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Abstract

Subsampling of a linear periodically time-varying system results in a collection of linear time-invariant systems with common poles. This
key fact, known as “lifting”, is used in a two step realization method. The first step is the realization of the time-invariant dynamics (the
lifted system). Computationally, this step is a rank-revealing factorization of a block-Hankel matrix. The second step derives a state space
representation of the periodic time-varying system. It is shown that no extra computations are required in the second step. The computational
complexity of the overall method is therefore equal to the complexity for the realization of the lifted system. A modification of the realization
method is proposed, which makes the complexity independent of the parameter variation period. Replacing the rank-revealing factorization
in the realization algorithm by structured low-rank approximation yields a maximum likelihood identification method. Existing methods
for structured low-rank approximation are used to identify efficiently linear periodically time-varying system. These methods can deal with
missing data.

Key words: linear periodically time-varying systems, lifting, realization, Kung’s algorithm, Hankel low-rank approximation, maximum
likelihood estimation.

1 Introduction

1.1 Overview of the literature

Periodically time-varying systems, i.e., systems with periodic coefficients, appear in many applications and have been studied
from both theoretical as well as practical perspectives. The source of the time-variation can be rotating parts in mechanical
systems Bittanti and Colaneri (2008); hearth beat and/or breathing in biomedical applications Ionescu et al. (2010); Sanchez et
al. (2013); and seasonality in econometrics Ghysels (1996); Osborn (2001). Linear periodically time-varying systems also appear
when a nonlinear system is linearized about a periodic trajectory Sracic and Allen (2011).

In this paper, we restrict our attention to the subclass of discrete-time autonomous linear periodically time-varying systems. A
specific application of autonomous linear periodically time-varying system identification in mechanical engineering is vibra-
tion analysis, also known as operational modal analysis, see, e.g., Allen and Ginsberg (2006); Allen et al. (2011). The problems
considered in the paper are exact (Section 2, Problem 1) and approximate (Section 5, Problem 3) identification. The exact identifi-
cation of an autonomous linear periodically time-varying system is equivalent to realization of an input-output linear periodically
time-varying system from impulse response measurement. The approximate identification problem yields a maximum-likelihood
estimator in the output error model.

Input-output identification methods for linear periodically time-varying systems are proposed in Hench (1995); Verhaegen and Yu
(1995); Liu (1997); Mehr and Chen (2002); Yin and Mehr (2010); Xu et al. (2012). Less attention is devoted to the autonomous
identification problem. A method for exact identification, based on polynomial algebra, is proposed in Kuijper (1999) and a
frequency domain method for output-only identification is developed in Allen (2009); Allen and Ginsberg (2006). Both the
method of Kuijper (1999); Kuijper and Willems (1997) and the method of Allen (2009) are based on a lifting approach, i.e., the
time-varying system is represented equivalently as a multivariable time-invariant system. The number of outputs p′ of the lifted
system is equal to the number of outputs p of the original periodic system times the number of samples P in a period of the
parameter variation.

1.2 Aim and contribution of the paper

Most methods proposed in the literature consist of the following main steps (see also Figure 1):
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(1) preprocessing — lifting of the data,
(2) main computation — derivation of a linear time-invariant model for the lifted data,
(3) postprocessing — derivation of an equivalent linear periodically time-varying model.

data

y

lifting

−−−−−→ lifted

data y′

LTI system

realization/identification

−−−−−−−−−−−−−−−→ LTI model

for y′

LPTV parameter

computation

−−−−−−−−−−−→ LPTV model

for y

Fig. 1. Main steps of the linear periodic time-varying system realization/identification methods. (LTI — linear time-invariant, LPTV — linear
periodically time-varying)

The key in solving the linear periodic time-varying realization and identification problem is the lifting operation, which converts
the time-varying dynamics into time-invariant dynamics of a system with p

′ = pP outputs. From a computational point of view,
the realization of the lifted dynamics is a rank-revealing factorization of a block-Hankel matrix. A numerically stable way of
doing this operation is the singular value decomposition of a p

′L× (T −L) matrix, where L is an upper bound on the order, p is

the number of outputs, and T is the number of time samples. Its computational complexity is O(L2
p

2PT ) operations.

Once the linear time-invariant dynamics of the lifted model is obtained, it is transformed back to a linear periodically time-
varying model in a postprocessing step. In the subspace identification literature, see, e.g., Hench (1995), this operation is done
indirectly by computing shifted versions of the state sequence of the model and solving linear systems of equations for the
model parameters. This method, refered to as the “indirect method” is Algorithm 1 in the paper, has computational complexity
O(L2

p

2P2T ).

The main shortcoming of the indirect method is that it requires extra computations for the derivation of the shifted state sequences
and the solution of the systems of equations for the model parameters. This increases the computational complexity by a factor
of P compared with the complexity of the realization of the lifted system. We show in Section 4 that the linear periodically
time-varying model’s parameters can be obtained directly from the lifted model’s parameters without extra computations. The
resulting method, refered to as the “direct method” is Algorithm 2 in the paper. Its computational complexity is O(L2

p

2PT ).
A further improvement of the indirect method (Algorithm 3) operates on a L×p(T −L) Hankel matrix and requires O(L2

pT )
operations.

The maximum-likelihood estimation problem is considered in Section 5. Using the results relating the realization problem to
rank revealing factorization of a Hankel matrix constructed from the data, we show that the maximum-likelihood identification
problem is equivalent to Hankel structured low-rank approximation. Subsequently, we use existing efficient local optimization
algorithms Usevich and Markovsky (2014) for solving the problem.

The motivation for reformulating the maximum likelihood identification problem as structured low-rank approximation is the
possibility to use readily available solution methods. Structured-low-rank approximation is an active area of research that offers
a variety of solution methods, e.g., convex relaxation methods, based on the nuclear norm heuristic. There are also methods for
solving problems with missing data Markovsky and Usevich (2013). Identification with missing data is a challenging problem,
however, using the link between system identification and low-rank approximation, identification of autonomous periodically
time-varying systems with missing data becomes merely an application of existing methods.

The main contributions of the paper are summarized next.

(1) Reduction of the computational cost of linear periodically time-varying system realization from O(L2
p

2P2T ) to O(L2
pT ).

(2) Maximum-likelihood method for linear periodically time-varying system identification with computational complexity per
iteration that is linear in the number of data points. In addition, the maximum-likelihood method can deal with missing data.

