Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Exercises

Outline

Introduction: data, model class, approximation

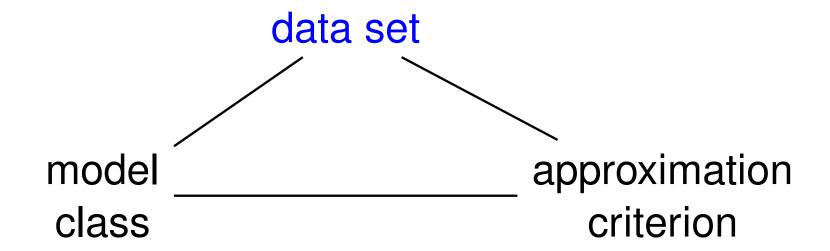
Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Exercises

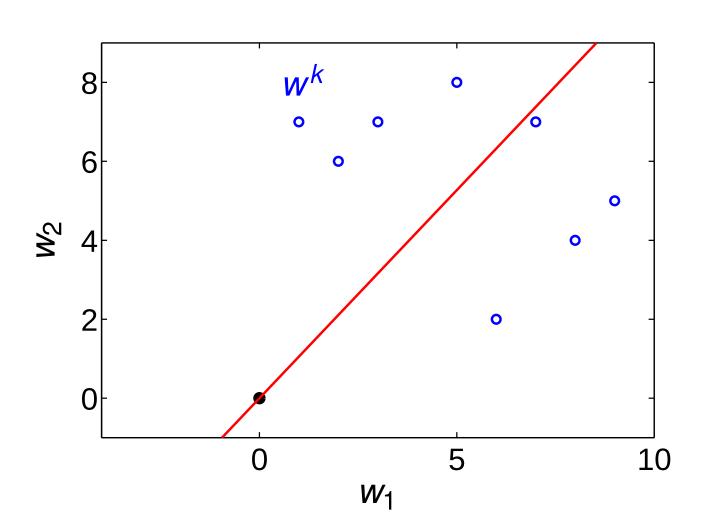
First is the data . . .



Line fitting (linear static model)

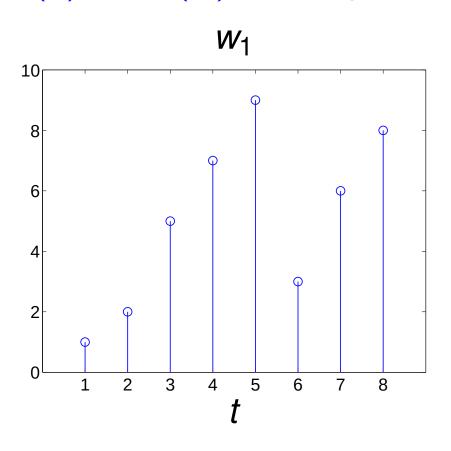
$$w^1, \dots, w^N$$
 — data points

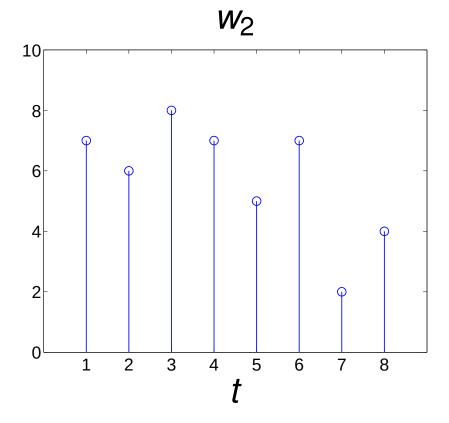
(the order is not important)



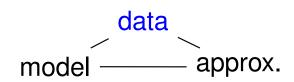
Time series data (dynamic model)

 $w(1), \dots, w(T)$ — samples in time (the order is important)





Summary: data



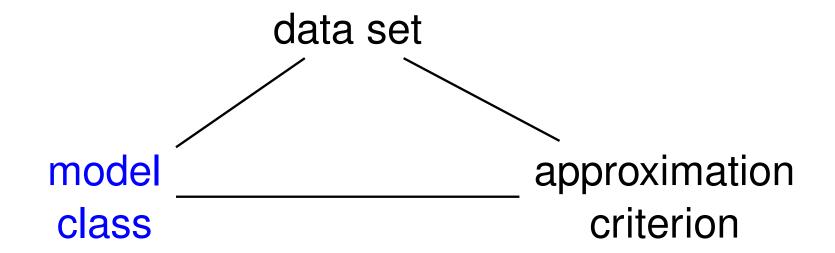
• the data is a set $w = \{ w^1, \dots, w^N \}$

• of vector valued $w^k = \begin{bmatrix} w_1^k \\ \vdots \\ w_q^k \end{bmatrix}$

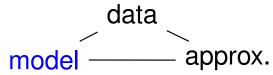
- ► time series $w_i^k = (w_i^k(1), ..., w_i^k(T_k))$ N # of repeated experiments

 q # of variables T_k # of time samples in the kth exp.
- ▶ in static problems, $T_1 = \cdots = T_N = 1$

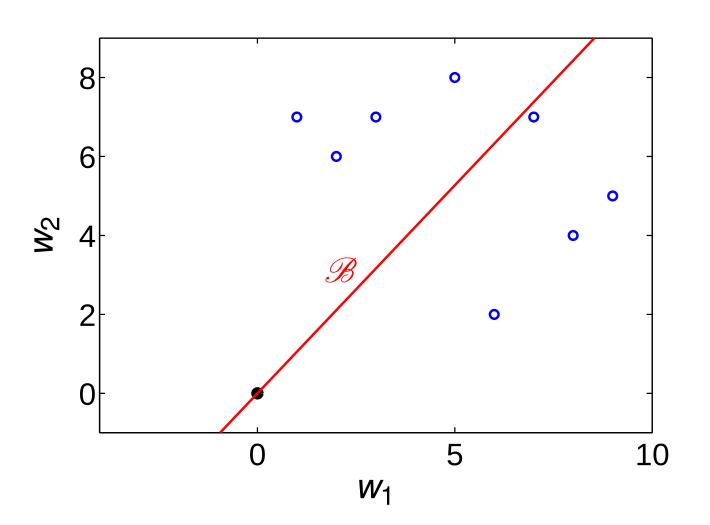
Next is the model class . . .



