Dynamical system

The set of functions (signals) $w: \mathbb{T} \rightarrow \mathbb{W}$ from \mathbb{T} to \mathbb{W} is denoted by $\mathbb{W}^{\mathbb{T}}$.

- W - variable space
- $\mathbb{T} \subset \mathbb{R}$ - time axis
- $\mathbb{W}^{\mathbb{T}}$ - trajectory space

A dynamical system $\mathscr{B} \subset \mathbb{W}^{\mathbb{T}}$ is a set of trajectories (a behaviour).
$w \in \mathscr{B}$ means that w is a possible trajectory of the system \mathscr{B}
Note: the set definition is extremely general (and therefore abstarct). For example, it is not specialized to linear time-invariant systems.

Representations of dynamical systems

Systems are often described by equations

$$
f(w)=0, \quad f: \mathbb{W}^{\mathbb{T}} \rightarrow \mathbb{R}^{g}
$$

via representations

$$
\begin{equation*}
\mathscr{B}=\left\{w \in \mathbb{W}^{\mathbb{T}} \mid f(w)=0\right\} . \tag{repr}
\end{equation*}
$$

Note: $f(w)=0$ is a specific but nonunique description of \mathscr{B}.
We will consider systems, which variable space is \mathbb{R}^{W} and time axis

- $\mathbb{T}=\mathbb{R}$ - continuous-time systems, or
- $\mathbb{T}=\mathbb{Z}$ - discrete-time systems.

Linear time-invariant systems

Properties of a system are defined in terms of its behaviour \mathscr{B}
and are translated to equivalent statements in terms of representations.

$$
\mathscr{B} \text { is linear if } w, v \in \mathscr{B} \Longrightarrow \alpha w+\beta v \in \mathscr{B} \text {, for all } \alpha, \beta \in \mathbb{R}
$$

Recall the shift operator $(\sigma w)(t)=w(t+1)$.

$$
\mathscr{B} \text { is time-invariant if } w \in \mathscr{B} \Longrightarrow \sigma^{t} w \in \mathscr{B} \text {, for all } t \text {. }
$$

Input/output (I/O) partitioning

Let $\Pi \in \mathbb{R}^{w \times w}$ be a permutation matrix, and define

$$
\left[\begin{array}{l}
u \tag{I/O}\\
y
\end{array}\right]:=\Pi w
$$

(This is just a reordering of the variables.)
The variable u is an input if the behaviour associate with u if free, i.e.,

$$
\mathscr{B}_{u}:=\left\{u \in\left(\mathbb{R}^{\mathrm{m}}\right)^{\mathbb{T}} \mid \text { there is } y \text { such that } \Pi^{-1}\left[\begin{array}{l}
u \\
y
\end{array}\right] \in \mathscr{B}\right\}=\left(\mathbb{R}^{\mathrm{m}}\right)^{\mathbb{T}} .
$$

$(\mathrm{I} / \mathrm{O})$ is an I/O partitioning for \mathscr{B} if u is free and $\operatorname{dim}(u)$ is maximal.

We will consider systems with given I/O partition and w.l.g. assume that

$$
\Pi=I .
$$

Difference equations

The difference equation

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{\ell} w(t+\ell)=0, \quad \text { for all } t \in \mathbb{Z}
$$

is more compactly written using the shift operator σ as

$$
\begin{equation*}
R_{0} \sigma^{0} w+R_{1} \sigma^{1} w+\cdots+R_{\ell} \sigma^{\ell} w=0 \tag{*}
\end{equation*}
$$

Define the polynomial matrix

$$
R(z)=R_{0}+R_{1} z+\cdots+R_{\ell} z^{\ell} \in \mathbb{R}^{g \times \mathrm{w}}[z]
$$

and note that

$$
R(\sigma) w=0
$$

is a convenient short hand notation for $(*)$.

Differential equations

The differential equation

$$
R_{0} \frac{\mathrm{~d}^{0}}{\mathrm{~d} t^{0}} w+R_{1} \frac{\mathrm{~d}^{1}}{\mathrm{~d} t^{1}} w+\cdots+R_{\ell} \frac{\mathrm{d}^{\ell}}{\mathrm{d} t^{\ell}} w=0
$$

is more compactly written as

$$
R\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0
$$

where again R is the polynomial matrix

$$
R(z)=R_{0}+R_{1} z+\cdots+R_{\ell} z^{\ell} .
$$

For continuous-time systems, redefine σ as the derivative operator $\mathrm{d} / \mathrm{d} t$, so $R(\sigma) w=0$ is a difference/differential eqn., depending on the context.

