Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Exercises

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Exercises

First is the data ...

Line fitting (linear static model)

$w^{1}, \ldots, w^{N}-$ data points
(the order is not important)

Time series data (dynamic model)

$w(1), \ldots, w(T)$ - samples in time (the order is important)

Summary: data

- the data is a set $w=\left\{w^{1}, \ldots, w^{N}\right\}$
- of vector valued $w^{k}=\left[\begin{array}{c}w_{1}^{k} \\ \vdots \\ w_{q}^{k}\end{array}\right]$
- time series $w_{i}^{k}=\left(w_{i}^{k}(1), \ldots, w_{i}^{k}\left(T_{k}\right)\right)$
N - \# of repeated experiments
q - \# of variables
$T_{k} \quad$ — of time samples in the k th exp.
- in static problems, $T_{1}=\cdots=T_{N}=1$

Next is the model class ...

Line fitting (linear static model)

- model: line through the origin
- model class: all lines through the origin

Conic section fitting (quadratic static model)

\mathscr{B} - model: conic section
\mathscr{M} - model class: all conic sections

Classical definition of dynamical model

- dynamical model is signal processor

- specified by a map $\widehat{y}=f(\widehat{u})$
- "state space model", "transfer function model", ...
- however, lines and conic sections may not be graphs
- e.g., $\dagger, ~ \oint$ can't be represented by $f: \widehat{u} \mapsto \widehat{y}$

Behavioral definition of model

- a model is a subset

$$
\mathscr{B}=\{\widehat{w} \mid g(\widehat{w})=0 \text { holds }\}
$$

- represented by an implicit function g

- in the static case, $g(\widehat{w})=0$ is algebraic equation
- in the dynamic case, $g(\widehat{w})=0$ is difference equation
- $\widehat{w}=\left[\begin{array}{l}\hat{u} \\ \hat{y}\end{array}\right], \widehat{y}=f(\widehat{u})$ is a special case of $g(\widehat{w})=0$

$$
(g(\widehat{u}, \widehat{y})=\widehat{y}-f(\widehat{u}))
$$

Summary: model

- three data modeling examples:

problem	model
line fitting	static linear
conic section fitting	static nonlinear
system identification	dynamic

- two definitions of a model:
classical
map $\hat{y}=f(\widehat{u})$
f - function
behavioral set $\{\widehat{w} \mid g(\widehat{w})=0\}$
g - relation
- the classical one can not deal with all examples

Finally, the approximation criterion ...

Exact model

$$
\begin{aligned}
w \subset \mathscr{B} & \Longleftrightarrow w^{1}, \ldots, w^{N} \in \mathscr{B} \\
& \Longleftrightarrow: \quad w \text { is exact data of } \mathscr{B} "
\end{aligned}
$$

- two well known exact modeling problems
- realization: LTI model class, impulse resp. data
- interpolation: static nonlinear model class
polynomial interpolation

$$
\mathscr{B}=\left\{\left.\left[\begin{array}{l}
\hat{u} \\
\hat{y}
\end{array}\right] \right\rvert\, \hat{y}=f(\widehat{u})\right\}
$$

f is 8 th order polynomial

Exact 3rd order nonlinear static models

$$
\mathscr{B}=\left\{\left.\left[\begin{array}{l}
\widehat{w}_{1} \\
\widehat{w}_{2}
\end{array}\right] \right\rvert\, g\left(\widehat{w}_{1}, \widehat{w}_{2}\right)=0\right\}
$$

g is 3rd order polynomial in $\widehat{w}_{1}, \widehat{w}_{2}$

Ordinary least squares

Total least squares

data
model
approx.