Line fitting (linear static model)



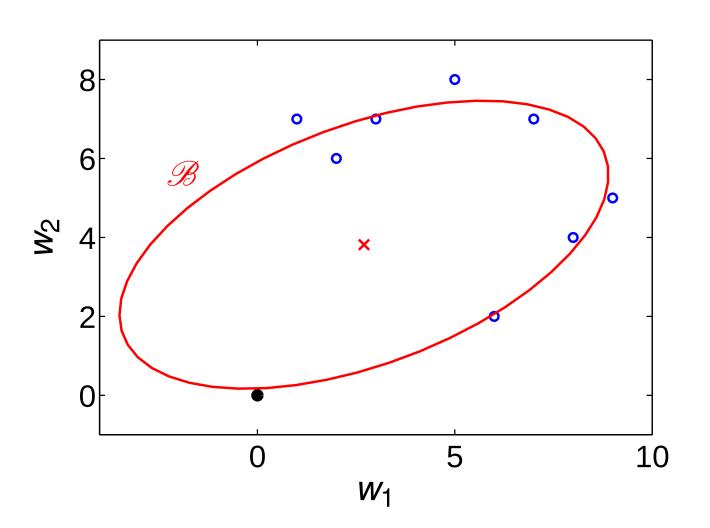
- model: line through the origin
- model class: all lines through the origin



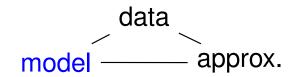
Conic section fitting (quadratic static model)

model — approx.

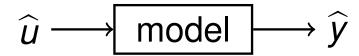
- model: conic section
- model class: all conic sections

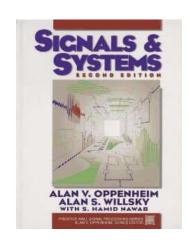


Classical definition of dynamical model



dynamical model is signal processor





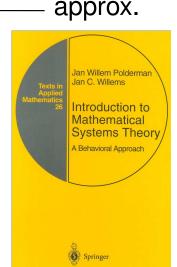
- specified by a map $\hat{y} = f(\hat{u})$
- "state space model", "transfer function model", ...
- however, lines and conic sections may not be graphs
- *e.g.*, \longrightarrow , \longrightarrow can't be represented by $f: \widehat{u} \mapsto \widehat{y}$

Behavioral definition of model

data model approx.

a model is a subset

$$\mathscr{B} = \{ \widehat{w} \mid g(\widehat{w}) = 0 \text{ holds } \}$$



- in the static case, $g(\widehat{w}) = 0$ is algebraic equation
- in the dynamic case, $g(\hat{w}) = 0$ is difference equation

$$\widehat{w} = \left[\widehat{y} \right], \ \widehat{y} = f(\widehat{u}) \ \text{is a special case of} \ g(\widehat{w}) = 0$$

$$(g(\widehat{u},\widehat{y})=\widehat{y}-f(\widehat{u}))$$

Summary: model

data model — approx.

three data modeling examples:

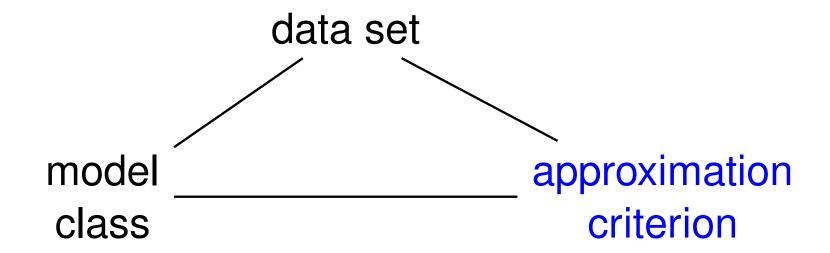
problem	model
line fitting	static linear
conic section fitting	static nonlinear
system identification	dynamic

two definitions of a model:

classical behavioral map
$$\widehat{y} = f(\widehat{u})$$
 set $\{\widehat{w} \mid g(\widehat{w}) = 0\}$ f — function g — relation

the classical one can not deal with all examples

Finally, the approximation criterion . . .



