Behavioral Approach to Systems Theory

Ivan Markovsky

About the course

lectures

- give enough background information for the exercises
- extras: optional presentations on special topics

exercises

- this is a core part of the course, not an optional extra
- links to exercises are showing in red in these slides

mini-projects

- to be discussed individually
- compulsory for those who need evaluation

Outline

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

Outline

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

The classical approach views

 system as input-output map
the system is a signal processor
accepts input and produces output signal
intuition: the input causes the output

The input-output map view of the system is deficient: it ignores the initial condition

example: mass driven by external force

- input \leftrightarrow force
- output \leftrightarrow position
- ??? \leftrightarrow position and velocity at start (initial condition)
input-output maps assume zero initial condition
how to account for nonzero initial condition?

Taking into account the initial condition leads to the state-space approach

initial condition

paradigm shift from "classical" to "modern"
classical: scalar transfer function
modern: multivariable state-space

The modern state-space paradigm brought new theory, problems, and methods

state-space theory

- manifests the "finite memory" structure of the system
- brought the concepts of controllability and observability
- deals seamlessly with time-varying and MIMO systems
new problems / solution methods
- linear quadratic optimal control (LQ control)
- optimal state estimation (the Kalman filter)
- balanced model reduction

amenable for numerical computations

A case in point: optimal filtering (signal from noise separation)

Wiener filter (1942)

- transfer functions approach
- assumes stationarity
- no practical real-time method

Kalman filter (1960)

- state-space approach
- non-stationary processes
- recursive real-time solution

There are other awkward things with the input/output thinking

modeling from first principles leads to relations
the input/output partitioning is not unique
interconnection of systems is variables sharing

First principles modeling leads to relations

natural phenomena rarely operate as signal processors
the variables of interest satisfy relations, not functions
example: planetary orbits

More basic example: Ohmic resistor voltage and current satisfy relation

to-be-modeled variables: voltage V and current I
Ohm's law:

- $V=R I$, with R the resistance
- $I=C V$, with $C:=1 / R$ the conductance

Q: how to fit the limit cases

- open circuit - $R=\infty, C=0$
- short circuit - $R=0, C=\infty$
neatly in a unified framework?
A: V, I satisfy (linear) relation

The behavioral approach was put forward by Jan C. Willems in the 1980's

3-part, 70-page, 1986-1987 Automatica paper:
Part I. Finite dimensional linear time invariant systems Part II. Exact modelling
Part III. Approximate modelling

From Time Series to Linear SystemPart I. Finite Dimensional Linear Time Invariant Systems*

Jan C. Willems ${ }^{\dagger}$

Dynamical systems are defined in terms of their behaviour, and input/output systems appear as particular representations. Finite dimensional linear time invariant systems are characterized by the fact that their behaviour is a linear shift invariant complete (equivalently closed) subspace of $\left(\mathbb{R}^{q}\right)^{2}$ or $\left(\mathbb{R}^{q}\right)^{2+}$.

Jan C. Willems (1939-2013)

Critical revision of the input/output thinking

simple idea: the system is set of trajectories

- variables not partitioned into inputs and outputs
- the system is separated from its representations
the input/output approach is a special case
relevant for the emerging data-driven paradigm

The behavior is all that matters

"The operations allowed to bring model equations in a more convenient form are exactly those that do not change the behavior. Dynamic modeling and system identification aim at coming up with a specification of the behavior. Control comes down to restricting the behavior."
J. C. Willems, "The behavioral approach to open and interconnected systems: Modeling by tearing, zooming, and linking," Control Systems Magazine, vol. 27, pp. 46-99, 2007.

Analogy with solution of systems of equations

Q: what operations are allowed?

A: the ones that don't change the solution set
(for linear systems, the "elementary operations")
the solution set is all that matters

Classical definition of linear system $S: u \mapsto y$ is linear $\Longleftrightarrow S$ is linear function

for all u, v and $\alpha, \beta \in \mathbb{R}$,

$$
S: \alpha u+\beta v \mapsto \alpha S(u)+\beta S(v)
$$

The classical definition is deficient

(silently) assumes

- zero initial condition
- controllability
doesn't apply to autonomous systems
relaxing the assumptions requires state-space

Behavioral definition of linear system \mathscr{B} is linear $\Longleftrightarrow \mathscr{B}$ is subspace

for all $w, v \in \mathscr{B}$ and $\alpha, \beta \in \mathbb{R}$

$$
\alpha w+\beta v \in \mathscr{B}
$$

fixes the issues with

- nonzero initial condition
- autonomous systems
- controllable systems

Separating problems from solution methods

different representations \rightsquigarrow different methods

- with different properties (efficiency, robustness, ...)
- their common feature is that they solve the same problem
clarifies links among methods
leads to new methods

Summary: behavioral approach

detach the system from its representations

- define properties and problems in terms of the behavior
- lead to new, more general, definitions and problems
- avoid inconsistencies of the classical approach
separate problem from solution methods
- different representations lead to different methods
- show links among different methods
- lead to new solutions
naturally suited for the "data-driven paradigm"

Paradigms shifts

1940-1960 classical

1960-1980 modern

1980-2000 behavioral

2000-now data-driven

SISO transfer function

MIMO state-space
the system as a set
using directly the data

Outline

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

$\left(\mathbb{R}^{q}\right)^{\mathscr{T}}$ is the space of signals $w: \mathscr{T} \rightarrow \mathbb{R}^{q}$
\mathscr{T} - time axis

- \mathbb{R} or \mathbb{R}_{+}or $[0, T]$ - continuous-time
- \mathbb{Z} or \mathbb{N} or $\{1, \ldots, T\}$ - discrete-time
$\left(\mathbb{R}^{q}\right)^{\mathscr{T}}$ - real-valued q-variate signals
examples:
$-w \in\left(\mathbb{R}^{2}\right)^{\mathbb{N}} \quad \leftrightarrow \quad w=\left(\left[\begin{array}{l}w_{1}(1) \\ w_{2}(1)\end{array}\right], \ldots,\left[\begin{array}{l}w_{1}(t) \\ w_{2}(t)\end{array}\right], \ldots\right)$
$-w \in\left(\mathbb{R}^{2}\right)^{T} \quad \leftrightarrow \quad w=\left(\left[\begin{array}{l}w_{1}(1) \\ w_{2}(1)\end{array}\right], \ldots,\left[\begin{array}{l}w_{1}(T) \\ w_{2}(T)\end{array}\right]\right)$

It's a mistake to say "the signal $w(t)$ "

let $w \in\left(\mathbb{R}^{q}\right)^{\mathbb{N}}$ and $t \in \mathbb{N}$
then, $w(t) \in \mathbb{R}^{q}$ is the value of w at time t
$w(t)$ is not signal (in $\left(\mathbb{R}^{q}\right)^{\mathbb{N}}$), but vector (in $\left.\mathbb{R}^{q}\right)$
$w(\cdot)$ - specifies explicitly the time dependence of w

Use short, unambiguous, consistent notation

" $w=v$ " means

$$
" w(t)=v(t), \text { for all } t \in \mathscr{T} "
$$

shift operator σ

$$
(\sigma w)(t):=w(t+1), \text { for all } t \in \mathscr{T}
$$

For example

ℓ-th order vector difference equation

$$
R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0
$$

$$
\Uparrow
$$

$R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{\ell} w(t+\ell)=0$, for all $t \in \mathbb{N}$
first order state equation

$$
\begin{gathered}
\sigma x=A x+B u \\
\mathfrak{\Downarrow} \\
x(t+1)=A x(t)+B u(t), \text { for all } t \in \mathbb{N}
\end{gathered}
$$

Compact notation for difference equation

$$
R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0
$$

$$
\Uparrow
$$

$$
R(\sigma) w=0
$$

polynomial operator

$$
R(\sigma)=R_{0}+R_{1} \sigma+\cdots+R_{\ell} \sigma^{\ell}
$$

kernel of polynomial operator

$$
\operatorname{ker} R(\sigma):=\{w \mid R(\sigma) w=0\}
$$

We identify a dynamical system with its behavior, i.e., the set of trajectories
real-valued system \mathscr{B} with q variables and time-axis \mathscr{T} is a subset of $\left(\mathbb{R}^{q}\right)^{\mathscr{T}}$
in particular, we use set theoretic notation

$$
\begin{aligned}
w \in \mathscr{B} & \Longleftrightarrow w \text { is a trajectory of } \mathscr{B} \\
& \Longleftrightarrow \mathscr{B} \text { is an exact model of } w
\end{aligned}
$$

... and specify \mathscr{B} by representations

representation of the system $\mathscr{B} \subseteq\left(\mathbb{R}^{q}\right)^{\mathscr{T}}$

$$
\mathscr{B}=\left\{w \in\left(\mathbb{R}^{q}\right)^{\mathscr{T}} \mid \text { "constraints on } w^{"}\right\}
$$

for example

- kernel (KER) representation

$$
\mathscr{B}=\operatorname{ker} R(\sigma):=\left\{w \mid R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0\right\}
$$

