Outline

Exact modeling

Algorithms

Exercises

Plan

Exact modeling

Algorithms

Exercises

Identification problems

- \mathscr{U} - data space $\left(\mathbb{R}^{q}\right)^{\mathbb{N}}$: functions from \mathbb{N} to \mathbb{R}^{q}
- \mathscr{D} - data: set of finite vector-valued time series

$$
\mathscr{D}=\left\{w^{1}, \ldots, w^{N}\right\}, \quad w^{i}=\left(w^{i}(1), \ldots, w^{i}\left(T_{i}\right)\right)
$$

- \mathscr{B} - model: subset of the data space \mathscr{U}
- \mathscr{M} - model class: set of models

Work plan

1. define a modeling problem
(What is $\mathscr{D} \mapsto \mathscr{B}$?)
2. find an algorithm that solves the problem
3. implement the algorithm
(How to compute \mathscr{B} ?)
4. use the software in applications

Notes

- all user choices are set in the problem formulation
- hyper-parameters do not appear in the solutions
- the methods are completely automatic

The problem

- user choices (options) specify
prior knowledge, assumptions, and/or prejudices about what the true or desirable model is
- model class - imposes hard constraints, e.g., bound on the model complexity
- fitting criteria - impose soft constraints e.g., small distance from data to model
- real-life problems are vaguely formulated
"A well defined problem is a half solved problem."

Some user choices

Model class

linear
static
time-invariant
nonlinear dynamic time-varying

Fitting criterion
exact deterministic
approximate stochastic

Exact identification

we'll consider the simplest (non static) problem:
exact identification of an LTI model
i.e., $\mathscr{M}=\mathscr{L}$ and the fitting criterion is exact match

Why exact identification?

- from simple to complex:
exact \mapsto approx. \mapsto stoch. \mapsto approx. stoch.
- exact identification is ingredient of the other problems
- exact identification leads to effective heuristic approximation methods (subspace methods)

Exact identification in \mathscr{L}^{q}

- given data \mathscr{D}
- find $\widehat{\mathscr{B}} \in \mathscr{L}^{a}$, such that $\mathscr{D} \subset \widehat{\mathscr{B}}$
- nonunique solution always exists

Exact identification in $\mathscr{L}_{\mathrm{m}, \ell}^{q}$

- given (m, ℓ) and data \mathscr{D}
- find $\widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}^{q}$, such that $\mathscr{D} \subset \widehat{\mathscr{B}}$
- solution may not exist

Most powerful unfalsified model $\mathscr{B}_{\text {mpum }}(\mathscr{D})$

- given data \mathscr{D}
- find the smallest (m, ℓ), s.t. $\exists \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}^{q}, \mathscr{D} \subset \widehat{\mathscr{B}}$
- J. C. Willems. From time series to linear system—Part II. Exact modelling. Automatica, 22(6):675-694, 1986

Why complexity minimization?

- makes the solution unique
- Occam's razor: "simpler = better"

Identifiability question

- Is it possible to recover the data generating system $\overline{\mathscr{B}}$ from exact data

$$
w \in \overline{\mathscr{B}} \in \mathscr{L}^{q}
$$

- Under what conditions $\mathscr{B}_{\text {mpum }}(w)=\overline{\mathscr{B}}$?
- the answer is given by the Fundamantal lemma
- we will assume that upper bounds $n_{\max }, \ell_{\max }$ of the order n and lag ℓ of $\overline{\mathscr{B}}$ are known

Hankel matrix

- consider the case $\mathscr{D}=w$ (single trajectory)
- main tool

$$
\mathscr{H}_{L}(w):=\left[\begin{array}{ccccc}
w(1) & w(2) & w(3) & \cdots & w(T-L+1) \\
w(2) & w(3) & w(4) & \cdots & w(T-L+2) \\
w(3) & w(4) & w(5) & \cdots & w(T-L+3) \\
\vdots & \vdots & \vdots & & \vdots \\
w(L) & w(L+1) & w(L+2) & \cdots & w(T)
\end{array}\right]
$$

- if $w \in \mathscr{B} \in \mathscr{L}^{a}$, then image $\left.\left(\mathscr{H}_{L}(w)\right) \subset \mathscr{B}\right|_{L}$
- extra conditions on w and \mathscr{B} are needed for

$$
\operatorname{image}\left(\mathscr{H}_{L}(w)\right)=\left.\mathscr{B}\right|_{L}
$$

Persistency of excitation (PE)