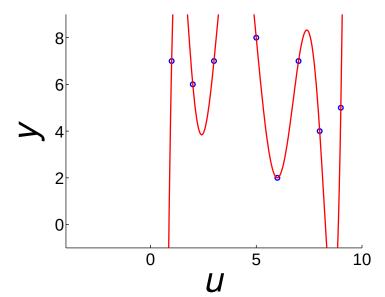
Exact model

$$w \subset \mathscr{B} \iff w^1, \dots, w^N \in \mathscr{B}$$

 $\iff :$ "w is exact data of \mathscr{B} "

- two well known exact modeling problems
 - realization: LTI model class, impulse resp. data
 - interpolation: static nonlinear model class

polynomial interpolation



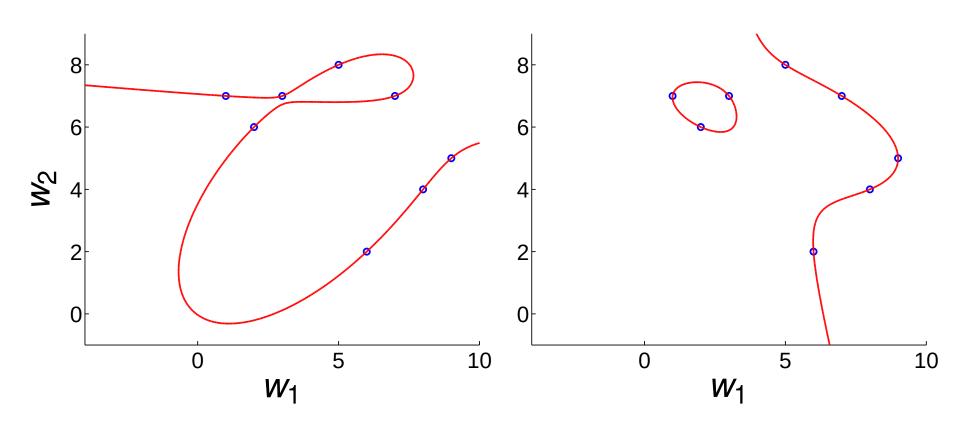
$$\mathscr{B} = \left\{ \left[\begin{array}{c} \widehat{u} \\ \widehat{y} \end{array} \right] \mid \widehat{y} = f(\widehat{u}) \right\}$$

f is 8th order polynomial

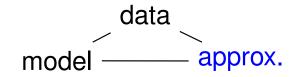
Exact 3rd order nonlinear static models

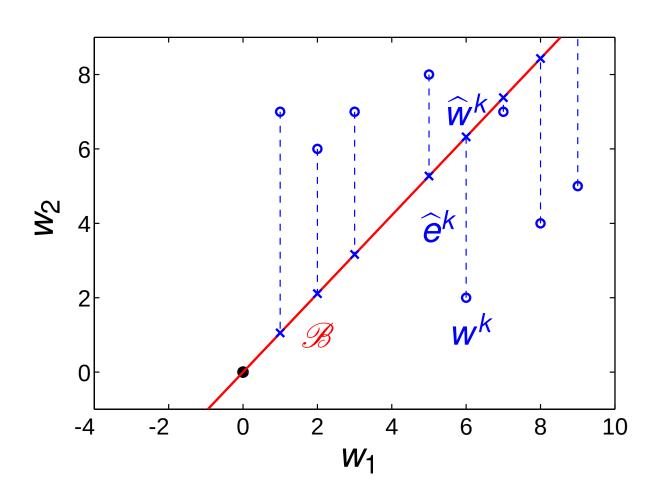
$$\mathscr{B} = \left\{ \left[\begin{array}{c} \widehat{w}_1 \\ \widehat{w}_2 \end{array} \right] \mid g(\widehat{w}_1, \widehat{w}_2) = 0 \right\}$$

g is 3rd order polynomial in \widehat{w}_1 , \widehat{w}_2

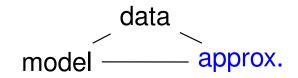


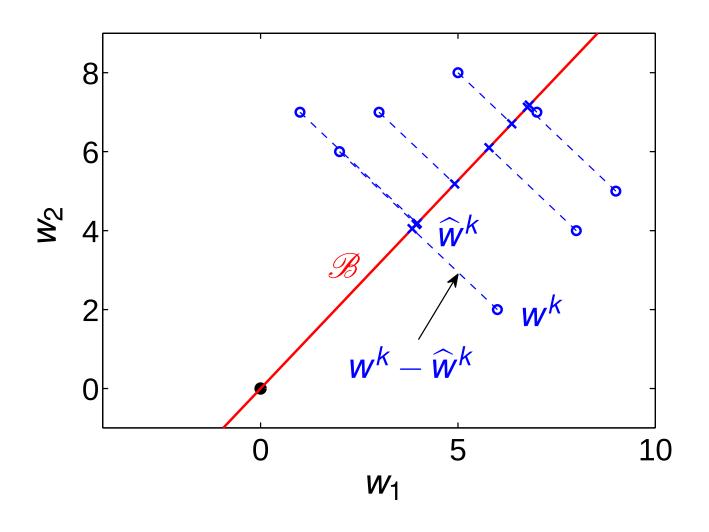
Ordinary least squares

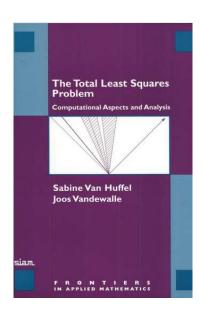




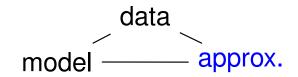
Total least squares

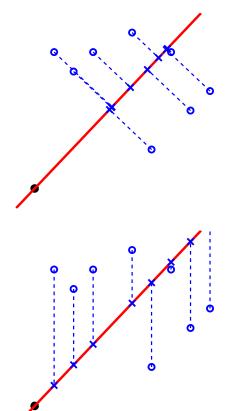






Linear static case





total least squares

$$\min_{\widehat{u},\widehat{y},\theta} \| [u - \widehat{u} \quad y - \widehat{y}] \|_{\mathsf{F}} \text{ s.t. } \underbrace{\widehat{u}\theta = \widehat{y}}_{(\widehat{u},\widehat{y}) \subset \mathscr{B}(\theta)}$$

$$\widehat{w} = (\widehat{u}, \widehat{y})$$
 approximates $w = (u, y)$

ordinary least squares

$$\min_{\widehat{e},\theta} \|\widehat{e}\|_2 \quad \text{s.t.} \quad \underbrace{u\theta = y + \widehat{e}}_{(\widehat{e},u,y) \subset \mathscr{B}_{\text{ext}}(\theta)}$$