- input/state/output (I/S/O) representation

$$
\mathscr{B}=\left\{\left.w=\Pi\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, \exists x \in\left(\mathbb{R}^{n}\right)^{\mathbb{N}},\left[\begin{array}{c}
\sigma x \\
y
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]\right\}
$$

Linearity and time-invariance are naturally defined in terms of \mathscr{B}

\mathscr{B} is linear system $\Longleftrightarrow \mathscr{B}$ is subspace
\mathscr{B} is time-invariant $\Longleftrightarrow \sigma^{\tau} \mathscr{B}:=\mathscr{B}$ for all τ

$$
\sigma \mathscr{B}=\{\sigma w \mid w \in \mathscr{B}\}
$$

\mathscr{L}^{q} - set of LTI systems with q variables

Equivalence of representations and transformations among them

exercise 3 - from I/S/O to KER representation

How to check if $w \in \mathscr{B}$?

depends on what representation of \mathscr{B} is used
different repr. leads to different methods
for example

- if \mathscr{B} is specified by vector difference equation

$$
w \in \mathscr{B} \quad \Longleftrightarrow \quad R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0
$$

- if \mathscr{B} is specified by input/state/output representation

$$
w \in \mathscr{B} \quad \Longleftrightarrow \quad \exists x \in\left(\mathbb{R}^{n}\right)^{\mathbb{N}},\left[\begin{array}{c}
\sigma x \\
y
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]
$$

$w \in \mathscr{B} \Longleftrightarrow$ system of linear equations

you have to derive them once

1. using I/S/O representation
exercise 1
2. using kernel representation
exercise 4

The finite-horizon behavior $\left.\mathscr{B}\right|_{L}$ is used for both analysis and computations
restriction of w to finite interval $[1, L]$

$$
\left.w\right|_{L}:=(w(1), \ldots, w(L)) \in\left(\mathbb{R}^{q}\right)^{L}
$$

restriction of \mathscr{B} to $[1, L]$

$$
\left.\mathscr{B}\right|_{L}:=\left\{\left.w\right|_{L} \mid w \in \mathscr{B}\right\} \subset\left(\mathbb{R}^{q}\right)^{L}
$$

if \mathscr{B} is linear, $\left.\mathscr{B}\right|_{L}$ is a subspace of $\left(\mathbb{R}^{q}\right)^{L}$
$\left.\mathscr{B}\right|_{L}$ can be obtained experimentally by collecting "informative" data
collect $N \geq q L$ random trajectories

$$
w_{\mathrm{d}}^{1}, \ldots,\left.w_{\mathrm{d}}^{N} \in \mathscr{B}\right|_{L}
$$

by the linearity of \mathscr{B}, we have

$$
\left.\operatorname{span}\left\{w_{\mathrm{d}}^{1}, \ldots, w_{\mathrm{d}}^{N}\right\} \subseteq \mathscr{B}\right|_{L}
$$

with probability one equality holds

Discrete-time LTI systems over finite horizon can be studied using linear algebra only

$\underbrace{\left[\begin{array}{ccc}w_{\mathrm{d}}^{1} & \cdots & w_{\mathrm{d}}^{N}\end{array}\right]}_{W} \in \mathbb{R}^{q L \times N}$ _ "trajectory matrix"
$\left.\widehat{\mathscr{B}}\right|_{L}=$ image W — "data-driven model" of $\left.\mathscr{B}\right|_{L}$ now, we can do explorations using Matlab

What is the dimension of $\left.\mathscr{B}\right|_{L}$?

take a random LTI system
$m=2 ; \mathrm{p}=5 ; \mathrm{n}=20 ; \mathrm{B}=\operatorname{drss}(\mathrm{n}, \mathrm{p}, \mathrm{m})$;
generate $q L$ random trajectories of length L

$$
\begin{aligned}
& L=100 ; q=m+p ; W=[] ; \text { vec }=@(a) a(:) ; \\
& \text { for } i=1: q * L \\
& u=\operatorname{rand}(L, m) ; x i n i=r a n d(n, 1) ; \\
& y=\lim (B, u,[], x i n i) ; \\
& \mathrm{w}=[\mathrm{u} y] ; \mathrm{W}=\left[\mathrm{W} \operatorname{vec}\left(\mathrm{w}^{\prime}\right)\right] \text {; } \\
& \text { end }
\end{aligned}
$$

assuming that image $W=\left.\mathscr{B}\right|_{L}$, find $\left.\operatorname{dim} \mathscr{B}\right|_{L}$
for $t=1: L, d(t)=\operatorname{rank}(W(1: q * t,:))$; end stem (d)

$\left.\operatorname{dim} \mathscr{B}\right|_{L}$ is a piecewise affine function of L

$\left.\operatorname{dim} \mathscr{B}\right|_{L} \quad$ irregular increase

in particular, $\left.\quad \operatorname{dim} \mathscr{B}\right|_{L}=m L+n, \quad$ for all $L \geq \ell$

The set of linear time-invariant systems \mathscr{L}

 has structure characterized by set of integersthe dimension of $\mathscr{B} \in \mathscr{L}$ is determined by
$\mathbf{m}(\mathscr{B})$ - number of inputs
$\ell(\mathscr{B})$ — lag (= observability index)
$\mathbf{n}(\mathscr{B})$ - order (= minimal state dimension)
exercise 2 - find $\ell(\mathscr{B})$ for given \mathscr{B}
exercise 6 - find $\mathbf{m}(\mathscr{B}), \ell(\mathscr{B}), \mathbf{n}(\mathscr{B})$ from $w_{\mathrm{d}} \in \mathscr{B}| |_{T_{\mathrm{d}}}$

\mathscr{B}_{1} less complex than \mathscr{B}_{2} $\Longleftrightarrow \quad \mathscr{B}_{1} \subset \mathscr{B}_{2}$

in the LTI case, complexity \leftrightarrow dimension
complexity: (\# inputs, order, lag)

$$
\mathbf{c}(\mathscr{B}):=(\mathbf{m}(\mathscr{B}), \mathbf{n}(\mathscr{B}), \ell(\mathscr{B}))
$$

\mathscr{L}_{c} — bounded complexity LTI model class

$$
\mathscr{L}_{c}^{q}:=\left\{\mathscr{B} \in \mathscr{L}^{q} \mid \mathbf{c}(\mathscr{B}) \leq c\right\}
$$

Finite vs infinite dimensional LTI systems

$\mathscr{B} \in \mathscr{L}^{q}$ finite-dimensional $: \Longleftrightarrow \mathbf{m}(\mathscr{B})<q$ $\mathbf{n}(\mathscr{B})<\infty$

equivalently

- \mathscr{B} has bounded complexity $\mathbf{c}(\mathscr{B})$
- \mathscr{B} admits KER and I/S/O representations
- \mathscr{B} admits rational transfer function representation
parametric representations of $\mathscr{B} \in \mathscr{L}_{C}^{q}$

Summary

$w \in\left(\mathbb{R}^{q}\right)^{\mathscr{T}}-q$-variate signal
$\mathscr{B} \in \mathscr{L}^{q}-q$-variate LTI system
$\left.\operatorname{dim} \mathscr{B}\right|_{L}=\mathbf{m}(\mathscr{B}) L+\mathbf{n}(\mathscr{B}), \quad$ for all $L \geq \ell(\mathscr{B})$
exercise 1 - state-space proof of the formula

Initial conditions specified by "past" trajectory

$$
w=w_{p} \wedge w_{f}
$$

exercise 23 - dealing with nonzero initial conditions

How long should w_{p} be in order to specify the initial conditions for w_{\uparrow} ?

answer: at least $\boldsymbol{\ell}(\mathscr{B})$ samples
in general, there are infinitely many w_{p} 's that specify the same initial condition
w_{p} is a non-minimal state vector

Input/output partitioning of the variables

$w=: \Pi\left[\begin{array}{l}u \\ y\end{array}\right]$, with Π permutation, such that
u is input := free variable
y is output: $=$ uniquely defined by $\mathscr{B}, w_{\text {ini }}$, and u
simulation problem: $\left(\mathscr{B}, w_{\text {ini }}, u\right) \mapsto y$
section 4 of the exercises
parametrization of w by u and $w_{\text {ini }}$

Finding initial conditions (observer)

given \mathscr{B} and $\left.w_{f} \in \mathscr{B}\right|_{T_{\mathrm{f}}}$, find $w_{\mathrm{p}} \in\left(\mathbb{R}^{q}\right)^{T_{\mathrm{p}}}$, s.t.

$$
\left.w_{\mathrm{p}} \wedge w_{\mathrm{f}} \in \mathscr{B}\right|_{T_{\mathrm{p}}+T_{\mathrm{f}}}
$$

exercise 23 - finding initial conditions
feasibility problem, solution always exists (why?)
in general, it is not unique (is this an issue?)

