
Modeling

Suppose that we have a ‘real’ phenomenon.

The phenomenon produces ‘events’ (synonym: ‘outcomes’).

Phenomenon

Event, outcome   

We view a (deterministic) model for the phenomenon as a
prescription of which events can occur,

and which events cannot occur.
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The behavior

A mathematical model :⇔ a pair (U ,B)
with

U the universum of events

B ⊆ U the behavior of the model

U

B

allowed

possible

forbidden
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Discrete event phenomena

If U is a finite set, or strings of elements from a finite set,
we speak about discrete event systems (DESs).

Phenomenon

Examples:

◮ Words in a natural language
◮ Sentences in a natural language
◮ DNA sequences
◮ LATEX code
◮ Block codes
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Discrete event phenomena

◮ Words in a natural language

U = A∗ (:= all finite strings with letters from A)
with A = {a, . . . ,z,A, . . . ,Z}.

B = all words recognized by the spelling checker,
for example, behavior ∈ B, SPQR /∈ B.
B is basically specified by enumeration.

◮ Sentences in a natural language

U = A∗ (:= all finite strings with letters from A)
with A = {a, . . . ,z,A, . . . ,Z, , .; : ‘”′ − ()!?, etc.}.

B = all legal sentences.
Specifying B is a complicated matter, involving grammars.
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Continuous phenomena

If U is a (subset of a) finite-dimensional real (or complex)
vector space, we speak about continuous models.

Phenomenon

Examples:

◮ The gas law
◮ A spring
◮ The gravitational attraction of two bodies
◮ A resistor
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Continuous phenomena

◮ A resistor

Event: voltage V , current I.
Throughout, we take the current positive when it runs into the circuit,
and we take the voltage positive when it goes from higher to lower potential.

+

–

I

VR

Georg Ohm
(1789–1854)

U = R×R;
B = {(V, I) ∈ R×R | V = RI } (Ohm’s law).
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Dynamical phenomena

If U is a set of functions of time, we speak about
dynamical models.

Phenomenon

time

signal space

Examples:

◮ Inductors, capacitors
◮ Kepler’s laws
◮ Newton’s second law
◮ Convolutional codes
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Dynamical phenomena

◮ Inductors and capacitors

Event: voltage and current as a function of time.

+

–

I

VL

+

–

I

VC

U = (R×R)R;

B = {(V, I) : R → R×R | L d
dt I =V } (inductor),

B = {(V, I) : R → R×R | C d
dtV = I } (capacitor).
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Dynamical phenomena

◮ Kepler’s laws

Event: the position of a planet as a function of time.

PLANET

7 months

1 year

SUN

K1: ellipse, sun in focus,
K2: equal areas in equal times,
K3: square of the period

= third power of major axis.

Johannes Kepler
(1571–1630)

U = (R3)R;
B = {�q : R → R

3 | K1, K2, & K3 hold }.
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Dynamical phenomena

◮ Newton’s second law

Event: the position of a pointmass and the force acting
on it, both as a function of time.

M
�q

�F

Newton painted by William Blake
U = (R3×R3)R;

B = {(�q,�F) : R → R3×R3 | �F = M d2
dt2�q }.

– p. 14/44



Distributed phenomena

If U is a set of functions of space and time, we speak about
distributed parameter systems.
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Phenomenon

time

space

signal space

Examples:

◮ Heat diffusion
◮ Wave equation
◮ Maxwell’s equations
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Distributed phenomena

◮ Maxwell’s equations
Event: electric field, magnetic field, current density,

charge density as a function of time and space.

∇ ·�E =
1
ε0
ρ ,

∇×�E = −
∂
∂ t

�B,

∇ ·�B = 0 ,

c2∇×�B =
1
ε0

�j+
∂
∂ t

�E.
James Clerk Maxwell

(1831–1879)

U = (R3×R3×R3×R)R
4
;

B = {(�E,�B,�j,ρ) : R×R3 → R3×R3×R3×R

| Maxwell’s equations are satisfied }.
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Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is.
Equivalence of models, properties of models,

symmetries, system identification, etc.
must all refer to the behavior.

Every ‘good’ scientific theory is prohibition:
it forbids certain things to happen.
The more it forbids, the better it is.

Karl Popper (1902-1994)

Replace ‘scientific theory’ by ‘mathematical model’.
– p. 19/44



The dynamic behavior

In dynamical systems, the ‘events’ are maps, with the
time-axis as domain. The events are functions of time.