 \hat{e} is unobserved (latent) input

Approximation criteria

Misfit approach:

modify w as little as possible, so that \widehat{w} is exact

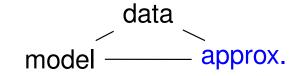
 $\|w - \widehat{w}\|$ is the misfit criterion

Latency approach:

augment \mathscr{B} by as small as possible e, so that (e, w) is exact

||e|| is the latency criterion

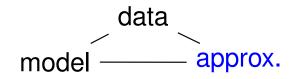
Deterministic vs stochastic setting



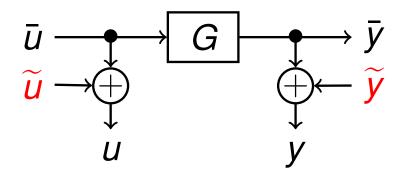
also in control

LQG control \leftrightarrow H_2 optimal control

Misfit and latency in the stochastic setting



EIV ↔ misfit

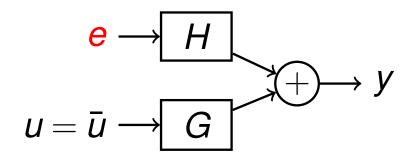


 \widetilde{u} , \widetilde{y} — measurement errors

$$\min_{\widehat{\boldsymbol{w}}\subset\mathscr{B}}\|\boldsymbol{w}-\widehat{\boldsymbol{w}}\|$$

$$\mathscr{B} := \left\{ \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix} \mid \widehat{y} = \widehat{G}\widehat{u} \right\}$$

ARMAX ↔ latency

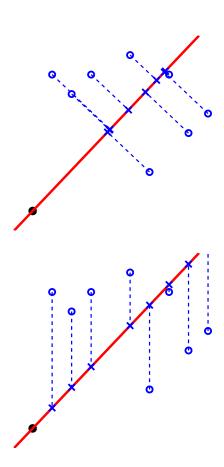


e — disturbance

$$\min_{(\widehat{e},w)\subset\mathscr{B}_{\mathsf{ext}}}\|\widehat{e}\|$$

$$\mathscr{B}_{\mathsf{ext}} := \left\{ \begin{bmatrix} \widehat{e} \\ u \\ y \end{bmatrix} \mid y = [\widehat{H} \ \widehat{G}] \begin{bmatrix} \widehat{e} \\ u \end{bmatrix} \right\}$$

Summary: approximation criterion



► TLS ↔ misfit ↔ errors-in-variables

$$\min_{\widehat{\boldsymbol{w}}\subset\mathscr{B}}\|\boldsymbol{w}-\widehat{\boldsymbol{w}}\| \quad \left(\begin{array}{c} \text{projection} \\ \text{of } \boldsymbol{w} \text{ on } \mathscr{B} \end{array}\right)$$

► OLS ↔ latency ↔ ARMAX

$$\min_{(\widehat{e},w)\in\mathscr{B}_{\mathsf{ext}}}\|\widehat{e}\|$$

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Exercises

A general problem

$$\begin{array}{ccc} \text{data} & & \text{identification} & & \text{model} \\ w & & & & & & \\ \end{array}$$

the aim is to obtain "simple" and "accurate" model:

```
"accurate" \rightarrow min. error(w, \widehat{\mathscr{B}}) = misfit/latency "simple" \rightarrow Occam's razor principle: among equally accurate models, choose the simplest
```

Model complexity

simple models are small models

$$\mathscr{B}_1 \subset \mathscr{B}_2 \implies \mathscr{B}_1 \text{ is simpler than } \mathscr{B}_2$$

- nonlinear model complexity is an open problem
- in the linear time-invariant case, \mathscr{B} is a subspace size of the model = dimension of \mathscr{B}
- however, models with inputs are infinite dimensional

Linear time-invariant model's complexity

restriction of \mathscr{B} on an interval [1, T]

$$\mathscr{B}|_T = \{ w = (w(1), \dots, w(T)) \mid \exists w_p, w_f,$$

such that $(w_p, w, w_f) \in \mathscr{B} \}$

for sufficiently large T

$$dim(\mathscr{B}|_{\mathcal{T}}) = (\# \text{ of inputs}) \cdot \mathcal{T} + (\text{order})$$

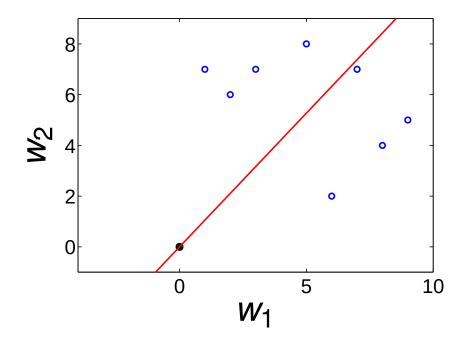
$$complexity(\mathscr{B}) = \begin{bmatrix} m \\ \ell \end{bmatrix} \rightarrow \text{ \# of inputs} \\ \rightarrow \text{ order or lag}$$