Initial conditions estimation (smoothing)

given \mathscr{B} and $w_{\mathrm{f}} \in\left(\mathbb{R}^{q}\right)^{T_{\mathrm{f}}}$, find $w_{\mathrm{p}} \in\left(\mathbb{R}^{q}\right)^{T_{\mathrm{p}}}$ that
minimize over $\widehat{W}_{\mathrm{p}}, \widehat{W}_{\mathrm{f}} \quad\left\|w_{\mathrm{f}}-\widehat{W}_{\mathrm{f}}\right\|$
subject to $\left.\quad \widehat{W}_{\mathrm{p}} \wedge \widehat{W}_{\mathrm{f}} \in \mathscr{B}\right|_{T_{\mathrm{p}}+T_{\mathrm{f}}}$
section 6 of the exercises
as byproduct we find "smoothed" trajectory \widehat{w}_{f}
errors-in-variables (EIV) smoother

Projection on \mathscr{B}

given \mathscr{B} and $w \in\left(\mathbb{R}^{q}\right)^{T}$, find $\widehat{w} \in\left(\mathbb{R}^{q}\right)^{T}$ that

$$
\begin{array}{ll}
\text { minimize over } \widehat{w}\|w-\widehat{w}\| \\
\text { subject to } \\
\left.\widehat{w} \in \mathscr{B}\right|_{T}
\end{array}
$$

equivalent to the EIV smoothing problem
prior knowledge about the initial conditions

- completely unknown
- uncertain (mean value and covariance are given)
- given exactly

Most powerful unfalsified model of $\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right)$

exact identification problem

$\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right):=\arg \underbrace{\min _{\hat{\mathscr{B}} \in \mathscr{L}} \mathrm{C}(\widehat{\mathscr{B}})}_{\text {most powerful }}$ subject to $\underbrace{w_{\mathrm{d}} \in \widehat{\mathscr{B}}}_{\text {unfalsified model }}$

multi-objective optimization problem

- complexities are compared in the lexicographic order
- more inputs imply higher complexity irrespective of order
feasibility and uniqueness are guaranteed

$$
\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right):=\operatorname{span}\left\{w_{\mathrm{d}}, \sigma w_{\mathrm{d}}, \sigma^{2} w_{\mathrm{d}}, \ldots\right\}
$$

There is a problem with $\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right)$ in case of finite data $w_{\mathrm{d}} \in\left(\mathbb{R}^{q}\right)^{T_{\mathrm{d}}}$
$\widehat{\mathscr{B}}:=\mathscr{B}_{\text {mpum }}\left(W_{\mathrm{d}}\right)$ is autonomous exercise 5
solution: impose the upper bound

$$
\ell(\widehat{B}) \leq \ell_{\max }:=\left\lfloor\frac{T_{\mathrm{d}}+1}{q+1}\right\rfloor-1
$$

exact identification - $\mathscr{B}_{\text {mpum }}\left(W_{\mathrm{d}}\right)$ computation exercise 7 - find kernel repr. of $\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right)$

Summary

"past" trajectory — specifies initial conditions
simulation: with $w=: \Pi\left[\begin{array}{l}u\end{array}\right],\left(\mathscr{B}, w_{\text {ini }}, u\right) \mapsto y$
inverse problem: $w_{\mathrm{d}} \mapsto \mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right)$

More system properties

controllability

autonomy

stability

What means that \mathscr{B} is controllable?

controllability is the property of "patching" any past trajectory with any future trajectory

$$
w_{\mathrm{p}} \wedge w_{\mathrm{c}} \wedge w_{\mathrm{f}} \in \mathscr{B}
$$

Compare with the classical definition: transfer from any initial to any terminal state

property of a state-space representation of \mathscr{B}

- is lack of controllability due to a "bad" choice of the state or due to an intrinsic issue with the system?
- in the LTI case, does it make sense to talk about controllability of a transfer function representation?
- how to quantify the "distance" to uncontrollability?
does not apply to infinite dimensional system

Methods for checking controllability

how to check controllability of an LTI system?

using state-space representation:

1. ensure minimality (in the behavioral sense)
2. perform rank test for the controllability matrix
using matrix fraction representation:

$$
\mathscr{B}=\left\{\left.w=\Pi\left[\begin{array}{l}
u \\
y
\end{array}\right] \in\left(\mathbb{R}^{q}\right)^{\mathbb{N}} \right\rvert\, N(\sigma) u=D(\sigma) y\right\}
$$

- facts: \mathscr{B} is controllable $\Longleftrightarrow N$ and D are co-prime
- \rightsquigarrow rank test for the (generalized) Sylvester matrix

\mathscr{B} autonomous $\Longleftrightarrow \mathscr{B}$ has no inputs

autonomy: most extreme uncontrollability
any system has decomposition

$$
\mathscr{B}=\mathscr{B}_{\text {controllable }}+\mathscr{B}_{\text {autonomous }}
$$

$\mathscr{B} \in \mathscr{L}^{a}$ and autonomous if and only if
$w \in \mathscr{B}$ is sum of polynomials times exponentials

Stability is naturally property of the behavior

\mathscr{B} stable $\Longleftrightarrow w(t) \rightarrow 0$ as $t \rightarrow \infty$, for all $w \in \mathscr{B}$
stability implies autonomy
$\mathscr{B} \in \mathscr{L}^{q}$ and stable if and only if
$w \in \mathscr{B}$ converges exponentially to 0

Summary

controllability: patching past/future trajectories

autonomy: no inputs $(\mathbf{m}(\mathscr{B})=0)$

- decomposition into controllable and autonomous
- $\mathscr{B} \in \mathscr{L}^{q}$ autonomous $\Longleftrightarrow w=\sum_{i=1}^{n}$ polynomial $_{i} \times \exp _{\lambda_{i}}$
- $\lambda_{1}, \ldots, \lambda_{n}$ - poles of the system \mathscr{B}
stability: $w(t) \rightarrow 0$ as $t \rightarrow \infty$, for all $w \in \mathscr{B}$
- BIBO stability is not a property of \mathscr{B}

Outline

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

The new "data-driven" paradigm obtains desired solution directly from given data

Data-driven does not mean model-free

data-driven problems do assume model
however, specific representation is not fixed
the methods we review are non-parametric

Data-driven representation (infinite horizon)

data: exact infinite trajectory w_{d} of $\mathscr{B} \in \mathscr{L}$
$\widehat{\mathscr{B}}=\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right)=\operatorname{span}\left\{w_{\mathrm{d}}, \sigma w_{\mathrm{d}}, \sigma^{2} w_{\mathrm{d}}, \ldots\right\}$
identifiability condition: $\quad \mathscr{B}=\widehat{\mathscr{B}}$

Consecutive application of σ on finite w_{d} results in Hankel matrix with missing values

$$
\begin{aligned}
& \begin{array}{cccc}
\sigma^{0} w_{\mathrm{d}} & \sigma^{1} w_{\mathrm{d}} & \cdots & \sigma^{T_{\mathrm{d}}-1} w_{\mathrm{d}} \\
\hline w_{\mathrm{d}}(1) & w_{\mathrm{d}}(2) & \cdots & w_{\mathrm{d}}\left(T_{\mathrm{d}}\right)
\end{array} \\
& w_{\mathrm{d}}(2) \quad \vdots \quad . \cdot \quad ? \\
& \vdots \quad w_{\mathrm{d}}\left(T_{\mathrm{d}}\right) \quad . \cdot \\
& w_{\mathrm{d}}\left(T_{\mathrm{d}}\right) \quad ? \quad \cdots \quad ? \\
& \text { for } w_{\mathrm{d}}=\left(w_{\mathrm{d}}(1), \ldots, w_{\mathrm{d}}\left(T_{\mathrm{d}}\right)\right) \text { and } 1 \leq L \leq T_{\mathrm{d}} \\
& \mathscr{H}_{L}\left(w_{\mathrm{d}}\right):=\left[\begin{array}{llll}
\left.\left(\sigma^{0} w_{\mathrm{d}}\right)\right|_{L} & \left.\left(\sigma^{1} w_{\mathrm{d}}\right)\right|_{L} & \cdots & \left.\left(\sigma^{T_{\mathrm{d}}-L} w_{\mathrm{d}}\right)\right|_{L}
\end{array}\right]
\end{aligned}
$$

Data-driven representation (finite horizon)

the finite horizon data-driven representation

$$
\left.\mathscr{B}\right|_{L}=\left.\widehat{\mathscr{B}}\right|_{L}:=\text { image } \mathscr{H}_{L}\left(w_{\mathrm{d}}\right) \quad \text { (DD-REPR) }
$$

holds if and only if

$$
\operatorname{rank} \mathscr{H}_{L}\left(w_{\mathrm{d}}\right)=\operatorname{Lm}(\mathscr{B})+\mathbf{n}(\mathscr{B})
$$