- u is PE of order L if $\mathscr{H}_{L}(u)$ is full row rank
- system theoretic interpretation:

$$
\begin{gathered}
u \in\left(\mathbb{R}^{m}\right)^{T} \text { is } \mathrm{PE} \\
\text { of order } L
\end{gathered} \Longleftrightarrow \begin{gathered}
\text { there is no } \mathscr{B} \in \mathscr{L}_{\text {m-1,L, }}, \\
\text { such that } u \in \mathscr{B}
\end{gathered}
$$

Lemma

1. $\mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell}^{q}$ controllable and
2. $w \in \mathscr{B}$ admits I/O partition (u, y) with $u \mathrm{PE}$ of order $L+\mathrm{p} \ell$

$$
\Longrightarrow \quad \operatorname{image}\left(\mathscr{H}_{L}(w)\right)=\mathscr{B}_{L}
$$

Plan

Exact modeling

Algorithms

Exercises

- main idea: any $\left.w \in \mathscr{B}\right|_{L}$ can be obtained from $w \in \mathscr{B}$

$$
w=\mathscr{H}_{L}(w) g, \quad \text { for some } g
$$

$g \sim$ input and initial conditions, cf., image repr.

Algorithms

- $w \mapsto$ kernel parameter R
- $w \mapsto$ impulse response H
- $w \mapsto$ state/space parameters (A, B, C, D)
- $w \mapsto R \mapsto(A, B, C, D)$ or $w \mapsto H \mapsto(A, B, C, D)$
- $w \mapsto$ observability matrix $\mapsto(A, B, C, D)$
- $w \mapsto$ state sequence $\mapsto(A, B, C, D)$
$w \mapsto R$
- under the assumptions of the lemma

$$
\operatorname{image}\left(\mathscr{H}_{\ell+1}(w)\right)=\left.\mathscr{B}\right|_{\ell+1}
$$

- leftker $\left(\mathscr{H}_{\ell+1}(w)\right)$ defines a kernel repr. of \mathscr{B}

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right] \mathscr{H}_{\ell+1}(w)=0, \quad R_{i} \in \mathbb{R}^{g \times q}
$$

- kernel representation

$$
\mathscr{B}=\operatorname{ker}(R(\sigma)), \quad \text { with } \quad R(z)=\sum_{i=0}^{\ell} R_{i} z^{i}
$$

- recursive computation (exploiting Hankel structure)
$w \mapsto H$
- impulse response (matrix values trajectory)

$$
W=(\underbrace{0, \ldots, 0}_{\ell},\left[\begin{array}{c}
\prime \\
H(0)
\end{array}\right],\left[\begin{array}{c}
0 \\
H(1)
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
H^{(t)}
\end{array}\right])
$$

- by the lemma, $W=\mathscr{H}_{\ell+t}(w) G$
- define $\mathscr{H}_{\ell+t}(u)=:\left[\begin{array}{c}u_{\mathrm{p}} \\ U_{\mathrm{f}}\end{array}\right]$ and $\mathscr{H}_{\ell+t}(y)=:\left[\begin{array}{c}Y_{\mathrm{p}} \\ Y_{\mathrm{t}}\end{array}\right]$
- we have

$$
\begin{align*}
& \left.\left[\begin{array}{l}
U_{p} \\
Y_{p} \\
U_{f}
\end{array}\right] G=\left[\begin{array}{c}
0 \\
0 \\
{\left[\begin{array}{l}
I_{m} \\
0
\end{array}\right]}
\end{array}\right]\right\} \begin{array}{c}
\text { zero ini. conditions } \\
\text { impulse input }
\end{array} \tag{1}\\
& Y_{\mathrm{f}} G=\underset{H}{ } \tag{2}
\end{align*}
$$

Block algorithm

- input: $u, y, \ell_{\max }$, and t
- solve (2) and let G_{p} be a solution
- compute $H=Y_{f} G_{p}$
- output: the first t samples of the impulse response H
- Exerise: implement and test the algorithm

Refinements

- solve (2) efficiently exploiting the Hankel structure
- do the computations iteratively for pieces of H
- automatically choose t, for a sufficient decay of H
- Exerise: try the improvements
- application for noisy data
E. Reynders, R. Pintelon, and G. De Roeck. Consistent impulse-response estimation and system realization from noisy data. IEEE Trans. Signal Proc., 56:2696-2705, 2008
$w \mapsto(A, B, C, D)$
- $w \mapsto H(0: 2 \ell)$ or $R(\xi) \xrightarrow{\text { realization }}(A, B, C, D)$
- $w \mapsto$ obs. matrix $\mathscr{O}_{\ell+1}(A, C) \xrightarrow{(3)}(A, B, C, D)$

$$
\begin{equation*}
\mathscr{O}_{\ell+1}(\mathrm{~A}, \mathrm{C}) \mapsto(A, C), \quad(u, y, A, C) \mapsto\left(B, C, x_{\text {ini }}\right) \tag{3}
\end{equation*}
$$