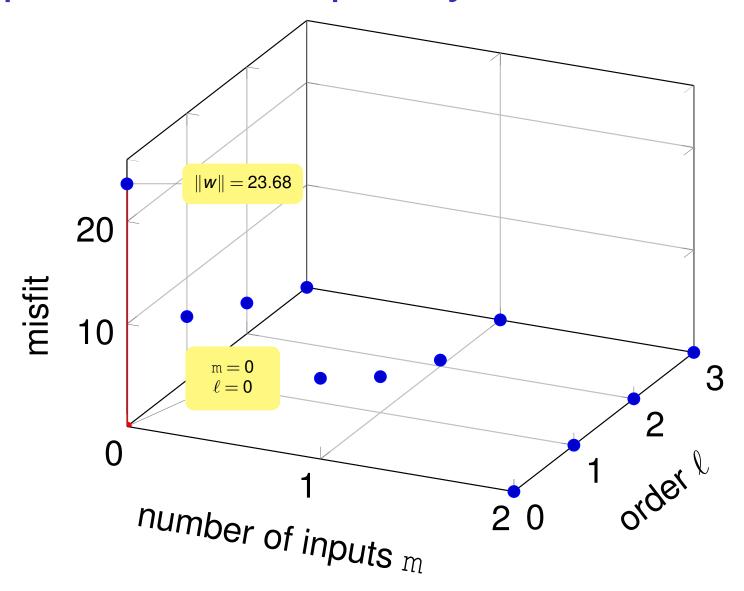
 $ightharpoonup \mathscr{L}_{m,\ell}$ — set of LTI systems of bounded complexity

Complexity selection

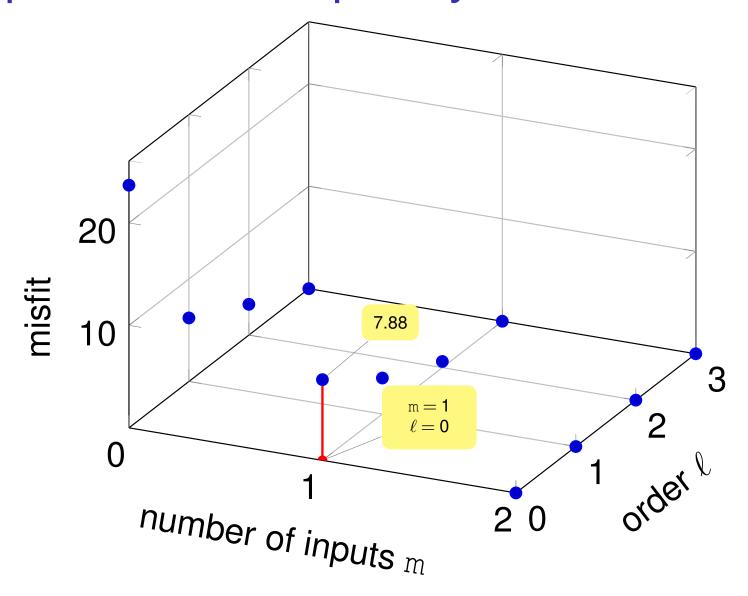
- if m is given and fixed, choosing the complexity is an order selection problem
- in general, choosing the complexity involves order selection and input selection

illustrated next on the example from the introduction

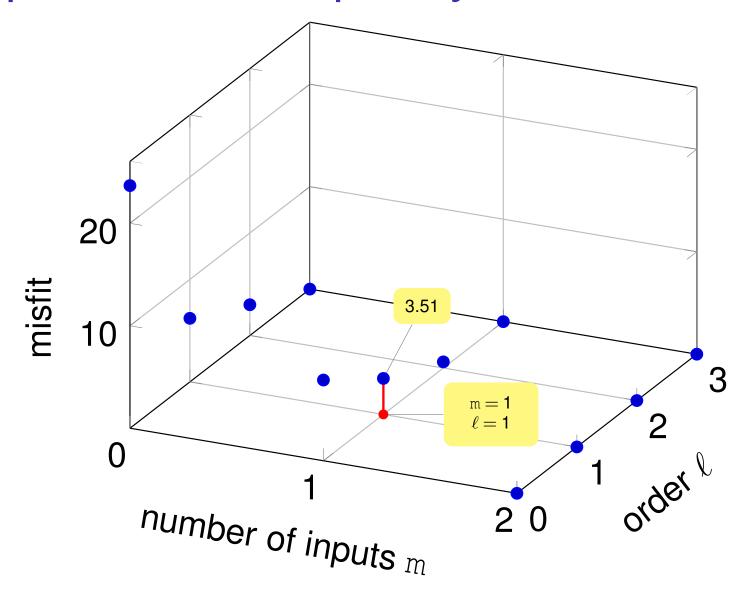




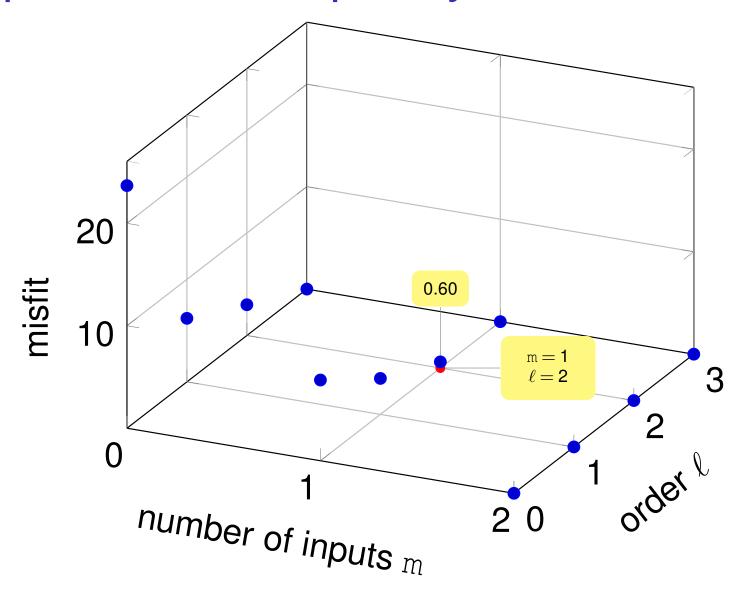
m = 0, $\ell = 0 \implies \mathscr{B} = \{0\}$ is the only model



