n
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Solution methods

local optimization
I choose a parametric representation of B̂(θ)
I optimize over ŵ , ŵd, and θ

I depends on the initial guess

convex relaxation based on the nuclear norm

minimize over ŵd and ŵ ‖w |Igiven− ŵ |Igiven‖+‖wd− ŵd‖

+ γ ·
∥∥∥[H∆(ŵd) H∆(ŵ)

]∥∥∥
∗

convex relaxation based on `1-norm (LASSO)

minimize over g ‖w |Igiven−HT (wd)|Igiveng‖+ λ‖g‖1
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Empirical validation on real-life datasets

data set name Td m p
1 Air passengers data 144 0 1
2 Distillation column 90 5 3
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997

76 / 81



`1-norm regularization with optimized λ

achieves the best performance

emissing :=
‖w |Imissing− ŵ |Imissing‖

‖w |Imissing‖
100%

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 44.10 3.98
6 Heating system 0.92 1.35 0.36

77 / 81



Tuning of λ and sparsity of g (datasets 1, 2)
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Tuning of λ and sparsity of g (datasets 3, 4)
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Tuning of λ and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wd exact systems theory
I exact analytical solution
I current work: efficient real-time algorithms

wd inexact nonconvex optimization
I subspace methods
I local optimization
I convex relaxations

empirical validation
I the naive approach works (surprisingly) well
I parametric local optimization is not robust
I `1-norm regularization gives the best results
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Extras

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

1 / 61



Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

2 / 61



The fundamental lemma gives data-driven
finite horizon representation of LTI system B

B|L = imageHL(wd) (DD-REPR)

assumptions:

A0 wd =
[ud

yd

]
is a trajectory of an LTI system B

A1 B is controllable

A2 ud is persistently exciting of order L + n
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Decoding the notation B|L = imageHL(wd)

B — system’s behavior, i.e., set of trajectories

B|L — restriction of B to the interval [1,L]

wd :=
(
wd(1), . . . ,wd(Td)

)
— “data” trajectory

HL(wd) :=

wd(1) wd(2) · · · wd(Td−L + 1)
...

...
...

wd(L) wd(L + 1) · · · wd(Td)


PE(ud) := max L, such that HL(ud) is f.r.r.

4 / 61



We address the following issues/questions

proof by contradiction
What is the meaning/interpretation of the conditions?

sufficiency of the conditions
How conservative are they? Can they be improved?

conjecture
The extra PE of order n is generically not needed.
What are the nongeneric cases when it is needed?
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Answers

constructive proof in the single-input case

PE(ud) = nu ⇐⇒ ud ∈Bu|Td, where Bu is
autonomous LTI of order nu

shows that the FL is nonconservative
conjecture: it is conservative in the multi-input case

characterizes the nongeneric cases
they correspond to special initial conditions
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Necessary and sufficient condition
for the data-driven representation

rankHL(wd) = mL + n, (GPE)

nonconservative (necessary and sufficient)

general no I/O partitioning and controllability

verifiable from wd with prior knowledge of (m,n)
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The fundamental lemma is input design result

input design problem
choose ud, so that (DD-REPR) holds for any initial cond.

refined problem statement
find nonconservative conditions on ud and B, under which

for ∀wd,ini, wd,ini∧wd ∈B|Tini+Td satisfies (GPE) (GOAL)

subproblem: find wini that minimize rankHL(wd)
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Obvious necessary conditions
A0: exact representation requires exact data
and input design requires input/output partition

A1: for uncontrollable B = Bctr⊕Baut

I wd ∈B =⇒ wd = wd,ctr + wd,aut, wd,ctr ∈Bctr, wd,aut ∈Baut
I wd,aut is completely determined by wd,ini
I there is wd,ini, such that wd,aut = 0 =⇒ (GPE) doesn’t hold

A2′: ud is persistently exciting of order L
I since u is an input, ΠuB|L = Rm(B)L

I for (GPE) to hold true, imageHL(ud) = Rm(B)L

I equivalently, HL(ud) must be full row-rank
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Find the minimal k , such that (GOAL)
holds under A0, A1, and PE(ud) = L+k

first, we solve the subproblem
find w∗ini that minimize rankHL(wd)

then, we check (GPE) for w∗ini

 minimal k =⇒ nonconservative PE condition
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The PE condition is equivalent to
existence of an LTI input model

ud ∈ (R)Td and PE(ud) = nu

m

ud ∈Bu|Td — autonomous LTI, Td ≥ 2nu−1

Bu = Bss(Au,Cu) with
(
Au,xu,ini

)
controllable

systeminput model y

xinixu,ini

u
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Augmented system with the input model

Bext = Bss(Aext,Cext), with xext = [ xu
x ]

Aext =

[
Au 0

BCu A

]
Cext =

[
Cu 0

DCu C

]