2 Preliminaries, problem formulation, and notation

An autonomous discrete-time linear time-varying system B can be represented by a state space model

B = B(A,C) := {y | x(t + 1) = A(t)x(t),y(t) =C(t)x(t),

for all t, with x(1) = xini ∈R
n }, (1)

where A(t) ∈ R
n×n and C(t) ∈ R

p×n are the model coefficient functions — A is the state transition matrix and C is the output
matrix. A state space representation B(A,C) of the model B is not unique due to a change of basis, i.e.,

B = B(A,C) = B(Â,Ĉ),

where, for all t

Â(t) =V (t + 1)A(t)V−1(t) and Ĉ(t) =C(t)V−1(t), (2)
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with a nonsingular matrix V (t) ∈R
n×n.

Simulation of a LPTV system, defined by a state space representation:

3a 〈pltv_sim 3a〉≡
fun
tion [y, x℄ = pltv_sim(sys, T, x0)

n = size(sys.a, 1);

P = size(sys.a, 3);

x(:, 1) = x0; y = [℄;

for t = 1:T

tp = mod(t - 1, P) + 1;

y = [y sys.
(:, :, tp) * x(:, end)℄;

x = [x sys.a(:, :, tp) * x(:, end)℄;

end

y = y'; x(:, end) = [℄;

Conversion to a canonical form:

3b 〈pltv_
anon 3b〉≡
fun
tion sys = pltv_
anon(sysh)

n = 2; nn = n * n; P = 3;

I = eye(n); Z = zeros(nn);

a
 = [0 1; 1 1℄; A
 = kron(I, a
);



 = [1 0℄; C
 = kron(I, 

);

A = [A
 -kron(sysh.a(:, :, 1)', I) Z;

Z A
 -kron(sysh.a(:, :, 2)', I)

-kron(sysh.a(:, :, 3)', I) Z A
℄;

A(n:n:end, :) = [℄;

V = [A; blkdiag(C
, C
, C
)℄ \ ...

[zeros(n * P, 1); sysh.
(:)℄;

for i = 1:P,

v(:, :, i) = reshape(V((i - 1) * nn + 1: i * nn) ...

, n, n);

end

sys = pltv_ss2ss(sysh, v);

Change of basis:

3c 〈pltv_ss2ss 3c〉≡
fun
tion sys = pltv_ss2ss(sysh, v)

P = size(sysh.a, 3); v(:, :, P + 1) = v(:, :, 1);

for i = 1:P

sys.a(:, :, i) = v(:, :, i + 1) * sysh.a(:, :, i) ...

/ v(:, :, i);

sys.
(:, :, i) = sysh.
(:, :, i) * v(:, :, i);

end

In this paper, we consider the subclass of autonomous linear time-varying systems, for which the coefficient functions A and C
are periodic with period P

A(t) = A(t + kP) and C(t) =C(t + kP), for all t and k.

Such systems are called linear periodically time-varying and are parameterized in state space by two matrix sequences

(
A1, . . . ,AP

)
and

(
C1, . . . ,CP

)
,

such that
A(t) = A(t−1) mod P+1 and C(t) =C(t−1) mod P+1.

The nonuniqueness of the coefficients functions (A,C) of a periodic time-varying system’s state space representation is given
by (2). In order to preserve the periodicity of the coefficient functions, however, we restrict our attention to state transformationsV
to periodic, i.e., V (t) =V(t−1) mod P+1, for some

(
V1, . . . ,VP

)
, where Vi ∈R

n×n and det(Vi) 6= 0.

The class of autonomous linear periodically time-varying systems with order at most n and period P is denoted by L0,n,P. (The
zero subscript index stands for zero inputs.)
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Problem 1 (Realization of an autonomous linear periodically time-varying system) Given a trajectory

y =
(
y(1), . . . ,y(T )

)
,

of an autonomous linear periodically time-varying system B, the period P of B, and the state dimension n of B, find a state

space representation B(Â,Ĉ) of the system B, i.e.,

find B̂ ∈ L0,n,P such that y ∈ B̂.

The assumption that the order n of B is given can be relaxed, see Note 2.

Notation

• B(A,C), defined in (1), is a linear autonomous periodically time-varying system with state space parameters (A,C). When A
and C are constant matrices (rather than matrix sequences) the system is linear time-invariant.

• For a vector time series y =
(
y(1), . . . ,y(T )

)
, y(t) ∈R

p we define the pL× (T −L+1) block-Hankel matrix with L, 1 ≤ L ≤ T
block-rows

HL(y) :=




y(1) y(2) y(3) · · · y(T −L+ 1)

y(2) y(3) . .
.

y(T −L+ 2)

y(3) . .
. ...

...

y(L) y(L+ 1) · · · y(T )




.

• The extended observability matrix of a linear periodically time-varying system with a state space representation B(A,C) is

OL(A,C) :=




C(1)

C(2)A(1)

C(3)A(2)A(1)
...

C(L)A(L− 1)A(L− 2) · · ·A(1)




.

• The “lifting” operator

liftP(y) =
(
y′(1), . . . ,y′(T ′)

)

=







y(1)
...

y(P)


 ,




y(P+ 1)
...

y(2P)


 , . . . ,




y((T ′− 1)P)
...

y(T ′P)





 ,

(3)

with T ′ :=
⌊

T
P

⌋
, (⌊a⌋ is the largest integer smaller than a) sub-samples the p-dimensional vector sequence y at a period P

starting from the 1st, 2nd, . . . , Pth sample and stacks the resulting P sequences in an augmented p

′ := pP-dimensional vector
sequence y′—the lifted sequence. Applied on a system B, the operator liftP acts on all trajectories of the system.

4a 〈y 7→ y′ 4a〉≡
(7b 8)
[T, p℄ = size(y); pp = p * P; Tp = �oor(T / P);

if ~exist('i', 'var'), i = 1; end

yp = reshape(ve
(y(i:(Tp - 1) * P + i - 1, :)'), ...

pp, Tp - 1);

4b 〈y 7→ y′ 2 4b〉≡
(10 11)
[T, p℄ = size(y); pp = p * P; Tp = �oor(T / P);

yp = shiftdim(reshape(ve
(y(1:(Tp * P), :)'), ...

p, P, Tp), 2);
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3 Realization of the lifted system

As shown in (Bittanti and Colaneri, 2008, Section 6.2.3), the lifted system liftP
(
B(A,C)

)
admits an nth order linear time-invariant

representation

B(Φ̂,Ψ̂) = liftP
(
B(A,C)

)
, with Φ̂ ∈ R

n×n and Ψ̂ ∈R
p

′×n.

The problem of obtaining the parameters Φ̂ and Ψ̂ from the lifted trajectory y′ of the periodically time-varying system is a classical
linear time-invariant realization problem. We use Kung’s method Kung (1978), which is based on the Hankel matrix HL(y

′). The
number of block-rows L must be such that both the number of rows and the number of columns of HL(y

′) are greater than n.

