My interest in dynamic measurement started from a textbook problem

"A thermometer reading $21^{\circ} \mathrm{C}$, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads $15^{\circ} \mathrm{C}$; after two minutes it reads $11^{\circ} \mathrm{C}$. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.

Main idea: predict the steady-state value from the first few samples of the transient

 textbook problem:- 1st order dynamics
- 3 noise-free samples
- batch solution
generalizations:
- $n \geq 1$ order dynamics
- $T \geq 3$ noisy (vector) samples
- recursive computation
implementation and practical validation

Thermometer: first order dynamical system

measurement process: Newton's law of cooling

$$
\dot{y}=a(\bar{u}-y)
$$

heat transfer coefficient $a>0$

Scale: second order dynamical system

The measurement process dynamics depends on the to-be-measured mass

Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured

variable $u$$\xrightarrow{\text { measurement process }} \quad$| measured |
| :---: |
| variable y |

assumption 1: measured variable is constant $u(t)=\bar{u}$
assumption 2: the sensor is stable LTI system
assumption 3: sensor's DC-gain $=1$ (calibrated sensor)

Outline

Structured low-rank approximation

Case study: Dynamic measurement

Model-based vs data-driven methods

The data is generated from LTI system with output noise and constant input

assumption 4: e is a zero mean, white, Gaussian noise
using a state space representation of the sensor

$$
\begin{aligned}
x(t+1) & =A x(t), \quad x(0)=x_{0} \\
y_{0}(t) & =c x(t)
\end{aligned}
$$

we obtain

$$
\underbrace{\left[\begin{array}{c}
y_{\mathrm{d}}(1) \\
y_{\mathrm{d}}(2) \\
\vdots \\
y_{\mathrm{d}}(T)
\end{array}\right]}_{y_{\mathrm{d}}}=\underbrace{\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]}_{\mathbf{1}_{T}} \bar{u}+\underbrace{\left[\begin{array}{c}
c \\
c A \\
\vdots \\
c A^{T-1}
\end{array}\right]}_{O_{T}} x_{0}+\underbrace{\left[\begin{array}{c}
e(1) \\
e(2) \\
\vdots \\
e(T)
\end{array}\right]}_{e}
$$

Maximum-likelihood model-based estimator

solve approximately

$$
\left[\begin{array}{ll}
\mathbf{1}_{T} & \mathscr{O}_{T}
\end{array}\right]\left[\begin{array}{l}
\widehat{u} \\
\widehat{x}_{0}
\end{array}\right] \approx y_{\mathrm{d}}
$$

standard least-squares problem

$$
\begin{array}{ll}
\text { minimize } & \text { over } \hat{y}, \widehat{u}, \widehat{x}_{0}
\end{array}\left\|y_{\mathrm{d}}-\hat{y}\right\| .
$$

recursive implementation \rightsquigarrow Kalman filter

Subspace model-free method

goal: avoid using the model parameters $\left(A, C, \mathscr{O}_{T}\right)$
in the noise-free case, due to the LTI assumption,

$$
\Delta y(t):=y(t)-y(t-1)=y_{0}(t)-y_{0}(t-1)
$$

satisfies the same dynamics as y_{0}, i.e.,

$$
\begin{aligned}
x(t+1) & =A x(t), \quad x(0)=\Delta x \\
\Delta y(t) & =c x(t)
\end{aligned}
$$

Hankel matrix-construction of multiple "short" trajectories from one "long" trajectory

$$
\mathscr{H}(\Delta y):=\left[\begin{array}{cccc}
\Delta y(1) & \Delta y(2) & \cdots & \Delta y(n) \\
\Delta y(2) & \Delta y(3) & \cdots & \Delta y(n+1) \\
\Delta y(3) & \Delta y(4) & \cdots & \Delta y(n+2) \\
\vdots & \vdots & & \vdots \\
\Delta y(T-n) & \Delta y(T-n) & \cdots & \Delta y(T-1)
\end{array}\right]
$$

fact: if rank $\mathscr{H}(\Delta y)=n$, then

```
image}\mp@subsup{\mathscr{O}}{T-n}{}=\mathrm{ image }\mathscr{H}(\Deltay
```


model-based equation

$$
\left[\begin{array}{ll}
\mathbf{1}_{T} & \mathscr{O}_{T}
\end{array}\right]\left[\begin{array}{c}
\bar{u} \\
\widehat{x}_{0}
\end{array}\right]=y
$$

data-driven equation

$$
\left[\begin{array}{ll}
\mathbf{1}_{T-n} & \mathscr{H}(\Delta y)
\end{array}\right]\left[\begin{array}{l}
\bar{u} \tag{*}\\
\ell
\end{array}\right]=\left.y\right|_{T-n}
$$

subspace method
solve (*) by (recursive) least squares

Generalizations

vector measurement (data fusion)
the method applies as it is
derivation of confidence bounds errors-in-variables regression problem
estimation of time-varying parameters use exponentially weighted least-squares

Empirical validation

dashed	- true parameter value \bar{u}
solid	- true output trajectory y_{0}
dotted	- naive estimate $\widehat{u}=G^{+} y$
dashed	- model-based Kalman filter
bashed-dotted	$-\quad$ data-driven method

estimation error: $e:=\frac{1}{N} \sum_{i=1}^{N}\left\|\bar{u}-\widehat{u}^{(i)}\right\|$
(for $N=100$ Monte-Carlo repetitions)

Simulated data of dynamic cooling process

$e(t) \rightarrow 0$ as $t \rightarrow \infty$ at different rates
best is the Kalman filter (maximum likelihood estimator)

Simulation with time-varying parameter

Proof of concept prototype

Results in real-life experiment

Valorization

```
\otimes)@ Adtemp V 418 Super Fast Digital Thermometer - $10.00: ITXMedical, Sales and Marketing-Mozilla Firefox
File Edit View History Bookmarks Tools Help
    IV Informative Google Search
O Adtemp V 418 Super Fast Digi... !
MEDICAL EQUIPMENT
```



```
ADTEMP V \(^{\text {™ }}\) Super Fast Flex thermometer features:
- 8 second measurment using proprietary predictive technology.
-Auto off function conserves battery life
■Range \(90^{\circ} \mathrm{F}-109.9^{\circ} \mathrm{F} \pm .2^{\circ} \mathrm{F}\) or \(32^{\circ} \mathrm{C}-43.9^{\circ} \mathrm{C} \pm .1^{\circ} \mathrm{C}\) depending upon scale selection
-Replaceable 1.55 v (LR41) type battery provides up to 1,500 measurements
■ Integral carry case
- Includes 5 probe sheaths
■Contemporary Euro design```