GPE - generalized persistency of excitation exercise 1 - from I/S/O representation to $\left.\mathscr{B}\right|_{L}$

Identifiability condition

 verifiable from $\left.w_{\mathrm{d}} \in \mathscr{B}\right|_{T_{\mathrm{d}}}$ and (m, ℓ, n)fact: $\mathscr{B}=\left.\mathscr{B}^{\prime} \Longleftrightarrow \mathscr{B}\right|_{\ell+1}=\left.\mathscr{B}^{\prime}\right|_{\ell+1}$, then

$$
\begin{aligned}
\widehat{\mathscr{B}}=\mathscr{B} & \left.\Longleftrightarrow \widehat{\mathscr{B}}\right|_{\ell+1}=\left.\mathscr{B}\right|_{\ell+1} \\
& \left.\Longleftrightarrow \operatorname{dim} \widehat{\mathscr{B}}\right|_{\ell+1}=\left.\operatorname{dim} \mathscr{B}\right|_{\ell+1}
\end{aligned}
$$

\mathscr{B} is identifiable from $\left.w_{\mathrm{d}} \in \mathscr{B}\right|_{T_{\mathrm{d}}}$ if and only if

$$
\operatorname{rank} \mathscr{H}_{\ell+1}\left(w_{\mathrm{d}}\right)=(\ell+1) m+n
$$

The "fundamental lemma" is an input design result

J.C. Willems et al., A note on persistency of excitation Systems \& Control Letters, (54)325-329, 2005
sufficient conditions for (DD-REPR)

1. $w_{d}=\left[\begin{array}{l}u_{d} \\ y_{d}\end{array}\right]$
2. \mathscr{B} controllable
3. $\mathscr{H}_{L+n}\left(u_{\mathrm{d}}\right)$ full row rank

PE - persistency of excitation

Generic data-driven problem: trajectory interpolation/approximation

given:

$$
\begin{array}{ll}
\text { "data trajectory" } & \left.w_{\mathrm{d}} \in \mathscr{B}\right|_{T_{\mathrm{d}}} \\
\text { and elements } & \left.w\right|_{\text {given }} \\
\text { of a trajectory } & \left.w \in \mathscr{B}\right|_{T}
\end{array}
$$

$\left(\left.w\right|_{\text {given }}\right.$ selects the elements of w, specified by $\left.I_{\text {given }}\right)$
aim:

$$
\text { minimize over } \widehat{w} \quad\left\|\left.w\right|_{\text {gliven }}-\left.\widehat{w}\right|_{\text {given }}\right\|
$$

subject to $\left.\quad \widehat{w} \in \mathscr{B}\right|_{T}$

$$
\widehat{w}=\left.\mathscr{H}_{T}\left(w_{\mathrm{d}}\right)\left(\left.\mathscr{H}_{T}\left(w_{\mathrm{d}}\right)\right|_{\text {Igiven }}\right)^{+} w\right|_{l_{\text {given }}}
$$

Special cases

simulation

section 4

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

sections 6 and 7

- given data: noisy trajectory
- to-be-found: ℓ_{2}-optimal approximation

tracking control

- given data: to-be-tracked trajectory
- to-be-found: ℓ_{2}-optimal approximation

Generalizations

multiple data trajectories $w_{\mathrm{d}}^{1}, \ldots, w_{\mathrm{d}}^{N}$

$$
\left.\widehat{\mathscr{B}}\right|_{L}=\text { image } \underbrace{\left[\begin{array}{lll}
\mathscr{H}_{L}\left(w_{\mathrm{d}}^{1}\right) & \cdots & \mathscr{H}_{L}\left(w_{\mathrm{d}}^{N}\right)
\end{array}\right]}_{\text {mosaic-Hankel matrix }}
$$

w_{d} not exact / noisy
mini-projects
maximum-likelihood estimation
\rightsquigarrow Hankel structured low-rank approximation/completion nuclear norm and ℓ_{1}-norm relaxations
\rightsquigarrow nonparametric, convex optimization problems

nonlinear systems

mini-projects
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, ...

Summary: data-driven signal processing

data-driven representation
leads to general, simple, practical methods
interpolation/approximation of trajectories
simulation, filtering and control are special cases assumes only LTI dynamics; no hyper parameters
dealing with noise and nonlinearities
nonlinear optimization
convex relaxations

The data w_{d} being exact vs inexact / "noisy"

w_{d} exact and satisfying (GPE)

- "systems theory" problems
- image $\mathscr{H}_{L}\left(w_{d}\right)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution
w_{d} inexact, due to noise and/or nonlinearities
- naive approach: apply the solution (SOL) for exact data
- rigorous: assume noise model \rightsquigarrow ML estimation problem
- heuristics: convex relaxations of the ML estimator

The maximum-likelihood estimation problem in the errors-in-variables setup is nonconvex

errors-in-variables setup: $\quad w_{d}=\bar{w}_{\mathrm{d}}+\widetilde{w}_{\mathrm{d}}$

- \bar{w}_{d} - true data, $\left.\bar{w}_{d} \in \mathscr{B}\right|_{T_{\mathrm{d}}}, \mathscr{B} \in \mathscr{L}_{c}^{q}$
- $\widetilde{w}_{\mathrm{d}}$ - zero mean, white, Gaussian measurement noise

ML problem: given w_{d}, c, and $\left.w\right|_{l_{\text {given }}}$
$\underset{g}{\operatorname{minimize}}\left\|\left.w\right|_{l_{\text {given }}}-\left.\mathscr{H}_{T}\left(\widehat{W}_{\mathrm{d}}^{*}\right)\right|_{l_{\text {given }}} g\right\|$
subject to $\quad \widehat{w}_{\mathrm{d}}^{*}=\arg \min _{\widehat{w_{\mathrm{d}}}, \widehat{\mathscr{B}}} \quad\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|$
subject to $\left.\quad \widehat{w}_{\mathrm{d}} \in \widehat{\mathscr{B}}\right|_{T_{\mathrm{d}}}$ and $\widehat{\mathscr{B}} \in \mathscr{L}_{c}^{q}$

The ML estimation problem is equivalent to Hankel structured low-rank approximation

$\underset{g}{\operatorname{minimize}}\left\|\left.w\right|_{l_{\text {given }}}-\left.\mathscr{H}_{T}\left(\widehat{w}_{\mathrm{d}}^{*}\right)\right|_{l_{\text {given }}} g\right\|$
subject to $\quad \widehat{w}_{\mathrm{d}}^{*}=\arg \min _{\widehat{w}_{\mathrm{d}}, \widehat{\mathscr{B}}} \quad\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|$ subject to $\left.\quad \widehat{w}_{\mathrm{d}} \in \widehat{\mathscr{B}}\right|_{T_{\mathrm{d}}}$ and $\widehat{\mathscr{B}} \in \mathscr{L}_{C}^{q}$

$$
\Uparrow
$$

$\underset{g}{\operatorname{minimize}}\left\|\left.w\right|_{l_{\text {given }}}-\left.\mathscr{H}_{T}\left(\widehat{w}_{\mathrm{d}}^{*}\right)\right|_{l_{\text {given }}} g\right\|$
subject to $\quad \widehat{w}_{\mathrm{d}}^{*}=\arg \min _{\widehat{w}_{\mathrm{d}}}\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|$ subject to rank $\mathscr{H}_{\ell+1}\left(\widehat{w}_{\mathrm{d}}\right) \leq(\ell+1) m+n$

Solution methods

local optimization

- choose a parametric representation of $\widehat{\mathscr{B}}(\theta)$
- optimize over $\widehat{w}, \widehat{w_{d}}$, and θ
- depends on the initial guess

convex relaxation based on the nuclear norm

minimize over \widehat{w}_{d} and $\widehat{w} \quad\left\|\left.w\right|_{l_{\text {given }}}-\left.\widehat{w}\right|_{l_{\text {given }}}\right\|+\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|$

$$
+\gamma \cdot\left\|\left[\begin{array}{ll}
\mathscr{H}_{\Delta}\left(\widehat{w}_{\mathrm{d}}\right) & \mathscr{H}_{\Delta}(\widehat{w})
\end{array}\right]\right\|_{*}
$$

convex relaxation based on ℓ_{1}-norm (LASSO) minimize over $g \quad\left\|\left.w\right|_{l_{\text {given }}}-\left.\mathscr{H}_{T}\left(w_{\mathrm{d}}\right)\right|_{I_{\text {given }}} g\right\|+\lambda\|g\|_{1}$

Empirical validation on real-life datasets

	data set name	T_{d}	m	p
1	Air passengers data	144	0	1
2	Distillation column	90	5	3
3	pH process	2001	2	1
4	Hair dryer	1000	1	1
5	Heat flow density	1680	2	1
6	Heating system	801	1	1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976
B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4-5, 1997