Bext = Bss
(
A′ext,C

′
ext
)
, where x ′ext =

[ xu
Vxu+x

]
A′ext =

[
Au 0
0 A

]
, C′ext =

[
Cu 0
C′ C

]
, C′ := DCu−CV

V is solution of the Sylvester equation AV −VAu = BCu
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The nongeneric cases correspond to
special initial conditions xini =−Vxu,ini

which eliminates from wd the transient due to B

then, rankHL(wd)≤ PE(ud) = nu

next, we show that rankHL(wd) = nu
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assume simple eigenvalues λu,1, . . . ,λu,nu of Bu

ud =
nu

∑
i=1

ai expλu,i

assume simple eigenvalues λ1, . . . ,λn of B

yd =
nu

∑
i=1

bi expλu,i
+

n

∑
j=1

cj expλj︸ ︷︷ ︸
transient

I bi = H(eiλu,i )ai , where H(z) := C(Iz−A)−1B + D
I wini = w∗ini =⇒ cj = 0
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using Vandermonde matrix, we rewrite (ud,yd)

ud =


λ 1

u,1 · · · λ 1
u,nu

...
...

λ
Td
u,1 · · · λ

Td
u,nu


︸ ︷︷ ︸

VTd
(λu)


a1
...

anu


︸ ︷︷ ︸

a

= VTd(λu)a

and

yd = VTd(λu)


H(eiλu,1)

. . .

H(eiλu,nu )


︸ ︷︷ ︸

H(λu)


a1
...

anu


= VTd(λu)H(λu)a︸ ︷︷ ︸

b

= VTd(λu)b
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then, for wd, we obtain

wd = ΠTd

[
VTd(λu)

VTd(λu)H(λu)

]
a

ΠTd ∈ R2Td×2Td permutation, such that wd = ΠTd

[ud
yd

]
finally, the Hankel matrix is expressed as

HL(wd) = ΠL

[
VL(λu)

VL(λu)H(λu)

]
︸ ︷︷ ︸

WL

[
a Λua Λ2

ua · · · Λ
Td−L
u a

]
︸ ︷︷ ︸

controllability matrix of (Λu ,a)

Λu := diag(λu,1, . . . ,λu,nu )
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(Λu,a) is controllable because PE(ud) = nu

1. ai 6= 0 for all i
2. λu,i 6= λu,j for all i 6= j

for k ≤ n, WL is full column rank
I with WL =

[
w1 . . . wnu

]
, w i are trajectories (w i ∈B|L)

I λu,i 6= λu,j for all i 6= j =⇒ independent responses

rankHL(wd) =

{
L + k , for k = 1, . . . ,n
L + n, for k = n + 1, . . .

k = n is the minimal value for (GPE) to hold
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Comments
the zeros of B don’t play role in the analysis

simple eigenvalues assumptions can be relaxed

“robustifying” the conditions

exact condition: robust version:
ai 6= 0, for all i ai > ε

λu,i 6= λu,j , for all i 6= j the λu,i ’s are “well spread”

conjecture: in multi-input case, A2 can be
tightened, PE(ud) = n + controllability index B
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The goal is to predict free fall trajectory
without knowing the laws of physics

object with mass m, falling in gravitational field
I y — position
I v := ẏ — velocity
I y(0),v(0) — initial condition

task: given initial condition, find the trajectory y

I model-based approach:
1. physics 7→ model
2. model + ini. cond. 7→ y

I data-driven approach: data y1
d , . . . ,y

N
d + ini. cond. 7→ y
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Modeling from first principles leads to
affine time-invariant state-space model

second law of Newton + the law of gravity

mÿ = m
[

0
9.81

]
+ f , where y(0) = yini and ẏ(0) = vini

I 9.81 — gravitational constant
I f =−γv — force due to friction in the air

state x := (y1, ẏ1,y2, ẏ2,x5), where x5 =−9.81

initial state xini := (yini,1,vini,1,yini,2,vini,2,−9.81)
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Modeling from first principles leads to
affine time-invariant state-space model

ẋ =


0 1
0 −γ/m

0 1
0 −γ/m 1

0

x , x(0) =


yini,1

vini,1

yini,2

vini,2

−9.81


y =

[
1 0 0 0 0
0 0 1 0 0

]
x

data: N, T -samples long discretized trajectories
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Simulation setup and data

write a function fall that simulates free fall
y = fall(y0, v0, t, m, gamma)

simulate N=10, T=100-samples long trajectories
m = 1; gamma = 0.5;
N = 10; T = 100; t = linspace(0, 1, T);
for i = 1:N,
y{i} = fall(rand(2,1), rand(2,1), t,gamma,m);

end

and to-be-predicted trajectory
y_new = fall(rand(2,1), rand(2,1), t,gamma,m);
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Data-driven free fall prediction method

data “informativity” condition:

rank
[
y1

d · · · yN
d

]
︸ ︷︷ ︸

D

= 5

algorithm for data-driven prediction:

1. solve

y1
d (1) · · · yN

d (1)

y1
d (2) · · · yN

d (2)

y1
d (3) · · · yN

d (3)

g =

y(1)

y(2)

y(3)


︸ ︷︷ ︸
ini. cond.

