
Identification of Dynamical Systems: Homework 1

Ivan Markovsky

Ivan

Assignment

The tasks of the assignment are:

T1 describe a method for checking whether a given signal wd ∈ (Rq)T is a trajectory of a system B ∈L q,

T2 implement the method in Matlab in a function is_trajectory,

T3 test the function is_trajectory on simulation examples.

However, part of the assignment is to critically reflect on it, make it more specific, and (if needed) modify / expand it.

Reformulated assignment

Without a bound on the system’s complexity, there is always a system B ∈L q, for which any given signal wd ∈ (Rq)T

is an exact trajectory, i.e., wd ∈B|T . Indeed, when all variables are inputs the model B = (Rq)N ∈L q contains every
signal wd ∈ (Rq)N. Alternatively, taking the order of B sufficiently large (e.g., n = qT), again B explains every finite
signal wd ∈ (Rq)T . Task 1 therefore is meaningless (the answer is always "yes") without extra constraints.

How can we modify Task 1 in order to make it meaningful? One possibility is to bound the system’s complexity:

Reformulation R1 of T1 checking whether a given signal wd ∈ (Rq)T is a trajectory of a bounded com-
plexity system B ∈L q

(m,n), where the complexity bound (m,n) is given.

Another possible modification is to search for the smallest complexity exact model:

Reformulation R2 of T1 find the minimal complexity (m,n) of an exact model B ∈L q
(m,n) for wd.

Finally, we may consider the problem where the model is given:

Reformulation R3 of T1 checking whether a given signal wd ∈ (Rq)T is a trajectory of a given sys-
tem B.

The realization that task 1 is meaningless is an important insight. It is an illustration of the accuracy-complexity
trade-off in the case of exact data.

A method for solving the reformulated T1

In order to come up with computational methods, we need a representation of the system B. In what follows, we use
a kernel representation B = ker R(σ). The reason for this choice is that it makes the problem linear in the parameter

R :=
[
R0 R1 . . . R`

]
.

For simplicity, we will consider the SISO case. Then, m = 1 and R ∈ R1×2(n+1).
It can be shown that using the kernel representation, wd ∈B|T is equivalent to the system of equations

RHn+1(wd) = 0.

Therefore, with a given model, the test is simply to evaluate RHn+1(wd). With given complexity n, we need to check
if rankHn+1(wd) = n. Finally, the minimal complexity of an exact model can be found by computing the rank of the
Hankel matrix constructed from wd that is as close to square as possible. Alternatively, the minimal complexity of
an exact model can be found recursively by checking the rank of HL(wd) for L = 1,2, . . . with a stopping criterion
rankHL(wd)< 2L. The minimal complexity of an exact model is then n = L−1.

1

Matlab implementation

Since rank computation is a build function in Matlab, all we need for the implementation of is_trajectory is a
function for the Hankel matrix constructor HL(wd). Such a function (blkhank) is described in [1, pages 26–27].

function [a, min_n] = is_trajectory(w, opt)
if ~exist('opt') % case R1: opt not specified
a = true;
L = floor((size(w, 1) + 1) / 3); % as square as possible H_L(w)
min_n = rank(blkhank(w, L)) - L; % rank(H_L(w)) = L + n

elseif isa(opt, 'double') % case R2: opt is the order
a = (rank(blkhank(w, opt + 1)) < 2 * (opt + 1));

elseif isa(opt, 'lti') % case R3: opt is a given system
a = (norm(tf2ker(tf(opt)) * blkhank(w, order(opt) + 1)) < 1e-10);

else
error('opt is wrong type')

end

function R = tf2ker(H)
[Q P] = tfdata(tf(H), 'v'); R = vec(fliplr([Q; -P]))';

Test example

%% hw1.m
n = 4; T = 100; sys = drss(n);
u = rand(T, 1); y = lsim(sys, u, [], rand(n, 1)); w = [u y];

[a, min_n] = is_trajectory(w) % test 1: find minimal complexity
is_trajectory(w, n - 1) % test 2: under specify order
is_trajectory(w, n) % test 3: given the exact order
is_trajectory(w, n + 1) % test 4: over specify order
is_trajectory(w, sys) % test 5: give the correct system
is_trajectory(w, drss(n)) % test 6: give wrong system

>> hw1
a = logical 1
min_n = 4
ans = logical 0
ans = logical 1
ans = logical 1
ans = logical 1
ans = logical 0

TODO

• generalize to MIMO systems

• approximation in case of noisy data

References

[1] I. Markovsky. Low-Rank Approximation: Algorithms, Implementation, Applications. 2nd edition. Springer, 2019.

2

Feedback

Stijn

• Prepare a single pdf file that contains:

– explanation what you did,

– the code you wrote and the results you obtained,

– discussion of the results and questions.

Amedeo

• Using LATEX is a good alternative to publish. It gives more control but is less straightforward to use (there
are more choices to make and extra tools to learn).

• I like the contents section in the beginning.

• There are ways of including the m-files in the LATEX document of the report. This has advantages:

1. it avoids having two versions of the code that you need to synchronize manually,

2. allows fortification of the code,

3. avoids the need to change manually the source (\{, \&, etc), which is time consuming and error prone.

• By using LATEX, why don’t you write the text in the document and not as comments in the m-files? This is the
main advantage of using LATEX in the first place.

• Why you define two systems for the MIMO and SISO cases? You can run the test with different simulation
parameters and SISO is just a special case of MIMO.

• When including figures put captions that explain what the figures shows and why you show it.

• I don’t see the point of plotting a random trajectory (except maybe to check if there is something wrong with
the data).

• misfit = norm(R * createHankel(w, order(sys) + 1), ’fro’) is "residual" (or "equa-
tion error"). It is different from the "misfit" defined in the lectures.

• Add discussion of the results.

• Explain what createHankel does in case l is not specified. I don’t understand the implementation of
createHankel.

• "Can I use findstates, or should I implement it myself?" — Re-implement it yourself. This is an essential
part of your solution.

• "How to compare 2 SS models?" -> this is a nice problem on its own! We will address it as separately. Mean-
while think of possible solutions.

Freja

• y = dataout= — use instead norm(y - data_out) < tolwhere tol is user defined tolerance for check-
ing numerically when a number is zero.

• The sequence w 7→ h 7→ rankHL(h) is a possible solution of the problem. Compare the implementation of
w 7→ h using Z-transform (symbolic toolbox) with the subspace method shown in the lectures.

3

Leander

• Next step: test the methods on noisy data.

Arno

• "Intended Solution" — "intended" suggests bias that I tried to avoid (but probably failed). Call it just what it is:
"solution based on a kernel representation".

• Add the tests of check_trajectory_2 and get_complexity right after the functions.

• Listing 7 shows a wrong function.

• "better in runtime" — the example is too small to make such a conclusion

• "MATLAB profiler" - nice to see that you use a profiler!

• Next step: test the methods on noisy data.

Reports

Stijn

clear
close all
clc

%%
n_real = randi(10); %Randow system order
Ts = 0.1; %s

t = 0:Ts:10; %Time vector
u = rand([1,length(t)]); %Random input over time
x0 = rand([1,n_real]); %Random starting conditions
sys_c = rss(n_real);
sys = c2d(sys_c,Ts);

y = (lsim(sys,u,t,x0))';
w = [u;y];

%%
[H,l] = construct_Hankel(w);

%%
[is_traj,n_min] = is_trajectory(w)
is_traj = is_trajectory(w,n_real-1)
is_traj = is_trajectory(w,n_real)
%is_traj = is_trajectory(w,sys) %Still somewhere a mistake

%% Estimate a system from the impulse response
h = impulse(sys,t(end))'; %Take impulse response from system
sys_est = sys_estimation(h,n_real,Ts); %Estimation not correct, cannot find mistake

%% Determine m,n
% Theory class: Dim(nullspace(Hankel)) = m*L+n

4

% Choose two different L: L1 and L2
%
% dim1 = m*L1+n (1)
% dim2 = m*L2+n (2)
%
% (1)-(2) = m*(L1-L2) => m = ((1)-(2))/(L1-L2)
% Get n form (1) or (2)

L1 = 10;
L2 = 20;
dim1 = size(null(construct_Hankel(w,L1)),2); %According to https://www.mathworks.com/help/symbolic/null.html#mw_e43701a0-bc06-466f-bdd0-89a06e5c0cd1

%The nullity of a matrix A
%is given by size(Z,2) with
%Z = null(A)

dim2 = size(null(construct_Hankel(w,L2)),2);

m = (dim1-dim2)/(L1-L2);
n = dim1-m*L1;

function [sys] = sys_estimation(imp,n,Ts)
D = imp(1); %D=h(0)

H = construct_Hankel(imp(2:end)); %Construct square Hankel with h without D
[U,S,V] = svd(H); %SVD decomposition to get Observability and Controlability matrix
U = U(:,1:n);
S = S(1:n,1:n);
V = V(:,1:n);
Obser = U*sqrt(S);
Contr = sqrt(S)*V.';

C = Obser(1,:); %Cbser = [C; CA; CA²...]
B = Contr(:,1); %Contr = [B, AB, AB²...]
A = Obser(n+1:end,:)\Obser(1:end-n,:); %[C;CA;CA²...CA^(L-1)]*A = [CA;CA²...CA^L] => A

sys = ss(A,B,C,D,Ts);
end

5

Identification of Dynamical Systems

Homework

Amedeo Varano

October 10, 2021

1 Homework of 03/10/2021, corrected

Contents

• Homework 03/10/21 corrected
• Clean up workspace
• Initialize (discrete) random systems
• Create data sequence
• Given an LTI syst, determine if the given w is a trajectory
• Functions
• createHankel.m
• sys2kernel.m

Homework 03/10/21 corrected

%Amedeo

%Task: Create a function "is_trajectory" that can determine if a given data

%sequence is a trajectory of a given LTI system.

%Extensions:

% * Give "how close" the data sequence is to the given LTI system.

% * Without specifying any system, determine if the data could be the output of

% an LTI system.

% * Without specifying any system, determine if the data could be the output of

% an LTI system and say of which order the system (minimally) is.