ℓ_{1}-norm regularization with optimized λ achieves the best performance

$$
e_{\text {missing }}:=\frac{\left\|\left.w\right|_{I_{\text {missing }}}-\left.\widehat{w}\right|_{\text {missing }}\right\|}{\left\|\left.w\right|_{\text {missing }}\right\|} 100 \%
$$

data set name	naive	ML	LASSO	
1 Air passengers data	3.9	fail	3.3	
2 Distillation column	19.24	17.44	9.30	
3	pH process	38.38	85.71	12.19
4 Hair dryer	12.35	8.96	7.06	
5 Heat flow density	7.16	44.10	3.98	
6	Heating system	0.92	1.35	0.36

Tuning of λ and sparsity of g (datasets 1,2)

Tuning of λ and sparsity of g (datasets 3,4)

Tuning of λ and sparsity of g (datasets 5,6)

Summary: convex relaxations

w_{d} exact \rightsquigarrow systems theory

- exact analytical solution
- current work: efficient real-time algorithms
w_{d} inexact \rightsquigarrow nonconvex optimization
- subspace methods
- local optimization
- convex relaxations

empirical validation

- the naive approach works (surprisingly) well
- parametric local optimization is not robust
- ℓ_{1}-norm regularization gives the best results

Extras

Constructive proof of the fundamental lemma
Pedagogical example: Free fall prediction
Case study: Dynamic measurement
Nonparametric frequency response estimation
Generalization for nonlinear systems

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

The fundamental lemma gives data-driven

 finite horizon representation of LTI system $\mathscr{B}$$$
\left.\mathscr{B}\right|_{L}=\operatorname{image} \mathscr{H}_{L}\left(w_{\mathrm{d}}\right) \quad \text { (DD-REPR) }
$$

assumptions:
AO $w_{d}=\left[\begin{array}{l}u_{\mathrm{d}} \\ y_{\mathrm{d}}\end{array}\right]$ is a trajectory of an LTI system \mathscr{B}
A1 \mathscr{B} is controllable
A2 u_{d} is persistently exciting of order $L+n$

Decoding the notation $\left.\mathscr{B}\right|_{L}=$ image $\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)$

\mathscr{B} - system's behavior, i.e., set of trajectories
$\left.\mathscr{B}\right|_{L}$ — restriction of \mathscr{B} to the interval $[1, L]$
$w_{\mathrm{d}}:=\left(w_{\mathrm{d}}(1), \ldots, w_{\mathrm{d}}\left(T_{\mathrm{d}}\right)\right)$ - "data" trajectory
$\mathscr{H}_{L}\left(w_{d}\right):=\left[\begin{array}{cccc}w_{d}(1) & w_{d}(2) & \cdots & w_{d}\left(T_{d}-L+1\right) \\ \vdots & \vdots & & \vdots \\ w_{d}(L) & w_{d}(L+1) & \cdots & w_{d}\left(T_{d}\right)\end{array}\right]$
$\operatorname{PE}\left(u_{\mathrm{d}}\right):=\max L$, such that $\mathscr{H}_{L}\left(u_{\mathrm{d}}\right)$ is f.r.r.

We address the following issues/questions

proof by contradiction
What is the meaning/interpretation of the conditions?
sufficiency of the conditions
How conservative are they? Can they be improved?
conjecture
The extra PE of order n is generically not needed. What are the nongeneric cases when it is needed?

Answers

constructive proof in the single-input case

$$
\begin{aligned}
\operatorname{PE}\left(u_{\mathrm{d}}\right)=n_{u} \Longleftrightarrow & \left.u_{\mathrm{d}} \in \mathscr{B}_{u}\right|_{T_{\mathrm{d}}}, \text { where } \mathscr{B}_{u} \text { is } \\
& \text { autonomous LTI of order } n_{u}
\end{aligned}
$$

shows that the FL is nonconservative conjecture: it is conservative in the multi-input case
characterizes the nongeneric cases they correspond to special initial conditions

Necessary and sufficient condition for the data-driven representation

$$
\operatorname{rank} \mathscr{H}_{L}\left(w_{\mathrm{d}}\right)=m L+n
$$

(GPE)
nonconservative (necessary and sufficient)
general no I/O partitioning and controllability
verifiable from w_{d} with prior knowledge of (m, n)

The fundamental lemma is input design result

input design problem
choose u_{d}, so that (DD-REPR) holds for any initial cond.
refined problem statement
find nonconservative conditions on u_{d} and \mathscr{B}, under which
for $\forall w_{\text {d, ini }}, w_{\text {d, ini }} \wedge w_{\mathrm{d}} \in \mathscr{B}| |_{T_{\text {ini }}+T_{\mathrm{d}}}$ satisfies (GPE) (GOAL)
subproblem: find $w_{\text {ini }}$ that minimize rank $\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)$

Obvious necessary conditions

A0: exact representation requires exact data and input design requires input/output partition

A1: for uncontrollable $\mathscr{B}=\mathscr{B}_{\text {ctr }} \oplus \mathscr{B}_{\text {aut }}$

- $w_{\mathrm{d}} \in \mathscr{B} \Longrightarrow w_{\mathrm{d}}=w_{\mathrm{d}, \mathrm{ctr}}+w_{\mathrm{d}, \mathrm{aut}}, w_{\mathrm{d}, \mathrm{ctr}} \in \mathscr{B}_{\mathrm{ctr}}, w_{\mathrm{d}, \mathrm{aut}} \in \mathscr{B}_{\mathrm{aut}}$
- $w_{\mathrm{d}, \mathrm{aut}}$ is completely determined by $w_{\mathrm{d}, \text { ini }}$
- there is $w_{\mathrm{d}, \mathrm{ini}}$, such that $w_{\mathrm{d}, \mathrm{aut}}=0 \Longrightarrow$ (GPE) doesn't hold
$\mathrm{A} 2^{\prime}: u_{d}$ is persistently exciting of order L
- since u is an input, $\left.\Pi_{u} \mathscr{B}\right|_{L}=\mathbb{R}^{\mathbf{m}(\mathscr{B}) L}$
- for (GPE) to hold true, image $\mathscr{H}_{L}\left(u_{\mathrm{d}}\right)=\mathbb{R}^{\mathbf{m}(\mathscr{B}) L}$
- equivalently, $\mathscr{H}_{L}\left(u_{\mathrm{d}}\right)$ must be full row-rank

Find the minimal k, such that (GOAL) holds under $\mathrm{A} 0, \mathrm{~A} 1$, and $\mathrm{PE}\left(u_{\mathrm{d}}\right)=L+k$
first, we solve the subproblem
find $w_{\text {ini }}^{*}$ that minimize rank $\mathscr{H}_{L}\left(w_{d}\right)$
then, we check (GPE) for $w_{\text {ini }}^{*}$
\rightsquigarrow minimal $k \Longrightarrow$ nonconservative PE condition

The PE condition is equivalent to existence of an LTI input model

$$
u_{\mathrm{d}} \in(\mathbb{R})^{T_{\mathrm{d}}} \quad \text { and } \operatorname{PE}\left(u_{\mathrm{d}}\right)=n_{u}
$$

$$
\Uparrow
$$

$\left.u_{\mathrm{d}} \in \mathscr{B}{ }_{u}\right|_{T_{\mathrm{d}}}$ - autonomous LTI, $\quad T_{\mathrm{d}} \geq 2 n_{u}-1$
$\mathscr{B}_{u}=\mathscr{B}_{\mathrm{ss}}\left(A_{u}, C_{u}\right)$ with $\left(A_{u}, x_{u, \text { ini }}\right)$ controllable

Augmented system with the input model

$$
\mathscr{B}_{\text {ext }}=\mathscr{B}_{\mathrm{ss}}\left(A_{\text {ext }}, C_{\text {ext }}\right), \text { with } x_{\text {ext }}=\left[\begin{array}{c}
x_{u} \\
\chi
\end{array}\right]
$$

$$
A_{\mathrm{ext}}=\left[\begin{array}{cc}
A_{u} & 0 \\
B C_{u} & A
\end{array}\right] \quad C_{\mathrm{ext}}=\left[\begin{array}{cc}
C_{u} & 0 \\
D C_{u} & C
\end{array}\right]
$$

$\mathscr{B}_{\text {ext }}=\mathscr{B}_{\text {ss }}\left(A_{\text {ext }}^{\prime}, C_{\text {ext }}^{\prime}\right)$, where $x_{\text {ext }}^{\prime}=\left[\begin{array}{c}v_{u} \\ x_{u}+x\end{array}\right]$

$$
A_{\text {ext }}^{\prime}=\left[\begin{array}{cc}
A_{u} & 0 \\
0 & A
\end{array}\right], \quad C_{\text {ext }}^{\prime}=\left[\begin{array}{ll}
C_{u} & 0 \\
C^{\prime} & C
\end{array}\right], \quad C^{\prime}:=D C_{u}-C V
$$