Linear static case

- total least squares

$$
\min _{\widehat{u}, \widehat{y}, \theta}\left\|\left[\begin{array}{ll}
u-\widehat{u} \quad y-\widehat{y}
\end{array}\right]\right\|_{F} \text { s.t. } \underbrace{\widehat{u} \theta=\widehat{y}}_{(\widehat{u}, \widehat{y}) \subset \mathscr{B}(\theta)}
$$

$$
\widehat{w}=(\widehat{u}, \widehat{y}) \text { approximates } w=(u, y)
$$

- ordinary least squares

$$
\min _{\widehat{e}, \theta}\|\widehat{e}\|_{2} \quad \text { s.t. } \underbrace{u \theta=y+\widehat{e}}_{(\widehat{e}, u, y) \subset \mathscr{B}_{\text {ext }}(\theta)}
$$

\widehat{e} is unobserved (latent) input

Approximation criteria

- Misfit approach:
modify w as little as possible, so that \widehat{w} is exact
$\|w-\widehat{w}\|$ is the misfit criterion
- Latency approach:
augment \mathscr{B} by as small as possible e, so that (e, w) is exact
$\|e\|$ is the latency criterion

Deterministic vs stochastic setting

- stochastic estimation $\quad \leftrightarrow \quad$ deterministic approx.

- also in control

LQG control $\leftrightarrow H_{2}$ optimal control

Misfit and latency in the stochastic setting

EIV \leftrightarrow misfit

\widetilde{u}, \tilde{y} - measurement errors

$$
\left.\left.\begin{array}{cc}
\min _{\widehat{W} \subset \mathscr{B}}\|w-\widehat{w}\| & \min _{(\widehat{e}, w) \subset \mathscr{B} \text { ext }}\|\widehat{e}\| \\
\mathscr{B}:=\left\{\left.\left[\begin{array}{l}
\hat{u} \\
\hat{y}
\end{array}\right] \right\rvert\, \widehat{y}=\widehat{G} \widehat{u}\right\} & \mathscr{B}_{\mathrm{ext}}:=
\end{array}\left\{\begin{array}{l}
\hat{e} \\
y
\end{array}\right] \right\rvert\, y=\left[\begin{array}{l}
\hat{H} \hat{G}
\end{array}\right]\left[\begin{array}{l}
\widehat{e} \\
u
\end{array}\right]\right\} .
$$

ARMAX \leftrightarrow latency

e - disturbance

Summary: approximation criterion

- TLS \leftrightarrow misfit \leftrightarrow errors-in-variables
$\min _{\widehat{W} \subset \mathscr{B}}\|w-\widehat{W}\| \quad\binom{$ projection }{ of w on $\mathscr{B}}$

- OLS \leftrightarrow latency \leftrightarrow ARMAX
$\min _{(\hat{e}, w) \in \mathscr{B}_{\text {ext }}}\|\widehat{e}\|$

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Exercises

A general problem

the aim is to obtain "simple" and "accurate" model:
"accurate" \rightarrow min. error $(w, \widehat{\mathscr{B}})=$ misfit/latency
"simple" \rightarrow Occam's razor principle: among equally accurate models, choose the simplest

Model complexity

- simple models are small models

$$
\mathscr{B}_{1} \subset \mathscr{B}_{2} \quad \Longrightarrow \quad \mathscr{B}_{1} \text { is simpler than } \mathscr{B}_{2}
$$

- nonlinear model complexity is an open problem
- in the linear time-invariant case, \mathscr{B} is a subspace

$$
\text { size of the model }=\text { dimension of } \mathscr{B}
$$

- however, models with inputs are infinite dimensional

Linear time-invariant model's complexity

- restriction of \mathscr{B} on an interval $[1, T]$

$$
\begin{aligned}
& \left.\mathscr{B}\right|_{T}=\left\{w=(w(1), \ldots, w(T)) \mid \exists w_{\mathrm{p}}, w_{\mathrm{f}},\right. \\
& \\
& \left.\quad \text { such that }\left(w_{\mathrm{p}}, w, w_{\mathrm{f}}\right) \in \mathscr{B}\right\}
\end{aligned}
$$

- for sufficiently large T

$$
\begin{gathered}
\left.\operatorname{dim}\left(\left.\mathscr{B}\right|_{T}\right)=(\# \text { of inputs }) \cdot T+\text { (order }\right) \\
\operatorname{complexity}(\mathscr{B})=\left[\begin{array}{c}
\mathrm{m} \\
\ell
\end{array}\right] \rightarrow \text { \# of inputs } \\
\hline \text { order or lag }
\end{gathered}
$$