Clean up workspace

close all

clear

clc

1

Initialize (discrete) random systems

n = 5; %order

m = 3; %# inputs

p = 2; %# outputs

sys = drss(n, p, m); %random CT system

sysSISO = drss(n, 1, 1); %random CT system

Create data sequence

T = 100;

u = rand([T, m]); %random input

x0 = rand([n, 1]); %random initial state

y = lsim(sys, u, [], x0); %system’s response

w = [u, y].’;

figure

hold on

for i = 1:p

plot(1:T, y(:, i), ’DisplayName’, sprintf(’response output %i’, i))

end

xlabel(’time [s]’), ylabel(’magnitude’), legend

uSISO = rand([T, 1]); %random input

x0SISO = rand([n, 1]); %random initial state

ySISO = lsim(sysSISO, uSISO, [], x0SISO); %system’s response

wSISO = [uSISO, ySISO].’;

figure

plot(1:T, ySISO, ’DisplayName’, ’response output’)

xlabel(’time [s]’), ylabel(’magnitude’), legend

2

0 10 20 30 40 50 60 70 80 90 100

time [s]

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

m
a

g
n

it
u

d
e

response output 1

response output 2

0 10 20 30 40 50 60 70 80 90 100

time [s]

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

m
a

g
n

it
u

d
e

response output

Given an LTI syst, determine if the given w is a trajectory

%The code below is not representative, because sys2kernel is not implemented for

%the MIMO case.

% R = sys2kernel(sys);

% misfit = norm(R * createHankel(w, order(sys) + 1), ’fro’);

3

% fprintf(’For the exact model and the exact w, the misfit is %g\n’, misfit)

%

% R = sys2kernel(drss(n, p, m));

% misfit = norm(R * createHankel(w, order(sys) + 1), ’fro’);

% fprintf(’For the wrong model and the exact w, the misfit is %g\n’, misfit)

R = sys2kernel(sysSISO);

misfit = norm(R * createHankel(wSISO, order(sysSISO) + 1), ’fro’);

fprintf(’For the exact model and the exact w, the misfit is %g\n’, misfit)

R = sys2kernel(drss(n, 1, 1));

misfit = norm(R * createHankel(wSISO, order(sysSISO) + 1), ’fro’);

fprintf(’For the wrong model and the exact w, the misfit is %g\n’, misfit)

%Something clearly goes wrong here...

%The exact misfit is way too large (sometimes larger than when the wrong system

%is given...

For the exact model and the exact w, the misfit is 11.317

For the wrong model and the exact w, the misfit is 106.643

Functions

createHankel.m

function H = createHankel(w, l, T)

%Given data sequence w, create the full Hankel matrix. w(k) = [u(k); y(k)],

%with the data stored as columns.

%Additional integers l and T can be specified to create a Hankel matrix with

%l rows and T columns. Note: T + l - 1 <= length(w)

switch nargin

case 1 %only w is specified (T = l)

l = floor((length(w) + 1)/2);

T = l;

case 2 %only l is specified

T = length(w) - l + 1;

case 3 %both l and T are specified

if T + l - 1 \ensuremath{>} length(w)

warning("T + l - 1 <= length(w) not satisfied, " + ...

"creating square Hankel matrix instead.");

l = floor((length(w) + 1)/2);

T = l;

end

end

4

step = size(w, 1);

H = NaN([step * l, T]); %initialise output to nonvalid entries

wprime = w(:); %create one big column vector of w

for i = 1:T

H(:, i) = wprime((1:step*l)+(i-1)*step); %fill Hankel matrix per column

end

end

sys2kernel.m

function R = sys2kernel(sys)

%Convert a given system to kernel representation, i.e. R * w = 0.

[num, denom] = tfdata(sys); %extract num and denom

%Coefficients in num, denom are ordered in decreasing power

%Reorder them in increasing power

for i = 1:size(num, 1)

for j = 1:size(num, 2)

num\{i, j\} = fliplr(num\{i, j\});

denom\{i, j\} = fliplr(denom\{i, j\});

end

end

%In general Y(f) = G(f) U(f)

%In the MIMO case, this becomes:

%[Y1 ... Yp].’ = [G11 ... G1m; ...; Gp1 ... Gpm] [U1 ... Um].’

%

%The kernel representation: R w = 0

%Which can be written as

%[R^{U1} ... R^{Um} R^{Y1} ... R^{Yp}] [U1; ...; Um; Y1; ...; Yp] = 0

%

%In other words:

%R^{U1} U1 + ... + R^{Um} Um + R^{Y1} Y1 + ... R^{Yp} Yp = 0

%We also have that

%Yi = Gi1 U1 + ... Gim Um

%Substituting this results in the equation above results in a sum

%\sum_{i=1}^{m} (R^{Ui} + R^{Y1} G1i + ... + R^{Yp} Gpi) Ui = 0

%Since the equality must hold in general,

%(R^{Ui} + R^{Y1} G1i + ... + R^{Yp} Gpi) = 0 \forall i = 1, ..., m

%This can be written as

%[R^{Ui} R^{Y1} ... R^{Yp}] [1 G1i ... Gpi].’ = 0

%i.e. a null-space calculation.

%I don’t immediately see how to implement this general case in MATLAB, so I will

%stick to the SISO case for the moment...

5

if numel(num) == 1

%In the SISO case the equation simplifies to

%R^{U} U = - R^{Y} Y

%and

%Y = num/denom U

%--> R^{U} = num, R^{Y} = - denom,

R = [num\{1, 1\}, - denom\{1, 1\}];

else

R = zeros([1, order(sys) + 1]);

end

end

2 Homework of 10/10/2021

Contents

• Homework 10/10/21
• Clean up workspace
• Initialize (discrete) random systems
• Create data sequence
• Extract rank
• Create SS model from impulse response data
• Functions
• estimateMandN.m
• impresp2ss.m

Homework 10/10/21

%Amedeo

%Tasks:

% * Create a function that extracts the order and number of inputs from w

% * Implement a function that creates a SS model starting from impulse response

% data

Clean up workspace

close all

clear

clc

Initialize (discrete) random systems

n = 5; %order

m = 3; %# inputs

p = 2; %# outputs

6

sys = drss(n, p, m); %random CT system

sysSISO = drss(n, 1, 1); %random CT system

Create data sequence

T = 100;

u = rand([T, m]); %random input

x0 = rand([n, 1]); %random initial state

y = lsim(sys, u, [], x0); %system’s response

w = [u, y].’;

figure

hold on

for i = 1:p

plot(1:T, y(:, i), ’DisplayName’, sprintf(’response output %i’, i))

end

xlabel(’time [s]’), ylabel(’magnitude’), legend

uSISO = rand([T, 1]); %random input

x0SISO = rand([n, 1]); %random initial state

ySISO = lsim(sysSISO, uSISO, [], x0SISO); %system’s response

wSISO = [uSISO, ySISO].’;

figure

plot(1:T, ySISO, ’DisplayName’, ’response output’)

xlabel(’time [s]’), ylabel(’magnitude’), legend

7

0 10 20 30 40 50 60 70 80 90 100

time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
a

g
n

it
u

d
e

response output 1

response output 2

0 10 20 30 40 50 60 70 80 90 100

time [s]

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

m
a

g
n

it
u

d
e

response output

Extract rank

[mhat, nhat] = estimateMandN(w);

fprintf(’Estimated number of inputs: %i (true value: %i)\n’, mhat, m)

fprintf(’Estimated model order: %i (true value: %i)\n’, nhat, n)

%Something not quite right in the MIMO case...

8

[mhat, nhat] = estimateMandN(wSISO);

fprintf(’Estimated number of inputs: %i (true value: %i)\n’, mhat, 1)

fprintf(’Estimated model order: %i (true value: %i)\n’, nhat, n)

Estimated number of inputs: 5.000000e-01 (true value: 3)

Estimated model order: 0 (true value: 5)

Estimated number of inputs: 1 (true value: 1)

Estimated model order: 5 (true value: 5)

Create SS model from impulse response data

u = zeros([T, m]); %impulse input

u(1, :) = 1;

x0 = rand([n, 1]); %random initial state

h = lsim(sys, u, [], x0).’; %system’s response

syshat = impresp2ss(h);

%MATLAB can estimate the initial state with

%x0 = findstates(syshat, h, Inf);

%Can I use this, or should I implement it myself?

%How to incorporate this estimate in the system?

%How to compare 2 SS models? Compare B and D (independent of the states)?

uSISO = [1, zeros(1, T - 1)];

x0SISO = rand([n, 1]); %random initial state

hSISO = lsim(sysSISO, uSISO, [], x0SISO); %system’s response

sysSISOhat = impresp2ss(hSISO);

%Idem MIMO case

Warning: T + l - 1 <= length(w) not satisfied, creating square Hankel matrix

instead.

Warning: T + l - 1 <= length(w) not satisfied, creating square Hankel matrix

instead.

Functions

estimateMandN.m

function [mhat, nhat] = estimateMandN(w, maxiter)

if nargin == 1

9

maxiter = 20;

end

l = 0;

H = createHankel(w, l + 1);

while rank(H) == min(size(H)) \&\& l \ensuremath{<} maxiter %while not rank deficient && l not too large

l = l + 1;

H = createHankel(w, l + 1);

end

if size(w, 1) == 2 %In SISO case:

mhat = 1; %estimated number of inputs

nhat = l; %estimated model order

else %In MIMO case (dim(B|L) = m*L + n):

T = size(w, 2);

L1 = floor(0.8 * T);

L2 = floor(0.9 * T);

r1 = rank(createHankel(w(:, 1:L1)));

r2 = rank(createHankel(w(:, 1:L2)));

mhat = (r1 - r2)/(L1 - L2);

nhat = r2 - mhat * L2;

%Note: this does not seem to work properly...

end

end

impresp2ss.m

function sys = impresp2ss(h)

D = h(1);

l = length(h) - 1;

H = createHankel(h(:, 2:end), l, l);

%https://en.wikipedia.org/wiki/Rank_factorization#Singular_value_decomposition

[U, S, V] = svd(H);

r = rank(S);

obs = U(:, 1:r); %observability matrix

contr = S(1:r, 1:r) * V(:, 1:r)’; %controllability matrix

step = round(size(obs, 1)/l);

C = obs(1:step, :);

B = contr(:, 1:round(size(contr, 2)/l));

%Implement shift eq

10

A = obs(1:end-step, :)\ensuremath{\backslash}obs(1+step:end, :);

sys = ss(A, B, C, D, -1);

%How to estimate initial state?