V is solution of the Sylvester equation $A V-V A_{u}=B C_{u}$

The nongeneric cases correspond to special initial conditions $x_{\text {ini }}=-V x_{u, \text { ini }}$

which eliminates from w_{d} the transient due to \mathscr{B}
then, rank $\mathscr{H}_{L}\left(w_{\mathrm{d}}\right) \leq \operatorname{PE}\left(u_{\mathrm{d}}\right)=n_{u}$
next, we show that rank $\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)=n_{u}$

assume simple eigenvalues $\lambda_{u, 1}, \ldots, \lambda_{u, n_{u}}$ of \mathscr{B}_{u}

$$
u_{\mathrm{d}}=\sum_{i=1}^{n_{U}} a_{i} \exp _{\lambda_{u, i}}
$$

assume simple eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of \mathscr{B}

$$
y_{\mathrm{d}}=\sum_{i=1}^{n_{u}} b_{i} \exp _{\lambda_{u, i}}+\underbrace{\sum_{j=1}^{n} c_{j} \exp _{\lambda_{j}}}_{\text {transient }}
$$

- $b_{i}=H\left(e^{\mathrm{i} \lambda_{u, i}}\right) a_{i}$, where $H(z):=C(I z-A)^{-1} B+D$
- $w_{\text {ini }}=w_{\text {ini }}^{*} \Longrightarrow c_{j}=0$
using Vandermonde matrix, we rewrite $\left(u_{d}, y_{d}\right)$

$$
u_{\mathrm{d}}=\underbrace{\left[\begin{array}{ccc}
\lambda_{u, 1}^{1} & \cdots & \lambda_{u, n_{u}}^{1} \\
\vdots & & \vdots \\
\lambda_{u, 1}^{T_{\mathrm{d}}} & \cdots & \lambda_{u, n_{u}}^{T_{\mathrm{d}}}
\end{array}\right]}_{V_{T_{\mathrm{d}}}\left(\lambda_{u}\right)} \underbrace{\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n_{u}}
\end{array}\right]}_{a}=V_{T_{\mathrm{d}}}\left(\lambda_{u}\right) a
$$

and

$$
\begin{aligned}
y_{\mathrm{d}} & =V_{T_{\mathrm{d}}}\left(\lambda_{u}\right) \underbrace{\left[\begin{array}{lll}
H\left(e^{\mathrm{i} \lambda_{u, 1}}\right) & & \\
& & \ddots
\end{array}\right.}_{H\left(\lambda_{u}\right)} \begin{aligned}
{\left[\begin{array}{lll}
\\
& & H\left(e^{\left.\mathbf{i} \lambda_{u, n_{u}}\right)}\right]
\end{array}\right.}
\end{aligned}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n_{u}}
\end{array}\right] \\
& =V_{T_{\mathrm{d}}}\left(\lambda_{u}\right) \underbrace{H\left(\lambda_{u}\right) a}_{b}=V_{T_{\mathrm{d}}}\left(\lambda_{u}\right) b
\end{aligned}
$$

then, for w_{d}, we obtain

$$
w_{\mathrm{d}}=\Pi_{T_{\mathrm{d}}}\left[\begin{array}{c}
V_{T_{\mathrm{d}}}\left(\lambda_{u}\right) \\
V_{T_{\mathrm{d}}}\left(\lambda_{u}\right) H\left(\lambda_{u}\right)
\end{array}\right] a
$$

$$
\Pi_{T_{\mathrm{d}}} \in \mathbb{R}^{2 T_{\mathrm{d}} \times 2 T_{\mathrm{d}}} \text { permutation, such that } w_{\mathrm{d}}=\Pi_{T_{\mathrm{d}}}\left[\begin{array}{l}
u_{\mathrm{d}} \\
y_{\mathrm{d}}
\end{array}\right]
$$

finally, the Hankel matrix is expressed as

$$
\begin{gathered}
\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)=\underbrace{\Pi_{L}\left[\begin{array}{c}
V_{L}\left(\lambda_{u}\right) \\
V_{L}\left(\lambda_{u}\right) H\left(\lambda_{u}\right)
\end{array}\right]}_{W_{L}} \underbrace{\left[\begin{array}{llll}
a & \Lambda_{u} a & \Lambda_{u}^{2} a & \cdots
\end{array} \Lambda_{u}^{T_{d}-L} a\right.}_{\text {controllability matrix of }\left(\Lambda_{u}, a\right)}]
\end{gathered}
$$

$\left(\Lambda_{u}, a\right)$ is controllable because $\operatorname{PE}\left(u_{d}\right)=n_{u}$

1. $a_{i} \neq 0$ for all i
2. $\lambda_{u, i} \neq \lambda_{u, j}$ for all $i \neq j$
for $k \leq n, W_{L}$ is full column rank

- with $W_{L}=\left[\begin{array}{lll}w^{1} & \ldots & w^{n_{u}}\end{array}\right], w^{i}$ are trajectories $\left(\left.w^{i} \in \mathscr{B}\right|_{L}\right)$
- $\lambda_{u, i} \neq \lambda_{u, j}$ for all $i \neq j \Longrightarrow$ independent responses
rank $\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)= \begin{cases}L+k, & \text { for } k=1, \ldots, n \\ L+n, & \text { for } k=n+1, \ldots\end{cases}$
$k=n$ is the minimal value for (GPE) to hold

Comments

the zeros of \mathscr{B} don't play role in the analysis
simple eigenvalues assumptions can be relaxed
"robustifying" the conditions
exact condition:
$a_{i} \neq 0$, for all i
$\lambda_{u, i} \neq \lambda_{u, j}$, for all $i \neq j$
robust version:
$a_{i}>\varepsilon$
the $\lambda_{u, i}$'s are "well spread"
conjecture: in multi-input case, A2 can be tightened, $\mathrm{PE}\left(u_{\mathrm{d}}\right)=n+$ controllability index \mathscr{B}

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

The goal is to predict free fall trajectory without knowing the laws of physics

object with mass m, falling in gravitational field

- y - position
- $v:=\dot{y}$ - velocity
- $y(0), v(0)$ - initial condition
task: given initial condition, find the trajectory y
- model-based approach:

1. physics \mapsto model
2. model + ini. cond. $\mapsto y$

- data-driven approach: data $y_{\mathrm{d}}^{1}, \ldots, y_{\mathrm{d}}^{N}+$ ini. cond. $\mapsto y$

Modeling from first principles leads to affine time-invariant state-space model
second law of Newton + the law of gravity
$m \ddot{y}=m\left[{ }_{9.81}^{0}\right]+f, \quad$ where $\quad y(0)=y_{\text {ini }}$ and $\dot{y}(0)=v_{\text {ini }}$

- 9.81 - gravitational constant
- $f=-\gamma v$ - force due to friction in the air
state $x:=\left(y_{1}, \dot{y}_{1}, y_{2}, \dot{y}_{2}, x_{5}\right)$, where $x_{5}=-9.81$
initial state $x_{\mathrm{ini}}:=\left(y_{\mathrm{ini}, 1}, v_{\mathrm{ini}, 1}, y_{\mathrm{ini}, 2}, v_{\mathrm{ini}, 2},-9.81\right)$

Modeling from first principles leads to affine time-invariant state-space model

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccccc}
0 & 1 & & & \\
0 & -\gamma / m & & & \\
& & 0 & 1 & \\
& & 0 & -\gamma / m & 1 \\
& & & & 0
\end{array}\right] x, \quad x(0)=\left[\begin{array}{c}
y_{\text {ini, }} \\
v_{\text {ini, }} \\
y_{\text {ini, } 2} \\
v_{\text {ini,2 }} \\
-9.81
\end{array}\right] \\
& y=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] x
\end{aligned}
$$

data: N, T-samples long discretized trajectories

Simulation setup and data

write a function fall that simulates free fall
$y=f a l l(y 0, v 0, t, m$, gamma)
simulate $\mathrm{N}=10, \mathrm{~T}=100$-samples long trajectories

```
m = 1; gamma = 0.5;
N = 10; T = 100; t = linspace(0, 1, T);
for i = 1:N,
    y{i} = fall(rand (2,1), rand (2,1), t,gamma,m);
end
```

and to-be-predicted trajectory
y_new $=$ fall $($ rand $(2,1)$, rand $(2,1), t$, gamma, $m)$;

Data-driven free fall prediction method

data "informativity" condition:

$$
\operatorname{rank} \underbrace{\left[\begin{array}{ccc}
y_{\mathrm{d}}^{1} & \cdots & y_{\mathrm{d}}^{N}
\end{array}\right]}_{D}=5
$$

algorithm for data-driven prediction:

1. solve $\left[\begin{array}{lll}y_{d}^{1}(1) & \cdots & y_{d}^{N}(1) \\ y_{d}^{1}(2) & \cdots & y_{d}^{N}(2) \\ y_{d}^{1}(3) & \cdots & y_{d}^{N}(3)\end{array}\right] g=\underbrace{\left[\begin{array}{l}y(1) \\ y(2) \\ y(3)\end{array}\right]}_{\text {ini. cond. }}$
2. define $y:=D g$

Verify that the data-driven prediction "works"

check the data "informativity" condition
[rank(D) rank([vec(y_new') D])] \% -> [55]
implement the data-driven computation method
verify the computed solution

Summary: prediction of free fall trajectory

first principles modeling

- use the second law of Newton and the law of gravity
- in particular, the Earth's gravitational constant is used
- lead to an autonomous affine time-invariant system
data-driven methods
- bypass the knowledge of the physical laws
- automatically infer and use them
- no hyper-parameters to tune

Outline

Constructive proof of the fundamental lemma
 Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

My interest in dynamic measurement started from a textbook problem

"A thermometer reading $21^{\circ} \mathrm{C}$, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads $15^{\circ} \mathrm{C}$; after two minutes it reads $11^{\circ} \mathrm{C}$. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.