Input/output representation

The difference (in discrete-time) or differential (in continuous-time) eqn

$$
P(\sigma) y=Q(\sigma) u, \quad P \in \mathbb{R}^{g \times \mathrm{p}}[z], Q \in \mathbb{R}^{g \times \mathrm{m}}[z]
$$

(I/O eqn)
defines an LTI system \mathscr{B} via

$$
\mathscr{B}_{\mathrm{i} / \mathrm{o}}(P, Q):=\left\{w=(u, y) \in\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{N}} \mid(\mathrm{I} / \mathrm{O} \text { eqn }) \text { holds }\right\} \quad \text { (I/O repr) }
$$

If $g=\mathrm{p}$ and $\operatorname{det}(P) \neq 0$, (I/O repr) is called an input/output repr.
The class of system that admit (I/O repr) is called finite dimensional.

Transfer function

Consider a system $\mathscr{B}_{\mathrm{i} / 0}(P, Q)$ and let \mathscr{L} be the Laplace transform.

$$
P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) y=Q\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) u \quad \Longrightarrow \quad P(s) Y(s)=Q(s) U(s)
$$

where $Y:=\mathscr{L}(y)$ and $U:=\mathscr{L}(u)$.
The rational function

$$
Y(s) U^{-1}(s)=P^{-1}(s) Q(s)=: H(s)
$$

is called transfer function.

In the SISO case

$$
\frac{Y(s)}{U(s)}=\frac{Q(s)}{P(s)}=: h(s)
$$

State of the system

- a system \mathscr{B},

Given - a "past" trajectory of $\mathscr{B},\left(\ldots w_{p}(-2), w_{p}(-1)\right)$, and

- a "future" input $u_{\mathrm{f}}=\left(u_{\mathrm{f}}(0), u_{\mathrm{f}}(1), \ldots\right)$
find the future output y_{f} of \mathscr{B}, such that

$$
w:=\left(\ldots, w_{p}(-2), w_{p}(-1), w_{f}(0), w_{f}(1), \ldots\right)
$$

is a trajectory of \mathscr{B}.

It turns out that for $\mathscr{B}=\mathscr{B}_{\mathrm{i} / 0}(p, q)$, it isn't necessary to know the whole (infinite) past w_{p} in order to find y_{f} !

Suffices to know a finite dimensional, so called "state", vector $x(0)$ of \mathscr{B}.

Input/state/output (I/S/O) representation

A finite dimensional LTI system $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ admits a representation

$$
\begin{aligned}
\mathscr{B}_{\mathrm{i} / s / 0}(A, B, C, D) & :=\left\{w:=\operatorname{col}(u, y) \in\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{N}} \mid \exists x \in\left(\mathbb{R}^{\mathrm{n}}\right)^{\mathbb{N}},\right. \\
& \text { such that } \sigma x=A x+B u, y=C x+D u\} . \quad \text { (I/S/O repr) }
\end{aligned}
$$

- x - an auxiliary variable called state
- $\mathrm{n}:=\operatorname{dim}(x)$ - state dimension, \mathbb{R}^{n} - state space
- $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}, B \in \mathbb{R}^{\mathrm{n} \times \mathrm{m}}, C \in \mathbb{R}^{\mathrm{p} \times \mathrm{n}}, D \in \mathbb{R}^{\mathrm{p} \times \mathrm{m}}$ - parameters of \mathscr{B}
- $\mathrm{m}:=\operatorname{dim}(u)$ - input dimension, $\mathrm{p}:=\operatorname{dim}(y)$ - output dimension
single input single output (SISO) systems $-\operatorname{dim}(u)=\operatorname{dim}(y)=1$ multi input multi output (MIMO) systems $\quad-\operatorname{dim}(u) \geq 1, \operatorname{dim}(y) \geq 1$
- A - state transition matrix, B - input matrix
- C- output matrix, $\quad D$ - feedthrough matrix
- $\sigma x=A x+B u$ - state equation
- $y=C x+D u$ - output equation
- A shows how $x(t+1)$ depends on $x(t)$ (state transition)
- B shows how $u(t)$ influences $x(t+1)$
- C shows how $y(t)$ depends on $x(t)$
- D shows how $u(t)$ influences $y(t)$ (static I/O relation)

