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1. SIGNALS AND INFORMATION 
AND CLASSIFICATION OF SIGNALS  

1.0 TERMINOLOGY 

Some preliminary definitions are required in order to be able to tackle 
the theory that is related to signals. Signal and Information theory use, 
indeed, a large set of words that often have a different meaning when those 
would be used in current day-by-day language. 

 

Signal:  The word signal originates from the Latin word signum, which 
means an object, a sign, a token, sometimes a gesture. The understanding that 
is associated with the word signal, therefore, is very old and dates back to the 
prehistory. Electrical signals, however, appear in engineering only since the 

19th century1. Every mathematical function, of which one of the variables is 
time, can be considered as a signal. This definition, however, seems to be too 
wide. The acoustical sound from the dial tone in a telephone system indeed 
can be regarded as being a signal. The physical description of the sound will 
require a mathematical function of which the time will be a parameter. 
Planets moving around the sun can be described also by a mathematical 
function with time dependency, but are not regarded as being signals. Hence, 
the first attempt to propose a definition must be refined. A mathematical 
function depending on the time will be called a process.  So, signals are 
processes, but the reverse is not necessarily true. The second less general 
attempt to define a signal could be: a signal is a process that can propagate in 
a certain medium. This definition confirms that a signal is a process, but 
indicates further that it is to be prepared by a source, that it will propagate in 
a physical medium further to reach a destination, where it will be received. 
An alternative definition that takes the previous concerns into consideration 
but that will introduce the new concept of information is of Frederic de 
Coulon: A signal is the physical description of the information that it carries 
from a source towards a receiving destination.  

Message: A usually short communication transmitted by words, signals 
or all other means from a transmitter to one or more receivers. The shortest 
and hence elementary message is considered to be a word. 

Channel:  The set of tools that is used for the realization of the 
transmission of a signal. 

Modulation: The conversion of a message into a signal ensuring better 
                                                           
1
 Invention of the telegraph (Morse, Cooke, Wheatstone, 1830-1840), the telephone (Bell, 1876) and the first 

radio communications (Popov, Marconi, 1895-1896). Electronics, from the beginning of the 20
th

 century, 
allowed amplifying and detecting weak signals (Fleming, Lee de Forest, 1904-1907). This progress in technology 
forms the basis of modern signal theory and signal processing… 
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transmission of the latter in a certain physical medium or allowing multiple 
transmissions in the same physical medium will make use of modulation. The 
reverse action is called demodulation. 

Code: The transformation of a message into a discrete signal in order to 
enhance the efficiency of the transmission is called coding. The list with 
agreed symbols is called a code. 

Information: Information will be defined later, but it will be shown that 
it is a measurable quantity. When it is supposed that N realizations can be 
obtained (e.g. N=6 when using a dice) and that all realizations have equal 
probability (the dice is perfect; p = 1/N), then the information is given by the 
following log formula: 

 

 

 

1.1 ELEMENTS IN A COMMUNICATION SYSTEM 

The most essential elements that are present in a communication system 
are depicted in Figure 1.1. 

 

 
 

Figure 1.1: The necessary elements in a communication channel. 

The physical medium (PHY in the OSI layer 1) used for the transmission 
can consist of electrical wires, optical fiber, air, etc. Such communication 
systems are trivial in day-by-day life (e.g. AM-FM radio broadcasting, 
telephone (POTS), file transfer between computers, internet access…). In 
Figure 1.2 as an example the connection is sketched between a PC in a home 
office to the Internet. Via a network the PC at home of the customer is 
connected to a server of an ISP (Internet Service Provider); e.g. using the 
cupper network of the POTS (Plain Old Telephony Service) in a P2P 
(Point-to-Point) DSL (Digital Subscriber Line) connection (ADSL2+, VDSL2 
…). 

 

Message 
generator 

Encoder
Modulator

Decoder
Demodulator

Receiver+

Noise, 
distortions, 
interference

Transmission
medium



SIGNAL THEORY - version 2012 

3 
 

 

 

Figure 1.2: An example of a communication system. At PC at home is 
connected via a network to Internet. 