Note 1 (On the choice of the parameter L) From the point of view of minimizing the computational cost, L is chosen as small
as possible, i.e.,

L = Lmin :=

⌈
n+ 1

p

′

⌉
,

(⌈a⌉ is the smallest integer larger than a). In the presence of noise, however, the accuracy of Kung’s algorithm is improved by
increasing L. In Kumaresan and Tufts (1982), it is shown that best approximation is achieved by choosing L so that the Hankel
matrix HL(y

′) is close to square, i.e.,

L = Lsq :=

⌈
T ′+ 1

p

′+ 1

⌉
.

5a 〈define Lmin 5a〉≡
(5c)
L = 
eil((n + 1) / pp);

5b 〈define Lsq 5b〉≡
(5c)
L = 
eil((Tp + 1) / (pp + 1));

Let

HL(y
′) = OC , where

O ∈R
Lp′×n

C ∈ R
n×(T ′−L)

(4)

be a rank revealing factorization of the block-Hankel matrix HL(y
′). Such a factorization can be obtained, for example, from the

singular value decomposition

HL(y
′) =USV

′⊤ =U
√

S︸ ︷︷ ︸
O

√
SV

′⊤
︸ ︷︷ ︸

C

, (5)

where √
S := diag(

√
s1, . . . ,

√
sn).

The parameter Ψ̂ is set equal to the first p′ rows of the matrix O and Φ̂ is computed from the shift equation

Φ̂C = C , (6)

where C is C with the last column removed and C is C with the first column removed.

5c 〈identification 5c〉≡
(7b 8)
if exist('opt')

〈define Lmin 5a〉
else

〈define Lsq 5b〉
end

H = blkhank(yp, L);

ti
, [U, S, V℄ = svd(H, 'e
on'); t = t + to
;

if size(V, 1) < n, error('Not enough data.'), end

s = diag(S); sqrt_s = sqrt(s(1:n))';

O = sqrt_s(ones(size(U, 1), 1), :) .* U(:, 1:n);

C = (sqrt_s(ones(size(V, 1), 1), :) .* V(:, 1:n))';

xhini = C(:, 1); psi = O(1:pp, :);

%phi = O(1:end - pp, :) \ O((pp + 1):end, :);

phi = C(:, 2:end) / C(:, 1:end - 1);
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Note 2 (Unknown order n) If the order of the linear periodically time-varying system is not given a priori, it can be determined
from the rank of HL

(
liftP(y)

)
.

Note 3 (Inexact data and model reduction) Truncation of the singular value decomposition (5) is a method to perform (un-
structured) low-rank approximation, which has the system theoretic interpretation of identifying reduced order model. In the
case of perturbation of exact data by noise, truncation of the singular value decomposition to the order of the true system has the
effect of signal de-noising.

The C factor of the factorization (4) has the form

C =
[
x̂ini Φ̂x̂ini · · · Φ̂T ′−L+1x̂ini

]

=
[
x̂′(1) x̂′(2) · · · x̂′(T ′−L)

]

=:
[
X̂ ′

1 x̂′(T ′−L)
]
,

(7)

where x̂ini is the initial condition and x̂′(1), x̂′(2), . . . is the state sequence of the linear time-invariant model B(Φ̂,Ψ̂). The initial
condition x̂ini can be obtained directly from C or it can be re-estimated back from the data by solving the overdetermined system
of linear equations

y′ = OT ′(Φ̂,Ψ̂)x̂ini, (8)

and defining

x̂′(t ′) := Φt′−1x̂ini, for t ′ = 1,2, . . .

In the numerical examples of Section 6, we set the initial condition x̂ini equal to the first column of C .

Note 4 (Inexact data and model reduction) In the case of noisy data or a true system that is not in the model class (see Note 3),
(8) generically has no exact solution. Then, the least-squares approximate solution can be used as a means of estimating the initial
condition from (8).

4 Computation of the linear time-varying system’s parameters

4.1 Indirect method

Define the matrices

X̂ ′
i :=Vi

[
x(i) x(i+P) x(i+ 2P) · · · x

(
i+(T ′−L− 1)P

)]
,

for i = 1, . . . ,P,

constructed from the state sequence
(
x(1),x(2), . . .

)
in a state-space basis, defined by Vi. The derivation of X̂ ′

1 is a by-product of

the realization of the lifted system B(Φ̂,Ψ̂), see (7). The shifted state sequences X̂ ′
2, . . . , X̂

′
P can also be computed from (4) by

using the i-steps shifting data
(
y(i), . . . ,y(T )

)
instead of

(
y(1), . . . ,y(T )

)
. Note that the computation of X̂ ′

i through (4) results in
general in a basis Vi that is different from V j, for i 6= j.

The model parameters (Â,Ĉ) are computed from the equations

[
X̂ ′

i+1

Yi

]
=

[
Âi

Ĉi

]
X̂ ′

i , for i = 1, . . . ,P, (9)

where

Yi :=
[
y(i) y(i+P) y(i+ 2P) · · · y

(
i+(T ′−L− 1)P

]
.

The matrix X̂ ′
P+1 is obtained from X̂ ′

1 by pre-multiplication with Φ (i.e., shift with P steps forward)

X̂ ′
P+1 := ΦX̂ ′

1.
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This guarantees that X̂ ′
P+1 is in the same basis as X̂ ′

1, which implies that V1 =VP+1.

7a 〈parameter estimation 7a〉≡
(7b)
ys = y(i - 1:P:end, :)';

a
 = [Xh{i}; ys(:, 1:n
)℄ / Xh{i - 1};

a(:, :, i - 1) = a
(1:n, :);


(:, :, i - 1) = a
(1 + n:end, :);

Algorithm 1 summarizes the method for realization of linear periodically time-varying systems, described above.

Algorithm 1 Indirect algorithm for linear periodically time-varying system realization. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0

(2) realization of the lifted system: (y′,n) 7→ B
(
Φ̂,Ψ̂) ((4) and (6)) O

(
(Lp′)2T ′)

(3) state estimation: compute the state sequence matrices X̂ ′
1, . . . , X̂

′
P and define X̂ ′

P+1 := Φ̂X̂ ′
1 O

(
P(Lp′)2T ′)

(4) parameter estimation: solve the systems (9)
O
(
P(n+p

′)2
)

Output: Parameters Â and Ĉ of the linear periodically time-varying system. overall cost: O(L2
p

2P2T )

7b 〈pltv_ident1 7b〉≡
fun
tion [sysh, xhini, t℄ = pltv_ident1(y, P, n, opt)

t = 0;

for i = 1:P + 1

if i < P + 1

〈y 7→ y′ 4a〉
〈identification 5c〉
Xh{i} = C;

if i == 1,

Xh{P + 1} = phi * Xh{1};

n
 = size(Xh{1}, 2);

end

end

if i > 1

〈parameter estimation 7a〉
end

end

sysh = stru
t('a', a, '
', 
);

xhini = Xh{1}(:, 1);

4.2 Direct method

The most expensive step of Algorithm 1 is the computation of the shifted state sequences X̂ ′
i , which requires P factorizations

of block-Hankel matrices. As proven in the following proposition, the parameters (Â,Ĉ) of the linear periodically time-varying

system can be obtained directly from the parameters (Φ̂,Ψ̂) of the linear time-invariant system, without extra computation.