m = 1, $\ell = 0 \implies \mathscr{B}$ is a line through 0



 $m = 1, \ell = 1 \implies \mathscr{B}$ is 1st order SISO



 $m = 1, \ell = 2 \implies \mathscr{B}$ is 2nd order SISO

Approximation error-complexity trade-off

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$

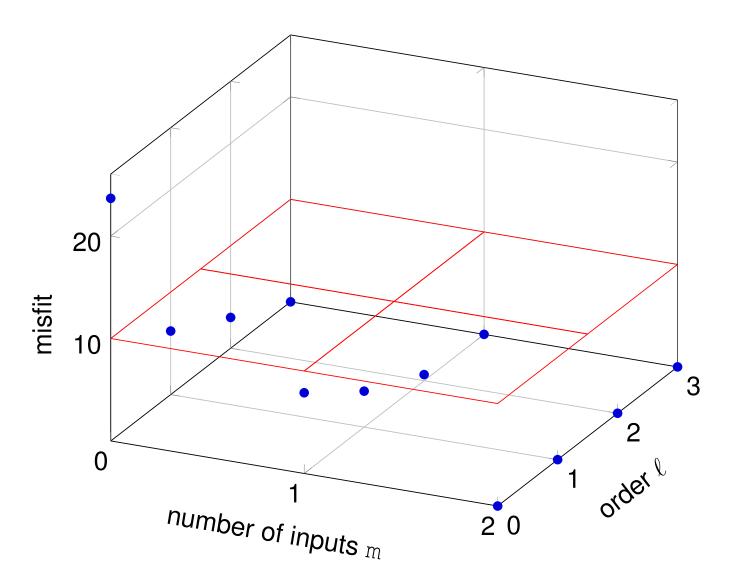
$$\begin{bmatrix} \operatorname{error}(w, \widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{bmatrix}$$

three ways to "scalarize" the problem:

- 1. minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$ error $(w, \widehat{\mathscr{B}}) + \lambda$ complexity $(\widehat{\mathscr{B}})$
- 2. minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$ complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$
- 3. minimize over $\widehat{\mathscr{B}}$ error($w,\widehat{\mathscr{B}}$) subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

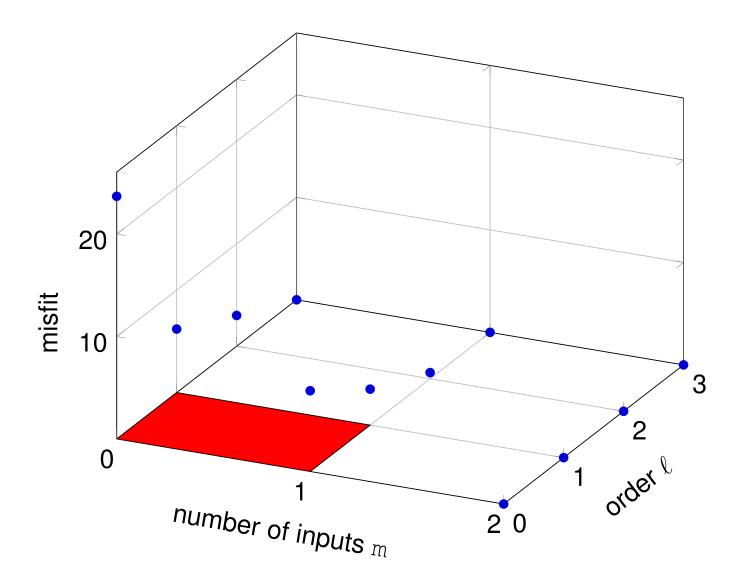
Complexity minimization with error bound

minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$ complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$



Error minimization with complexity bound

minimize over $\widehat{\mathscr{B}}$ error $(w,\widehat{\mathscr{B}})$ subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$



Summary: error-complexity trade-off

LTI model complexity

$$\mathsf{complexity}(\mathscr{B}) = \begin{bmatrix} \mathsf{m} \\ \ell \end{bmatrix} \ \to \ \ \mathsf{\#} \ \mathsf{of inputs} \\ \to \ \ \mathsf{order or lag}$$

error-complexity trade-off

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 $\left| \begin{array}{c} \operatorname{error}(w,\widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{array} \right|$

- tracing all optimal solutions requires hyper parameter
 - 1. λ no physical meaning
 - 2. μ bound on the error
 - 3. (m, ℓ) bound on the complexity

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Exercises

Approximate identification problem

minimize over
$$\widehat{\mathscr{B}}$$
 error($w,\widehat{\mathscr{B}}$) subject to $\widehat{\mathscr{B}}\in\mathscr{L}_{\mathrm{m},\ell}$