2. define y := Dg
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Verify that the data-driven prediction “works”

check the data “informativity” condition
[rank(D) rank([vec(y_new’) D])] % -> [ 5 5 ]

implement the data-driven computation method

verify the computed solution
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Summary: prediction of free fall trajectory

first principles modeling
I use the second law of Newton and the law of gravity
I in particular, the Earth’s gravitational constant is used
I lead to an autonomous affine time-invariant system

data-driven methods
I bypass the knowledge of the physical laws
I automatically infer and use them
I no hyper-parameters to tune
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My interest in dynamic measurement
started from a textbook problem

“A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15◦C;
after two minutes it reads 11◦C. What is the out-
side temperature?”

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
I 1st order dynamics
I 3 noise-free samples
I batch solution

generalizations:
I n ≥ 1 order dynamics
I T ≥ 3 noisy (vector) samples
I recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling

y = a
(
ū−y

)
heat transfer coefficient a > 0
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Scale: second order dynamical system

ū = M
m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

(M + m)
d
d t

y + dy + ky = gū
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The measurement process dynamics
depends on the to-be-measured mass

0 100

time

1

5

10

m
e

a
s
u

re
d

 m
a

s
s

M = 1

M = 5

M = 10
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured
variable u

measurement process−−−−−−−−−−−−−−−→ measured
variable y

assumption 1: measured variable is constant u(t) = ū

assumption 2: the sensor is stable LTI system

assumption 3: sensor’s DC-gain = 1 (calibrated sensor)
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The data is generated from LTI system
with output noise and constant input

yd︸︷︷︸
measured

data

= y︸︷︷︸
true

value

+ e︸︷︷︸
measurement

noise

y︸︷︷︸
true

value

= ū︸︷︷︸
steady-state

value

+ y0︸︷︷︸
transient
response

assumption 4: e is a zero mean, white, Gaussian noise
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using a state space representation of the sensor

x(t + 1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtain
yd(1)

yd(2)
...

yd(T )


︸ ︷︷ ︸

yd

=


1
1
...

1


︸︷︷︸
1Td

ū +


c

cA
...

cATd−1


︸ ︷︷ ︸

OTd

x0 +


e(1)

e(2)
...

e(Td)


︸ ︷︷ ︸

e
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Maximum-likelihood model-based estimator

solve approximately

[
1Td OTd

][ û
x̂0

]
≈ yd

standard least-squares problem

minimize over ŷ , û, x̂0 ‖yd− ŷ‖

subject to
[
1Td OTd

][ û
x̂0

]
= ŷ

recursive implementation  Kalman filter
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Subspace model-free method

goal: avoid using the model parameters (A, C, OTd)

in the noise-free case, due to the LTI assumption,

∆y(t) := y(t)−y(t−1) = y0(t)−y0(t−1)

satisfies the same dynamics as y0, i.e.,

x(t + 1) = Ax(t), x(0) = ∆x
∆y(t) = cx(t)
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Hankel matrix—construction of multiple
“short” trajectories from one “long” trajectory

H (∆y) :=


∆y(1) ∆y(2) · · · ∆y(n)

∆y(2) ∆y(3) · · · ∆y(n+ 1)

∆y(3) ∆y(4) · · · ∆y(n+ 2)
...

...
...

∆y(T −n) ∆y(T −n) · · · ∆y(T −1)



fact: if rankH (∆y) = n, then

imageOT−n = imageH (∆y)
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model-based equation

[
1Td OTd

][ ū
x̂0

]
= y

data-driven equation

[
1T−n H (∆y)

][ū
`

]
= y |T−n (∗)

subspace method

solve (∗) by (recursive) least squares
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Empirical validation

dashed — true parameter value ū
solid — true output trajectory y0

dotted — naive estimate û = G+y
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e := 1
N ∑

N
i=1‖ū− û(i)‖

(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process

4 6 8 10 12 14
0

0.2
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0.6

0.8

t

e(
t)

e(t)→ 0 as t → ∞ at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter
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Proof of concept prototype
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Results in real-life experiment
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for
I high order dynamics
I noisy vector observations
I online computation

future work / open problems
I numerical efficiency
I real-time uncertainty quantification
I generalization to nonlinear systems
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Problem formulation

given: “data” trajectory (ud,yd) ∈B|Td and z ∈ C

find: H(z), where H is the transfer function of B
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Direct data-driven solution
we are interested in trajectory

w =
[

u
y

]
=
[

expz
Ĥ expz

]
∈B, where expz(t) := z t

using the data-driven representation, we have[
HL(ud)

