Autonomous system = system without inputs

State space representation

$$
\mathscr{B}(A, C)=\{y \mid \text { there is } x, \text { such that } \sigma x=A x, y=C x\}
$$

x is the state, $n:=\operatorname{dim}(x)$ is the "state dimension", y is the output

Polynomial representation

$$
\mathscr{B}(P)=\{y \mid P(\sigma) y=0\}
$$

where $P \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}[z]$ and $\operatorname{det}(P) \neq 0$.

Phase plane

In $\sigma x=A x, A x$ is a "velocity" vector - it shows how x changes in time.

For $n=2$, the plot of $A x$ over $x \in \mathbb{R}^{n}$ is called phase plane.

Example: harmonic oscillator $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

Equilibrium point of a dynamical system

Consider a nonlinear autonomous system

$$
\mathscr{B}=\{x \mid \sigma x=f(x)\}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and suppose that $f\left(x_{e}\right)=x_{e}$, for some $x_{\mathrm{e}} \in \mathbb{R}^{n}$.
x_{e} is called an equilibrium point of \mathscr{B}
If $x\left(t_{1}\right)=x_{\mathrm{e}}$ for some $t_{1}, x(t)=x_{\mathrm{e}}$, for all $t>t_{1}$.
The set of equilibrium points of and LTI autonomous system

$$
\mathscr{B}=\{x \mid \sigma x=A x\}
$$

is $\operatorname{ker}(A-I)$ - the nullspace of $A-I$.

Linearization around an equilibrium point

Suppose that $x(t)$ is near an equilibrium point x_{e}. Then

$$
\sigma x=f(x) \approx f\left(x_{\mathrm{e}}\right)+A\left(x-x_{\mathrm{e}}\right)
$$

where

$$
A=\left[a_{i j}\right]=\left[\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x_{e, j}}\right] .
$$

The dynamics of the deviation from x_{e}

$$
\tilde{x}=x-x_{e}
$$

is described approximately be a linear system

$$
\mathscr{B}=\{\widetilde{x} \mid \sigma \widetilde{x}=A \widetilde{x}\}
$$

(Linearlization of a nonlinear system will be covered in part 2.)

Initial conditions

A trajectory of an autonomous system is uniquely determined by the initial state $x(0)$ or initial conditions:

- in discrete-time (DT) $y(-\ell+1), y(-\ell+2), \cdots y(0)$
- in continuous-time (CT) $\left(\frac{d}{d t}\right)^{-\ell+1} y(0),\left(\frac{d}{d t}\right)^{-\ell+2} y(0), \ldots\left(\frac{d}{d t}\right)^{0} y(0)$.

In the DT case

$$
y(t)=C A^{t} x(0), \quad t>0
$$

In the CT case the matrix power A^{t} is replaced by the matrix exponential $e^{A t}$.

Modal form

Assume that there is a nonsingular matrix V, such that

$$
V^{-1} A V=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]=: \Lambda
$$

- $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A
- the columns of V are the corresponding eigenvectors.

Then $\mathscr{B}(A, C)=\mathscr{B}(\Lambda, \widetilde{C})$, where $\widetilde{C}:=C V$.
The state equation of $\sigma x=\Lambda x$ is a set of n decoupled equations.

- λ_{i} - pole of the system
- $e^{\lambda_{i} t}$ (in CT) or λ_{i}^{t} (in DT) — mode of the system

Eigenvalues and eigenvectors of a matrix

Consider a square matrix $A \in \mathbb{R}^{n \times n} . v \in \mathbb{C}^{n}$ is an eigenvectors of A if

$$
A v=\lambda v, \quad \text { for some } \lambda \in \mathbb{C}
$$

λ is called an eigenvalue of A, corresponding to v.
Computing λ and v for given A involves solving a nonlinear equation.
Suppose that A has n linearly independent eigenvectors v_{1}, \ldots, v_{n}, then

$$
A v_{i}=\lambda_{i} v_{i}, \quad i=1, \ldots, n
$$

$$
\Longrightarrow A \underbrace{\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]}_{V}=\underbrace{\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]}_{\Lambda}
$$

Let \widetilde{x} be the state vector of $\mathscr{B}(\Lambda, \widetilde{C})$. In the DT case,

$$
\widetilde{x}(t)=\Lambda^{t} \widetilde{x}(0)=\left[\begin{array}{lll}
\lambda_{1}^{t} & & \\
& \ddots & \\
& & \lambda_{n}^{t}
\end{array}\right] \widetilde{x}(0)
$$

so that

$$
\widetilde{x}_{i}(t)=\lambda_{i}^{t} \widetilde{x}_{i}(0)
$$

and therefore

$$
y=C x(t)=\widetilde{C} \widetilde{x}(t)=\widetilde{c}_{1} \widetilde{x}_{1}(t)+\cdots \widetilde{c}_{n} \widetilde{x}_{n}(t)=\alpha_{1} \widetilde{\lambda}_{1}^{t}+\cdots \alpha_{n} \widetilde{\lambda}_{n}^{t}, \quad \alpha_{i}=\widetilde{c}_{i} \widetilde{x}_{i}(0)
$$

$\mathscr{B}(\mathrm{A}, \mathrm{C})=\mathscr{B}(\Lambda, \widetilde{C})$ is a linear combination of its modes $\lambda_{1}, \ldots, \lambda_{n}$.