Proposition 1 The linear periodically time-varying system B(Â,Ĉ), with parameters

Â1 := In, . . . , ÂP−1 := In, ÂP := Φ̂ (10)

Ψ̂ =: col(Ĉ1, . . . ,ĈP), where Ĉi ∈ R
p×n, (11)

is equivalent to the linear time-invariant system B(Φ̂,Ψ̂), i.e., B(Φ̂,Ψ̂) = liftP
(
B(Â,Ĉ)

)
.

7c 〈(Φ̂,Ψ̂) 7→ (Â,Ĉ) 7c〉≡
(8 10 19a)
for i = 1:P

a(:, :, i) = eye(n);


(:, :, i) = psi((i - 1) * p + 1: i * p, :);

end

a(:, :, P) = phi;
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PROOF. We have to show that a response y of the system liftP
(
B(Â,Ĉ)

)
is also a response of the linear time-invariant system

B(Φ̂,Ψ̂). Let xini be the initial condition of the linear periodically time-varying system B(Â,Ĉ) that generates y. We have

y(1) = Ĉ1xini, . . . ,y(P) = ĈPxini

y(P+ 1) = Ĉ1Φ̂xini, . . . ,y(2P) = ĈPΦ̂xini

...

y(t ′P+ 1) = Ĉ1Φ̂t′xini, . . . ,y(2P) = ĈPΦ̂t′xini.

On the other hand, the response of the linear time-invariant system B(Φ̂,Ψ̂) to the initial condition xini is

y′(t ′) = Ψ̂Φ̂t′xini =




Ĉ1

...

ĈP


 Φ̂t′xini, for t ′ = 0, . . . ,T ′ − 1. (12)

It follows that liftP(y) = y′.

Algorithm 2 summarizes the direct method for realization of linear periodically time-varying systems.

Algorithm 2 Direct algorithm for linear periodically time-varying system realization. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0

(2) modeling: (y′,n) 7→ B
(
Φ̂,Ψ̂)

(e.g., Kung’s algorithm: (4) and (6)) O
(
(Lp′)2T ′)

(3) define Â and Ĉ via (11) 0

Output: Parameters Â and Ĉ of the linear periodically time-varying system. overall cost: O(L2
p

2PT )

8 〈pltv_ident2 8〉≡
fun
tion [sysh, xhini, t℄ = pltv_ident2(y, P, n, opt)

t = 0;

〈y 7→ y′ 4a〉
〈identification 5c〉
〈(Φ̂,Ψ̂) 7→ (Â,Ĉ) 7c〉
sysh = stru
t('a', a, '
', 
);

Theorem 2 Assuming that

(1) the data is exact,

(2) rank
(
HL

(
liftP(y)

))
= n,

Algorithms 1 yields the data generating system, i.e., B(Â,Ĉ) = B(A,C).

4.3 Modification of the direct method

Consider the “transposed” lifted sequence

y′⊤ :=
(
y′⊤(1), . . . ,y′⊤(T ′)

)
, y′⊤(t) ∈R

1×p′
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and the associated L×p

′(T ′−L+ 1) block-Hankel matrix

HL(y
′⊤) :=




y′⊤(1) y′⊤(2) y′⊤(3) · · · y′⊤(T ′−L+ 1)

y′⊤(2) y′⊤(3) . .
.

y′⊤(T ′−L+ 2)

y′⊤(3) . .
. ...

...

y′⊤(L) y′⊤(L+ 1) · · · y′⊤(T ′)




. (13)

The parameter L satisfies the constraints L > n and p(T ′−L−1)> n. As before, for best approximation accuracy, L is selected to

make HL(y
′⊤) as square as possible. For minimal computational cost, L is chosen as small as possible, which in the case of (13)

is n+ 1.

9a 〈define Lmin 2 9a〉≡
(9c)
L = n + 1;

For optimal approximation accuracy:

L =

⌈
T ′+ 1

p

′+ 1
p

′
⌉

9b 〈define Lsq 2 9b〉≡
(9c)
L = �oor((Tp + 1) / (pp + 1) * pp);

Since y is a trajectory of the linear periodically time-varying system B(A,C), we have that

HL(y
′⊤) = OL(Φ̂

⊤,x⊤ini) ·O⊤
T ′−L+1(Φ̂,Ψ̂).

Therefore, the parameters (Ψ̂,Φ̂) of the lifted system can be identified from the rank revealing factorization

HL(y
′⊤) =USV⊤ =U

√
S︸ ︷︷ ︸

O

√
SV⊤

︸ ︷︷ ︸
C

. (14)

The initial condition xini is the transposed first row of the O factor, Ψ is the transposed first n×p block element of C , and Φ̂⊤ is
a solution of the shift equation

OΦ̂⊤ = O, (15)

where O is O with the last row removed and O is O with the first row removed.

The resulting identification method is summarized in Algorithm 3.

Algorithm 3 Modified direct algorithm for linear periodically time-varying realization. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0

(2) modeling: (y′,n) 7→ B
(
Φ̂,Ψ̂) ((14) and (15))

O
(
L2 p′T ′)

(3) define Â and Ĉ via (11) 0

Output: Parameters Â and Ĉ of the linear periodically time-varying system. overall cost: O(L2
pT )

9c 〈identification 2 9c〉≡
(10)
if exist('opt')

〈define Lmin 2 9a〉
else

〈define Lsq 2 9b〉
end

9



H = blkhank(shiftdim(yp, 1), L);

ti
, [U, S, V℄ = svd(H, 'e
on'); t = t + to
;

s = diag(S); sqrt_s = sqrt(s(1:n))';

O = sqrt_s(ones(size(U, 1), 1), :) .* U(:, 1:n);

C = (sqrt_s(ones(size(V, 1), 1), :) .* V(:, 1:n))';

xhini = O(1, :)'; psi = C(:, 1:pp)';

phi = (O(1:end - 1, :) \ O(2:end, :))';

10 〈pltv_ident3 10〉≡
fun
tion [sysh, xhini, t℄ = pltv_ident3(y, P, n, opt)

t = 0;

〈y 7→ y′ 2 4b〉
〈identification 2 9c〉
〈(Φ̂,Ψ̂) 7→ (Â,Ĉ) 7c〉
sysh = stru
t('a', a, '
', 
);

Note that the computational cost of Algorithm 3 is independent of the period P and is linear in the number of outputs p. This

is a significant improvement over Algorithm 2. In addition, as discussed in the next section, using the matrix HL(y
′⊤) instead

of HL(y) has an important advantage in the case of optimal approximate identification.

