
SIGNAL THEORY - version 2012 

1 
 

3. ESTIMATION OF SIGNALS USING 
A LEAST SQUARES TECHNIQUE 

3.0 INTRODUCTION 

The purpose of this chapter is to introduce estimators shortly. More 
elaborated courses on System Identification, which are given by Prof. Johan 
Schoukens, exist. When one speaks about “measurement” in practice, 
“estimation” is meant. Indeed, besides the deterministic component to be 
measured, noise will be present as well, which is a stochastic component. One 
will limit the study here to Least Square Estimators only, although more 
powerful versions exist (e.g. Maximum Likelihood Estimators). The 
orthogonality principle will be repeated in order to derive some filters. 

 

 

3.1 LEAST SQUARES ESTIMATION OF THE VALUE OF A STOCHASTIC 
VALUE BY A CONSTANT 

Let x be a stochastic variable and a a constant. The estimation of x in the 
sense of the least squares approach means that a constant a as to be found so 
that the following error becomes minimal: 

 

The solution to this problem is given by: 

 

Indeed: 

 

Minimizing yields: 

 

and hence: 
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3.2 LINEAR LEAST SQUARES ESTIMATION 

Suppose that a stochastic variable y has to be estimated by a linear 
function ax + b, where x also is a stochastic variable and where a and b are 
constants. What will be the values of the coefficients a and b when a Least 
Squares approach is followed? To solve this problem, the following cost 
function (mean square of the error between observation y and linear model 
ax + b) must be minimized: 

 

Remark: The resulting least squares error between the observation and 
the linear model can be larger than when a nonlinear model of higher order 
would be applied; e.g. a polynomial in x. 

The constants a and b that will minimise the Least Squares Error: 

 

are given by: 

 

The minimised error will be given by: 

 

where r represents the correlation function of Pearson: 

 

This result has been shown already often earlier1. To proof this, suppose 

                                                           
1
 Note that the correlation function r is identical here to the normalized covariance  in the study of the 

white Gaussian noise in Chapter 2, but applied here to two stochastic variables x and y. 
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that the value of a is known. Then b is found as the Least Squares Estimation 
of the variable (y-ax) by a constant. And hence: 

 

With b determined as such, the least squares error em becomes: 

 

This can be rewritten as: 

 

Minimising yields: 

 

and hence: 
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3.3 PRINCIPLE OF ORTHOGONALITY 

Suppose that x and y are zero mean processes. The constant a that is 
found via the Least Squares Estimator minimising the error between y and 
the model ax: 

 

 is the so that (y-ax) is orthogonal, i.e. uncorrelated with x  
2. 

 

 and em is given by: 

 

Proof:  

Suppose (y-ax) and x are uncorrelated; i.e. that: 

 

One has to demonstrate that then the error em is minimal. For any 
arbitrary A different from a (Aa)one finds: 

 

                                                           
2
 Only in the case that x and y are zero mean processes, uncorrelatedness and orthogonality are equal 

properties. Two variables x and y are orthogonal if their inner product is zero. Two variables x and y are 
uncorrelated if the inner product of (x –x) and (y-y) is zero. Hence for zero mean processes uncorrelated 
and orthogonal are the same.   
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and hence: 

 

So that only with a the error is minimal. 

The minimal error em becomes further: 

 

Geometrical interpretation.  

The quantity: 

 

is the square of the length (y-ax). That length is minimal if  is 
orthogonal to x: (y-ax)  x. This is shown in Figure 3.1. 

 

 

 
Figure 3.1: Geometric interpretation of the orthogonality principle. 

 

 

3.4 THE WIENER FILTER 

Suppose a stochastic signal s(t) that is corrupted with noise n(t). The 
stochastic signal x(t) = s(t) + n(t) has 2 components, the signal s(t) and the 
noise n(t); or the noise is considered to be purely additive. Suppose further 
that x(t) can be observed at any time instant; i.e. t  [-,+]. The goal is to 
estimate s(t) applying a linear operator (filter) on the data x(t).  
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The problem posed can be rephrased now in the framework of 
telecommunications. The signal s(t) is generated by the source at the side of 
the transmitter. It is the information bearing signal that has to be transmitted 
to a receiver over a communication channel. The latter will introduce noise 
n(t). The received signal at the end of the channel is represented by x(t). The 
communication channel, therefore, is regarded as being linear and 
distortionless. Radio communication channels, where the transmission is 
achieved via electromagnetic wave propagation of modulated signals in the 
medium air, can be modelled – in first order attempts – as such. 

The signals x(t) and s(t) are supposed to be wide sense stationary and 
ergodic. The basic principle for the application of the Wiener filter is sketched 
in Figure 3.2. 

 

 
Figure 3.2: The application of the Wiener filter. 

 

The response s'(t) of the linear time invariant system is given by the 
convolution of x(t) with the impulse response h(t) of the Wiener filter. The fact 
that the filter can be modeled by a linear time invariant system motivates the 
assumption that both s(t) and x(t) should be stationary. 

 

 

The impulse response that minimises the error between s(t) and the 
output of the filter s'(t):  

 

is the one that corresponds to the Wiener filter. 

One will now try to find the impulse response h(t). Hereto, the 
orthogonality principle will be applied. The condition to estimate in an 
optimal linear way a signal s(t) in the sense of the minimisation of the least 
squares error between estimate s'(t) and the signal s(t) is given by the 
orthogonality principle: the optimal estimation error (s(t)- s'(t)) and the 
observation x(t) should be orthogonal; i.e. uncorrelated. The latter means that 
their cross correlation should be zero: 
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Or: 

 

With the ergodicity requirement for the signals this can be rewritten as: 

 

Let  = t -  , then:  

 

This integral equation notes the condition to which the impulse 
response of the Wiener filter should satisfy. It is known as the Wiener-Hopf 
integral equation, which can be solved easily when operating in the frequency 
domain. 