Problem: Determine the transmission medium to be used in such a way 
that optimal transfer of messages will occur at a given cost. The implies that 
convertors must be developed to reduce the additive disturbances (noise, 
interference,…) to levels that are considered to be acceptable. 

Two more general terms are important in communication: 

Redundancy: A surplus of information; e.g. in transmitting the same 
message twice to overcome errors due to the noise in the channel. A source is 
redundant when it transmits symbols that are not completely independent of 
each other and that are not strictly necessary to convey the information. An 
example will clarify the principle: «Is it required to have a u following the 
character q in the English language to uniquely interpret a text»? One can 
state that redundancy in the English language is about 30%. This means that 
in a long text, up to one third of the characters can be considered as being 
superfluous for the transmission of the information. Example: 

 

Yu shld b abl t read ths eventho sevrl ltrs r msng.2 

 

{Check this out! In this example more the 33% of the characters have been 
removed}  

 

Other languages can be less redundant. One of the least redundant 
languages is Kiswahili with around 10% characters that are superfluous. This 
is because the writing has been changed from Arabic to Roman characters 
end of the 19th century and because phonetic writing has been used.  The 
sentence below illustrates this (How are you? Not so well, because I am sick 
now). 

                                                           
2
 “You should be able to read this even though several letters are missing” 

Home

Cloud

Network
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Habari gani? Mbaya mdogo, kwa sababu mimi ni mgonjwa 
sasa. 

 

Ambiguity: uncertainty at the receiver about the message that has been 
transmitted. If the 1-to-1 mapping (each transmitted message will 
correspond to a unique received message) is failing, then eventually more 
than 1 meaning can be attributed to the received word. Such cases are e.g. 
present in Radar and Sonar signals. 

 

 

1.2 CLASSIFICATION OF SIGNALS 

1.2.1 DETERMINISTIC SIGNALS 

The values of these signals can be obtained at any time instance using a 
mathematical model. In the simplest case this can be a formula, of which the 
time is one of the parameters. Hence, statistical processing or study for the 
analysis of the signal is not required. To ensure that a signal will be able to 
carry information, one will observe further that it is required that the latter 
should have at least some stochastic properties.  

Example: the signal  ( )         (        ) where   ,     and   
are constants, is purely deterministic. When the amplitude, pulsation and 
phase shift have known values, it is perfectly possible to compute the value 
that the signal will obtain at any freely chosen time instant t. 

It has no real advantage to transmit such a signal over a transmission 
channel, since with the knowledge of the amplitude, phase and pulsation at 
any time instance the actual value can be computed, and hence regenerated 
easily. Such signal, as will be demonstrated further in chapter 4 does not 
convey any information.  

 

1.2.2 STOCHASTIC SIGNALS 

The values that the signal will gain at any time instance cannot be 
computed from a deterministic model and the behaviour, i.e. the successive 
values that a signal will take at any chosen time instance, is not known in 
advance, and hence seems to be unpredictable. In general such signals can be 
described using large sets of statistical observations. Hence, such signals will 
have to be treated in a statistical way. 

 

1.2.3 PERIODICAL SIGNALS 

This important class of signals ensures the basis for harmonic analysis. 
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They show high importance in theoretical studies. It will be shown that their 
properties can be applied to deterministic signals as well3. 

 

1.3 USE OF BASE FUNCTIONS 

To represent even very complex signals, one can rely on the 
development (expansion) into series using simple signals as the basis. Such 
representations can be of interest to determine the properties of the 
transmission in linear systems. In case of non-linear systems, one should 
justify the series for each different case; e.g. using Volterra series. 

In order to represent a signal in a series  

 

it is necessary that the latter would converge to the correct values at any 
time instance. This can be analysed by the error term (the difference between 
the real signal at any time instant and the generated one from the time series. 