- $w \mapsto$ state sequence $x \xrightarrow{(4)}(A, B, C, D)$

$$
\left[\begin{array}{c}
\sigma x \tag{4}\\
y
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]
$$

$\mathscr{O}_{\ell_{\max +1}}(A, C) \mapsto(A, B, C, D)$

- C is the first block entry of $\mathscr{O}_{\ell_{\max }+1}(A, C)$
- A is given by the shift equation

$$
\left(\sigma^{*} \mathscr{O}_{\ell_{\max }+1}(A, C)\right) A=\left(\sigma \mathscr{O}_{\ell_{\max }+1}(A, C)\right)
$$

(σ / σ^{*} removes first / last block entry)

- Once C and A are known, the system of equations

$$
y(t)=C A^{t} \times(1)+\sum_{\tau=1}^{t-1} C A^{t-1-\tau} B u(\tau)+D \delta(t+1)
$$

is linear in $D, B, x(1)$

$w \mapsto$ observability matrix

- columns of $\mathscr{O}_{t}(A, C)$ are n indep. free resp. of \mathscr{B}
- under the conditions of the lemma,

$$
\left[\begin{array}{c}
\mathscr{H}_{t}(u) \\
\mathscr{H}_{t}(y)
\end{array}\right] G=\left[\begin{array}{c}
0 \\
Y_{0}
\end{array}\right] \quad \leftarrow \text { zero inputs } \quad \leftarrow \text { free responses }
$$

- lin. indep. free responses \Longrightarrow G maximal rank
- rank revealing factorization

$$
Y_{0}=\mathscr{O}_{t}(A, C) \underbrace{\left[\begin{array}{lll}
x_{\mathrm{ini}, 1} & \cdots & x_{\mathrm{ini}, j}
\end{array}\right]}_{x_{\mathrm{ini}}}
$$

$w \mapsto$ state sequence

- sequential free responses $\Longrightarrow Y_{0}$ block-Hankel
- then $X_{\text {ini }}$ is a state sequence of \mathscr{B}
- computation of sequential free responses

$$
\begin{align*}
& {\left[\begin{array}{l}
U_{p} \\
Y_{p} \\
U_{\mathrm{f}}
\end{array}\right] G=\left[\begin{array}{c}
U_{p} \\
Y_{p} \\
0
\end{array}\right]} \tag{5}\\
& \left.Y_{\mathrm{f}} G=\begin{array}{c}
\text { zero inputs }
\end{array}\right\} \begin{array}{c}
\text { sequential ini. conditions } \\
Y_{0}
\end{array}
\end{align*}
$$

- rank revealing factorization

$$
Y_{0}=\mathscr{O}_{t}(A, C)\left[x(1) \quad \cdots \quad x\left(\mathrm{n}_{\max }+\mathrm{m}+1\right)\right]
$$

Refinements

- solve (5) efficiently exploiting the Hankel structure
- iteratively compute pieces of $Y_{0} \leadsto$ iterative algorithm
- requires smaller persistency of excitation of u
- could be more efficient
(solve a few smaller systems of eqns than one big)

References

- N4SID methods
P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer, Boston, 1996
- MOESP methods
M. Verhaegen and P. Dewilde. Subspace model identification, Part 1: The output-error state-space model identification class of algorithms. Int. J. Control, 56:1187-1210, 1992

MOESP-type algorithms

project the rows of $\mathscr{H}_{\mathrm{n}_{\text {max }}}(y)$ on rowspan ${ }^{\perp}\left(\mathscr{H}_{\mathrm{n}_{\text {max }}}(u)\right)$

$$
Y_{0}:=\mathscr{H}_{\mathrm{n}_{\max }}(y) \Pi_{u}^{\perp}
$$

where

$$
\Pi_{u}^{\perp}:=\left(I-\mathscr{H}_{\mathrm{n}_{\text {max }}}^{\top}(u)\left(\mathscr{H}_{\mathrm{n}_{\text {max }}}(u) \mathscr{H}_{\mathrm{n}_{\text {max }}}^{\top}(u)\right)^{-1} \mathscr{H}_{\mathrm{n}_{\text {max }}}(u)\right)
$$