5 Maximum likelihood identification

As commented in Notes 3 and 4, the realization algorithms 1–3 can be used in the case of noisy data as estimation methods.
Using instrumental variables, the basic algorithms presented can be extended to different noise assumptions, resulting in a class
of the non-iterative identification methods, such as the MOESP methods Verhaegen and Dewilde (1992). Despite many advan-
tages, however, non-iterative methods do not estimate optimal (in an a priori specified sense) models. Therefore, the problem of
iteratively refining the model computed by subspace methods using optimization-based methods is considered next.

5.1 Noise assumptions

Assume that the data is generated in the output error setup:

y = y+ ỹ, where y ∈ B ∈ L0,n,P

and ỹ is zero mean white Gaussian

process with covariance matrix ξ 2I
p

.

(16)

The “true value” y of the data y is generated by a linear periodically time-varying system B(Ā,C̄), refered to as the “true system”.
Persistency of excitation of the lifted true trajectory y′

rank
(
HLmin

(y′)
)
= n (17)

is required for identifiability of the data generating system. Note that (17) imposes implicitly a condition on the initial state xini

as well as on the true system B.

Our aim is to estimate the true linear periodically time-varying system B(Ā,C̄) from the data y and the prior knowledge that the
true system belongs to the model class L0,n,P. The log likelihood function for the data generating model (16) is

L(B̂, ŷ) =

{
const− 1

2ξ 2 ‖y− ŷ‖2
2 if ŷ ∈ B̂

−∞ otherwise

The maximization of L leads to the following optimization problem

minimize over ŷ and B̂ ‖y− ŷ‖2

subject to ŷ ∈ B̂ ∈ L0,n,P.
(18)

Problem 3 (Maximum likelihood identification of an autonomous linear periodically time-varying system) Given a trajectory

y =
(
y(1), . . . ,y(T )

)
,

and a model class L0,n,P, specified by natural numbers n and P, find a minimizer B̂ of (18).

10



For noisy data, the identified model has generically order n. If the data is exact and is generated by a linear periodically time-
varying system of order less than n, a nonminimal exact model exists. This case is easy to detect (e.g., by checking the rank of
the Hankel matrix H

n+1

(
liftP(ŷ

⊤)) and does not require optimization.

In Problem 3, no assumption is made about the initial conditions from which the data y is generated. Consequently, in the
optimization problem (18), the initial conditions that generate ŷ are unconstrained.

5.2 Equivalence to structured total least squares

As shown in (Markovsky et al., 2005, Section III, Theorem 1),

ŷ ∈ B̂ ∈ L0,n,P ⇐⇒ rank
(
H

n+1

(
liftP(ŷ

⊤)
))

≤ n

and
[
0 · · · 0 1

]
6∈ leftker

(
H

n+1

(
liftP(ŷ

⊤)
))

.

so that, the optimization problem (18) is equivalent to a Hankel structured total least squares approximation problem.

Proposition 2 (Optimal identification of linear periodically time-varying system via structured low-rank approximation)
Problem 3 is equivalent to the structured total least squares approximation problem

minimize over ŷ ‖y− ŷ‖2

subject to rank
(
H

n+1

(
liftP(ŷ

⊤)
))

≤ n

and

[
0 · · · 0 1

]
6∈ leftker

(
H

n+1

(
liftP(ŷ

⊤)
))

.

(SLRA)

For the solution of the structured low-rank approximation problems (SLRA) we use the method of Usevich and Markovsky
(2014). It is based on the kernel representations of the rank constraint

rank
(
H

n+1

(
liftP(ŷ

⊤)
))

≤ n ⇐⇒
there is an R1×(n+1), such that

RH
n+1

(
liftP(ŷ

⊤)
)
= 0 and R

n+1 = 1.

In the method of Usevich and Markovsky (2014), the variable projection approach is used Golub and Pereyra (2003), i.e., the
optimization variable ŷ is eliminated for a fixed R by analytically minimizing over it (a linear least norm problem). The resulting
nonlinear least squares problem for R is solved by local optimization methods.

The solution ŷ of the structured low-rank approximation is by construction an exact trajectory of a system in the model class L0,n,P.
Therefore, the remaining problem of finding the model for ŷ (which is the optimal approximate model for y) is an exact identifi-
cation problem and can be solved by Algorithm 3. The structured low-rank approximation methods of Usevich and Markovsky
(2014), however, returns as a byproduct the kernel matrix R. Therefore, a rank revealing factorization (14) can be computed
without using the computationally more expensive singular value decomposition.

The orthogonal complement R⊥ of R is equal to the left factor O in (5). Knowledge of O is sufficient to determine the parameters

(Φ̂,Ψ̂) of the lifted system. The resulting optimal identification method is summarized in Algorithm 3.

Algorithm 4 Algorithm for optimal linear periodically time-varying system identification. # of operations

Input: Sequence y ∈ (Rp)T and natural numbers P and n.
(1) lifting: (3) 0
(2) modeling: (y′,n) 7→ (R, ŷ′) (SLRA)

O((n+ 1)3
p

′T ′) per iteration

(3) Compute O = R⊥ and define Â and Ĉ via (11).
O((n+ 1)3)

Output: Parameters Â and Ĉ of the linear periodically time-varying system.
overall cost (for K iterations): O((n+ 1)3

pT K)

11 〈pltv_ident4 11〉≡
fun
tion [sysh, xhini, t, yh, info℄ = ...

pltv_ident4(y, P, n, opt)

〈y 7→ y′ 2 4b〉
if nargin < 4, opt = [℄; end

11



s = stru
t('m', n + 1, ...

'n', (Tp - n) * ones(1, pp));

ti
, [ph, info℄ = slra(yp(:), s, n, opt); t = to
;

yh = reshape(shiftdim(reshape(ph, Tp, p, P), 1), ...

p, P * Tp)';

[sysh, xhini℄ = pltv_ident3(yh, P, n);

The methods in the paper are implemented in MATLAB and are available in the ident directory of the structured low-rank
approximation package Markovsky and Usevich (2014):

http://slra.github.io/

The simulation results presented in the following section can be reproduced with the m-file pltv_all_examples.