- $\mathscr{L}_{\mathrm{m}, \ell}$ - set of LTI systems of bounded complexity

Complexity selection

- if m is given and fixed, choosing the complexity is an order selection problem
- in general, choosing the complexity involves
order selection and input selection
illustrated next on the example from the introduction

Example: misfit-complexity trade-off

$\mathrm{m}=0, \ell=0 \Longrightarrow \mathscr{B}=\{0\}$ is the only model

Example: misfit-complexity trade-off

$\mathrm{m}=1, \ell=0 \Longrightarrow \mathscr{B}$ is a line through 0

Example: misfit-complexity trade-off

$\mathrm{m}=1, \ell=1 \Longrightarrow \mathscr{B}$ is 1 st order SISO

Example: misfit-complexity trade-off

$\mathrm{m}=1, \ell=2 \Longrightarrow \mathscr{B}$ is 2 nd order SISO

Approximation error-complexity trade-off

minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$
 $$
\left[\begin{array}{c} \operatorname{error}(w, \widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{array}\right]
$$

 $\operatorname{error}(w, \widehat{\mathscr{B}})$

 $\operatorname{error}(w, \widehat{\mathscr{B}})$ $\operatorname{complexity}(\widehat{\mathscr{B}})]$

 $\operatorname{complexity}(\widehat{\mathscr{B}})]$}three ways to "scalarize" the problem:

1. minimize over $\widehat{\mathscr{B}} \in \mathscr{L} \operatorname{error}(w, \widehat{\mathscr{B}})+\lambda \operatorname{complexity}(\widehat{\mathscr{B}})$
2. minimize over $\widehat{\mathscr{B}} \in \mathscr{L} \quad \operatorname{complexity}(\widehat{\mathscr{B}})$
3. subject to $\operatorname{error}(w, \widehat{\mathscr{B}}) \leq \mu$
4. minimize over $\widehat{\mathscr{B}} \operatorname{error}(w, \widehat{\mathscr{B}})$
subject to $\quad \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}$

Complexity minimization with error bound

minimize over $\widehat{\mathscr{B}} \in \mathscr{L} \quad$ complexity $(\widehat{\mathscr{B}})$
subject to $\operatorname{error}(w, \widehat{\mathscr{B}}) \leq \mu$

Error minimization with complexity bound

minimize over $\widehat{\mathscr{B}} \quad \operatorname{error}(w, \widehat{\mathscr{B}})$
subject to $\quad \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}$

Summary: error-complexity trade-off

- LTI model complexity

$$
\operatorname{complexity}(\mathscr{B})=\left[\begin{array}{cc}
\mathrm{m} \\
\ell
\end{array}\right] \rightarrow \text { \# of inputs } \quad \text { order or lag }
$$

- error-complexity trade-off

$$
\text { minimize } \quad \text { over } \widehat{\mathscr{B}} \in \mathscr{L} \quad\left[\begin{array}{c}
\operatorname{error}(w, \widehat{\mathscr{B}}) \\
\operatorname{complexity}(\widehat{\mathscr{B}})
\end{array}\right]
$$

- tracing all optimal solutions requires hyper parameter

1. λ - no physical meaning
2. μ-bound on the error
3. (m, ℓ) - bound on the complexity

Outline

Introduction: data, model class, approximation
 Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Exercises

Approximate identification problem

minimize over $\widehat{\mathscr{B}} \operatorname{error}(w, \widehat{\mathscr{B}})$
 subject to $\quad \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}$

- in the case error = misfit

$$
\operatorname{error}(w, \widehat{\mathscr{B}})=\min _{\widehat{w} \in \widehat{\mathscr{B}}}\|w-\widehat{w}\|
$$

- the problem is

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{\mathscr{B}}, \widehat{w} \quad\|w-\widehat{w}\| \\
\text { subject to } & \widehat{w} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}
\end{array}
$$