Observe that Π_{u}^{\perp} is maximal rank and

$$
\left[\begin{array}{l}
\mathscr{H}_{\mathrm{n}_{\text {max }}}(u) \\
\mathscr{H}_{\mathrm{n} \text { max }}(y)
\end{array}\right] \Pi_{u}^{\perp}=\left[\begin{array}{c}
0 \\
Y_{0}
\end{array}\right]
$$

\Longrightarrow the orthogonal projection computes free responses

Comments

- $T-\mathrm{n}_{\max }+1$ free responses are computed via the orth. proj. while $n_{\text {max }}$ such responses suffice for the purpose of exact identification
- the orth. proj. is a geometric operation, whose system theoretic meaning is not revealed
- the condition for $\operatorname{rank}\left(Y_{0}\right)=\mathrm{n}$, given in the MOESP literature

$$
\operatorname{rank}\left(\left[\begin{array}{c}
X_{\text {ini }} \\
\mathscr{H}_{\mathrm{n}_{\max }}(u)
\end{array}\right]\right)=\mathrm{n}+\mathrm{n}_{\max } \mathrm{m}
$$

is not verifiable from the data $(u, y) \Longrightarrow$ can not be checked whether the computation gives $\mathscr{O}(A, C)$

N4SID-type algorithms

- splitting of the data into "past" and "future"

$$
\mathscr{H}_{2 \mathrm{n}_{\text {max }}}(u)=:\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}}
\end{array}\right], \quad \mathscr{H}_{2 \mathrm{n}_{\text {max }}}(y)=:\left[\begin{array}{c}
Y_{\mathrm{p}} \\
Y_{\mathrm{f}}
\end{array}\right]
$$

and define $W_{\mathrm{p}}:=\left[\begin{array}{l}U_{\mathrm{p}} \\ Y_{\mathrm{p}}\end{array}\right]$

- oblique projection

$$
Y_{0}:=Y_{\mathrm{f}} / U_{\mathrm{f}} W_{\mathrm{p}}:=Y_{\mathrm{f}} \underbrace{\left[\begin{array}{ll}
W_{\mathrm{p}}^{\top} & U_{\mathrm{f}}^{\top}
\end{array}\right]\left[\begin{array}{cc}
W_{\mathrm{p}} W_{\mathrm{p}}^{\top} & W_{\mathrm{p}} U_{\mathrm{f}}^{\top} \\
U_{\mathrm{f}} W_{\mathrm{p}}^{\top} & U_{\mathrm{f}} U_{\mathrm{f}}^{\top}
\end{array}\right]^{+}\left[\begin{array}{c}
W_{\mathrm{p}} \\
0
\end{array}\right]}_{\Pi_{\mathrm{obl}}}
$$

of the rows of Y_{f} along rowspan $\left(U_{f}\right)$ onto rowspan $\left(W_{p}\right)$

N4SID-type algorithms

Observe that

$$
\left[\begin{array}{c}
W_{\mathrm{p}} \\
U_{\mathrm{f}} \\
Y_{\mathrm{f}}
\end{array}\right] \Pi_{\mathrm{obl}}=\left[\begin{array}{c}
W_{\mathrm{p}} \\
0 \\
Y_{0}
\end{array}\right]
$$

(in fact Π_{obl} is the least-norm, least-squares solution)
\Longrightarrow the oblique proj. computes sequential free responses

Comments

- $T-2 \mathrm{n}_{\text {max }}+1$ sequential free responses are computed via the oblique projection while $\mathrm{n}_{\text {max }}+\mathrm{m}+1$ such responses suffice for exact ident.
- The oblique proj. \backslash is a geometric operation, whose system theoretic meaning is not revealed
- The conditions for $\operatorname{rank}\left(Y_{0}\right)=\mathrm{n}$, given in the N4SID literature,

1. u persistently exciting of order $2 \mathrm{n}_{\text {max }}$ and
2. rowspan $\left(X_{\text {ini }}\right) \cap$ rowspan $\left(U_{f}\right)=\{0\}$
are not verifiable from the data (u, y)

Summary

- transitions among representations \approx system theory
- exact identification aims at $\mathscr{B}_{\text {mpum }}(w)$
- $\mathscr{H}_{t}(w)$ plays key role in both analysis and comput.
- under controllability and u persistently exciting

$$
\operatorname{image}\left(\mathscr{H}_{t}(w)\right)=\left.\mathscr{B}\right|_{t}
$$

- subspace algorithms can be viewed as construction of special responses from data

Plan

Exact modeling

Algorithms

Exercises