▶ in the case error = misfit

$$\operatorname{error}(w,\widehat{\mathscr{B}}) = \min_{\widehat{w} \in \widehat{\mathscr{B}}} \|w - \widehat{w}\|$$

the problem is

minimize over
$$\widehat{\mathscr{B}}$$
, $\widehat{w} \| w - \widehat{w} \|$ subject to $\widehat{w} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell}$

Exact, noisy, and missing data

 $v_i^k(t)$ — variance of the measurement noise on $w_i^k(t)$

$$\|\mathbf{w} - \widehat{\mathbf{w}}\|_{\alpha}^{2} = \sum_{k=1}^{N} \sum_{i=1}^{q} \sum_{t=1}^{T} \alpha_{i}^{k}(t) (\mathbf{w}_{i}^{k}(t) - \widehat{\mathbf{w}}_{i}^{k}(t))^{2}$$

noisy data
$$\alpha_i^k(t) := \frac{1}{v_i^k(t)}$$

$$\alpha_i^k(t) := \frac{1}{v_i^k(t)}$$
missing data
$$v_i^k(t) = \infty, \ \alpha_i^k(t) = 0$$

- ▶ $v_i^k(t) = \infty$ imposes equality constraint $\widehat{w}_i^k(t) = w_i^k(t)$
- $\mathbf{v}_{i}^{k}(t) = 0$ makes $\|\mathbf{w} \widehat{\mathbf{w}}\|_{\alpha}^{2}$ independent of $\mathbf{w}_{i}^{k}(t)$

Summary: identification problem

approximate identification in the misfit setting

minimize over
$$\widehat{\mathscr{B}}$$
, $\widehat{w} \| w - \widehat{w} \|_{\alpha}$ subject to $\widehat{w} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell}$ (SYSID)

ightharpoonup element-wise weighted error criterion $\|\cdot\|_{lpha}$

exact
$$w_i^k(t) \leftrightarrow \alpha_i^k(t) = \infty$$
 missing $w_i^k(t) \leftrightarrow \alpha_i^k(t) = 0$

Next: SYSID ↔ Hankel structured LRA

exact trajectory
$$w \in \mathscr{B} \in \mathscr{L}_{m,\ell}$$

$$\updownarrow R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0$$

$$\updownarrow$$

rank deficient

$$\mathcal{H}_{\ell+1}(w) := egin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ w(3) & w(4) & \cdots & w(T-\ell+2) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

relation at time t = 1

$$R_0 w(1) + R_1 w(2) + \cdots + R_\ell w(\ell+1) = 0$$

$$egin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} egin{bmatrix} w(1) \ w(2) \ dots \ w(\ell+1) \end{bmatrix} = 0$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

relation at time t=2

$$R_0 w(2) + R_1 w(3) + \cdots + R_\ell w(\ell + 2) = 0$$

$$egin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} egin{bmatrix} w(2) \ w(3) \ dots \ w(\ell+2) \end{bmatrix} = 0$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

relation at time $t = T - \ell$

$$R_0 w(T-\ell) + R_1 w(T-\ell+1) + \cdots + R_\ell w(T) = 0$$

$$egin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} egin{bmatrix} w(T-\ell) \ w(T-\ell+1) \ w(T-\ell+2) \ dots \ w(T) \end{bmatrix} = 0$$

Putting it all together

▶ relation for $t = 1, ..., T - \ell$

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0$$

$$\underbrace{\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ w(3) & w(4) & \cdots & w(T-\ell+2) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}}_{\mathcal{H}_{\ell+1}(w)} = 0$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

• with $R \in \mathbb{R}^{(q-m)\times q(\ell+1)}$ full row rank,

$$\operatorname{rank} \left(\mathscr{H}_{\ell+1}(w) = 0 \right) \le q\ell + m$$
 $(q - \# \text{ of variables})$

$$w \in \mathscr{B} \in \mathscr{L}_{m,\ell} \iff \operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)\right) \leq q\ell + m$$

$$\{ w^{1}, \dots, w^{N} \} \subset \mathcal{B} \in \mathcal{L}_{m,\ell}$$

$$\iff \operatorname{rank} \left(\underbrace{ \left[\mathcal{H}_{\ell+1}(w^{1}) \cdots \mathcal{H}_{\ell+1}(w^{N}) \right] } \right) \leq q\ell + m$$

$$\mathcal{H}_{\ell+1}(w)$$

Structured weighted low-rank approximation

$$\begin{array}{lll} \text{minimize} & \text{over } \widehat{\mathscr{B}} \text{ and } \widehat{w} & \|w-\widehat{w}\|_{\alpha} \\ \text{subject to} & \widehat{w} \subset \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell} \\ & & & & & \\ \\ \text{minimize} & \text{over } \widehat{w} & \|w-\widehat{w}\|_{\alpha} \\ \text{subject to} & \text{rank } (\mathscr{H}_{\ell+1}(\widehat{w})) \leq q\ell+\mathrm{m} \end{array} \tag{SLRA}$$

Summary: structured low-rank approximation

- ► (SYSID) ⇒ (SLRA)
- ▶ LTI model class ⇔ Hankel structure
- repeated experiments mosaic-Hankel structure

$$\left[\mathscr{H}_{\ell+1}(w^1) \quad \cdots \quad \mathscr{H}_{\ell+1}(w^N)\right]$$

bounded complexity ank constraint

$$(m,\ell) \leftrightarrow r = q\ell + m$$

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Exercises

Solution methods

- **given:** data w and complexity bound (m, ℓ)
- find: $\widehat{\mathscr{B}}$ that solves (SYSID) or, equivalently, (SLRA)
- 1. choice of model representation
 - transfer function
 - input/state/output
- 2. choice of optimization method
 - local optimization
 - global optimization
 - convex relaxations