 N - for >0 chosen arbitrarily: 

 

 

for M>N 

 

 

and since the definition for the Euclidian norm: 

 

 

This results in: 

 

 

 

                                                           
3
 The reader is reminded that periodic signals exist that have a quasi-stochastic behaviour. A well-known class 

are the pseudorandom MLBS (Maximum Length Binary Signals), that can be generated using a shift register and 
an EXOR (Exclusive OR). 
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A useful, but not necessary condition is that the base functions should be 
orthonormal in an interval [-k1, +k2] (e.g. [-, +], [0,T]…); i.e. that: 

 

This holds when the signals are of the real type. Else (complex signals), 
the complex conjugate must be inserted into the integrand. This condition 
allows easily retrieving the coefficients ai. 

Observe that: 

 

And hence: 

 

 

Often the base functions are relatively simple sets; e.g. cos(i t), sin(i t), 
or exponential functions, de Dirac distributions or the Heaviside function 
(unit step function).  

 

 

1.4 INTEGRAL TRANSFORMATIONS 

Using a transformation one can swap domains and convert time t to 
another variable . The transformations are of the integral operation type.  

 

 

With g(,t) the kernel of the transform. 

Usually the Fourier transform is used. Then, the variables become: 
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Other example is the Laplace transform. Then, the variables are =s, 

a=0, b=+, g(,t) = e
-st. The Hilbert transform is obtained for =, a=-, b=+, 

g(,t) = -[(t-)]
-1

, etc.  

In the case the signals are time invariant and the systems linear, then for 
several transformations the convolution theorem holds; i.e. if: 

 

 

And: 

 

When the following equation is noted as:  

 

Then: 

 

In other words the convolution in the time domain results in the product 
of the integral transforms of both signals. 

This theorem is of high importance for analysis in the frequency domain. 

If f(t)  F( ) , where  means ‘has the spectrum…’, and for 

   f(t)  F( ) 

   g(t)  G( ) 

the following expressions yield: 

   f(t)g(t)   F( ).G( ) 

   f(t).g(t)   F( )G( )/2  
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Important theorem: independent from the domain of representation, 
the energy content of the signal remains unaltered (conservation principle). 
For the Fourier integral this is known as the theorem of Parseval. 

If F( )  =  A( ).e-j ( ) represents the Fourier integral of f(t), then 

 

 

Remark: note that the definition of Hilbert transformation is based on a 
convolution in the time domain. Indeed: 

 

 

1.5 PROPERTIES OF STOCHASTIC SIGNALS 

A stochastic signal is a process that develops in time and where at least 
for part probabilistic behaviour can be noted. Mathematically, a stochastic 
signal will depend on 2 variables: k and t.  

 

k are values generated by the stochastic space and t is the time. At any 
arbitrarily time instance t=t1, the value of the signal (k)

(t1) will be generated, 
delivered by the stochastic space. Such attribution of values is called the 
realization of the process. Time instances can be either discrete for time 
instances t1, t2, …, tn or continuous for arbitrarily values of t. 

Example: 

For a die, the stochastic space is discrete and accounts 6 values 
{1,2,3,4,5,6}. When the dice is thrown at time instance t=t1, the generated 
number of eyes k will be regarded as the realization (k)

(t1) . 

 To study the statistical properties of stochastic signals one must rely on 
statistical techniques. 

P{(t1)x1} : is the probability that the value of (t) at the time instance 
t=t1 would be less or equal to x1. 

In general this probability will depend both on the chosen time instance 
t1 and on the value x1. Hence, the latter is a function of two variables. The 
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function is called the probability function or the distribution function: 

F1(x1,t1)  =  P{(t1)x1} = the ratio of all realizations where (t1)x1 to 
the total number of realizations. 

From this distribution function the density functions are derived: 

  (     )    
   (     )

   
 

This function is called the probability density function, or p.d.f. 

Following this principle, one obtains further the distribution function: 

Fn(x1,x2, …, xn;t1,t2,…,tn) = P{(t1)x1,…, (tn)xn} 

This is the probability that (t1)x1 and (t2)x2,… and (tn)xn. Hence one 
can derive also: 

  (                     )    
    (                     )

          
 

 

 

1.6 STATISTICAL MOMENTS 

Ensemble averages of means are the statistical moments with respect to 
the stochastic space that is generating the signals. First order, second order 
and mixed moments will be treated in this study only. However, higher order 
moments can be of interest in certain application areas in science and 
engineering. Stochastic modelling of communication channels, for instance, 
invokes the moments of order 4. 