%x0 = findstates(sys, h, Inf); %?

end

11

Homework – Determination complexity

Problem statement
Determine the complexity (the number of inputs m and the order n) of an LTI system from data

without prior knowledge

Theoretical background
Given an LTI system 𝐵 of order n with m inputs and p outputs, consider the subspace

𝐵|𝐿 = {𝑤(1), … , 𝑤(𝐿) | 𝑤 ∈ 𝐵}

where the data

𝑤 = [
𝑢
𝑦] ∈ ℝ𝑞 with 𝑞 = 𝑚 + 𝑝

The dimension of this subspace is given by

dim(𝐵|𝐿) = 𝑚𝐿 + 𝑛 (1)

On the other hand, under the assumption that the fundamental lemma is satisfied, so if the system 𝐵

is controllable and the input 𝑢 is persistent of excitation of L + n, the following equality holds

𝐵|𝐿 = image (𝐻𝐿(𝑤))

where the Hankel matrix of the data 𝐻𝐿(𝑤) is constructed as

𝐻𝐿(𝑤) = (

𝑤(1)
𝑤(2)

𝑤(2)
𝑤(3)

⋯
⋯

𝑤(𝑇 − 𝐿 + 1)
𝑤(𝑇 − 𝐿 + 2)

⋮ ⋱ ⋮
𝑤(𝐿) 𝑤(𝐿 + 1) ⋯ 𝑤(𝑇)

) ∈ ℝ𝑞𝐿 x (𝑇−𝐿+1)

Therefore, the dimension of the subspace can also be found as

dim(𝐵|𝐿) = dim (image (𝐻𝐿(𝑤))) = 𝑟𝑎𝑛𝑘 (𝐻𝐿(𝑤)) (2)

Combining (1) and (2) for two different lengths L1 and L2, results in a system of equations that can be

solved to m and n

{
𝑚𝐿1 + 𝑛 = 𝑟𝑎𝑛𝑘 (𝐻𝐿1

(𝑤))

𝑚𝐿2 + 𝑛 = 𝑟𝑎𝑛𝑘 (𝐻𝐿2
(𝑤))

⇔ (
𝐿1 1
𝐿2 1

) (
𝑚
𝑛

) = (
𝑟𝑎𝑛𝑘 (𝐻𝐿1

(𝑤))

𝑟𝑎𝑛𝑘 (𝐻𝐿2
(𝑤))

)

Note that, since the rank is bounded by the number of columns of 𝐻𝐿(𝑤)

𝑚𝐿 + 𝑛 ≤ 𝑇 − 𝐿 + 1 ⇔ 𝐿 ≤ floor (
𝑇 + 1 − 𝑛

1 + 𝑚
)

However, this expression contains the unknowns m and n, which can be respectively estimated as q-1

(in the extreme case of only 1 output) and q, such that the upper bound on L becomes

𝐿 ≤ floor (
𝑇 + 1 − 𝑞

𝑞
)

Algorithm
1. Construct the Hankel matrix of the data for two different lengths L1 and L2

2. Compute the dimension of the subspace

3. Determine m and n by solving the system of equations

function [m,n] = complexity(w) % determine # inputs m and order n of the

system from data

 w = w(:,2:end);

 q = size(w,1); % # inputs + # outputs

 T = size(w,2); % # time instants

 % construct the Hankel matrix of the data

 L1 = floor((T+1-q)/q);

 L2 = L1-1;

 H1 = Hankel(w,L1,0);

 H2 = Hankel(w,L2,0);

 % compute the dimension of the subspace

 dim1 = rank(H1);

 dim2 = rank(H2);

 % determine m and n

 A = [L1 1; L2 1];

 b = [dim1 ; dim2];

 x = A\b;

 m = x(1);

 n = x(2);

end

The function Hankel constructs the square or rectangular Hankel matrix of the data

function H = Hankel(w,L,square) % construct the Hankel matrix of the data

 q = size(w,1); % # inputs + # outputs

 T = size(w,2); % # time instants

 if square == 1% square Hankel matrix

 col = L;

 else % rectangular Hankel matrix

 col = T-L+1;

 end

 H = zeros(q*L,col);

 for t1 = 1:L

 for t2 = 1:col

 H((t1-1)*q+1:t1*q,t2) = w(:,t1+t2-1);

 end

 end

end

Simulation
%% Simulations

m = 2; % # inputs

p = 2; % # outputs

n = 3; % # states

T = 100; % # time instants

t = 0:T; % time vector

sys = rss(n,p,m);

sys = c2d(sys,1,'zoh');

A = sys.A; B = sys.B;

C = sys.C; D = sys.D;

u = randi(100,[m T+1]); % input

y = lsim(sys,u,t)'; % output

w = [u; y]; % data

[m2,n2] = complexity(w);

if abs(m2 - m) < 1e-8 && abs(n2 - n) < 1e-8

 fprintf('m and n are correctly determined from data \n')

end

The code works for different values of m and n

Homework - Realisation problem

Problem statement
Given a finite impulse response (Markov parameters)

ℎ = (ℎ(0), ℎ(1), … ℎ(𝑇))

Find a state space model with n states, m inputs and p outputs

{
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
 (1)

Theoretical background
Consider the reverse problem: the impulse response matrix (p x m matrix) at time t can be found from

the state space model as follows

ℎ(𝑡) = {
𝐷 𝑡 = 0
𝐶𝐴𝑡−1𝐵 𝑡 > 0

 (2)

Therefore, the D matrix is immediately known
ℎ(0) = 𝑫

To find the A,B and C matrices, one has first to construct the τ-th Hankel matrix of the impulse response
(pτ x mτ matrix)

𝐻𝜏(ℎ) = (

ℎ(1)
ℎ(2)

ℎ(2)
ℎ(3)

⋯
⋯

ℎ(𝜏)
ℎ(𝜏 + 1)

⋮ ⋱ ⋮
ℎ(𝜏) ℎ(𝜏 + 1) ⋯ ℎ(2𝜏 − 1)

)

where 𝜏max = floor (
𝑇+1

2
) since the impulse response is only available until time instance T

As can be seen from (2), this Hankel matrix can be rewritten as

𝐻𝜏(ℎ) = (

𝑪
𝐶𝐴

⋮
𝐶𝐴𝜏−1

) (𝑩 𝐴𝐵 ⋯ 𝐴𝜏−1𝐵) = 𝑂𝜏𝑅𝜏

This is nothing more than a rank revealing factorisation: the pτ x mτ Hankel matrix 𝐻𝜏(ℎ) is factorised

in the pτ x n observability matrix 𝑂𝜏 and the n x mτ reachability matrix 𝑅𝜏, such that the rank of 𝐻𝜏(ℎ)

is equal to the order n of the system.

In practice, this rank revealing factorisation is obtained via singular value decomposition: the pτ x mτ

matrix 𝐻𝜏(ℎ) of rank n is factorised in pτ x pτ matrix U, mτ x mτ matrix V and pτ x mτ pseudo-diagonal

matrix Σ, of which only the first n diagonal elements are nonzero.

𝐻𝜏(ℎ) = 𝑈Σ𝑉𝑇 = (𝑈1
𝑝𝜏 x 𝑛

 𝑈2
𝑝𝜏 x (𝑝𝜏−𝑛)

) (Σ𝑛 x 𝑛 0𝑛 x (𝑚𝜏−𝑛)

0(𝑝𝜏−𝑛) x 𝑛 0(𝑝𝜏−𝑛) x (𝑚𝜏−𝑛)
) (

𝑉1
𝑚𝜏 x 𝑛𝑇

𝑉2
𝑚𝜏 x (𝑚𝜏−𝑛)𝑇)

= 𝑈1
𝑝𝜏 x 𝑛

Σ𝑛 x 𝑛𝑉1
𝑚𝜏 x 𝑛𝑇

= 𝑂𝜏𝑅𝜏

Finally, the matrix A can be found from the following shift equations

𝑂𝜏 = (

𝐶
𝐶𝐴

⋮
𝐶𝐴𝜏−1

) ⇒ (

𝐶
𝐶𝐴

⋮
𝐶𝐴𝜏−2

) 𝑨 = (

𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝜏−1

)

Non-uniqueness
Note that the realisation problem has no unique solution, because the states and therefore also the

state space model (1) are not unique

𝑧(𝑡) = 𝑇𝑥(𝑡) ⇔ 𝑥(𝑡) = 𝑇−1𝑧(𝑡)

with T an invertible n x n matrix

{
𝑧(𝑡 + 1) = 𝑇𝐴𝑇−1𝑧(𝑡) + 𝑇𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑇−1𝑧(𝑡) + 𝐷𝑢(𝑡)

This non-uniqueness can be found in the rank factorisation step

𝐻𝜏(ℎ) = 𝑂𝜏𝑅𝜏 = (𝑂𝜏𝑇−1)(𝑇𝑅𝜏)

Algorithm
The conversion from state space model to finite impulse response can be done by implementing (2) or
using the Matlab function impulse

function [h] = ss2impulse(A,B,C,D,T)

 m = size(D,2); % # inputs

 p = size(D,1); % # outputs

 h = zeros(p,m,T+1);

 h(:,:,1) = D;

 for t = 1:T

 h(:,:,t+1) = C*A^(t-1)*B;

 end

end

The conversion from finite impulse response to state space model consists of the following steps

0. ℎ(0) ⇒ D

1. Construct 𝐻𝜏(ℎ)

2. Determine 𝑂𝜏 and 𝑅𝜏 ⇒ B & C

3. Solve the shift equations ⇒ A

function [A,B,C,D] = impulse2ss(h)

