$\newcommand{\ones}{\mathbf 1}$

LTI Systems Quiz 2

Choose the statements that are always true for the situation described in the question. Don't make extra assumptions.
Question 1: Consider the system $\mathcal{B}$ defined by the state space representation \[ \sigma x = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x. \] The output $y\in\mathcal{B}$ is
  1. sum of two exponetials.
    Incorrect.
  2. $y$ is a constant.
    Incorrect.
  3. $y$ is a linear function.
    Correct!

Question 2: If $\mathcal{B} = \{\, (u,y) \ | \ y = h \star u \,\}$, then

Question 3: If $\mathcal{B} = \{\, (u,y) \ | \ y = Z^{-1} \big(q(z) / p(z)\big) Z(u) \,\}$, where $Z$ is the Z-transform, then

Question 4: The output of a signle-input single-output linear time-invariant system to a nonzero input can not be a zero signal.
  1. True
    Incorrect.
  2. False
    Correct!

Question 5: The output of a signle-input single-output linear time-invariant system to $\text{sin}(\omega_1t)$ input can not be $\text{sin}(\omega_2t)$, where $\omega_1\neq\omega_2$.
  1. True
    Incorrect.
  2. False
    Correct!