1. Mean: 

 
 

2. Quadratic mean: 

 
 

3. Variance:  

 

The variance yields the quadratic mean minus the square of the mean. 
Proof: 
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and hence: 

 

4. Correlation function: 

 

 

This correlation function is called the cross-correlation to underline that 
 and  are different processes (signals). As the special case (=) the 
autocorrelation will be used: 

 

5. Covariance: 

 

 

With also here, as special case, the autocovariance (when =). The 
proof of the equation is similar to the one for the variance. Hence, the 
covariance equals the cross-correlation minus the product of the ensemble 
averages for the processes  and . 
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1.7 TIME AVERAGES OR REALIZATION MEANS 

Often one does not have access to all the realizations that are produced 
by the stochastic space, but is one limited to a few of them, or even to one 
single version of the latter. Therefore, averages with respect to time are 
defined. 

1. Mean: 

 
 

The mean is independent of the origin of the time axis t0, since the mean 
is calculated over all values in time [-,+]. This can be shown readily in 
substituting t’=t0+t. One obtains then: 

  

which is independent of the time origin t0. The time average of mean of 
the realization represents the D.C. component of a signal. 

2. Quadratic mean: 

 

 

Also this mean is independent of the time origin t0 and it represents the 
power of the signal. 

 

3. Autocorrelation function: 
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The autocorrelation is independent of the time origin t0, but depends 
only on the time interval t1 – t2. Indeed, define t = -t1 + t’. Then one obtains: 

 

With the substitution t = -t2 + t’ one obtains: 

 

and, hence, R
(k)

(t2-t1) = R
(k)

(t1-t2). The autocorrelation, therefore, is an 
even function. 

 

4. Cross-correlation function: 

 

 

 

1.8 CLASSIFICATION OF STOCHASTIC SIGNALS 

1.8.1 MIXED SIGNALS 

In many practical situations a deterministic signal s(t) is considered, to 
which a stochastic signal (t) is added; e.g. additive noise that is superpose 
with an information bearing signal in a communication channel. Such signals 
are labelled mixed signals. So: 

(t1) = (t1) + s(t1) 

Let w1(x1;t1) be the probability density function of the stochastic signal (t1) 
and W1(y1;t1) the one of the stochastic signal (t1). What would then be the 
relationship between the densities w1 and W1? 

W1(y1;t1)dy = w1(x1;t1)dx since s(t1) = a constant. However, w1(x1;t1)dx is the 
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probability that (t1) would attain values between x and x + dx. Taking into account 
that y = x + s(t1), this indicates that dy = dx, and therefore W1(y1;t1) = w1(x1;t1); or  

W1(y1;t1) = w1[y1 - s(t1);t1]      (‡) 

 

1.8.2 WIDE SENSE STATIONARY SIGNALS 

When the statistical properties of signals are invariant of any arbitrary 
shift in time, then the signals are considered to be wide sense stationary. In 
other words: 

    

In case that this property is valid , then the signal is called wide sense 
stationary.  

Consider as an example the signal (t) = cos( 0t+), where has (t) a probability 
density function w1(x) in the interval [0.2]. To check whether the signal (t) is 
stationary, one will shift it with  with respect to the time origin. 

(t+) = cos( 0t+ 0 +) = cos( 0t+), where  = + 0 . 

By definition,  is a mixed signal, since it exists of the sum of , a stochastic 
process, and  0 , a deterministic component.  

From (‡) the probability density can be derived: (t+) = w1(y- 0 ). To ensure 
that the signal (t) is stationary, the density W1(y;t+) should be independent of . 
This is only the case if w1(y- 0 ) is independent of , or in other words, if the 
stochastic variable  has a uniform distribution in the interval [0,2]. This is 
achieved if w1(x)=1/2. In Figure 1.3 this conclusion is illustrated. 
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Figure 1.3: Examples for the p.d.f. w(x) of a stochastic process . 