 D = h(:,:,1); % D = h(0)

 h = h(:,:,2:end); % h = (h(1),...,h(T))

 p = size(h,1); % # outputs

 m = size(h,2); % # inputs

 T = size(h,3); % # time instants

 % Construct the Hankel matrix of the impulse response

 tau = floor((T+1)/2);

 H = zeros(p*tau,m*tau);

 for t1 = 1:tau

 for t2 = 1:tau

 H((t1-1)*p+1:t1*p,(t2-1)*m+1:t2*m) = h(:,:,t1+t2-1);

 end

 end

 % Determine the reachability and observability matrix

 [U,S,V] = svd(H);

 n = rank(S);

 O = U(:,1:n);

 R = S(1:n,1:n)*V(:,1:n)';

 B = R(:,1:m);

 C = O(1:p,:);

 % Solve the shift equations

 O1 = O(1:(tau-1)*p,:);

 O2 = O(p+1:tau*p,:);

 A = O1\O2;

end

Simulation
%% Simulations

m = 2; % # inputs

p = 2; % # outputs

n = 3; % # states

T = 10; % # time instants

sys = rss(n,p,m);

sys = c2d(sys,1,'zoh');

A = sys.A; B = sys.B;

C = sys.C; D = sys.D;

% ss 2 impulse

hm = impulse(sys,T); % compare with Matlab function impulse

hm = permute(hm,[2 3 1]); % reorder impulse response matrix

h1 = ss2impulse(A,B,C,D,T);

if norm(hm(:)-h1(:),'fro') <= 1e-4 % Frobenius norm < tolerance

 fprintf("The conversion from state space to impulse response works \n")

end

% impulse 2 ss

[A,B,C,D] = impulse2ss(h1); % different A,B,C,D matrices because realisation

problem has no unique solution

h2 = ss2impulse(A,B,C,D,T); % but same impulse response

if norm(h2(:)-h1(:),'fro') <= 1e-4 % Frobenius norm < tolerance

 fprintf("The conversion from impulse response to state space works \n")

end

The code works!

Identification of Dynamical Systems – Homework

Question: Is the time series 𝑤𝑑 = [
𝑢𝑑

𝑦𝑑
] = ([

𝑢𝑑(1)

𝑦𝑑(1)
] , … , [

𝑢𝑑(𝑇)

𝑦𝑑(𝑇)
]) a trajectory of the LTI system 𝐵

Mathematical interpretation
The LTI system 𝐵 can be seen as a set of trajectories from the input 𝑢 to the output 𝑦. These trajectories

are described by equations (differential equations, transfer functions, state space model).

𝐵 = {𝑤 = [
𝑢
𝑦] | 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 }

Therefore, 𝑤𝑑 is a trajectory of the LTI system 𝐵 if 𝑤𝑑 ∈ 𝐵.

When the parameters of the equations, and thus the model, are not known, it is always possible to find

a non-parametric model 𝐵 (# parameters = # data points) that fits exactly the data 𝑤𝑑. In that case, the

more interesting question is to find the parametric model 𝐵 (# parameters < # data points) with the

smallest possible model order (minimal realisation).

On the other hand, when the parameters of the equations, and thus the model, are given, all one has

to do to check whether 𝑤𝑑 ∈ 𝐵 is plug in the data 𝑤𝑑 into the equations and verify that they hold.

Algorithm
Assume a state space model

{
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

with n states, m inputs and p outputs

If the model is given, the output data has to be compared with the simulated output obtained by

applying the input data to the system.

function [] = istrajectory(data_in,data_out,model)

 if nargin == 3 % model is given

 A = model.A; B = model.B;

 C = model.C; D = model.D;

 m = size(D,2); % # inputs

 p = size(D,1); % # outputs

 n = size(A,1); % # states

 T = size(data_in,2); % # time instants

 x = zeros(n,T+1); % assume zero initial conditions

 y = zeros(p,T);

 for t = 1:T

 y(:,t) = C*x(:,t) + D*data_in(:,t);

 x(:,t+1) = A*x(:,t) + B*data_in(:,t);

 end

 if y == data_out

 fprintf("the data is a trajectory of the given system \n")

 else

 fprintf("the data is not a trajectory of the given system \n")

 end

 end

end

If the model is not given, a method for constructing a minimal realisation was derived in the course

‘System Control Design’. The method is based on the Hankel matrix of the impulse response, which

can be calculated from the given data as follows.

The transfer function matrix 𝐻(𝑧) can be computed by taking the Z-transform of the discrete time data

series. The superscripts 𝑗 and 𝑖 denote the indexes in the input and output data vectors respectively.

𝐻𝑖𝑗(𝑧) =
𝑌𝑑

𝑖(𝑧)

𝑈𝑑
𝑗
(𝑧)

=
𝑍{𝑦𝑑

𝑖 (𝑡)}

𝑍{𝑢𝑑
𝑗

(𝑡)}
=

∑ 𝑦𝑑
𝑖 (𝑡)𝑧−𝑡𝑇

𝑡=1

∑ 𝑢𝑑
𝑗 (𝑡)𝑧−𝑡𝑇

𝑡=1

=
∑ 𝑦𝑑

𝑖 (𝑡)𝑧𝑇−𝑡𝑇
𝑡=1

∑ 𝑢𝑑
𝑗 (𝑡)𝑧𝑇−𝑡𝑇

𝑡=1

The impulse response matrix ℎ(𝑡) is then found as the inverse Z-transform of the transfer function

matrix 𝐻(𝑧).

ℎ𝑖𝑗(𝑡) = 𝑍−1{𝐻𝑖𝑗(𝑧)}

function h_series = impulseresponse(data_in,data_out)

 m = size(data_in,1); % # inputs

 p = size(data_out,1); % # outputs

 T = size(data_in,2); % # time instants

 syms z

 Y = zeros(p,1)*z;

 for i = 1:p

 for t = 1:T

 Y(i) = Y(i) + data_out(i,t)*z^(T-t);

 end

 end

 U = zeros(m,1)*z;

 for j = 1:m

 for t = 1:T

 U(j) = U(j) + data_in(j,t)*z^(T-t);

 end

 end

 H = zeros(p,m)*z;

 for i = 1:p

 for j = 1:m

 H(i,j) = Y(i)/U(j);

 end

 end

 h = iztrans(H); % inverse Z transform

 h_series = zeros(p,m,T);

 for t = 1:T

 h_series(:,:,t) = subs(h,t);

 end

end

For simplicity, assume a SISO system. The t-th Hankel matrix of the impulse response is then given by

𝐻𝑡 = (
ℎ(1) ℎ(2) ⋯ ℎ(𝑡)

⋮ ⋱ ⋮
ℎ(𝑡) ℎ(𝑡 + 1) ⋯ ℎ(2𝑡 − 1)

)

Note that because data is only available until time instance 𝑇, the maximum 𝑡max = 𝑓𝑙𝑜𝑜𝑟(
𝑇+1

2
).

The minimum order 𝑡min is such that det(𝐻𝑡) = 0 ∀ 𝑡: 𝑡min < 𝑡 ≤ 𝑡max . In other words, 𝐻𝑡min
is the

largest full rank Hankel matrix.

function [] = istrajectory(data_in,data_out,model)

 if nargin == 3 % model is given

 …

 else % model is not given

 h = impulseresponse(data_in,data_out); % assume SISO

 T = size(data_in,2); % # time instants

 tmax = floor((T+1)/2);

 for t = tmax:-1:1

 H = hankel(h(1:2*t-1));

 H = H(1:t,1:t);

 if round(det(H),10) ~= 0

 break

 end

 end

 if t == tmax

 fprintf("no minimal realisation with this method \n")

 else

 fprintf("minimal realisation of order %.i \n",t)

 end

 end

end

Simulation
% model is given

m = 2; % # inputs

p = 2; % # outputs

n = 3; % # states

T = 10; % # time instants

t = 0:T-1; % time vector

A = [3 0 5; 1 2 4; 0 6 3]; % nxn matrix

B = [2 0; 0 1; 4 2]; % nxm matrix

C = [1 3 6; 5 0 4]; % pxn matrix

D = [1 0; 0 1]; % pxm matrix

sys = ss(A,B,C,D,-1); % undefined sampling time

% example 1: data and model are given - data is a trajectory (data is

generated as such)

ud = randi(100,[m T]); % input

yd = lsim(sys,ud,t)'; % output (assume zero initial conditions)

istrajectory(ud,yd,sys)

% example 2: data and model are given - data is not a trajectory (data is

randomly generated)

ud = randi(100,[m T]); % input

yd = randi(100,[p T]); % output

istrajectory(ud,yd,sys)

% model is not given

m = 1; % # inputs

p = 1; % # outputs

n = 3; % # states

T = 10; % # time instants

t = 0:T-1; % time vector

A = [2 1; 0 1]; % nxn matrix

B = [1; 2]; % nxm matrix

C = [1 0]; % pxn matrix

D = 0; % pxm matrix

sys = ss(A,B,C,D,-1); % undefined sampling time

% example 3: only data is given - find minimum realisation (data is

generated from known model of order 2)

ud = randi(100,[m T]); % input

yd = lsim(sys,ud,t)'; % output (assume zero initial conditions)

istrajectory(ud,yd)

% example 4: only data is given - find minimum realisation (data is randomly

generated)

ud = randi(100,[m T]); % input

yd = randi(100,[p T]); % output

istrajectory(ud,yd)

The results are as expected:

the data is a trajectory of the given system

the data is not a trajectory of the given system

a minimal realisation of order 2 can be constructed

no minimal realisation can be constructed with this method

Compare with Kernel representation
The criterium for an exact trajectory becomes

𝑤𝑑 ∈ 𝐵 ⇔ [𝑅0 … 𝑅𝐿]𝐻𝐿+1(𝑤𝑑) = 0

Where the Hankel matrix of the data is given by

𝐻𝐿+1(𝑤) = (

𝑤(1)
𝑤(2)

𝑤(2)
𝑤(3)

⋯
⋯

𝑤(𝑇 − 𝐿)
𝑤(𝑇 − 𝐿 + 1)

⋮ ⋱ ⋮
𝑤(𝐿 + 1) 𝑤(𝐿 + 2) ⋯ 𝑤(𝑇)

)

function H = Hankel(w,L) % construct the Hankel matrix of the data

 q = size(w,1); % # inputs + # outputs

 T = size(w,2); % # time instants

 H = zeros(q*L,T-L+1);

 for t1 = 1:L

 for t2 = 1:T-L+1

 H((t1-1)*q+1:t1*q,t2) = w(:,t1+t2-1);

 end

 end

end

Using the Matlab functionality tic toc, the computation time of the symbolic approach tends to be

higher than the one of the kernel representation approach.

