
Dynamical system

The set of functions (signals) w : T → W from T to W is denoted by W
T.

• W — variable space

• T ⊂ R — time axis

• W
T — trajectory space

A dynamical system B ⊂ W
T is a set of trajectories (a behaviour).

w ∈ B means that w is a possible trajectory of the system B

Note: the set definition is extremely general (and therefore abstarct).
For example, it is not specialized to linear time-invariant systems.
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Representations of dynamical systems

Systems are often described by equations

f (w) = 0, f : W
T → R

g ,

via representations

B = {w ∈ W
T | f (w) = 0}. (repr)

Note: f (w) = 0 is a specific but nonunique description of B.

We will consider systems, which variable space is R
w and time axis

• T = R — continuous-time systems, or

• T = Z — discrete-time systems.
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Linear time-invariant systems

Properties of a system are defined in terms of its behaviour B

and are translated to equivalent statements in terms of representations.

B is linear if w ,v ∈ B =⇒ αw +βv ∈ B, for all α ,β ∈ R

Recall the shift operator (σw)(t) = w(t +1).

B is time-invariant if w ∈ B =⇒ σ tw ∈ B, for all t .
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Input/output (I/O) partitioning
Let Π ∈ R

w×w be a permutation matrix, and define
�
u
y

�
:= Πw (I/O)

(This is just a reordering of the variables.)

The variable u is an input if the behaviour associate with u if free, i.e.,

Bu := {u ∈ (Rm)T | there is y such that Π−1
�
u
y

�
∈ B} = (Rm)T.

(I/O) is an I/O partitioning for B if u is free and dim(u) is maximal.

We will consider systems with given I/O partition and w.l.g. assume that

Π = I.
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Difference equations

The difference equation

R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0, for all t ∈ Z

is more compactly written using the shift operator σ as

R0σ0w +R1σ1w + · · ·+Rℓσ ℓw = 0. (∗)

Define the polynomial matrix

R(z) = R0 +R1z + · · ·+Rℓzℓ ∈ R
g×w[z]

and note that
R(σ)w = 0

is a convenient short hand notation for (∗).
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Differential equations

The differential equation

R0
d0

dt0
w +R1

d1

dt1
w + · · ·+Rℓ

dℓ

dtℓ
w = 0

is more compactly written as

R
�

d
dt

�
w = 0,

where again R is the polynomial matrix

R(z) = R0 +R1z + · · ·+Rℓzℓ.

For continuous-time systems, redefine σ as the derivative operator d/dt ,
so R(σ)w = 0 is a difference/differential eqn., depending on the context.
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Input/output representation

The difference (in discrete-time) or differential (in continuous-time) eqn

P(σ)y = Q(σ)u, P ∈ R
g×p[z], Q ∈ R

g×m[z] (I/O eqn)

defines an LTI system B via

Bi/o(P,Q) := {w = (u,y) ∈ (Rw)N | (I/O eqn) holds} (I/O repr)

If g = p and det(P) = 0, (I/O repr) is called an input/output repr.

The class of system that admit (I/O repr) is called finite dimensional.
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Transfer function

Consider a system Bi/o(P,Q) and let L be the Laplace transform.

P(
d
dt

)y = Q(
d
dt

)u =⇒ P(s)Y (s) = Q(s)U(s)

where Y := L (y) and U := L (u).

The rational function

Y (s)U−1(s) = P−1(s)Q(s) =: H(s)

is called transfer function.

In the SISO case
Y (s)
U(s)

=
Q(s)
P(s)

=: h(s).
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State of the system

Given

• a system B,

• a “past” trajectory of B, (. . .wp(−2),wp(−1)), and

• a “future” input uf = (uf(0),uf(1), . . .)

find the future output yf of B, such that

w := (. . . ,wp(−2),wp(−1),wf(0),wf(1), . . .)

is a trajectory of B.

It turns out that for B = Bi/o(p,q), it isn’t necessary to know the whole
(infinite) past wp in order to find yf!

