Dynamical system

The set of functions (signals) w: T — W from T to W is denoted by W'

e W — variable space
e TCR—time axis

e W' — trajectory space

A dynamical system 2 Cc W' is a set of trajectories (a behaviour).

w € % means that w is a possible trajectory of the system %

Note: the set definition is extremely general (and therefore abstarct).
For example, it is not specialized to linear time-invariant systems.
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Representations of dynamical systems

Systems are often described by equations
f(w)=0, f:w! - RY,
via representations
B={weW'|fw)=0}. (repr)
Note: f(w) = 0 is a specific but nonunique description of %.
We will consider systems, which variable space is R" and time axis

e T =R — continuous-time systems, or

e T =7 — discrete-time systems.
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Linear time-invariant systems

Properties of a system are defined in terms of its behaviour 4

and are translated to equivalent statements in terms of representations.

Aislinearifw,ve  —= aw+pve A, forall a,p R

Recall the shift operator (ow)(t) = w(t+1).

A is time-invariantif w e Z — olw € £, for all t.
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Input/output (I/O) partitioning

Let IT € R"*" be a permutation matrix, and define

H — TIw (1/0)
y
(This is just a reordering of the variables.)

The variable u is an input if the behaviour associate with u if free, i.e.,

By ={uec (R™! | thereis y such that IT"" LL/I] c B} =R
(1/0) is an 1/O partitioning for A if u is free and dim(u) is maximal.

We will consider systems with given 1/O partition and w.l.g. assume that
I1=1.
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Difference equations

The difference equation
Row(t)+Riw(t+1)+---+Rw(t+/¢) =0, forall t € Z
IS more compactly written using the shift operator ¢ as
Roo’w+ Ric'w+---+ Ryo‘w =0.
Define the polynomial matrix
R(z)=Ro+ Ryz+---+ Ryz' e R9*V[Z]

and note that
R(oc)w =20

IS a convenient short hand notation for (x).
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Differential equations

The differential equation

d’ d’ d’
IS more compactly written as
d
R — —
(dt) w =0,

where again R is the polynomial matrix

Ro

R(z)=Ry+Riz+---+Riz".

For continuous-time systems, redefine ¢ as the derivative operator d/dt,
so R(o)w =0 is a difference/differential eqn., depending on the context.
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Input/output representation

The difference (in discrete-time) or differential (in continuous-time) egn
P(o)y = Q(o)u, P cRI*?[z], Q e RI*"[Z] (/O eqgn)
defines an LTI system % via

B (P, Q) :={w=(u,y) € (R")" | (I/Oegn) holds } (I/O repr)

If g =p and det(P) # 0, (I/Orepr) is called an input/output repr.

The class of system that admit (/O repr) is called finite dimensional.
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Transfer function
Consider a system %;,,(P, Q) and let .Z be the Laplace transform.

Py =S = P(s)¥(s)= Qs)Us)
where Y := Z(y) and U := Z(u).

The rational function

IS called transfer function.

In the SISO case
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State of the system

e a system %,
Given e a “past” trajectory of &, (... wy(—2),wp(—1)), and

o a “future” input v = (4(0), Ls(1),...)
find the future output y; of 4, such that
W = ( o Wp(_z)v Wp(_1 )7 VVf<O)7 Wf(1 )7 X )

IS a trajectory of #.

It turns out that for Z = %y (p, q), it isn’t necessary to know the whole
(infinite) past wy, in order to find !

Suffices to know a finite dimensional, so called “state”, vector x(0) of %.
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Input/state/output (I/S/O) representation
A finite dimensional LTI system & € £ admits a representation
%i/s/o(Aa B, C, D) = { W .= CO|(U,y) = (RW)N ‘ 41X € (Rn)N,
such that ox =Ax+Bu, y =Cx+Du}. (I/S/Orepr)

e x — an auxiliary variable called state
e n:=dim(x) — state dimension, R" — state space
e Ac R, Be R CeRP*? D e RP*™ — parameters of #

e m:=dim(u) —input dimension, p:=dim(y)— output dimension

single input single output (SISO) systems — dim(u) =dim(y) =1
multi input multi output (MIMO) systems ~ — dim(u) > 1, dim(y) > 1
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e A — state transition matrix, B — input matrix
e C — output matrix, D — feedthrough matrix
e oX = Ax+ Bu — state equation

e ¥y = Cx+ Du— output equation

o A shows how x(t+ 1) depends on x(t) (state transition)
e B shows how u(t) influences x(t+1)

e C shows how y(t) depends on x(t)
(

e D shows how u(t) influences y(t) (static I/O relation)

Trivial extension: A, B, C, D functions of t leads to time-varying system
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Comparison between I/O and I/S/O representations

e (I/S/Orepr) is first order in x and zeroth order in w

e (I/Orepr) has no auxiliary variable and is for higher order in w
If the system is single output,

e (I/S/Orepr) is vector difference/differential equation

e (I/Orepr) is a scalar difference/differential equation

We will consider the problems of constructing 1/S/O repr from an 1/O
one and vice verse, I.e.,

(P,Q)—(AB,CD) and (ABC D)~ (PQ)
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Nonuniqueness of an |/S/O representation

There are two sources of nonuniqueness of (I/S/O repr):

1. redundant states — n := dim(x) bigger than “necessary”

2. nonuniqueness of A, B, C, D — choice of state space basis

minimal I/S/O representations — dim(x) is as small as possible

For any nonsingular matrix T € R**" and

~ ~ —~~ ~

A=T AT, B=T'B, C=CT, D=D

we have that

A~ A~ Y A~

ggi/s/o(Aa Ba C7 D) — ggi/s/o (A7 87 Ca D)
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Change of state space basis

Consider an LTI system % = %y0(A, B, C, D).

For any (u,y) € 4, there is x, such that
ox = Ax+ Bu, y =Cx+ Du. (%)

Let x = T~ 'x, where T € R**" is nonsingular, so that x = Tx.

Substituting in (xx) and multiplying the first equation by T, we obtain

ox=T "ATx+T 'Bu, y=CTx+_ D u
— ~
A B C D

x = Tx, with T nonsingular, means change of basis in R” (from /to T).
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Nonuniqueness of an |/O representation

There are two sources of nonuniqueness of (/O repr):

1. redundant equations — g :=rowdim(P) bigger than “necessary”

2. nonuniquencess of P, Q — equivalence of equations

minimal 1/O representations — rowdim(P) is as small as possible

In the single output case, P, Q are unique up do a scaling factor, i.e.,

~ ~

P=aP, Q=aQ, foraeR

we have that L
Bio(P, Q) = %y (P, Q).

For multi output systems the nonuniqueness of P, Q is more essential.
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/S/O — transfer function
The transfer function corresponding to a system %y, (A,B,C,D) is

H(s)=C(sI—A) " 'B+D.

With X .= Z(x), Y:=Z(y), U:=Z(u), we have

ox=Ax+Bu = sX=AX+BU
y=Cx+Du = Y=CX+DU

The first equation implies
(sl-AX=BU = X=(sI-A)'BU.
Substitute in the second equation to get

Y =C(sI-A)"'BU+DU= (C(sl-A)"'B+D)U

H(s)
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