Leander Hemelhof: Assignment 1 (+
Assignment 2)

Introduction
The goal of the first assignment is twofold:

1. Given a reference LTI model and a trajectory of valid size for the model, test if this trajectory

could come from the reference model.

2. Given only a trajectory, number of inputs and maximal order, verify if this trajectory could

come from a bounded complexity LTI model, and if this is the case, give a minimal realization

of this model.

The first part is mostly a repeat of the first report, but with a few tweaks based on previous

feedback. In the second part some additions are made: based on the new information available, two

new functions were made: a function to estimate the model order n and the number of inputs m

based only on the trajectory itself and a function that checks whether the given trajectory comes

from a bounded complexity LTI system using a kernel based approach combined with the previous

function. A simple comparison of the mean runtime between this new function and the previous

subspace approach will be made at the end.

Initialization
This part of the code initializes the amount of trajectory points, the order and dimension of the

reference model, and generates a random discrete model to use as reference. Two trajectories are

then generated using a random input signal, one with the outputs given by the model, the other with

an uncorrelated random output:

clear
close all
clc

N = 1000;
n = 5;
nu = 1;%2;
ny = 1;%3;
x1ref = 15*randn(n, 1);
ref = drss(n, ny, nu);
ref.Ts = 1/50;
u1 = randn(nu, N);
u2 = randn(nu, N);
y1 = lsim(ref, u1, [], x1ref).';
traj1 = [u1;y1];
y2 = randn(ny, N);
traj2 = [u2;y2];

Verification
This part of the code runs the functions for the two parts:

is1 = verifyModelOrigin(ref, traj1, nu);

is2 = verifyModelOrigin(ref, traj2, nu);

[is21, model1, goodModelFound1] = isSystemTrajectory(traj1, nu, 20, 1/50);
[is22, model2, goodModelFound2] = isSystemTrajectory(traj2, nu, 20, 1/50);

Results
Knowing that traj1 is a part of the model and traj2 isn't, it looks like the functions give the expected

result. When a trajectory generated with the model is entered, both functions are able to verify this,

while not finding a valid model with the random trajectory. The functions will be discussed in more

detail in the next two sections. As a sidenote, during the writing of this report, the code was run

dozens of times, each time with a different random realization. They all gave the correct result,

lending credibility to this implementation.

fprintf("Given model:\n")
fprintf("\tTrajectory from reference model given: %u (1=trajectory from

this model;0=not a trajectory from this model)\n", is1)
fprintf("\tRandom noise trajectory given: %u (1=trajectory from this

model;0=not a trajectory from this model)\n", is2)
fprintf("\nNo given model:\n")
fprintf("\tTrajectory from reference model given:\n")
fprintf("\t\tIs model output? %u (1=yes;0=no)\n", is21)
fprintf("\t\tWas a good LTI model found for it? %u (1=yes;0=no)\n",

goodModelFound1)
fprintf("\tRandom noise trajectory given:\n")
fprintf("\t\tIs model output? %u (1=yes;0=no)\n", is22)
fprintf("\t\tWas a good LTI model found for it? %u (1=yes;0=no)\n",

goodModelFound2)

Given model:

 Trajectory from reference model given: 1 (1=trajectory from this

model;0=not a trajectory from this model)

 Random noise trajectory given: 0 (1=trajectory from this model;0=not

a trajectory from this model)

No given model:

 Trajectory from reference model given:

 Is model output? 1 (1=yes;0=no)

 Was a good LTI model found for it? 1 (1=yes;0=no)

 Random noise trajectory given:

 Is model output? 0 (1=yes;0=no)

 Was a good LTI model found for it? 0 (1=yes;0=no)

Question 1
This function takes in the reference model, a trajectory to check, and the relevant sizes. It starts off

by estimating the initial state by solving a system of equations. Using that initial state, the input part

of the given trajectory is used to simulate the output of the reference model. This generated output

is then compared to the output part of the given trajectory. The function returns true if the

Frobenius norm of the difference is zero within tolerance.

function [isSame] = verifyModelOrigin(ref, traj, nu)
 ny = size(traj, 1)-nu;
 u = traj(1:nu, :);
 y = traj(nu+1:end, :);
 A = ref.A; B = ref.B; C = ref.C; D = ref.D;
 n = size(A, 1);

 % Estimate the initial state with a regression based on the
 % first max(20, n) trajectory points. Normally, as long as all states
 % are observable only at most n points are needed, but more are used
 % here for robustness.
 Ys = [];
 Us = [];
 O = [];
 F = [];
 nn = max(20, n);
 for t=1:max(20, n)
 Ys = [Ys;y(:, t)];
 Us = [Us; u(:, t)];
 O = [O;C*A^(t-1)];
 tmp = zeros(ny, nu*(nn-t));
 tmp = [D tmp];
 for i=t-1:-1:1
 CA = C*A^(t-i-1);
 tmp = [CA*B tmp];
 end
 F = [F;tmp];
 end
 x1 = O\(Ys-F*Us);
 yref = lsim(ref, u, [], x1).'; % generate the model trajectory for the

given input
 isSame = norm(y-yref, 'fro') < 1e-9; % see if the outputs are

equivalent with slight tolerance
end

Question 2
With the knowledge of my master thesis, my most familiar way to solve this part is using a subspace

method, since this can be done linearly and answers the question of existence of a limited complexity

LTI model early in the algorithm. This function is my implementation of a MOESP method for

deterministic systems, found in Katayama, T. (2005). Subspace methods for system identification.

Springer. pp. 157-160.

To leave the code clean and readable, some notes about the parts that speak less for itself will be put

here for reference. The algorithm starts off by calculating the block Hankel matrix of the trajectory, in

this case with the inputs and outputs separated. On this matrix an LQ decomposition is done to more

easily split the influences of the input and output:

(
𝑈1|𝑖−1
𝑌1|𝑖−1

) = (
𝐿11 0
𝐿21 𝐿22

)(
𝑄1
𝑇

𝑄2
𝑇)

{
𝑈1|𝑖−1 = 𝐿11𝑄1

𝑇

𝑌1|𝑖−1 = 𝐿21𝑄1
𝑇 + 𝐿22𝑄2

𝑇

Using 𝑌1|𝑖−1 = Γ𝑖𝑋0 + 𝜓𝑖𝑈1|𝑖−1 it can be found using the orthogonality of 𝑄1 and 𝑄2 that Γ𝑖𝑋0𝑄2 =

𝐿22. It follows that the rank of 𝐿22 is n since 𝑋0𝑄2 has a full row rank of n and Γ𝑖 has rank n.

(paraphrased from the book)

Using the SVD of 𝐿22 = 𝑈1𝑆1𝑉1
𝑇 we can find n as the number of singular values significantly different

from zero. If this value is bigger than the allowed complexity, the algorithm can terminate and the

first subquestion (the existence of a valid LTI model) is solved.

This SVD is then used to get the extended observability matrix from the earlier equations. It is chosen

to be 𝑈1𝑆1
0.5 for symmetry reasons. This choice is often made in literature but is not unique. Any

invertible nxn matrix can be right multiplied to give the extended observability matrix of an

equivalent system.

C and A are easily found from this extended observability matrix: C is the first block and can be

extracted directly. A is the solution of the system of equations formed by noticing that each block is

the block above it times A: Gammai(1:((i-1)*ny), :)*A=Gammai(ny+1:end, :).

B and D can be found by constructing relation (eq 6.44, p.159) in the book: L*[D;B]=M With L

constructed from the columns of U2T and the extended observability matrix, and M by taking

U2T*(L21/L11) and stacking the block columns on top of each other. As also stated in the book, as

long as i is taken bigger than n, this system gives a unique solution for B and D.

The found system ss(A, B, C, D, Ts) is then tested using the function of Question 1 to see if the found

model matches the trajectory. If everything is implemented correctly this should always succeed, but

it is done here as an extra sanity check.

function [isST, model, goodModelFound] = isSystemTrajectory(traj, nu,

maxOrder, Ts)
 u = traj(1:nu, :);
 y = traj(nu+1:end, :);
 ny = size(y, 1);

 % i will be the maximal number of singular values, so this value is
 % taken to be able to verify if the needed complexity is bounded
 i = 2*maxOrder;
 %i+j-1=N=>j=N-i+1
 j = size(u, 2)-i+1;
 %%
 % Create an LQ decomposition of the trajectory (based on the algorithm
 % given in the book) using respectively $U_{1|i-1}$ and $Y_{1|i-1}$
 U1im1 = blockHankel(u, i, j);
 Y1im1 = blockHankel(y, i, j);
 [Q, L] = qr([U1im1;Y1im1].', 0);
 Q = Q.'; L = L.';
 L11 = L(1:size(U1im1, 1), 1:size(U1im1, 1));
 L21 = L(size(U1im1, 1)+1:end, 1:size(U1im1, 1));
 L22 = L(size(U1im1, 1)+1:end, size(U1im1, 1)+1:end);

 %%
 % After some playing around with the equations it turns out that the
 % rank of L_{22} is also the rank of the extended observability
 % matrix, and as such the amount of singular values of L_{22}
 % different from zero is the order the LTI model needs to explain the
 % given trajectory
 [U, S, ~] = svd(L22);
 n = rank(S);
 if n > maxOrder % Exit if the needed order is bigger than allowed

 isST = false;
 model = [];
 goodModelFound = false;
 return;
 end
 U1 = U(:, 1:n);
 U2 = U(:, n+1:end);
 U2T = U2.';
 S1 = S(1:n, 1:n);

