Autonomous system = system without inputs

State space representation
AB(A,C)={y | thereis x, such that cx = Ax, y = Cx}

x is the state, n:= dim(x) is the “state dimension”, y is the output

Polynomial representation

#(P)=1{y|Plo)y=0}

where P € RP*P[z| and det(P) # 0.
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Phase plane

In ox = Ax, Ax Is a “velocity” vector — it shows how x changes in time.

X2 N\
Ax(t)

~ x(t)

= X

For n =2, the plot of Ax over x € R" is called phase plane.
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Example: harmonic oscillator A= [ 9, !
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Equilibrium point of a dynamical system

Consider a nonlinear autonomous system
B={x|ox="Ff(x)}

where f: R" — R and suppose that f(xz) = xe, for some x, € R".
Xe is called an equilibrium point of £
If x(t1) = Xe for some t, x(t) = X, for all t > t;.

The set of equilibrium points of and LTI autonomous system
B={x|ox=Ax}

is ker(A— ) — the nullspace of A—I.
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Linearization around an equilibrium point

Suppose that x(t) is near an equilibrium point xs. Then
ox =1Ff(x)~f(Xe) +A(X — Xe),

where

The dynamics of the deviation from xg

X=X—Xeo
IS described approximately be a linear system
PB={x|ox=Ax}

(Linearlization of a nonlinear system will be covered in part 2.)
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Initial conditions

A trajectory of an autonomous system is uniquely determined by the
initial state x(0) or initial conditions:

e in discrete-time (DT) y(—¢+1),y(—¢+2),---y(0)

e in continuous-time (CT) (&)™ y(0), (&)™ y(0),...(£)° y(0).

In the DT case
y(t) = CA'x(0), t> 0.
In the CT case

the matrix power Al is replaced by the matrix exponential e!.
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Modal form
Assume that there is a nonsingular matrix V, such that

V1AV = —: A.
An

e Aq, ..., Ay are the eigenvalues of A

e the columns of V are the corresponding eigenvectors.

Then %(A, C) = Z(A, C), where C := CV.

The state equation of o x = Ax is a set of n decoupled equations.

e A; — pole of the system
o e! (in CT) or A! (in DT) — mode of the system
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Eigenvalues and eigenvectors of a matrix

Consider a square matrix A< R™", v € C" is an eigenvectors of A if

Av=Av, forsome A € C

A is called an eigenvalue of A, corresponding to v.

Computing A and v for given A involves solving a nonlinear equation.

Suppose that A has n linearly independent eigenvectors vy,..., Vs, then

AV,':)L,'V,', i:1,...,n

—  Alvy - Vo] =|vi - vy

> <
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Let X be the state vector of Z(A, C). In the DT case,

o
X(t) = AIX(0) =

A

so that
Xi(t) = A/x;(0)

and therefore

y = Cx(t) = CX(t) = 1x1(t)+~o-5n}n(t):a1/7vt1’+--~ocn/7vtf,, o = C;x;(0)

AB(A,C) = AB(A, 5) is a linear combination of its modes A4,..., A,.
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Complex poles

The complex eigenvalues of A € R™" can always be grouped in
complex conjugate pairs

Ai=at+bi=ae®, A =a-bi=ae'® (i:=v-1)
so the sum of the two complex modes 4! and ;th gives one real mode
M+l =o' +ale™ =20  cos(mt)
o — damping factor
w — frequency

A real mode is of the form A/ — exponential
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Matrix exponential
If the system is in a modal form Z(A,CV)

d .. d -

—X = AX — —X/:A/},’, fori:1,...,n.

o o

so that

~~ ~

X(t) =eMx(0) = X(f)=

ehnt

Going back to the original basis we have

x(t) =VerMv1x(0).

eAt
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State transition matrix

The dynamics of the sate vector x is given by the equation
x(t) =®(t)x(0)

where ®(t) = Al in DT and ®(t) = ¢! in CT.
The matrix ®(t) is called state transition matrix.
d(t) shows how the initial state x(0) is propagated in t time steps

Note: if t < 0, ®(t) propagates backwards in time.
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State construction

Consider a scalar autonomous system #(P), where
P(z) =Py’ + Pz +-- -+ P12+ 2",

How can we represent this system in a state space form %Z(A, C)?

Choose x(t) =col (y(t—1),...,y(t—n)). Then

[ — n-1 —IFnpn-2 - _P1 _PO_
/ 0 0 0
A= 0 / companion matrix of P
: 0 0
0 / 0
C= [_Pn—1 —'n-2 —P; _PO}
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Characteristic polynomial of a matrix
The polynomial equation
det(Al,—A) = A’ +ciAT +---+cA" =0
is called the characteristic equation of the matrix A € R™".
The roots of the characteristic polynomial
c(z)=co’ +c12' +-- -+ cp2"
are equal to the eigenvalues of A.

Cayley-Hamilton thm: Every matrix satisfies its own char. polynomial

oA + Al +---+c,A" = 0.
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Example: harmonic oscillator A= [ % 1]

Characteristic equation

det()LI—A):det<r1L _;D —2%4+1=0

Eigenvalues and eigenvectors

. 1
Mo = =i, Vio = [ii]'

Matrix exponential
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