The condition for wide sense stationarity for a signal: 

 

must be valid , and hence also for =-t1, so that this condition can be 
rewritten as: 

 

When n=1, this results in: 

 

Hence, the density of first order is independent from the time. When n=2 

one obtains: 

 

The density of order two is depending only on the time interval t2-t1.  

Substituting of these conditions into the definitions of the ensemble 
averages one obtains: 

 

The ensemble mean is independent of the time. 

The variance becomes: 

 

Hence, also the variance is independent of the time. 
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With respect to the autocorrelation function one will observe the 
dependency on the time interval t2-t1 only. This property is always valid for 
the autocorrelation function of the realization. Only wide sense stationary 
signals can claim the similar result for the autocorrelation function of the 
ensemble.  

 

 

1.8.3 ERGODIC SIGNALS 

Signals are ergodic when the ensemble averages and the averages of the 
realizations are equal to each other.  

 

When one single realization is observed for the signal, only the 
realization averages can be calculated. For ergodic signals from a single 
realization the complete set of statistical properties can be derived.  

It is easy to prove that a condition ensuring that signals are ergodic is 
that they should be wide sense stationary. Unfortunately this condition is to 
be required only, but, unfortunately, not sufficient. 

An example will illustrate this. Let (t) = cos(t+ ), a stationary signal, 
where  and   are independent stochastic variables.  has an arbitrary 
distribution w(x) and   a uniform one in the interval [0,2] (otherwise the 
signal will not be wide sense stationary). The statistical ensemble mean is: 

 

The realization average yields: 
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The evolution of the signal (t) is illustrated in Figure 1.4. 

 

 

Figure 1.4: The evolution of the signal (t) for the realization k.  
 

Hence: 

 

This process, therefore, is ergodic.  

Consider now, however, the signal (t) = (t) + , where (t) is a 
stationary ergodic process and  a stochastic variable. The process is 
stationary, but not ergodic. 

 

Where x0 and z0 are the ensemble averages, and: 

 

In other words: the process is only ergodic if  is a constant. 

 

 

1.8.4 TOTALLY STOCHASTIC SIGNALS 

Totally or absolutely stochastic signals are the simplest signals for 
analysis in the wide family of stochastic signals. Consecutive values of  are 
totally independent from each other; i.e. they are uncorrelated. In that case 
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the values of the signal, evaluated in arbitrarily small intervals, are 
independent from each other. This can be expressed as: 

 

or: 

 

 

is the probability that (t) will take values between xn and xn+dxn at the 
time instance tn, when  has reached the values x1,x2,…,xn-1 at the time 
instances t1,t2,…,tn-1 where t1t2…tn-1 and this probability will depend only 
on xn at tn and not from all previously attained values at the previous time 
instances. 

For n=2 this is written as: w2(x2;t2/x1;t1) = w1(x2;t2). 

From the definition of the conditional probability one retains that: 

 

Hence, one can express that: w2(x1,x2;t1,t2) = w1(x1;t1).w1(x2;t2) and hence 
n:  

 

As such, the values x1,x2,…,xn are indeed independent from each other 
tk  tj. This relation also clearly states that totally stochastic signals are 
entirely described when the density of the first order is known, since all 
higher orders can be derived from the latter. 

 

 

1.8.5 MARKOVIAN SIGNALS 

The stochastic signals, which can be described with the knowledge of the 
first and second order statistical moments only, are labelled Markovian 
signals. They are important in many telecommunication studies. In first order 
Markov processes the value xn at the time instance tn will depend on the 
previous values (x1,x2,…,xn-1) at the time instances (t1,t2,…,tn-1) via the last 
obtained value (xn-1;tn-1). In other words: 

 

In general one can write that: 
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so that: 

 

Accordingly, one can write that: 

 

and, hence: 

 

One will agree that the process is completely described, when the 
statistical moments up to order two are known. 

On the other hand, one will conclude that the values (x1,x2,…,xn-2) at the 
time instances (t1,t2,…,tn-2) are of no importance to determine the value xn at 
the time tn. One can express this in other words stating that the value of the 
future sample xn will not depend on the values obtained in the past 
(x1,x2,…,xn-2), but only on the actual one xn-1.  

 

 

  