Main idea: predict the steady-state value from the first few samples of the transient
textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution
generalizations:
- $n \geq 1$ order dynamics
- $T \geq 3$ noisy (vector) samples
- recursive computation
implementation and practical validation

Thermometer: first order dynamical system

environmental
temperature $\bar{u}$$\xrightarrow{\text { heat transfer }}$
thermometer's
reading y
measurement process: Newton's law of cooling

$$
y=a(\bar{u}-y)
$$

heat transfer coefficient $a>0$

Scale: second order dynamical system

$(M+m) \frac{\mathrm{d}}{\mathrm{d} t} y+d y+k y=g \bar{u}$

The measurement process dynamics depends on the to-be-measured mass

Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured

variable $u$$\xrightarrow{\text { measurement process }} \quad$| measured |
| :---: |
| variable y |

assumption 1: measured variable is constant $u(t)=\bar{u}$
assumption 2: the sensor is stable LTI system
assumption 3: sensor's DC-gain $=1 \quad$ (calibrated sensor)

The data is generated from LTI system with output noise and constant input

$$
\begin{aligned}
& \underbrace{y_{\mathrm{d}}}_{\begin{array}{c}
\text { measured } \\
\text { data }
\end{array}}=\underbrace{y}_{\begin{array}{c}
\text { true } \\
\text { value }
\end{array}}+\underbrace{\underbrace{y}_{\begin{array}{c}
\text { true } \\
\text { value }
\end{array}}=\underbrace{y_{0}^{\text {transient }}}_{\begin{array}{c}
\text { steady-state } \\
\text { value }
\end{array}}}_{\begin{array}{c}
\text { measurement } \\
\text { noise }
\end{array}}+\underbrace{y_{0}}_{\text {response }}
\end{aligned}
$$

assumption 4: e is a zero mean, white, Gaussian noise
using a state space representation of the sensor

$$
\begin{aligned}
x(t+1) & =A x(t), \quad x(0)=x_{0} \\
y_{0}(t) & =c x(t)
\end{aligned}
$$

we obtain

$$
\underbrace{\left[\begin{array}{c}
y_{\mathrm{d}}(1) \\
y_{\mathrm{d}}(2) \\
\vdots \\
y_{\mathrm{d}}(T)
\end{array}\right]}_{y_{\mathrm{d}}}=\underbrace{\left[\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
\vdots \\
\vdots \\
c A^{T_{d}-1}
\end{array}\right]}_{\mathbf{1}_{T_{\mathrm{d}}}} \bar{u}+\underbrace{\left[\begin{array}{c}
c \\
c A \\
\vdots \\
e\left(T_{\mathrm{d}}\right)
\end{array}\right]}_{O_{T_{\mathrm{d}}}}
$$

Maximum-likelihood model-based estimator

solve approximately

$$
\left[\begin{array}{ll}
\mathbf{1}_{T_{\mathrm{d}}} & \mathscr{O}_{\mathrm{T}_{\mathrm{d}}}
\end{array}\right]\left[\begin{array}{c}
\widehat{u} \\
\widehat{x}_{0}
\end{array}\right] \approx y_{\mathrm{d}}
$$

standard least-squares problem

$$
\begin{array}{ll}
\text { minimize } & \text { over } \hat{y}, \widehat{u}, \widehat{x}_{0}
\end{array}\left\|y_{\mathrm{d}}-\hat{y}\right\|
$$

recursive implementation Kalman filter

Subspace model-free method

goal: avoid using the model parameters ($A, C, \mathscr{O}_{T_{\mathrm{d}}}$)
in the noise-free case, due to the LTI assumption,

$$
\Delta y(t):=y(t)-y(t-1)=y_{0}(t)-y_{0}(t-1)
$$

satisfies the same dynamics as y_{0}, i.e.,

$$
\begin{aligned}
x(t+1) & =A x(t), \quad x(0)=\Delta x \\
\Delta y(t) & =c x(t)
\end{aligned}
$$

Hankel matrix-construction of multiple

 "short" trajectories from one "long" trajectory$$
\mathscr{H}(\Delta y):=\left[\begin{array}{cccc}
\Delta y(1) & \Delta y(2) & \cdots & \Delta y(\mathrm{n}) \\
\Delta y(2) & \Delta y(3) & \cdots & \Delta y(\mathrm{n}+1) \\
\Delta y(3) & \Delta y(4) & \cdots & \Delta y(\mathrm{n}+2) \\
\vdots & \vdots & & \vdots \\
\Delta y(T-\mathrm{n}) & \Delta y(T-\mathrm{n}) & \cdots & \Delta y(T-1)
\end{array}\right]
$$

fact: if rank $\mathscr{H}(\Delta y)=\mathrm{n}$, then
image $\mathscr{O}_{T-\mathrm{n}}=$ image $\mathscr{H}(\Delta y)$

model-based equation

$$
\left[\begin{array}{ll}
\mathbf{1}_{T_{\mathrm{d}}} & \mathscr{O}_{T_{\mathrm{d}}}
\end{array}\right]\left[\begin{array}{c}
\bar{u} \\
\widehat{x}_{0}
\end{array}\right]=y
$$

data-driven equation

$$
\left[\begin{array}{ll}
\mathbf{1}_{T-\mathrm{n}} & \mathscr{H}(\Delta y)
\end{array}\right]\left[\begin{array}{l}
\bar{u} \tag{*}\\
\ell
\end{array}\right]=\left.y\right|_{T-\mathrm{n}}
$$

subspace method
solve (*) by (recursive) least squares

Empirical validation

dashed
solid
dotted \quad - naive estimate $\widehat{u}=G^{+} y$
dashed - model-based Kalman filter
bashed-dotted - data-driven method
estimation error: e: $=\frac{1}{N} \sum_{i=1}^{N}\left\|\bar{u}-\widehat{u}^{(i)}\right\|$
(for $N=100$ Monte-Carlo repetitions)

Simulated data of dynamic cooling process

best is the Kalman filter (maximum likelihood estimator)

Simulation with time-varying parameter

Proof of concept prototype

Results in real-life experiment

Summary

dynamic measurement
steady-state value prediction
the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

future work / open problems

- numerical efficiency
- real-time uncertainty quantification
- generalization to nonlinear systems

Outline

Constructive proof of the fundamental lemma
 Pedagogical example: Free fall prediction
 Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

Problem formulation

given: "data" trajectory $\left.\left(u_{\mathrm{d}}, y_{\mathrm{d}}\right) \in \mathscr{B}\right|_{T_{\mathrm{d}}}$ and $z \in \mathbb{C}$
find: $H(z)$, where H is the transfer function of \mathscr{B}

Direct data-driven solution

we are interested in trajectory

$$
w=\left[\begin{array}{l}
u \\
y
\end{array}\right]=\left[\begin{array}{c}
\exp _{z} \\
H \exp _{z}
\end{array}\right] \in \mathscr{B}, \quad \text { where } \exp _{z}(t):=z^{t}
$$

using the data-driven representation, we have

$$
\left[\begin{array}{c}
\mathscr{H}_{L}\left(u_{\mathrm{d}}\right) \\
\mathscr{H}_{L}\left(y_{\mathrm{d}}\right)
\end{array}\right] g=\left[\begin{array}{c}
\mathbf{z} \\
\hat{H} \mathbf{z}
\end{array}\right], \quad \text { where } \mathbf{z}:=\left[\begin{array}{c}
z^{1} \\
\vdots \\
z^{L}
\end{array}\right]
$$

which leads to the system

$$
\left[\begin{array}{cc}
0 & \mathscr{H}_{L}\left(u_{\mathrm{d}}\right) \tag{SYS}\\
-\mathbf{z} & \mathscr{H}_{L}\left(y_{\mathrm{d}}\right)
\end{array}\right]\left[\begin{array}{c}
\hat{H} \\
g
\end{array}\right]=\left[\begin{array}{l}
\mathbf{z} \\
0
\end{array}\right]
$$