Phenomenon

time

signal space

It is convenient to distinguish, in the notation,
the domain of the event maps, the time set,
and the codomain, the signal space,

that is, the set where the functions take on their values.
– p. 21/44



The dynamic behavior

Definition: A dynamical system :⇔ (T,W,B), with

◮ T ⊆ R the time set,

◮ W the signal space,

◮ B ⊆ W
T the behavior,

that is, B is a family of maps from T to W.

w : T → W ∈ B means: the model allows the trajectory w,

w : T → W /∈ B means: the model forbids the trajectory w.

– p. 22/44



The dynamic behavior

Definition: A dynamical system :⇔ (T,W,B), with

◮ T ⊆ R the time set,

◮ W the signal space,

◮ B ⊆ W
T the behavior,

that is, B is a family of maps from T to W.

w : T → W ∈ B means: the model allows the trajectory w,

w : T → W /∈ B means: the model forbids the trajectory w.

Mostly, T = R,R+ := [0,∞),Z, or N := {0,1,2, . . .},
W = (a subset of) Rw, for some w ∈ N,

B is then a family of trajectories taking values
in a finite-dimensional real vector space.

T = R or R+ ❀ ‘continuous-time’ systems,
T = Z or N ❀ ‘discrete-time’ systems.

– p. 22/44



Dynamical systems described by differential equations

Consider the ODE

f
�

w,
d
dt
w,

d2

dt2
w, . . . ,

dn

dtn
w
�

= 0, (∗)
with

f : W×R
w×R

w×·· ·×R
w

� �� �

n times

→ R
•, W ⊆ R

w.

Some may prefer to write

f ◦
�

w,
d
dt
w,

d2

dt2
w, . . . ,

dn

dtn
w
�

= 0,

instead of (∗), but we leave the ◦ notation to puritans.
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Linearity and time-invariance

The dynamical system Σ = (T,W,B) is said to be

linear :⇔
W is a vector space (over a field F) and
[[w1,w2 ∈ B and α ∈ F]] ⇒ [[w1 +αw2 ∈ B]].

Linearity ⇔ the ‘superposition principle’ holds.

– p. 26/44



Linearity and time-invariance

The dynamical system Σ = (T,W,B) is said to be

time-invariant :⇔ T = R,R+,Z, or N, and
[[w ∈ B and t ∈ T]] ⇒ [[σ tw ∈ B]].

σ t denotes the backwards t-shift, defined as

σ tw : T → W, σ tw(t ′) := w(t ′ + t).

time

t

wσ tw

Time-invariance ⇔ shifts of ‘legal’ trajectories are ‘legal’.
– p. 26/44



Autonomous systems

The dynamical system Σ = (T,W,B), with T = R or Z, is said
to be

autonomous :⇔
[[w1,w2 ∈ B, and w1(t) = w2(t) for t < 0]] ⇒ [[w1 = w2]].

– p. 27/44



Autonomous in a picture

time

time

FUTURE

PAST

W

W

autonomous :⇔ the past implies the future.
– p. 28/44



Stability

The dynamical system Σ = (T,W,B), with T = R, [0,∞),
Z, or N, and W a normed vector space (for simplicity),
is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 for t → ∞]].

– p. 29/44



Stability

The dynamical system Σ = (T,W,B), with T = R, [0,∞),
Z, or N, and W a normed vector space (for simplicity),
is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 for t → ∞]].

In a picture

time

W

stability :⇔ all trajectories go to 0.

Sometimes this is referred to as ‘asymptotic stability’.
There exist numerous other stability concepts for dynamical
systems!
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Controllability

The time-invariant (to avoid irrelevant complications)
dynamical system Σ = (T,W,B), with T = R or Z,
is said to be

controllable :⇔
for all w1,w2 ∈ B,
there exist T ∈ T,T ≥ 0, and w ∈ B,
such that

w(t) =

�

w1(t) for t < 0;
w2(t−T ) for t ≥ T.

– p. 30/44



Controllability in a picture

time

W

0

w1

w2

w1,w2 ∈ B
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Controllability in a picture

time

W

0

w1

w2

w1,w2 ∈ B

transition 

time
T

WW

0

w1 ❀ w

w

σ−Tw2 ❀ w

w ∈ B

controllability :⇔ concatenability of trajectories after a delay
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Stabilizability

The dynamical system Σ = (T,W,B), with T = R or Z,
and W a normed vector space (for simplicity),
is said to be

stabilizable :⇔ for all w ∈ B, there exist w′ ∈ B, such that

w′(t) = w(t) for t < 0,

w′(t) → 0 for t → ∞.
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Stabilizability in a picture

W

time
0

w ❀ w′

w′

stabilizability :⇔ all trajectories can be steered to 0.
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Observability

System  observed w1 w2 to-be-deduced

Consider the dynamical system Σ = (T,W1×W2,B).

w2 is said to be observable from w1 in Σ :⇔

[[(w1,w2),(w′
1,w

′
2) ∈ B and w1 = w′

1]] ⇒ [[w2 = w′
2]].
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Observability

System  observed w1 w2 to-be-deduced

Consider the dynamical system Σ = (T,W1×W2,B).

w2 is said to be observable from w1 in Σ :⇔

[[(w1,w2),(w′
1,w

′
2) ∈ B and w1 = w′

1]] ⇒ [[w2 = w′
2]].