 Gammai = U1*sqrt(S1);
 % A and C are easily found from the extended observability matrix:
 C = Gammai(1:ny, :);
 A = Gammai(1:((i-1)*ny), :)\Gammai(ny+1:end, :);

 M = U2T*(L21/L11);

 Ms = [];
 L1 = [];
 L2 = [];
 for Lidx = 1:i
 Lk = U2T(:, (Lidx-1)*ny+(1:ny));
 Mk = M(:, (Lidx-1)*nu+(1:nu));
 L1 = [L1;Lk];
 if Lidx ~= i
 L2 = [L2;U2T(:, (Lidx*ny+1):end)*Gammai(1:((i-Lidx)*ny), :)];
 else
 L2 = [L2;zeros(ny*i-n, n)];
 end
 Ms = [Ms;Mk];
 end
 DB = [L1 L2]\Ms;
 D = DB(1:ny, :);
 B = DB(ny+1:end, :);
 model = ss(A, B, C, D, Ts);
 isST = true;
 goodModelFound = verifyModelOrigin(model, traj, nu);
end

Addition 1: estimateOrder function
This function takes a trajectory of sufficient length and returns the model order n and the number of

inputs m. It makes use of the fact that the column rank of the block Hankel matrix of the trajectory

with L block rows is mL+n. By making the matrix as square as possible I try to take care of some

underlying assumptions that are made, like for example that the matrix needs at least mL+n columns,

which is difficult to check without knowing m and n. By taking the matrix square, the minimum of the

number of rows and the number of columns (the maximal rank of the matrix) is maximized. The rank

of a block Hankel matrix with L-1 block rows and one with L block rows is found. This leads to a

system of equations with two equations and two unknowns, which has a unique solution. How

sensical this solution is has to be ascertained by the caller of the function.

function [n, m] = estimateOrder(w)
 [k, N] = size(w);
 % j=k*Lmax and Lmax+j=N => N-Lmax=k*Lmax => Lmax=N/(k+1)
 L = floor(N/(k+1));
 H = blockHankel(w, L-1, k*(L-1));
 c1 = rank(H);

 H = blockHankel(w, L, k*L);
 c2 = rank(H);
 % c = m*L+n => c1=m*(L-1)+n and c2=m*L+n
 m = c2-c1;
 n = c2-m*L;
end

Addition 2: isSystemTrajectory2 function
This function serves the same purpose as the subspace method implemented earlier, but doesn’t ask

for the number of inputs. Since the exact model order n is needed to get a useful R matrix the

number of inputs can be found together with it, making it also useful in the cases where the number

of inputs is not known a priori. The found values of n and m are checked to see if they lead to a valid

system. The number of inputs needs to be less than the size of a trajectory vector-1 to leave space

for at least one output and at least zero. The model order is bounded by the maximal order passed to

the function and needs to be bigger than zero.

This implementation can check the existence of a model in any valid case, but only gives a model in

the SISO case. It should be possible to extend the logic to MIMO, but I didn’t check due to time

constraints.

function [isST, model, goodModelFound] = isSystemTrajectory2(w, nmax, Ts)
 [k, N] = size(w);
 [n, m] = estimateOrder(w);
 if m<0 || m>k-1 || n>nmax || n<1
 isST = false;
 model = [];
 goodModelFound = false;
 return;
 end
 isST = true;
 if m~=1 || k~=2
 fprintf("Valid MIMO LTI system trajectory, but this function only

supports model calculation for SISO.\n")
 model = [];
 goodModelFound = false;
 return;
 end
 H = blockHankel(w, n+1, N-n-1);
 R = null(H')';
 Ry = fliplr(R(:, 1:2:end));
 Ru = fliplr(R(:, 2:2:end));
 model = ss(tf(-Ry, Ru, Ts));
 goodModelFound = verifyModelOrigin(model, w, 1);
end

Extended results
First the order estimation function is tested. This is done using three test trajectories: one of the

reference system (n=1, m=1), one random noise trajectory (one input and one output) and one

trajectory from a higher order model (n=10, m=3):

[n1, m1] = estimateOrder(traj1);
[n2, m2] = estimateOrder(traj2);

ref2 = drss(10, 5, 3);

ref2.Ts = 1/50;
u3 = randn(3, N);
y3 = lsim(ref2, u3, [], randn(10, 1)*15).';
[n3, m3] = estimateOrder([u3;y3]);
[is23, model3, goodModelFound3] = isSystemTrajectory2(traj1, 20, 1/50);
fprintf("\nOrder estimation:\n")
fprintf("\tTrajectory from reference model given: n=%u m=%u\n", n1, m1)
fprintf("\tRandom noise trajectory given: n=%u m=%u\n", n2, m2)
fprintf("\tTrajectory from higher order model (n=10, m=3) given: n=%u

m=%u\n", n3, m3)

Order estimation:

 Trajectory from reference model given: n=5 m=1

 Random noise trajectory given: n=0 m=2

 Trajectory from higher order model (n=10, m=3) given: n=10 m=3

These results look correct. Note that in the case of the random noise trajectory a nonsensical answer

with a model order of zero and number of outputs the size of a trajectory vector was given.

After this, the kernel method function was tested the same way as the subspace method:

[is23, model3, goodModelFound3] = isSystemTrajectory2(traj1, 20, 1/50);
[is24, model4, goodModelFound4] = isSystemTrajectory2(traj2, 20, 1/50);
fprintf("\nNo given model (with kernel method):\n")
fprintf("\tTrajectory from reference model given:\n")
fprintf("\t\tIs model output? %u (1=yes;0=no)\n", is23)
fprintf("\t\tWas a good LTI model found for it? %u (1=yes;0=no)\n",

goodModelFound3)
fprintf("\tRandom noise trajectory given:\n")
fprintf("\t\tIs model output? %u (1=yes;0=no)\n", is24)
fprintf("\t\tWas a good LTI model found for it? %u (1=yes;0=no)\n",

goodModelFound4)

No given model (with kernel method):

 Trajectory from reference model given:

 Is model output? 1 (1=yes;0=no)

 Was a good LTI model found for it? 1 (1=yes;0=no)

 Random noise trajectory given:

 Is model output? 0 (1=yes;0=no)

 Was a good LTI model found for it? 0 (1=yes;0=no)

These also look correct. Finally a comparison in runtime was made between the subspace and kernel

method. As it turns out, the calculation of the order and number of inputs is by far the slowest part,

so that was profiled by itself to compare. The runtime is calculated by checking how long it takes to

run 50 times and dividing it by 50:

its = 50;
tic
for i=1:its
 [is21, model1, goodModelFound1] = isSystemTrajectory(traj1, nu, 20,

1/50);
end
t1 = toc/its;
tic

for i=1:its
 [is24, model4, goodModelFound4] = isSystemTrajectory2(traj2, 20, 1/50);
end
t2 = toc/its;
tic
for i=1:its
 [nn, m] = estimateOrder(traj1);
end
t3 = toc/its;

fprintf("\nTime comparison: subspace method took on average %.3fs vs %.3f

for the kernel based method\n", t1, t2)
fprintf("Time comparison: Explicitly estimating exact order and number of

inputs takes on average %.3fs\n", t3)

Time comparison: subspace method took on average 0.013s vs 0.099 for the

kernel based method

Time comparison: Explicitly estimating exact order and number of inputs

takes on average 0.096s

Notice that the subspace method takes significantly less time on average compared to the kernel

based method, but this is a slightly unfair comparison. The subspace method gets passed the number

of inputs and as such doesn’t need the slow function to estimate it. Taking that into account the

kernel based method is faster in the case of unknown number of inputs, since the subspace method

would take on average 0.109s vs 0.099s.

The order estimation function is so slow due to the need to construct and calculate the rank of two

relatively large matrices. Some possible improvements are:

• Use relevant information: the number of inputs is bounded and so is the maximal allowed

complexity. Taking these into account lowers the size of the matrices and as such improves

the runtime considerably.

• Use modular arithmetic to separate m and n: c=mL+n => n=c mod L and m=(c-n)/L. This

works as long as L is larger than the maximal allowed order, which should be the case.

These improvements were not explored due to time limitations.

Identification of Dynamical Systems: Homework
1&2

Arno Hemelhof

October, 2021

1 Homework 1

1.1 Problem Statement
Given a time-series

wd =

[
ud

yd

]
=

([
ud(1)
yd(1)

]
, ...,

[
ud(T)
yd(T)

])

check if it’s a trajectory of an LTI system (with bounded complexity). This
assignment is made up of three parts:

1. Formalize what it means for “wd to be a trajectory of an LTI system”

2. Write an algorithm to perform this check

3. Construct a simulation example to test the algorithm

1.2 Implementation
1.2.1 Formalizing the Requirement

Since LTI systems (of order n) can be represented by a state space model of
order n with an initial state X0, this representation will be used throughout this
solution.

The required statement can then be formalized as:

A time-series wd is a trajectory of an LTI system of bounded complexity (order
≤ n) if there exists a state space model (A, B, C, D) of order ≤ n and an initial
state X0 such that

yd = OT ·X0 + ΨT · ud (1)

1

Where

Ok =

C
CA
...

CAk−1

 ,Ψk =

D 0 . . . 0
CB D . . . 0
...

CAk−2B CAk−3B . . . D

and ud and yd are the time-series of the input and output (contained in wd)
stacked as a single column-vector each, e.g.

ud =

ud(1)
ud(2)

...
ud(T)

with ud(i) being a column-vector itself of all the inputs at time i.

To check this condition, I will work in two parts:

1. Construct a minimal realisation of a system that should satisfy the con-
dition

2. Check if, given this realisation, wd is a trajectory of the resulting model

Since the last item is the easiest, I will start with that one.