HL(yd)

]
g =

[
z

Ĥz

]
, where z :=

[
z1

...
zL

]

which leads to the system[
0 HL(ud)

−z HL(yd)

][
Ĥ
g

]
=

[
z
0

]
(SYS)
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Solution method: solve (SYS) for Ĥ

under (GPE) with L≥ `+ 1, Ĥ = H(z)

without prior knowledge of `

L = Lmax := b(Td + 1)/3c

trivial generalization to
I multivariable systems
I multiple data trajectories {w1

d , . . . ,w
N
d }

I evaluation of H(z) at multiple points in {z1, . . . ,zK } ∈ CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions  leakage

DFT grid  limited frequency resolution

improvements by windowing and interpolation
I the leakage is not eliminated
I the methods involve hyper-parameters

50 / 61



Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of HL(wd)

I hyper-parameters L≥ `+ 1 and n
I if the approximation preserves the Hankel structure,

the method is maximum-likelihood in the EIV setting

regularization with ‖g‖1
I hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of HL(ŵd)

I hyper-parameters: L and the regularization parameter
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Matlab implementation
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)’;
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, ~, ~] = svd(H); P = U(:, 1:m * L + n);

%% form and solve the system of equations
for k = 1:length(z)
A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
hg = A \ [kron(z(k).^t, eye(m)); zeros(p*L, m)];
Hh(:, :, k) = hg(1:p, :);

end
I effectively 5 lines of code
I MIMO case, multiple evaluation points
I L = n + 1 in order to have a single hyper-parameter
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Example: EIV setup with 4th order system

dd_frest is compared with
I ident — parametric maximum-likelihood estimator
I spa — nonparameteric estimator with Welch filter
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Monte-Carlo simulation over different
noise levels and number of samples

ea := 100% · |(|Hz |− |Ĥz |)| / |Hz |
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Kernel representation
LTI systems

B = kerR(σ) :=
{

w | R(σ)w = 0
}

=
{

w | R0w + R1σw + · · ·+ R`σ
`w = 0

}
nonlinear time-invariant system

B =
{

w | R
(

w ,σw , . . . ,σ `w︸ ︷︷ ︸
x

)
= 0

}
linearly parameterized R

R(x) = ∑θiφi(x) = θ
>

φ(x),
φ — model structure
θ — parameter vector
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Polynomial SISO NARX system

B(θ ) =
{

w =
[u

y
]
| y = f

(
u,σw , . . . ,σ `w

)}
split f into 1st order (linear) and other (nonlinear) terms

f (x) = θ
>
li x + θ

>
nl φnl(x)

φnl — vector of monomials
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Special cases
Hammerstein

φnl(x) =
[
φu(u) φu(σu) · · · φu(σ `u)

]>
FIR Volterra

φnl(x) = φnl(xu), where xu := vec(u,σu, . . . ,σ `u).

bilinear

φnl(x) = xu⊗xy , where xy := vec(y ,σy , . . . ,σ `−1y)

generalized bilinear
φnl(x) = φu,nl(xu)⊗xy
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LTI embedding of polynomial NARX system

Bext(θ ) :=
{

wext =
[ u

unl
y

] ∣∣∣ σ
`y = θ

>
li x + θ

>
nl unl

}
define: Πwwext := w and Πunlwext := unl

fact: B(θ )⊆ ΠwBext(θ ), moreover

B(θ ) = Πw
{

wext ∈Bext(θ ) | Πunlwext = φnl(x)
}
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FIR Volterra data-driven simulation
given

data wd = (ud,yd) of lag-` FIR Volterra system B
φnl — system’s model structure

assume ID conditions for Bext hold

then, B|L = imageM, where

M(wini,u) := HL(σ
`yd)


H`(wd)

HL(σ `ud)

H`

(
φnl(xud)

)
HL
(
σ `φnl(xud)

)


†
wini

u
φnl(xuini)

φnl(xu)


︸ ︷︷ ︸

g
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proof 
H`(wd)

HL(σ `ud)

H`

(
φnl(xud)

)
HL
(
σ `φnl(xud)

)
HL(σ `yd)

g =


wini

u
φnl(xuini)

φnl(xu)

y



}
B1}
B2}
B3

B1 constraint on g, such that wini∧
(
u,HL(σ `yd)g

)
∈Bext

B2 constraint unl = φnl(x) ⇐⇒ Bext = B(θ)
B3 defines the to-be-computed output y

generalized bilinear models
also tractable because B2: unl = φnl(x) is still linear in y
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