Subspace, basis, and dimension

- $\mathscr{U} \subset \mathbb{R}^{m}$ is a subspace of a vector space \mathbb{R}^{m} if \mathscr{U} is a vector space

$$
u, v \in \mathscr{U} \quad \Longrightarrow \quad \alpha u+\beta v \in \mathscr{U}, \quad \text { for all } \alpha, \beta \in \mathbb{R}
$$

- The set $\left\{u^{(1)}, \ldots, u^{(\mathrm{m})}\right\}$ is a basis of a vector space \mathscr{U} if
- $u^{(1)}, \ldots, u^{(m)} \operatorname{span} \mathscr{U}$, i.e.,

$$
\mathscr{U}=\operatorname{span}\left(u^{(1)}, \ldots, u^{(\mathrm{m})}\right):=\left\{\alpha_{1} u^{(1)}+\cdots+\alpha_{m} u^{(\mathrm{m})} \mid \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}\right\}
$$

- $\left\{u^{(1)}, \ldots, v^{(\mathrm{m})}\right\}$ is an independent set of vectors.
- $\operatorname{dim}(\mathscr{U})$ - number of basis vectors (doen't depend on the basis)

Null space of a matrix (kernel)

- kernel of A - the set of vectors mapped to zero by $f(u):=A u$

$$
\operatorname{ker}(A):=\left\{u \in \mathbb{R}^{m} \mid A u=0\right\}
$$

- $y=A(u+v)$, for all $v \in \operatorname{ker}(A)$

Interpretation: $\operatorname{ker}(A)$ is the uncertainty in finding u, given y. Interpretation: $\operatorname{ker}(A)$ is the freedom in the u 's that achieve y.

- $\operatorname{ker}(A)=\{0\} \quad \Longleftrightarrow \quad f(u):=A u$ is one-to-one
- $\operatorname{ker}(A)=\{0\} \quad \Longleftrightarrow A$ is full column rank

Range of a matrix (image)

- image of A - the set of all vectors obtainable by $f(u):=A u$

$$
\operatorname{image}(A):=\left\{A u \mid u \in \mathbb{R}^{m}\right\}
$$

- image $(A)=$ span of the columns of A
- image $(A)=$ set of vectors y for which $A u=y$ has a solution
- $\operatorname{image}(A)=\mathbb{R}^{\mathrm{p}} \Longleftrightarrow f(u):=A u$ is onto $\left(\operatorname{image}(f)=\mathbb{R}^{\mathrm{p}}\right)$
- $\operatorname{image}(A)=\mathbb{R}^{\mathrm{p}} \quad \Longleftrightarrow A$ is full row rank

Change of basis

- standard basis vectors in \mathbb{R}^{m} - the columns $e^{(1)}, \ldots, e^{(m)}$ of I_{m}
- Elements of $u \in \mathbb{R}^{m}$ are coordinates of x w.r.t. standard basis.
- A new bases is given by the columns $v^{(1)}, \ldots, v^{(\mathrm{m})}$ of $V \in \mathbb{R}^{\mathrm{m} \times \mathrm{m}}$.
- The coordinates of u in the new basis are $\widetilde{u}_{1}, \ldots, \widetilde{u}_{\mathrm{m}}$, such that

$$
u=\widetilde{u}_{1} v^{(1)}+\cdots+\widetilde{u}_{\mathrm{m}} v^{(\mathrm{m})}=V \widetilde{u} \quad \Longrightarrow \quad \widetilde{u}=V^{-1} u
$$

- V^{-1} transforms standard basis coordinates u into V-coordinates

Similarity transformation

- Consider linear operator $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, given by $f(u)=A u, A \in \mathbb{R}^{m \times m}$.
- Change standard basis to basis defined by columns of $V \in \mathbb{R}^{m \times m}$.
- The matrix representation of f changes to $V^{-1} A V$:

$$
u=V \widetilde{u}, \quad y=V \widetilde{y} \quad \Longrightarrow \quad \widetilde{y}=\left(V^{-1} A V\right) \widetilde{u}
$$

- $A \mapsto V^{-1} A V-$ similarity transformation of A