5.3 Properties of an estimator

There are no linear or nonlinear transformations involved in the lifting liftP(y) of the data and the transition from the identified

parameters (Φ̂,Ψ̂) of the lifted system to the parameters (Â, B̂,Ĉ, D̂) of the equivalent linear periodically time-varying system
(see, Proposition 1). Therefore, the properties of an estimator of the linear periodically time-varying system are inherited from
the corresponding properties of the estimator, used for the identification of the lifted system.

In particular, the properties of the maximum likelihood estimator in the linear time-invariant case are well known. In the au-
tonomous case, the problem is extensively studied in the signal processing literature, where it is better known as "sum-of-damped
exponentials estimation" and "linear prediction". In this case, the maximum likelihood estimator is, in general, not consistent.
Consistency can be recovered in the special case of marginally stable system (undamped exponentials), see Favaro and Picci
(2012), or by using data of repeated experiments.

Note 5 (Well damped systems) The trajectories of a well damped autonomous system are quickly decaying. In the presence
of noise, this effectively limits the number of samples that can be used in an identification experiment. The issue of the short
response with sufficiently high signal-to-noise ratio is intrinsic to the identification problem of well damped autonomous system
and is reflected in the lack of consistent estimation methods.

6 Numerical examples

The estimation accuracy of Algorithms 1–4, measured by the prediction error, is compared on a test example from Allen et al.
(2011). In Section 6.2, the computational advantages of the modified method (Algorithm 3) over the classical method (Algo-
rithm 1) is illustrated on a marginally stable linear periodically time-varying system. Identification with missing data is shown
in Section 6.3 and statistical properties of the maximum likelihood estimator (Algorithm 4) are shown in Section 6.4. Finally, in
Section 6.4 we show a simulation example of a sixth order system with realistic values of the model parameters.

6.1 Comparison of the methods on Mathieu oscillator

In all examples, the data is generated according to the output error model (16). In this subsection, the true data generating system
is Mathieu oscillator—a spring-mass-damper system with time-periodic spring stiffness. A state-space representation of Mathieu
oscillator is

Āτ =

[
0 1

ā1 ā2,τ

]
, C̄τ =

[
1 0

]
, for τ = 1, . . . ,P,

where, in the particular simulation example shown, the parameters are

ā1 =−0.9 and ā2,τ =−
(
0.1+ 0.4cos(2πτ/P)

)
.

The periods length is P = 3 and the data y consists of T ′ = 20 periods.

12 〈parameters Mathieu oscillator 12〉≡
(13b)
n = 2; p = 1;

thb = [℄; phi0 = eye(n);

for tau = 1:P,

a(:, :, tau) = [0 1; ...

-.9 -(0.1 + 0.4 * 
os(2 * pi / P * tau))℄;

12




(:, :, tau) = [1 0℄;

thb = [thb; a(end, :, tau)'℄;

phi0 = phi0 * a(:, :, tau);

end

th0 = poly(eig(phi0));

13a 〈example Mathieu oscillator 13a〉≡

lear all, ex = 'mathieu';

P = 3; Tp = 20; N = 7; NN = 100; �d = 3/4;

s_ve
 = linspa
e(0, 0.5, N); test_pltv

Algorithms 1–4 are applied on the first 3/4 of the simulated data (identification data) and the obtained models are evaluated in
terms of the relative prediction error

e =
‖ȳval − ŷval‖2

‖ȳval −mean(ȳval)‖2
(19)

on the remaining 1/4 of the data (validation data). The reported results are averaged over 100 noise realizations.

Define the true system and generate a random trajectory:

13b 〈true system and data 13b〉≡
(15 17–19)
swit
h lower(ex)


ase {'mathieu','mathieu2'},

〈parameters Mathieu oscillator 12〉

ase 'rand',

〈parameters of a random system 19a〉
end

T = P * Tp; Tid = round(�d * T);

sys0 = stru
t('a', a, '
', 
);

x0 = rand(n, 1); [y0, X0℄ = pltv_sim(sys0, T, x0);

The identification experiment is repeated for a range of noise variances ξ 2. Table 1 shows the averaged relative approximation
errors e for all methods and all noise variances. Among the subspace methods, best estimation accuracy achieves Algorithm 3.
Used as an initial approximation for the maximum-likelihood algorithm, the estimate of Algorithm 3 is further improved by
Algorithm 4. Figure 2 shows the bias and variance components of the error.

Inf 12 6 4 3 2.4 2

Alg. 1 0.0000 0.0794 0.1625 0.2316 0.3137 0.4071 0.4635

Alg. 2 0.0000 0.0795 0.1600 0.2253 0.3128 0.3981 0.4585

Alg. 3 0.0000 0.0788 0.1550 0.2244 0.3058 0.3845 0.4525

Alg. 4 0.0000 0.0736 0.1473 0.2123 0.2738 0.3577 0.4315

Table 1
Relative prediction errors (19) in identifying Mathieu oscillator with signal-to-noise ratios varying from ∞ (exact data) to 2.

6.2 Computational efficiency on large examples

In this subsection, we illustrate the computational advantages of the proposed in the paper Algorithm 3 over the classical Algo-
rithm 1. In order to apply the methods on an example with large number of samples, the true data is generated by a marginally
stable autonomous linear periodically time-varying system, i.e., the eigenvalues z̄1, . . . , z̄

n

of Ā1Ā2 . . . ĀP are chosen on the unit
circle (observing the complex conjugate symmetry) and all have multiplicity one.

Define
θ̄ (z) := (z− z̄1) · · · (z− z̄

n

) = zn+ θ̄1zn−1 + · · ·+ θ̄n

and let

θ̄⊤ :=
[
θ̄1 · · · θ̄

n

]

13
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Fig. 2. Bias |ȳ−mean(ŷ)| and standard deviation std(ŷ) of the modeled responses.

be the true system’s parameter vector. Similarly, let θ̂ be the identified system’s parameter vector. The estimation accuracy is
measured by the relative parameter error

e =
‖θ̄ − θ̂‖2

‖θ̄‖2

, (20)

averaged over 100 Monte Carlo repetitions of the identification with different noise realizations.

The reported results of computation error and parameter error are shown for randomly generated examples with T = 10000 data
points and period P ranging from 10 to 1000. The average computational times of the subspace algorithms are shown in Table 2
and the corresponding approximation errors in Table 3. Algorithm 3 is several orders of magnitude faster than Algorithm 1.