Trivial extension: A, B, C, D functions of t leads to time-varying system

Comparison between I/O and I/S/O representations

- (I/S/O repr) is first order in x and zeroth order in w
- (I/O repr) has no auxiliary variable and is for higher order in w

If the system is single output,

- (I/S/O repr) is vector difference/differential equation
- (I/O repr) is a scalar difference/differential equation

We will consider the problems of constructing I/S/O repr from an I/O one and vice verse, i.e.,

$$
(P, Q) \mapsto(A, B, C, D) \quad \text { and } \quad(A, B, C, D) \mapsto(P, Q)
$$

Nonuniqueness of an I/S/O representation

There are two sources of nonuniqueness of (I/S/O repr):

1. redundant states - $\mathrm{n}:=\operatorname{dim}(x)$ bigger than "necessary"
2. nonuniqueness of A, B, C, D - choice of state space basis
minimal I/S/O representations - $\operatorname{dim}(x)$ is as small as possible
For any nonsingular matrix $T \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ and

$$
\widetilde{A}=T^{-1} A T, \quad \widetilde{B}=T^{-1} B, \quad \widetilde{C}=C T, \quad \widetilde{D}=D
$$

we have that

$$
\mathscr{B}_{\mathrm{i} / \mathrm{s} / 0}(A, B, C, D)=\mathscr{B}_{\mathrm{i} / \mathrm{s} / \mathrm{o}}(\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}) .
$$

Change of state space basis

Consider an LTI system $\mathscr{B}=\mathscr{B}_{\mathrm{i} / \mathrm{s} / \mathrm{o}}(A, B, C, D)$.
For any $(u, y) \in \mathscr{B}$, there is x, such that

$$
\begin{equation*}
\sigma x=A x+B u, \quad y=C x+D u \tag{**}
\end{equation*}
$$

Let $\widetilde{x}=T^{-1} x$, where $T \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is nonsingular, so that $x=T \widetilde{x}$.
Substituting in ($* *$) and multiplying the first equation by T, we obtain

$$
\sigma \widetilde{x}=\underbrace{T^{-1} A T}_{\widetilde{A}} \widetilde{x}+\underbrace{T^{-1} B}_{\widetilde{B}} u, \quad y=\underbrace{C T}_{\widetilde{C}} \widetilde{x}+\underbrace{D}_{\widetilde{D}} u .
$$

$x=T \widetilde{x}$, with T nonsingular, means change of basis in \mathbb{R}^{n} (from $/$ to T).

Nonuniqueness of an I/O representation

There are two sources of nonuniqueness of (l/O repr):

1. redundant equations $-g:=$ row $\operatorname{dim}(P)$ bigger than "necessary"
2. nonuniquencess of P, Q - equivalence of equations
minimal I/O representations - row $\operatorname{dim}(P)$ is as small as possible
In the single output case, P, Q are unique up do a scaling factor, i.e.,

$$
\widetilde{P}=\alpha P, \quad \widetilde{Q}=\alpha Q, \quad \text { for } \alpha \in \mathbb{R}
$$

we have that

$$
\mathscr{B}_{\mathrm{i} / 0}(P, Q)=\mathscr{B}_{\mathrm{i} / 0}(\widetilde{P}, \widetilde{Q}) .
$$

For multi output systems the nonuniqueness of P, Q is more essential.

I/S/O \mapsto transfer function

The transfer function corresponding to a system $\mathscr{B}_{\mathrm{i} / \mathrm{s} / \mathrm{o}}(A, B, C, D)$ is

$$
H(s)=C(s l-A)^{-1} B+D .
$$

With $X:=\mathscr{L}(x), Y:=\mathscr{L}(y), U:=\mathscr{L}(u)$, we have

$$
\begin{aligned}
\sigma x=A x+B u & \Longrightarrow s X=A X+B U \\
y=C x+D u & \Longrightarrow Y=C X+D U
\end{aligned}
$$

The first equation implies

$$
(s I-A) X=B U \quad \Longrightarrow \quad X=(s I-A)^{-1} B U .
$$

Substitute in the second equation to get

$$
Y=C(s I-A)^{-1} B U+D U=(\underbrace{C(s I-A)^{-1} B+D}_{H(s)}) U
$$

