Modeling as data compression

- the model is a concise representation of the data
- ► exact model ↔ lossless compression (*e.g.*, zip)
- ► approximate model ↔ lossy compression (*e.g.*, mp3)

Example: compression of a random vector

b data: 1 × n vector, generated by randn

compression in mat format

	length n	1	223	334	556	667	1000
1.	original size	8	1784	2672	4448	5336	8000
2.	mat file size	178	1945	2798	4490	5341	7893

Example: low-rank matrix compression

- data: random 100 × 100 matrix D of rank 5
- stored in four different ways

	representation	size
1.	all elements of D	80000
2.	D in mat format	75882
3.	all elements of <i>P</i> and <i>L</i>	8024
4.	P and L in mat format	7767

▶ in 2 and 4, we compute a rank revealing factorization

$$D = PL$$

can we do better than storing P and L (compressed)?

Example: trajectory of an LTI system

- data: impulse response of a random 3rd order system
- stored in four different ways

	representation	size
1.	impulse response h	192
2.	<i>h</i> in mat format	377
3.	model parameters θ	56
4.	heta in mat format	233

in 3 and 4, we have parameterized the system