Observability :⇔ w2 may be deduced from w1.

!!! Knowing the laws of the system !!!
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Observability in a picture

time

time

W1

W2

w1

w2

F

Equivalently, there exists a map F : WT
1 → WT

2 , such that

[[(w1,w2) ∈ B]] ⇒ [[w2 = F(w1)]].
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Detectability

Consider the dynamical system Σ = (T,W1×W2,B),
with T = R,R+,Z, or N,
and W a normed vector space (for simplicity).

w2 is said to be detectable from w1 in Σ :⇔

[[(w1,w2),(w′
1,w

′
2) ∈ B and w1 = w′

1]]

⇒ [[w2(t)−w′
2(t) → 0 for t → ∞]].

Detectability :⇔ w2 can be asymptotically deduced from w1.
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State equations

We now discuss how state models fit in.

d
dt
x = f (x,u), y = h(x,u), w =

�

u
y

�

, (♠)

with u : R → U the input , y : R → Y the output , and
x : R → X the state .

In particular, the linear case, these systems are parametrized
by the 4 matrices (A,B,C,D) ❀

d
dt
x = Ax+Bu, y =Cx+Du, w =

�

u
y

�

,

with A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n,D ∈ R

p×m.
These models have dominated linear system theory since the
1960’s.

– p. 39/44



State equations

We now discuss how state models fit in.

d
dt
x = f (x,u), y = h(x,u), w =

�

u
y

�

, (♠)

with u : R → U the input , y : R → Y the output , and
x : R → X the state .

It is common to view state space systems as models to describe
the input/output behavior by means of input/state/output
equations, with the state as latent variable. Define

Bextended := {(u,y,x) : R → U×Y×X | (♠) holds},

B := {(u,y) : R → U×Y |∃ x : R → X such that (♠) holds}.

– p. 39/44



State controllability

State models propagated in the
1960’s under the influence
of R.E. Kalman.

Especially important in this
development were the notions of
state controllability and
state observability.

Rudolf Kalman (1930– )
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State controllability

(♠) is said to be state controllable if for all x1,x2 ∈ X,
there exists T ≥ 0, u : R → U, and x : R → X, such that

1. d
dt x(t) = f (x(t),u(t)) for 0≤ t ≤ T ,

2. x(0) = x1,
3. x(T ) = x2.

x1

x2
X

– p. 40/44



State controllability

(♠) is said to be state controllable if for all x1,x2 ∈ X,
there exists T ≥ 0, u : R → U, and x : R → X, such that

1. d
dt x(t) = f (x(t),u(t)) for 0≤ t ≤ T ,

2. x(0) = x1,
3. x(T ) = x2.

It is easy to prove that
[[state controllability]]

⇔ [[behavioral controllability of Bextended]].
[[state controllability]] ⇒ [[behavioral controllability of B]].

Behavioral controllability makes controllability into
a genuine, an intrinsic, representation independent system
property.
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State observability

(♠) is said to be state observable if

[[(u,y,x1),(u,y,x2) ∈ Bextended]] ⇒ [[x1(0) = x2(0)]].

– p. 41/44



State observability

(♠) is said to be state observable if

[[(u,y,x1),(u,y,x2) ∈ Bextended]] ⇒ [[x1(0) = x2(0)]].

It is easy to prove that
[[state observability]] ⇔ [[behavioral observability of Bextended]],
with (u,y) as ‘observed’ variables, and x as ‘to-be-deduced’
variable.
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State observability

(♠) is said to be state observable if

[[(u,y,x1),(u,y,x2) ∈ Bextended]] ⇒ [[x1(0) = x2(0)]].

It is easy to prove that
[[state observability]] ⇔ [[behavioral observability of Bextended]],
with (u,y) as ‘observed’ variables, and x as ‘to-be-deduced’
variable.

Behavioral controllability and observability are meaningful
generalizations of state controllability and observability.

Why should we be so interested in the state?
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Summary

◮ A phenomenon produces ‘events’, ‘outcomes’.
❀ the universum of events U .

◮ A mathematical model specifies a subset B of U .
B is the behavior and specifies which events can occur,
according to the model.

◮ In dynamical systems, the events are maps from the time
set to the signal space.

◮ Controllability, observability, and similar properties can
be nicely defined within this setting.

◮ State models are a more structured class of dynamical
systems.
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