
My interest in dynamic measurement
started from a textbook problem

"A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15◦C;
after two minutes it reads 11◦C. What is the out-
side temperature?"

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
� 1st order dynamics
� 3 noise-free samples
� batch solution

generalizations:
� n ≥ 1 order dynamics
� T ≥ 3 noisy (vector) samples
� recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling
.
y = a

�
ū−y

�

heat transfer coefficient a > 0
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Scale: second order dynamical system

ū = M
m

kd

|
|
|
|
|

y(t)

| | | | | | | | | | | | | | | |

(M +m)
..
y +d

.
y +ky = gū
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The measurement process dynamics
depends on the to-be-measured mass
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured
variable u

measurement process−−−−−−−−−−−−−−−→ measured
variable y

assumption 1: measured variable is constant u(t) = ū

assumption 2: the sensor is stable LTI system

assumption 3: sensor’s DC-gain = 1 (calibrated sensor)
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Outline

Structured low-rank approximation

Case study: Dynamic measurement

Model-based vs data-driven methods
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The data is generated from LTI system
with output noise and constant input

yd����
measured

data

= y����
true

value

+ e����
measurement

noise

y����
true

value

= ū����
steady-state

value

+ y0����
transient
response

assumption 4: e is a zero mean, white, Gaussian noise
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using a state space representation of the sensor

x(t +1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtain

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Maximum-likelihood model-based estimator

solve approximately

�
1T OT

�� �u
�x0

�
≈ yd

standard least-squares problem

minimize over �y , �u, �x0 �yd −�y�

subject to
�
1T OT

�� �u
�x0

�
= �y

recursive implementation � Kalman filter
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Subspace model-free method

goal: avoid using the model parameters (A, C, OT )

in the noise-free case, due to the LTI assumption,

Δy(t) := y(t)−y(t −1) = y0(t)−y0(t −1)

satisfies the same dynamics as y0, i.e.,

x(t +1) = Ax(t), x(0) =Δx
Δy(t) = cx(t)
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Hankel matrix—construction of multiple
"short" trajectories from one "long" trajectory

H (Δy) :=




Δy(1) Δy(2) · · · Δy(n)
Δy(2) Δy(3) · · · Δy(n+1)
Δy(3) Δy(4) · · · Δy(n+2)

...
...

...

Δy(T −n) Δy(T −n) · · · Δy(T −1)




fact: if rankH (Δy) = n, then

imageOT−n = imageH (Δy)
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model-based equation

�
1T OT

�� ū
�x0

�
= y

data-driven equation

�
1T−n H (Δy)

��ū
�

�
= y |T−n (∗)

subspace method

solve (∗) by (recursive) least squares
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Generalizations

vector measurement (data fusion)
the method applies as it is

derivation of confidence bounds
errors-in-variables regression problem

estimation of time-varying parameters
use exponentially weighted least-squares
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Empirical validation

dashed — true parameter value ū
solid — true output trajectory y0

dotted — naive estimate �u = G+y
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e := 1
N ∑N

i=1�ū−�u(i)�
(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process
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e(t)→ 0 as t → ∞ at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter
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Proof of concept prototype
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Results in real-life experiment
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Valorization
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