Let: 

 

Relation (1) is simply the relation of Wiener-Khintchine for ergodic 
signals. Relation (2) is the extension of the theorem of Wiener-Khintchine, 
which is also valid for the cross correlation (instead of the auto correlation). 
It can be shown, without proof here, that the cross power spectrum density is 
found from the application of the Fourier integral on the cross correlation 
function. Relation (3) is the result of the application of the Fourier integral on 
the impulse response h(t) of a linear time invariant system, which yields the 
transfer function H(j). 

Applying the Fourier integral on both sides of the Wiener-Hopf integral 
equations, taking into account the convolution theorem, results in: 

 

Hence, the transfer function and the impulse response of the filter can be 
found: 
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The least squares error (LSE) is given by: 

 

Or, expressed in terms of correlation functions, the LSE can be written 
as: 

 

In case one would prefer to express the error in the frequency domain, 
this can be computed easily also. Let: 

 

Then, it is clear that the LSE can be written as: e = (0). The application of 
the Fourier integral on () yields: 

 

Remember, further, that: 

 

Hence: 
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3.5 THE WIENER FILTER IN CASE THAT THE SIGNAL AND THE NOISE 
ARE UNCORRELATED 

In case that the signal s and the noise n are uncorrelated, their cross 
correlation, and hence also their cross power spectrum is zero: 

  

Because of the linearity, one can write also that: 

 

and also: 

 

So that Ssx() = Sss(). 

Hence: 

 

The LSE can be formulated further as: 

 

In case that the power spectra of the signal and the noise do not overlap, 
i.e. in case that Sss().Snn() = 0, one finds that: 

H(j) = 1 for  - Sss()  0; 

H(j) = 0 for  - Snn()  0; 

H(j) : arbitrary for all other  

 

Examples: 

In the Figure 3.3 some examples are sketched. 
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Figure 3.3: The application of the Wiener filter on some examples. 

 

 

3.6 THE MATCHED FILTER 

The problem that will be treated here is part of the detection theory that 
will be discussed in Chapter 5. The linear detection problem will be partly 
covered in this paragraph in order to compare the Matched filter with the 
already developed Wiener filter.  

The problem to be solved is to detect a signal s(t) in the presence of 
additive noise n(t).  

If n(t) is white noise then the optimal linear filter that optimizes the 
Signal-to-Noise Ratio (SNR) in a certain predefined time instance t0, will be 
given by the Matched filter. Suppose that x(t) is observed: 

x(t)  =  s(t)  +  n(t) 

where the noise n(t) has a power spectral density (PSD) Wn() and t0 is 
the time instance, where the SNR of the output of the filter has be maximised. 
h(t) will be noted as the impulse response of a linear time invariant system, 
and hence, the filter will have a fixed structure, with constant, i.e. non time 
variant parameters. This implies that the applied signals must be stationary 
as well. Filters that adapt their parameters in function of a time varying 
statistic of the stochastic signals are used in practice as well; e.g. (extended) 
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Kalman filters, particle filters etc. However, in this analysis the stochastic 
signals are supposed to be wide sense stationary and ergodic.  

The signal at the output of the filter y(t0) will have two components: 

 ys(t0) that describes the signal s(t); 
 yn(t0) that is provided by the noise n(t). 

 

Problem: Maximise the SNR at time instance t0 :  

 

Since the component ys(t0) will have a fixed value (s(t) is known t, and 
hence is regarded as being deterministic) and will depend only on the choice 
of the time instance t0, the SNR becomes: 

 

This is the ratio of the power of the signal at time instance t= t0 to the 
average power of the noise at the same time instance. This ratio must be 
maximised when considering all possible impulse responses {h(t)} of the 
linear time invariant filter, and retaining the one that results into maximal 
SNR.  

The solution of this problem can be found easily when the Schwarz 
inequality is written: 

 

with equality only and only if: 

 

where k = a constant and Ai() must be a quadratic integrable 
(square-integrable) function, else the existence of the integrals will not be 
guaranteed. 

The SNR can be rewritten because of the ergodicity as: 
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Since: 

 

and: 

 

where S() = (s(t)) and H() = (h(t)). 

This can be found also when considering the convolution theory valid for 
time invariant systems, as is expressed in the Figure 3.4. 

 

Figure 3.4: The noise signal is applied to the Matched filter. 

 

 

Hence, the power spectrum density of the noise can be written using the 
convolution theorem as: 

 

Using the relations of Wiener-Khintchine the autocorrelation function 
can be retrieved, when ergodicity is taken into account, as: 

 

The power of the noise signal, however, corresponds to the value of the 
autocorrelation function at the time origin. And hence: 
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Let in the inequality of Schwarz the functions Ai() be: 

 

Then, one finds that: 

 

since:  

 

Since both factors in the right hand side are positive, dividing by 2 
yields:  

 

The left hand side, obviously, corresponds to the SNR that has to be 
maximised! Hence: 

 

The maximum of the SNR, therefore, is known. The equality is valid only 
and only if: 

 

The optimal transfer function can be written now then as: 
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In case that the additive noise is white, then the PSD of n(t) becomes : 
Wn() = 2. The transfer function of the Matched filter then becomes:  

H()  K . S() . e
-jt

0; with K k/
2, a gain. 

The impulse response then becomes: 

 

and hence, if the signal is real: 

 

What are the differences in a priori knowledge between the Wiener filter 
and the Matched filter? In case the noise is white, than the impulse response 
of the matched filter is equal to the signal shifted over the delay t0. And hence, 
the filter is ‘matched’ to the signal. 

 