10 100 200 500 750 1000

Alg. 1 3.0684 0.2137 0.1870 0.1744 0.1978 0.2350

Alg. 3 0.2998 0.0021 0.0013 0.0007 0.0007 0.0007

Table 2
Computation times in seconds on problems with T = 10000 samples and period lengths from 10 to 1000.

10 100 200 500 750 1000

Alg. 1 0.0000 0.0999 0.0081 0.0160 0.5425 0.5614

Alg. 3 0.0000 0.0357 0.0027 0.0079 0.6457 0.6067

Table 3
Average relative error (20) on problems with T = 10000 samples and period lengths from 10 to 1000.

6.3 Missing data

The possibility to solve linear periodically time-varying identification problems with missing data, using the method of Markovsky
and Usevich (2013), is illustrated in this subsection on the example of Section 6.1 (Mathieu oscillator). The signal-to-noise ratio
is 10 and a fraction of the output samples are missing in a random pattern. Algorithm 4 is applied on the noisy incomplete data

14



and the identified model is validated by computing the relative estimation error of the missing samples

e =
‖ȳmissing − ŷmissing‖2

‖ȳmissing −mean(ȳmissing)‖2

. (21)

The results reported in Table 4 are averaged over 100 different random patterns of the missing values.

5 10 15 20 25 30 35

Alg. 4 0.0958 0.1165 0.1825 0.2826 0.3067 0.4272 0.6550

Table 4
Relative error in estimation of the missing data (21) as a function of the percentage of the missing data.

6.4 Confidence ellipsoids

In this subsection, we illustrate the consistency of the maximum likelihood estimator in the case of a marginally stable system. We
also show the corresponding confidence bound for the estimated parameters. The simulation setup is the same as in Section 6.2.
The reported results are generated by a system with period length P = 100 and number of samples T from 1000 to 5000. For
each sample size, the identification is repeated N = 100 times with independent noise realizations (but the true system remains
fixed). The parameter estimation error (20) is shown in Figure 3 as a function of the sample size T . Figure 4 shows the true
parameters θ̄1, θ̄2 (red cross), the 100 estimates θ̄ k

1 , θ̄
k
2 for T = 5000 (blue dots), and the 95% confidence ellipsoid, computed

from the covariance matrix of θ̂ , and translated to θ̄ .

15 〈confidence bounds example 15〉≡

lear all; ex = 'rand'; T = 5000;

p = 1; n = 2; s = 0.1; P = 100;

NN = 10; TT = round(linspa
e(1000, T, NN)); K = 100;

Tp = 
eil(T / P); �d = 1;

〈true system and data 13b〉
th0 = poly(eig(sys0.a(:,:,end)))';

methods = 4; lm = {'ro-' 'bx-' 'gs-' 'kd-'};

for ii = 1:NN

randn('seed', 0), rand('seed', 0)

T = TT(ii); Tp = 
eil(T / P);

for jj = 1:K

yt = randn(size(y0));

y = y0 + s * norm(y0, 'fro') * yt / norm(yt, 'fro');

for k = 1:length(methods)

m = methods(k);

str = sprintf(['[sysh, xhini℄ = ' ...

'pltv_ident%d(y(1:T), P, n);'℄, m);

try

eval(str); th(:, jj) = poly(eig(sysh.a(:,:,end)))';

E(k, ii, jj) = norm(th0 - th(:, jj)) / norm(th0);


at
h

E(k, ii, jj) = NaN;

end

end

end

end

Em = mean(E, 3); Emh = 1 ./ sqrt(TT); al = Em(1, :) / Emh;

�gure(1), plot(TT, Em(1, :), '-k') %, TT, al * Emh, ':b');

ax = axis; axis([TT(1) TT(end) ax(3:4)℄),

% legend('empiri
al .') % , 'theoreti
al'),

print_�g('
onsisten
y')

[sysh, xhini, ~, ~, info℄ = pltv_ident4(y(1:T), P, n);


 = 
hi2inv(0.95, n); vh = info.fmin / T; Vh = vh * info.Vh;

�gure(2), ellipsoid(sqrtm(
 * Vh), th0(2:3), 'g'), hold on

plot(th0(2), th0(3), 'rX', 'markersize', 10)

for i = 1:K, plot(th(2, i), th(3, i), 'b.', 'markersize', 10), end

print_�g('err-bounds')
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6.5 Realistic 6th order example

The example presented in this section is a 6th order lowly damped periodically time-varying system B(A,C), with state space
parameters

A(t) = Alti

(
1+α sin(2π f t)

)

C(t) =Clti

(
1+ γ sin(2π f t)

)
.

The terms α sin(2π f t) and γ sin(2π f t) define the time variation and have parameters α = 0.1, γ = 0.15, and f = 20. B(Alti,Clti)
is a 6th order autonomous linear time-invariant system with resonance angular frequencies

ω̄1 = 2π 80rad/s, ω̄2 = 2π 130rad/s, ω̄3 = 2π 200rad/s

the poles’ damping ratios are
ζ1 = 0.015, ζ2 = 0.01, ζ3 = 0.02,

the transmission zeroes are
ωz,1 = 2π 105rad/s, ωz,2 = 2π 165rad/s,

and zeroes’ damping ratios
ζz,1 = 0.001, ζz,2 = 0.0008.

The system is simulated with initial condition

xini =
[
1 0 0 0 0 0

]⊤

over the interval [0,0.6], using MATLAB’s ordinary differential equation solver ode45 and is sampled with period 10−3. The
identification data are 601 noise perturbed output samples of the continuous-time trajectory. The noise is zero mean independent
normally distributed with signal-to-noise ratio 4. The true, noisy, and estimated trajectories are shown in Figure 5.
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Fig. 5. True (dashed-dotted), noisy (dotted), and estimated (dashed) trajectories in the example of Section 6.5.

7 Conclusions

In this paper, we developed realization and maximum likelihood identification algorithms for autonomous linear periodically
time-varying systems. The algorithms are based on 1) lifting of the original time series, 2) modeling of the lifted time-series
by a linear time-invariant system, 3) the transition from the time-invariant system’s parameters to the ones of the periodic time-
varying system. It is shown that the derivation of the periodic time-varying system’s state space parameters in step 3 can be
done without extra computations. Also, in step 2, the realization problem can be solved by a rank revealing factorization of a
block Hankel matrix with n+1 rows, where n is the order to the system. These facts lead to a new efficient realization algorithm
and a maximum likelihood identification algorithm, based on Hankel structured low-rank approximation. Consequently, readily
available robust and efficient optimization methods and software can be used for identifying periodic linear time-varying systems.
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Code for the simulation examples

Test procedure:

17 〈test_pltv 17〉≡
18c⊲
randn('seed', 0), rand('seed', 0)

〈true system and data 13b〉,
methods = [1 2 3 4℄;

lm = {'ro-' 'bx-' 'gs-' 'kd-'};

for i = 1:N

s = s_ve
(i);

for j = 1:NN

yt = randn(size(y0));

y = y0 + s * norm(y0, 'fro') * yt / norm(yt, 'fro');

for k = 1:length(methods)

m = methods(k);

str = sprintf(['[sysh, xhini℄ = ' ...