1.2.2 Check If System Is a Solution

If the state space representation of an LTI is given, check if an initial state exists
such that Equation 1 is satisfied. In the most simple case, this state is found by
solving following equation:

yd(1) = C ·X0 + D · ud(1)

This only gives a unique solution if rank(C) = n. To work for the general case,
Equation 1 restricted to n inputs and outputs is used to solve for X0. More
terms than this are not needed since rank(On) = n for an observable system.
If the system is not observable, no state can be uniquely determined from the
inputs and outputs. The solution is then checked by simulating the system with
this initial state and comparing the outputs:

Listing 1: Solution Check Implementation
1 function X0 = EstimateInitialState(us, ys, H)
2
3 idx_max = min(size(H.A, 1), size(us, 1));
4
5 y_full = [];
6 O_full = [];
7 for idx = 1:idx_max

2

8 U = us.';
9 U = reshape(U(:, 1:idx), [], 1);
10 PSI_i = zeros(size(H.D, 1), idx*size(H.D, 2));
11 tmp = H.C;
12 for i = idx−1:−1:1
13 start = (i−1)*size(H.D, 2)+1;
14 PSI_i(:, start:(start+size(H.D, 2)−1)) = tmp*H.B;
15 tmp = tmp * H.A;
16 end
17 PSI_i(:, ((idx−1)*size(H.D, 2)+1):end) = H.D;
18 yi = ys(idx, :).' − PSI_i*U;
19 y_full = [y_full ; yi];
20 O_full = [O_full ; tmp];
21 end
22 X0 = O_full\y_full;
23
24 end
25
26 function result = IsTrajectoryOfSystem(us, ys, H)
27
28 X0 = EstimateInitialState(us, ys, H);
29
30 y_new = lsim(H, us, [], X0);
31
32 mse = mean((ys−y_new).^2, 'all');
33 result = (mse/mean(abs(ys), 'all') < 1e−8);
34
35 end

1.2.3 Finding a Minimal System

For this part, I had to do some research online and got pointed to Subspace
Methods for System Identification by Tohru Katayama [1]. This part is mostly
an implementation of the MOESP Method outlined in that source.

First, some notation should be introduced:

U1|k =

ud(1) ud(2) . . . ud(N)
ud(2) ud(3) . . . ud(N + 1)

...
ud(k) ud(k + 1) . . . ud(k + N − 1)

This is a block Hankel matrix based on the inputs. A similar notation is used
for the outputs: Y1|k. k should be chosen to be strictly greater than the order
of the system (dimension of the state vector), which in practice means that it

3

should be greater than the upper bound of the expected order. N should be
chosen large enough. To utilise all data, I chose N = T − k + 1.

These two block Hankel matrices can be combined into a Data Matrix:

W1|k =

[
U1|k
Y1|k

]

The condition of Equation 1 can be rewritten by splitting it up into chunks:

Y1|k = Ok ·X + Ψk · U1|k (2)

where X =
[
X(1) X(2) . . . X(N)

]
are the state vectors in function of time.

The goal of rewriting it like this is to be able to isolate the term with Ok (con-
taining information on A and C), and the term with Ψk (containing information
on A, B, C and D). This will help with that using following observation:

If W1|k is decomposed into a product of a lower triangular matrix and an or-
thonormal matrix (using LQ decomposition), we have:

W1|k =

[
U1|k
Y1|k

]
=

[
L11 0
L21 L22

]
·
[
QT

1

QT
2

]

U1|k = L11 ·QT
1 (3a)

Y1|k = L21 ·QT
1 + L22 ·QT

2 (3b)

Filling Equation 3a and Equation 3b into Equation 2, we obtain

L21Q
T
1 + L22Q

T
2 = OkX + ΨkL11Q

T
1 (4)

Since Q1 and Q2 are orthonormal, the terms can be isolated by post-multiplying
with the correct matrix. For example:

L22 = OkXQ2

With the assumption of this method that the system is observable, the rank of
Ok is the real order of the system n as is the rank of XQ2. This means the rank
of their product L22 is also n. Doing the singular value decomposition on L22

and retaining only the non-zero part gives

L22 =
[
U1 U2

] [Σ1 0
0 0

] [
V T
1

V T
2

]
= U1Σ1V

T
1

4

Ok is chosen to be U1Σ
1/2
1 . This choice is not unique since post-multiplying Ok

with any invertible n×n matrix will result in a model for the same system, but
with another basis for the state.

Looking at the definition of Ok as used in Equation 1, the C matrix can be
extracted as the top left p× n block with p being the number of outputs.

Since C is in general not left-invertibe, this can’t be directly used to calculate
A using a different block, but A can be obtained by solving following system of
equations:

Ok−1A = Ok(p + 1 : end, :)

Since rank(Ok) = n for any k ≥ n and k was chosen strictly greater than n,
Ok−1 is left-invertible and, as such, this equation has a unique solution.

Pre-multiplying Equation 4 by UT
2 isolates the Ψk term since U1 and U2 are

orthonormal:

UT
2 L21Q

T
1 + UT

2 L22Q
T
2 = UT

2 OkX + UT
2 ΨkL11Q

T
1

⇒ UT
2 L21Q

T
1 + UT

2 U1Σ1V
T
1 QT

2 = UT
2 U1Σ

1/2
1 X + UT

2 ΨkL11Q
T
1

⇒ UT
2 L21Q

T
1 = UT

2 ΨkL11Q
T
1

Post-multiplying by Q1L
−1
11 then gives:

UT
2 L21L

−1
11 = UT

2 Ψk

Since UT
2 is not left-invertible (it has less rows than columns), this equation can’t

be solved directly. Writing UT
2 = [L1 . . .Lk] and UT

2 L21L
−1
11 = [M1 . . .Mk], it

can be shown that

L1 L̄2Ok−1
L2 L̄3Ok−2
...
Lk−1 L̄kO1

Lk 0

[
D
B

]
=

M1

M2

...
Mk−1
Mk

with L̄i = [Li . . .Lk] where it can be shown that the left matrix has full column
rank and, as such, is left-invertible giving a unique solution for B and D given
A and C.

Finaly, the initial state can be estimated as done in the previous section to
get the minimal realization and intial state that generates the given trajectory.
These are than checked similarly to the IsTrajectoryOfSystem function.

5

The code for this part is given below

Listing 2: Implementation for finding the minimal system
1 function [result, H, X0] = CheckLTI(us, ys, max_order)
2
3 % MOESP Method based on Subspace Methods for System Identification

by
4 % Tohru Katayama
5
6 % size(us) = num_samples x num_inputs
7 % size(ys) = num_samples x num_outputs
8 [T, m] = size(us);
9 p = size(ys, 2);
10
11 k = min(2 * max_order, T − 1); % Must be greater than the needed

order
12 N = T − k + 1;
13
14 % Construct Block Hankel Matrix
15 UY = zeros(k * (m+p), N);
16 for i = 1:T
17 start_u = m*(i−1) + 1;
18 start_y = p*(i−1) + k*m + 1;
19 for j = max(1, i−k+1):min(i, N)
20 UY(start_u + (0:m−1) − m*(j−1), j) = us(i, :).';
21 UY(start_y +(0:p−1) − p*(j−1), j) = ys(i, :).';
22 end
23 end
24
25 % LQ Decomposition
26 [Q, L] = qr(UY.', 0);
27 L = L.';
28 L11 = L(1:k*m, 1:k*m);
29 L21 = L((k*m+1):end, 1:k*m);
30 L22 = L((k*m+1):end, (k*m+1):end);
31 Q1 = Q(:, 1:(k*m));
32 Q2 = Q(:, (k*m+1):end);
33
34 % Obtaining O_k
35 [U, S, V] = svd(L22);
36 n = rank(S);
37
38 if n > max_order
39 result = false;
40 H = [];
41 X0 = [];

6

42 return;
43 end
44
45 U1 = U(:, 1:n);
46 U2 = U(:, (n+1):end);
47 V1 = V(:, 1:n);
48 S = S(1:n, 1:n);
49
50 Ok = U1 * sqrt(S);
51
52 % Getting A and C from O_k
53 C = Ok(1:p, :);
54 A = Ok(1:p*(k−1), :)\Ok((p+1):k*p, :);
55
56 % Getting B and D
57 L_base = U2.';
58 M_base = L_base * L21/L11;
59
60 Ls = zeros(k*(k*p−n), p+n);
61 M = zeros(k*(k*p−n), m);
62
63 for i = 1:k
64 start1 = (i−1)*(k*p−n)+1;
65 start2 = (i−1)*p+1;
66 start3 = (i−1)*m+1;
67 Ls(start1:(start1+k*p−n−1), 1:p) = L_base(:, start2:(start2+p

−1));
68 Ls(start1:(start1+k*p−n−1), (p+1):end) = L_base(:, start2+p:end

)*Ok(1:p*(k−i), :);
69
70 M(start1:(start1+k*p−n−1), :) = M_base(:, start3:(start3+m−1));
71 end
72
73 BD = Ls\M;
74 D = BD(1:p, :);
75 B = BD((p+1):end, :);
76
77 H = ss(A, B, C, D, −1);
78 X0 = EstimateInitialState(us, ys, H);
79
80 y_new = lsim(H, us, [], X0);
81 mse = mean((ys−y_new).^2, 'all');
82 result = (mse/mean(abs(ys), 'all') < 1e−8);
83
84 end

7

1.3 Testing
To test the implemented parts, additional code was written to generate LTI
systems, generate trajectories for them and apply the algorithms to those. A
stable third order system with three inputs and two outputs was made by hand.
In addition, a sixth order system with, again, three inputs and two outputs was
generated using the drss function.