Model vs model representation

▶ 1st order SISO model $\mathscr{B} \in \mathscr{L}_{1,1}$

$$\mathscr{B}_{\mathsf{de}}(\theta) = \left\{ \left. \widehat{w} \; \middle| \; \left[\theta_1 \quad \theta_2 \quad \theta_3 \quad \theta_4 \right] \left[egin{matrix} \widehat{w}_1(t) \\ \widehat{w}_2(t) \\ \widehat{w}_1(t+1) \\ \widehat{w}_2(t+1) \end{array} \right] = 0, \; orall t
ight\}$$

transfer functions

$$G_{W_1\mapsto W_2}(z)=-rac{ heta_1+ heta_3z}{ heta_2+ heta_4z}\quad,\quad G_{W_2\mapsto W_1}(z)=-rac{ heta_2+ heta_4z}{ heta_1+ heta_3z}$$

state space, convolution, ..., representations

Problem formulation vs solution method

- ▶ in the classical setting, model = representation
- problems are mixed with solution methods
- e.g., "total least-squares" is both problem and method
- the behavioral setting distinguishes

	used for	involves
abstract	problem formulation	\mathscr{B} , $\mathscr{L}_{m,\ell}$
concrete	solution methods	$\mathscr{B}(heta),\ heta\in\Theta$

low-rank approx. is abstract problem formulation

Parameter optimization problem

model representation

$$\mathscr{B}(\theta) = \{ \widehat{w} \mid g_{\theta}(\widehat{w}) = 0 \}$$

parameterized model class

$$\mathscr{M} = \{\mathscr{B}(\theta) \mid \theta \in \Theta\}$$

optimization problem

minimize over
$$\theta \in \Theta$$
, $\widehat{w} \| w - \widehat{w} \|_{\alpha}$ subject to $g_{\theta}(\widehat{w}) = 0$ (SYSID $_{\theta}$)

Bilinear structure of the problem

- \triangleright (SYSID_{θ}) constrained nonlinear least-squares
- ▶ B linear
 - $\implies g_{\theta}(\widehat{w})$ bilinear (in θ and \widehat{w})
 - \Longrightarrow (SYSID_{θ}) can be solved globally for given θ
- variable projection (VARPRO)
 for separable nonlinear least-squares problems
- if $T \gg \ell$, elimination of \widehat{w} leads to big reduction

System theoretic view of VARPRO

solving (SYSID $_{\theta}$) for given θ

 \updownarrow

misfit evaluation: error $(w, \mathcal{B}(\theta))$

 \uparrow

likelihood evaluation

 $\uparrow \downarrow$

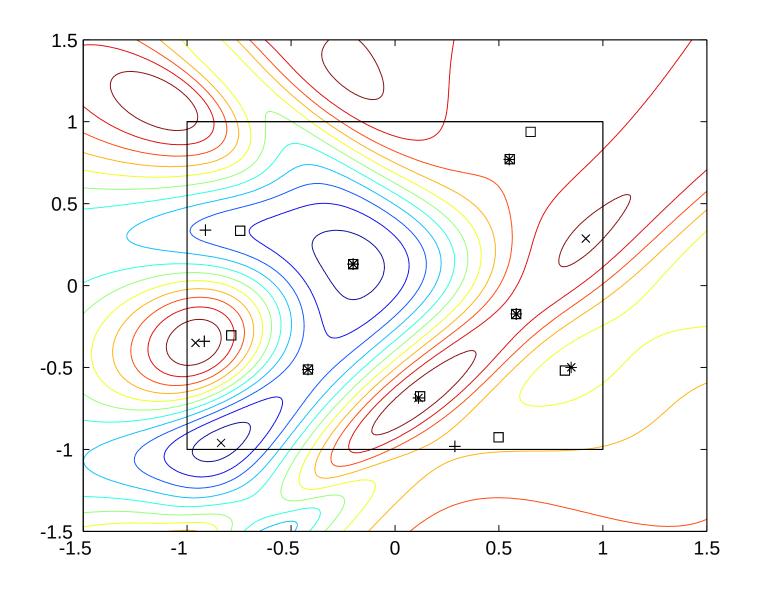
least-squares smoothing of w by $\mathcal{B}(\theta)$

 \uparrow

fast algorithms:
Kalman smoothing
Cholesky factorization

. . .

Non-convexity of error $(w, \mathcal{B}(\theta))$



Computational details

- ▶ O(T) evaluation of error $(w, \mathcal{B}(\theta))$ and its derivatives
 - using the Kalman smoother
 - Cholesky factorization of banded Toeplitz matrix
- $\blacktriangleright \mathscr{B}(\theta) = \mathscr{B}(\alpha\theta)$, for all $\alpha \neq 0$
- $\Theta = \{\theta \mid \|\theta\|_2 = 1\} \implies \text{optimization on a manifold}$
 - generic methods (optimization theory)
 - custom methods (system identification)
 - data driven local coordinates (McKelvey)

Summary: solution methods

- solution methods involve two choices:
 - 1. model representation
 - 2. optimization method
- ▶ in the linear case, bilinear structure ~ VARPRO
- constraint nonlinear least-squares problem

$$\min_{\theta \in \Theta} \operatorname{error}(w, \mathscr{B}(\theta))$$

 $ightharpoonup \Theta$ is a manifold \leadsto optimization on a manifold