'pltv_ident%d(y(1:Tid), P, n);'℄, m);

eval(['ti
, ' str 't(k, i, j) = to
;'℄)

〈evaluate 18a〉, E(k, i, j) = e; Yh(:, k, i, j) = yh;

end

end

end

Validation error:
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18a 〈evaluate 18a〉≡
(17)
yh = pltv_sim(sysh, T, xhini);

e = norm(y0(Tid + 1:end) - ...

yh(Tid + 1:end), 'fro') / ...

norm(y0(Tid + 1:end) - ...

mean(y0(Tid + 1:end)), 'fro');

Error with respect to the model parameters:

18b 〈evaluate θ 18b〉≡
sysh = pltv_
anon(sysh); thh = [℄;

for tau = 1:P

thh = [thh; sysh.a(end, :, tau)'℄;

end

eth = norm(thh - thb) / norm(thb);

Print/save the results:

18c 〈test_pltv 17〉+≡
⊳17 18d⊲
for k = 1:length(methods)

rl{k} = ['Alg. ' int2str(methods(k))℄;

end

disp([['SNR'; rl'℄ num2
ell([1 ./ s_ve
; mean(E, 3)℄)℄)


l = 
ellstr(num2str(1 ./ s_ve
'));

matrix2latex(mean(E, 3), 'mathieu', 'rowLabels', rl, '
olumnLabels', 
l, 'format', '%-6.4f')

Plot figures:

18d 〈test_pltv 17〉+≡
⊳18c
�gure(1), 
lf,

plot(y0, '-k'), hold on, plot(y, 'k:')

for k = 1:length(methods)

plot(Yh(:, k, end, 1), lm{k})

end

l = {};

for k = 1:length(methods)

l = [l; ['yh' int2str(k)℄℄;

end

legend('true data', 'noisy data', l{1:end})

axis([1 60 -0.3 0.5℄)

print_�g([ex '-f1'℄)

for k = 1:length(methods)

�gure(k + 1), 
lf, hold on,

plot(abs(y0 - mean(Yh(:, k, end, :), 4)), '-')

plot(std(Yh(:, k, end, :), [℄, 4), '�')

l = {sprintf('|y0 - mean(yh%s)| .', int2str(k));

sprintf('std(yh%s)', int2str(k))};

legend(l)

ax(k, :) = axis;

end

for k = 1:length(methods)

�gure(k + 1), axis([1 T 0 max(ax(:, 4))℄)

print_�g([ex '-f' int2str(k + 1)℄)

end

18e 〈efficiency 18e〉≡

lear all, ex = 'rand'; p = 1; n = 5;

T = 10000; s = 0.1; NN = 100; �d = 1;

18



PP = [10 100 200 500 750 1000℄; N = length(PP);

methods = [1 2 3℄;

lm = {'ro-' 'bx-' 'gs-' 'kd-'};

for ii = 1:N

randn('seed', 0), rand('seed', 0)

P = PP(ii); Tp = 
eil(T / P);

〈true system and data 13b〉
phi0 = sys0.a(:,:,end);

for jj = 1:NN

yt = randn(size(y0));

y = y0 + s * norm(y0, 'fro') * yt / norm(yt, 'fro');

for k = 1:length(methods)

m = methods(k);

str = sprintf(['[sysh, xhini, t℄ = ' ...

'pltv_ident%d(y(1:Tid), P, n);'℄, m);

%try

eval(str), time(k, ii, jj) = t;

if methods(k) == 1

phih = eye(n);

for ll = 1:P

phih = sysh.a(:,:,ll) * phih;

end

else

phih = sysh.a(:,:,end);

end

E(k, ii, jj) = norm(poly(eig(phi0)) - ...

poly(eig(phih))) / ...

norm(poly(eig(phi0)));

%
at
h

% time(k, ii, jj) = NaN; E(k, ii, jj) = NaN;

%end

end

end

end

for k = 1:length(methods)

rl{k} = ['Alg. ' int2str(methods(k))℄;

end


l = 
ellstr(num2str(PP'));

disp([['P'; rl'℄ num2
ell([PP; mean(time, 3)℄)℄)

matrix2latex(mean(time, 3), 'time', 'rowLabels', rl, '
olumnLabels', 
l, 'format', '%-6.4f')

disp([['P'; rl'℄ num2
ell([PP; mean(E, 3)℄)℄)

matrix2latex(mean(E, 3), 'error', 'rowLabels', rl, '
olumnLabels', 
l, 'format', '%-6.4f')

19a 〈parameters of a random system 19a〉≡
(13b)
w = rand(1, �oor(n / 2));

if mod(n, 2) ~= 0, w = [w 0℄; end

phi = assign_eig(exp(sqrt(-1) * pi * w)); thb = NaN;

psi = rand(p * P, n);

〈(Φ̂,Ψ̂) 7→ (Â,Ĉ) 7c〉

19b 〈missing data 19b〉≡

lear all, ex = 'mathieu'; P = 3;

Tp = 20; N = 7; s = 0.1; NN = 100; �d = 1;

f_missing = linspa
e(0.05, 0.35, N);

randn('seed', 0), rand('seed', 0)

〈true system and data 13b〉
yt = randn(size(y0));

y = y0 + s * norm(y0, 'fro') * yt / norm(yt, 'fro');

methods = 4; 
lear E,

for ii = 1:N

for jj = 1:NN

Im = randperm(T); Tm = round(f_missing(ii) * T); Im = Im(1:Tm);

ym = y; ym(Im) = NaN;

[sysh, xhini℄ = pltv_ident4(ym, P, n);

yh = pltv_sim(sysh, T, xhini);

E(1, ii, jj) = norm(y0(Im) - yh(Im)) / norm(y0(Im));

end

end

19



for k = 1:length(methods)

rl{k} = ['Alg. ' int2str(methods(k))℄;

end

disp([['% missing'; rl'℄ num2
ell([100 * f_missing; mean(E, 3)℄)℄)


l = 
ellstr(num2str(100 * f_missing'));

matrix2latex(mean(E, 3), 'error-missing', 'rowLabels', rl, '
olumnLabels', 
l, 'format', '%-6.4f')

20 〈test_all 20〉≡
test_mathieu

test_e�
ien
y

test_missing_data
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