The code and its resulting output are given below

Listing 3: Testing the Implementations
1 clc;
2 clear;
3 close all hidden;
4
5 % Fix Seed
6 rng(957342445);
7
8 A = [−0.1, 0, 0; 4, −0.5, 0; 7, 8, −0.9];
9 B = [1, 2; 3, 4; 5, 6];
10 C = eye(3);
11 D = 0;
12
13 H = ss(A, B, C, D, −1);
14 rand_sys = drss(6, 3, 2);
15
16 u = randn(100, 2);
17 X0g1 = randn(3, 1);
18 X0g2 = randn(6, 1);
19
20 Y1 = lsim(H, u, [], X0g1);
21 Y2 = lsim(rand_sys, u, [], X0g2);
22
23 bool1 = IsTrajectoryOfSystem(u, Y1, H);
24 bool2 = IsTrajectoryOfSystem(u, Y1, rand_sys);
25 bool3 = IsTrajectoryOfSystem(u, Y2, H);
26 bool4 = IsTrajectoryOfSystem(u, Y2, rand_sys);
27
28 snip = ['not ' ''];
29 fprintf('[u; Y1] is %sa trajectory of H\n', snip(bool1+1))
30 fprintf('[u; Y1] is %sa trajectory of rand_sys\n', snip(bool2+1))
31 fprintf('[u; Y2] is %sa trajectory of H\n', snip(bool3+1))
32 fprintf('[u; Y2] is %sa trajectory of rand_sys\n', snip(bool4+1))
33
34 [res1, model1, X01] = CheckLTI(u, Y1, 5);
35 [res2, model2, X02] = CheckLTI(u, Y2, 5);
36 [res3, model3, X03] = CheckLTI(u, Y1, 10);

8

37 [res4, model4, X04] = CheckLTI(u, Y2, 10);
38
39 fprintf('A system of order <= 5 was %sfound for Y1\n', snip(res1+1)

);
40 if res1
41 fprintf('\tOrder was %d\n', size(model1.A, 1));
42 end
43
44 fprintf('A system of order <= 5 was %sfound for Y2\n', snip(res2+1)

);
45 if res2
46 fprintf('\tOrder was %d\n', size(model2.A, 1));
47 end
48
49 fprintf('A system of order <= 10 was %sfound for Y1\n', snip(res3

+1));
50 if res3
51 fprintf('\tOrder was %d\n', size(model3.A, 1));
52 end
53
54 fprintf('A system of order <= 10 was %sfound for Y2\n', snip(res4

+1));
55 if res4
56 fprintf('\tOrder was %d\n', size(model4.A, 1));
57 end

Listing 4: Output of the Code

1 [u; Y1] is a trajectory of H
2 [u; Y1] is not a trajectory of rand_sys
3 [u; Y2] is not a trajectory of H
4 [u; Y2] is a trajectory of rand_sys
5 A system of order <= 5 was found for Y1
6 Order was 3
7 A system of order <= 5 was not found for Y2
8 A system of order <= 10 was found for Y1
9 Order was 3
10 A system of order <= 10 was found for Y2
11 Order was 6

This is the expected output.

9

2 Homework 2

2.1 Introduction
This homework again had a couple of different objectives:

1. The intended solution to the previous homework should be implemented
and compared to the solution I used

2. The theory that was seen in class should be used to find the minimal
complexity of a system (number of inputs and system order) when given
only a trajectory wd.

3. As a bonus, the basic realisation algorithm can be implemented

Since the work done by my solution of the first goes a lot further than the
intended solution, no comparison is done. Instead, the realisation algorithm
will be compared to the subspace solution with the realisation algorithm be-
ing augmented by a pre-processing step to get the impulse response from the
trajectory.

2.2 Intended Solution
It can be shown that rank(HL(wd)) = m · L + n with m the number of inputs,
and n the order of the system. This means that if we have a maximal system
order of nmax, we know w is the trajectory of an LTI system with bounded
complexity by looking at the rank of Hnmax+1(wd).

If the matrix has full row rank (q · (nmax + 1)), the only option with an order
less than or equal to nmax is the system without outputs, which is not a valid
solution. Any lower rank gives rise to solutions with outputs and orders greater
than zero.

The bounded representation of the system can then be obtained by the kernel
representation which gives the coefficients of a system of equations of difference
equations describing the system.

The implementation of this algorithm is given below:

Listing 5: Implementation of Intended Solution

1 function [result, R] = check_trajectory_2(w, max_n)
2
3 % size(w) = num_samples x (num_inputs+num_outputs)
4
5 k = max_n + 1;
6 H = block_hankel(w.', k);
7
8 mk_plus_n = rank(H);
9
10 if mk_plus_n == size(H, 1)

10

11 result = false;
12 R = [];
13 return;
14 end
15
16 n = mod(mk_plus_n, k);
17
18 H = block_hankel(w.', n+1);
19 R = null(H.').';
20 result = true;
21
22 end

2.3 Getting the Complexity From a Trajectory
Obtaining the complexity is also done using the observation that rank(HL(wd)) =
m · L + n. This time L is chosen greater than n (or assumed to be if enough
samples are provided) and such that the block Hankel matrix is as square as
possible to help with the accuracy of the rank calculation. We then obtain:

n = rank(HL(wd)) modL

m =
rank(HL(wd))− n

L

The implementation is given below:

Listing 6: Implementation of Complexity Calculation
1 function [m, n] = get_complexity(w)
2
3 % size(w) = num_samples x (num_inputs+num_outputs)
4 % (q*k x T−k+1)
5 % q*k = T−k+1 => k = (T+1)/(q+1)
6 % Floored to prevent the number of columns from limiting the rank
7
8 [T, q] = size(w);
9 k = floor((T+1)/(q+1));
10 H = block_hankel(w.', k);
11
12 mk_plus_n = rank(H);
13 n = mod(mk_plus_n, k);
14 m = (mk_plus_n−n)/k;
15
16 end

11

2.4 State Space System From Trajectory
2.4.1 Impulse Response From Trajectory

Since the impulse response will be used to construct a block Hankel matrix with
n + 1 block-rows, the number of elements of the impulse response are chosen
to make this matrix as square as possible, but wider than tall if square is not
possible. The addition by one at the end is because we need one extra value of
the impulse response since H(0) will be the first one, and will not be used for
the block Hankel matrix.

p · (n + 1) = m · ((t− 1)− (n + 1) + 1)

⇒ t =
p

m
· (n + 1)

⇒ tused =
⌈ p

m
· (n + 1) + 1

⌉

The maximal lag of the system is taken to be equal to the order of the system
which is obtained as in the previous exercise. The condition that should then
be satisfied is the following:

imageHlmax+t(wd) = B|lmax+t

It is assumed that the Fundamental Lemma always applies, thus satisfying this
condition. We then get the impulse response by finding the coefficients needed
to right-multiply with the block Hankel matrix to obtain a trajectory starting
with 0 initial conditions for lmax samples, and an impulse input for the t samples
after. The “future” outputs are left out of this equation by omitting the last p · t
rows of the block Hankel matrix Y = Hlmax+t(yd). This omitted part is then
right-multiplied with the coefficients after those are obtained to get the impulse
response H.

Note that due to the rank-deficiency of the block Hankel matrix, there is no
unique matrix of coefficients, but a single solution is enough since the result of
the Fundamental Lemma guarantees that output will be the continuation of our
constructed “impulse” trajectory.

2.4.2 Realisation Algorithm

The first p × m block of the impulse response is the D matrix. The rest of
the matrices are obtained using the Rank-Revealing Decomposition calculated
using the Singular Value Decomposition:

Hn+1(H) = UΣV t = P · L

With Σn = Σ(1 : n, 1 : n), P = U · Σ1/2
n and L = Σ

1/2
n · V t

12

It can be shown that like this

P =

C
CA
...

CAn

L =
[
B AB . . . AnB

]

C is then the first p × n block of P and B is the first n ×m block of L. A is
obtained using the shift property:

P (1 : end− n, :)A = P (n + 1 : end, :)

2.4.3 Implementation

Listing 7: Implementation of the Realisation ALgorithm

1 function [result, R] = check_trajectory_2(w, max_n)
2
3 % size(w) = num_samples x (num_inputs+num_outputs)
4
5 k = max_n + 1;
6 H = block_hankel(w.', k);
7
8 mk_plus_n = rank(H);
9
10 if mk_plus_n == size(H, 1)
11 result = false;
12 R = [];
13 return;
14 end
15
16 n = mod(mk_plus_n, k);
17
18 H = block_hankel(w.', n+1);
19 R = null(H.').';
20 result = true;
21
22 end

2.5 Testing
Following code was used to test these algorithms

13

Listing 8: Implementation of Testing Code
1 clc;
2 clear;
3 close all hidden;
4
5 % Fix Seed
6 rng(957342445);
7
8 rand_sys = drss(6, 3, 2);
9
10 u = randn(100, 2);
11 X0g2 = randn(6, 1);
12
13 Y1 = lsim(rand_sys, u, [], X0g2);
14 Y2 = randn(size(Y1));
15
16 [m, n] = get_complexity([u Y1])
17 bool1 = check_trajectory_2([u Y1], 10)
18 bool2 = check_trajectory_2([u Y2], 10)
19
20 sys = RealizeMinimal(u, Y1);
21 bool3 = IsTrajectoryOfSystem(u, Y1, sys)
22
23 T1 = tic;
24 for i = 1:100
25 CheckLTI(u, Y1, 10);
26 end
27 T2 = toc(T1);
28
29 fprintf('MOESP took %.3fms per run\n', T2*1e3/100);
30
31 T3 = tic;
32 for i = 1:100
33 RealizeMinimal(u, Y1);
34 end
35 T4 = toc(T3);
36
37 fprintf('Basic Realization took %.3fms per run\n', T4*1e3/100);

Giving following output:

1 m =
2
3 2
4
5

14

6 n =
7
8 6
9
10
11 bool1 =
12
13 logical
14
15 1
16
17
18 bool2 =
19
20 logical
21
22 0
23
24
25 bool3 =
26
27 logical
28
29 1
30
31 MOESP took 8.313ms per run
32 Basic Realization took 13.532ms per run

The algorithms seem to work perfectly.

Here we can also see that the MOESP implementation of the previous homework
still performs better in runtime (if the initial state estimation is removed to make
the comparison fair). This is due to the fact that the new algorithm constructs
more block Hankel matrices. For both algorithms those constructions take up
most of the time. The MATLAB profiler also gave the insight that about 1/3 of
the runtime of the new algorithm could be removed if a (realistic) upper bound
for the lag were provided.

15

References
[1] Tohru Katayama. Subspace Methods for System Identification. Communi-

cations and Control Engineering. Springer-Verlag, London, 2005.

16