Suffices to know a finite dimensional, so called “state”, vector x(0) of B.
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Input/state/output (I/S/O) representation

A finite dimensional LTI system B ∈ L w admits a representation

Bi/s/o(A,B,C,D) := {w := col(u,y) ∈ (Rw)N | ∃ x ∈ (Rn)N,

such that σx = Ax +Bu, y = Cx +Du }. (I/S/O repr)

• x — an auxiliary variable called state

• n := dim(x) — state dimension, R
n — state space

• A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m — parameters of B

• m := dim(u) — input dimension, p := dim(y) — output dimension

single input single output (SISO) systems — dim(u) = dim(y) = 1

multi input multi output (MIMO) systems — dim(u) ≥ 1, dim(y) ≥ 1
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• A — state transition matrix, B — input matrix

• C — output matrix, D — feedthrough matrix

• σx = Ax +Bu — state equation

• y = Cx +Du — output equation

• A shows how x(t +1) depends on x(t) (state transition)

• B shows how u(t) influences x(t +1)

• C shows how y(t) depends on x(t)

• D shows how u(t) influences y(t) (static I/O relation)

Trivial extension: A,B,C,D functions of t leads to time-varying system
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Comparison between I/O and I/S/O representations

• (I/S/O repr) is first order in x and zeroth order in w

• (I/O repr) has no auxiliary variable and is for higher order in w

If the system is single output,

• (I/S/O repr) is vector difference/differential equation

• (I/O repr) is a scalar difference/differential equation

We will consider the problems of constructing I/S/O repr from an I/O
one and vice verse, i.e.,

(P,Q) → (A,B,C,D) and (A,B,C,D) → (P,Q)
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Nonuniqueness of an I/S/O representation

There are two sources of nonuniqueness of (I/S/O repr):

1. redundant states — n := dim(x) bigger than “necessary”

2. nonuniqueness of A,B,C,D — choice of state space basis

minimal I/S/O representations — dim(x) is as small as possible

For any nonsingular matrix T ∈ R
n×n and

�A = T−1AT , �B = T−1B, �C = CT , �D = D

we have that
Bi/s/o(A,B,C,D) = Bi/s/o(�A, �B, �C, �D).
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Change of state space basis

Consider an LTI system B = Bi/s/o(A,B,C,D).

For any (u,y) ∈ B, there is x , such that

σx = Ax +Bu, y = Cx +Du. (∗∗)

Let �x = T−1x , where T ∈ R
n×n is nonsingular, so that x = T�x .

Substituting in (∗∗) and multiplying the first equation by T , we obtain

σ�x = T−1AT� �� �
�A

�x +T−1B� �� �
�B

u, y = CT����
�C

�x + D����
�D

u.

x = T�x , with T nonsingular, means change of basis in R
n (from I to T ).
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Nonuniqueness of an I/O representation

There are two sources of nonuniqueness of (I/O repr):

1. redundant equations — g := rowdim(P) bigger than “necessary”

2. nonuniquencess of P,Q — equivalence of equations

minimal I/O representations — rowdim(P) is as small as possible

In the single output case, P,Q are unique up do a scaling factor, i.e.,

�P = αP, �Q = αQ, for α ∈ R

we have that
Bi/o(P,Q) = Bi/o(�P, �Q).

For multi output systems the nonuniqueness of P,Q is more essential.
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I/S/O → transfer function
The transfer function corresponding to a system Bi/s/o(A,B,C,D) is

H(s) = C(sI−A)−1B+D.

With X := L (x), Y := L (y), U := L (u), we have

σx = Ax +Bu =⇒ sX = AX +BU
y = Cx +Du =⇒ Y = CX +DU

The first equation implies

(sI−A)X = BU =⇒ X = (sI−A)−1BU.

Substitute in the second equation to get

Y = C(sI−A)−1BU +DU =
�
C(sI−A)−1B+D� �� �

H(s)

�
U
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