Solution method: solve (SYS) for \widehat{H}

under (GPE) with $L \geq \ell+1, \widehat{H}=H(z)$
without prior knowledge of ℓ

$$
L=L_{\max }:=\left\lfloor\left(T_{\mathrm{d}}+1\right) / 3\right\rfloor
$$

trivial generalization to

- multivariable systems
- multiple data trajectories $\left\{w_{d}^{1}, \ldots, w_{d}^{N}\right\}$
- evaluation of $H(z)$ at multiple points in $\left\{z_{1}, \ldots, z_{K}\right\} \in \mathbb{C}^{K}$

Comparison with classical nonparametric

 frequency response estimation methodsignored initial/terminal conditions \rightsquigarrow leakage

DFT grid \rightsquigarrow limited frequency resolution
improvements by windowing and interpolation

- the leakage is not eliminated
- the methods involve hyper-parameters

Generalization of (SYS) to noisy data

preprocessing: rank-mL $+n$ approx. of $\mathscr{H}_{L}\left(w_{d}\right)$

- hyper-parameters $L \geq \ell+1$ and n
- if the approximation preserves the Hankel structure, the method is maximum-likelihood in the EIV setting

regularization with $\|g\|_{1}$

- hyper-parameter: the 1-norm regularization parameter
regularization with the nuclear norm of $\mathscr{H}_{L}\left(\widehat{W_{\mathrm{d}}}\right)$
- hyper-parameters: L and the regularization parameter

Matlab implementation

function Hh = dd_frest(ud, yd, z, n)
$\mathrm{L}=\mathrm{n}+1$; $\mathrm{t}=(1: \mathrm{L})^{\prime}$;
m = size(ud, 2); p = size(yd, 2);

응 preprocessing by low-rank approximation
H = [moshank (ud, L) ; moshank (yd, L)];
$[\mathrm{U}, \sim, \sim]=\operatorname{svd}(H) ; P=U(:, 1: m * L+n) ;$
\% form and solve the system of equations
for $k=1:$ length(z)
A $=[[z \operatorname{cros}(m * L, p) ;-\operatorname{kron}(z(k) . \wedge t, \operatorname{eye}(p))] P] ;$ $h g=A \backslash\left[k r o n\left(z(k) .^{\wedge} t, \operatorname{eye}(m)\right) ;\right.$ zeros $\left.(p * L, m)\right] ;$
Hh(:, :, k) = hg(1:p, :);
end

- effectively 5 lines of code
- MIMO case, multiple evaluation points
- $L=n+1$ in order to have a single hyper-parameter

Example: EIV setup with 4th order system

dd_frest is compared with

- ident - parametric maximum-likelihood estimator
- spa - nonparameteric estimator with Welch filter

Monte-Carlo simulation over different noise levels and number of samples

$$
e_{a}:=100 \% \cdot\left|\left(\left|\bar{H}_{z}\right|-\left|\widehat{H}_{z}\right|\right)\right| /\left|\bar{H}_{z}\right|
$$

Outline

> Constructive proof of the fundamental lemma

> Pedagogical example: Free fall prediction

> Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

Kernel representation

LTI systems

$$
\begin{aligned}
\mathscr{B} & =\operatorname{ker} R(\sigma):=\{w \mid R(\sigma) w=0\} \\
& =\left\{w \mid R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0\right\}
\end{aligned}
$$

nonlinear time-invariant system

$$
\mathscr{B}=\{w \mid R(\underbrace{w, \sigma w, \ldots, \sigma^{\ell} w}_{x})=0\}
$$

linearly parameterized R

$$
R(x)=\sum \theta_{i} \phi_{i}(x)=\theta^{\top} \phi(x), \quad \phi-\text { model structure } \quad \begin{aligned}
& \phi-\text { parameter vector }
\end{aligned}
$$

Polynomial SISO NARX system

$$
\mathscr{B}(\theta)=\left\{\left.w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, y=f\left(u, \sigma w, \ldots, \sigma^{\ell} w\right)\right\}
$$

split f into 1st order (linear) and other (nonlinear) terms

$$
f(x)=\theta_{l \mid}^{\top} x+\theta_{n \mid}^{\top} \phi_{n 1}(x)
$$

$\phi_{n 1}$ - vector of monomials

Special cases

Hammerstein

$$
\phi_{n 1}(x)=\left[\begin{array}{llll}
\phi_{u}(u) & \phi_{u}(\sigma u) & \cdots & \phi_{u}\left(\sigma^{\ell} u\right)
\end{array}\right]^{\top}
$$

FIR Volterra

$$
\phi_{\mathrm{n} 1}(x)=\phi_{\mathrm{nl}}\left(x_{u}\right), \quad \text { where } x_{u}:=\operatorname{vec}\left(u, \sigma u, \ldots, \sigma^{\ell} u\right) .
$$

bilinear

$$
\phi_{\mathrm{nl}}(x)=x_{u} \otimes x_{y}, \quad \text { where } x_{y}:=\operatorname{vec}\left(y, \sigma y, \ldots, \sigma^{\ell-1} y\right)
$$

generalized bilinear

$$
\phi_{\mathrm{nl}}(x)=\phi_{u, \mathrm{nl}}\left(x_{u}\right) \otimes x_{y}
$$

LTI embedding of polynomial NARX system

$$
\mathscr{B}_{\mathrm{ext}}(\theta):=\left\{\left.w_{\mathrm{ext}}=\left[\begin{array}{c}
u \\
u_{\mathrm{nl}} \\
y
\end{array}\right] \right\rvert\, \sigma^{\ell} y=\theta_{\mathrm{li}}^{\top} x+\theta_{\mathrm{nl}}^{\top} u_{\mathrm{nl}}\right\}
$$

define: $\quad \Pi_{w} W_{\text {ext }}:=w \quad$ and $\quad \Pi_{u_{\mathrm{nl}}} W_{\mathrm{ext}}:=u_{\mathrm{nl}}$
fact: $\quad \mathscr{B}(\theta) \subseteq \Pi_{w} \mathscr{B}_{\text {ext }}(\theta)$, moreover
$\mathscr{B}(\theta)=\Pi_{w}\left\{w_{\text {ext }} \in \mathscr{B}_{\text {ext }}(\theta) \mid \Pi_{u_{\mathrm{nl}}} w_{\text {ext }}=\phi_{\mathrm{nl}}(x)\right\}$

FIR Volterra data-driven simulation

given
data $w_{\mathrm{d}}=\left(u_{\mathrm{d}}, y_{\mathrm{d}}\right)$ of lag- ℓ FIR Volterra system \mathscr{B} ϕ_{nl} - system's model structure
assume ID conditions for $\mathscr{B}_{\text {ext }}$ hold
then, $\left.\mathscr{B}\right|_{L}=$ image M, where

proof

$$
\left[\begin{array}{c}
\mathscr{H}_{\ell}\left(w_{\mathrm{d}}\right) \\
\mathscr{H}_{\mathrm{L}}\left(\sigma^{\ell} u_{\mathrm{d}}\right) \\
\hline \mathscr{H}_{\ell}\left(\phi_{\mathrm{n} 1}\left(x_{u_{\mathrm{d}}}\right)\right) \\
\mathscr{H}_{L}\left(\sigma^{\ell} \phi_{\mathrm{nl}}\left(x_{u_{\mathrm{d}}}\right)\right) \\
\hline \mathscr{H}_{\mathrm{L}}\left(\sigma^{\ell} y_{\mathrm{d}}\right)
\end{array}\right] g=\left[\begin{array}{c}
w_{\text {ini }} \\
u \\
\hline \phi_{\mathrm{nl}}\left(x_{u_{\text {ini }}}\right) \\
\phi_{\mathrm{nl}}\left(x_{u}\right) \\
\hline y
\end{array}\right] \begin{aligned}
& \} \mathrm{B} 1 \\
& \} \mathrm{B} 3
\end{aligned}
$$

B1 constraint on g, such that $w_{\text {ini }} \wedge\left(u, \mathscr{H}_{L}\left(\sigma^{\ell} y_{d}\right) g\right) \in \mathscr{B}_{\text {ext }}$ B2 constraint $u_{\mathrm{nl}}=\phi_{\mathrm{nl}}(x) \Longleftrightarrow \mathscr{B}_{\text {ext }}=\mathscr{B}(\theta)$ B3 defines the to-be-computed output y

generalized bilinear models

also tractable because B2: $u_{\mathrm{nl}}=\phi_{\mathrm{nl}}(x)$ is still linear in y