Complex poles

The complex eigenvalues of $A \in \mathbb{R}^{n \times n}$ can always be grouped in complex conjugate pairs

$$
\lambda_{i}=a+b \mathbf{i}=\alpha e^{\mathbf{i} \omega}, \quad \lambda_{j}=a-b \mathbf{i}=\alpha e^{-\mathbf{i} \omega} \quad(\mathbf{i}:=\sqrt{-1})
$$

so the sum of the two complex modes λ_{i}^{t} and λ_{j}^{t} gives one real mode

$$
\lambda_{i}^{t}+\lambda_{j}^{t}=\alpha^{t} e^{\mathbf{i} \omega t}+\alpha^{t} e^{-\mathbf{i} \omega t}=2 \alpha^{t} \cos (\omega t)
$$

α - damping factor
ω - frequency
A real mode is of the form λ_{i}^{t} - exponential

Matrix exponential

If the system is in a modal form $\mathscr{B}(\Lambda, C V)$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \widetilde{x}=\Lambda \widetilde{x} \quad \Longrightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \widetilde{x}_{i}=\lambda_{i} \widetilde{x}_{i}, \quad \text { for } i=1, \ldots, n
$$

so that

$$
\widetilde{x}_{i}(t)=e^{\lambda_{i} t \widetilde{x}_{i}(0)} \Longrightarrow \widetilde{x}(t)=\underbrace{\left[\begin{array}{lll}
e^{\lambda_{1} t} & & \\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right]}_{e^{\wedge t}} \widetilde{x}(0)
$$

Going back to the original basis we have

$$
x(t)=\underbrace{V e^{\Lambda t} V^{-1}}_{e^{A t}} x(0) .
$$

State transition matrix

The dynamics of the sate vector x is given by the equation

$$
x(t)=\Phi(t) x(0)
$$

where $\Phi(t)=A^{t}$ in DT and $\Phi(t)=e^{A t}$ in CT.

The matrix $\Phi(t)$ is called state transition matrix.
$\Phi(t)$ shows how the initial state $x(0)$ is propagated in t time steps
Note: if $t<0, \Phi(t)$ propagates backwards in time.

State construction

Consider a scalar autonomous system $\mathscr{B}(P)$, where

$$
P(z)=P_{0} z^{0}+P_{1} z^{1}+\cdots+P_{n-1} z^{n-1}+l z^{n} .
$$

How can we represent this system in a state space form $\mathscr{B}(A, C)$?
Choose $x(t)=\operatorname{col}(y(t-1), \ldots, y(t-n))$. Then
$A=\left[\begin{array}{ccccc}-P_{n-1} & -P_{n-2} & \cdots & -P_{1} & -P_{0} \\ I & 0 & \cdots & 0 & 0 \\ 0 & I & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \cdots & 0 & I & 0\end{array}\right]$
$C=\left[\begin{array}{lllll}-P_{n-1} & -P_{n-2} & \cdots & -P_{1} & -P_{0}\end{array}\right]$
companion matrix of P

Characteristic polynomial of a matrix

The polynomial equation

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=c_{0} \lambda^{0}+c_{1} \lambda^{1}+\cdots+c_{n} \lambda^{n}=0
$$

is called the characteristic equation of the matrix $A \in \mathbb{R}^{n \times n}$.
The roots of the characteristic polynomial

$$
c(z)=c_{0} z^{0}+c_{1} z^{1}+\cdots+c_{n} z^{n}
$$

are equal to the eigenvalues of A.
Cayley-Hamilton thm: Every matrix satisfies its own char. polynomial

$$
c_{0} A^{0}+c_{1} A^{1}+\cdots+c_{n} A^{n}=0 .
$$

Example: harmonic oscillator $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

Characteristic equation

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{cc}
\lambda & -1 \\
1 & \lambda
\end{array}\right]\right)=\lambda^{2}+1=0
$$

Eigenvalues and eigenvectors

$$
\lambda_{1,2}= \pm i, \quad v_{1,2}=\left[\begin{array}{c}
1 \\
\pm i
\end{array}\right] .
$$

Matrix exponential

$$
e^{A t}=\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]\left[\begin{array}{cc}
e^{i} & \\
& e^{-i}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