Exact, noisy, and missing data

- $v_{i}^{k}(t)$ - variance of the measurement noise on $w_{i}^{k}(t)$

$$
\|w-\widehat{w}\|_{\alpha}^{2}=\sum_{k=1}^{N} \sum_{i=1}^{q} \sum_{t=1}^{T} \alpha_{i}^{k}(t)\left(w_{i}^{k}(t)-\widehat{w}_{i}^{k}(t)\right)^{2}
$$

$$
\begin{array}{cc}
\text { exact data } \\
\text { noisy data } \\
\alpha_{i}^{k}(t):=\frac{1}{v_{i}^{k}(t)} & v_{i}^{k}(t)=0, \alpha_{i}^{k}(t)=\infty \\
\text { missing data } \\
v_{i}^{k}(t)=\infty, \alpha_{i}^{k}(t)=0
\end{array}
$$

- $v_{i}^{k}(t)=\infty$ imposes equality constraint $\widehat{w}_{i}^{k}(t)=w_{i}^{k}(t)$
- $v_{i}^{k}(t)=0$ makes $\|w-\widehat{w}\|_{\alpha}^{2}$ independent of $w_{i}^{k}(t)$

Summary: identification problem

- approximate identification in the misfit setting

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{\mathscr{B}}, \widehat{w} \quad\|w-\widehat{w}\|_{\alpha} \\
\text { subject to } & \widehat{w} \in \mathscr{\mathscr { B }} \in \mathscr{L}_{\mathrm{m}, \ell}
\end{array}
$$

(SYSID)

- element-wise weighted error criterion $\|\cdot\|_{\alpha}$ $\begin{array}{llll}\text { exact } & w_{i}^{k}(t) & \leftrightarrow & \alpha_{i}^{k}(t)=\infty \\ \text { missing } & w_{i}^{k}(t) & \leftrightarrow & \alpha_{i}^{k}(t)=0\end{array}$

Next: SYSID \leftrightarrow Hankel structured LRA

exact trajectory $w \in \mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell}$

§

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{\ell} w(t+\ell)=0
$$

§
rank deficient

$$
\mathscr{H}_{\ell+1}(w):=\left[\begin{array}{cccc}
w(1) & w(2) & \cdots & w(T-\ell) \\
w(2) & w(3) & \cdots & w(T-\ell+1) \\
w(3) & w(4) & \cdots & w(T-\ell+2) \\
\vdots & \vdots & & \vdots \\
w(\ell+1) & w(\ell+2) & \cdots & w(T)
\end{array}\right]
$$

$w \in \mathscr{B} \Longleftrightarrow \mathscr{H}_{\ell+1}(w)$ rank deficient

- relation at time $t=1$

$$
R_{0} w(1)+R_{1} w(2)+\cdots+R_{\ell} w(\ell+1)=0
$$

- in matrix form:

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right]\left[\begin{array}{c}
w(1) \\
w(2) \\
\vdots \\
w(\ell+1)
\end{array}\right]=0
$$

$w \in \mathscr{B} \Longleftrightarrow \mathscr{H}_{\ell+1}(w)$ rank deficient

- relation at time $t=2$

$$
R_{0} w(2)+R_{1} w(3)+\cdots+R_{\ell} w(\ell+2)=0
$$

- in matrix form:

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right]\left[\begin{array}{c}
w(2) \\
w(3) \\
\vdots \\
w(\ell+2)
\end{array}\right]=0
$$

$w \in \mathscr{B} \Longleftrightarrow \mathscr{H}_{\ell+1}(w)$ rank deficient

- relation at time $t=T-\ell$

$$
R_{0} w(T-\ell)+R_{1} w(T-\ell+1)+\cdots+R_{\ell} w(T)=0
$$

- in matrix form:

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right]\left[\begin{array}{c}
w(T-\ell) \\
w(T-\ell+1) \\
w(T-\ell+2) \\
\vdots \\
w(T)
\end{array}\right]=0
$$

Putting it all together

- relation for $t=1, \ldots, T-\ell$

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{\ell} w(t+\ell)=0
$$

- in matrix form:

$w \in \mathscr{B} \Longleftrightarrow \mathscr{H}_{\ell+1}(w)$ rank deficient
- with $R \in \mathbb{R}^{(q-m) \times q(\ell+1)}$ full row rank,

$$
\operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)=0\right) \leq q \ell+\mathrm{m} \quad(q-\# \text { of variables })
$$

$w \in \mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell} \Longleftrightarrow \operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)\right) \leq q \ell+\mathrm{m}$

- multiple time-series \leftrightarrow mosaic-Hankel matrix

$$
\begin{aligned}
& \left\{w^{1}, \ldots, w^{N}\right\} \subset \mathscr{B} \in \mathscr{L}_{m, \ell} \\
& \Longleftrightarrow \operatorname{rank}(\underbrace{\left[\mathscr{H}_{\ell+1}\left(w^{1}\right) \cdots \mathscr{H}_{\ell+1}\left(w^{N}\right)\right]}_{\mathscr{H}_{\ell+1}(w)}) \leq q \ell+\mathrm{m}
\end{aligned}
$$

Structured weighted low-rank approximation

minimize over $\widehat{\mathscr{B}}$ and $\widehat{w} \quad\|w-\widehat{w}\|_{\alpha}$ subject to $\widehat{w} \subset \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}$

I
minimize over $\widehat{w} \quad\|w-\widehat{w}\|_{\alpha}$
subject to $\quad \operatorname{rank}\left(\mathscr{H}_{\ell+1}(\widehat{w})\right) \leq q \ell+m$
(SLRA)

Summary: structured low-rank approximation

- (SYSID) \Longleftrightarrow (SLRA)
- LTI model class \Longleftrightarrow Hankel structure
- repeated experiments \Longleftrightarrow mosaic-Hankel structure

$$
\left[\begin{array}{lll}
\mathscr{H}_{\ell+1}\left(w^{1}\right) & \cdots & \mathscr{H}_{\ell+1}\left(w^{N}\right)
\end{array}\right]
$$

- bounded complexity \Longleftrightarrow rank constraint

$$
(\mathrm{m}, \ell) \quad \leftrightarrow \quad r=q \ell+\mathrm{m}
$$

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Exercises

Solution methods

- given: data w and complexity bound (m, ℓ)
- find: $\widehat{\mathscr{B}}$ that solves (SYSID) or, equivalently, (SLRA)

1. choice of model representation

- transfer function
- input/state/output
- ...

2. choice of optimization method

- local optimization
- global optimization
- convex relaxations

Model vs model representation

- 1st order SISO model $\mathscr{B} \in \mathscr{L}_{1,1}$

$$
\mathscr{B}_{\mathrm{de}}(\theta)=\left\{\widehat{w} \left\lvert\,\left[\begin{array}{llll}
\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4}
\end{array}\right]\left[\begin{array}{c}
\widehat{w}_{1}(t) \\
\widehat{w}_{2}(t) \\
\widehat{w}_{1}(t+1) \\
\widehat{w}_{2}(t+1)
\end{array}\right]=0\right., \forall t\right\}
$$

- transfer functions

$$
G_{w_{1} \mapsto w_{2}}(z)=-\frac{\theta_{1}+\theta_{3} z}{\theta_{2}+\theta_{4} z} \quad, \quad G_{w_{2} \mapsto w_{1}}(z)=-\frac{\theta_{2}+\theta_{4} z}{\theta_{1}+\theta_{3} z}
$$

- state space, convolution, ..., representations

Problem formulation vs solution method

- in the classical setting, model $=$ representation
- \Longrightarrow problems are mixed with solution methods
- e.g., "total least-squares" is both problem and method
- the behavioral setting distinguishes

	used for	involves
abstract	problem formulation	$\mathscr{B}, \mathscr{L}_{\text {m }, \ell}$
concrete	solution methods	$\mathscr{B}(\theta), \theta \in \Theta$

- low-rank approx. is abstract problem formulation

Parameter optimization problem

- model representation

$$
\mathscr{B}(\theta)=\left\{\widehat{w} \mid g_{\theta}(\widehat{w})=0\right\}
$$

- parameterized model class

$$
\mathscr{M}=\{\mathscr{B}(\theta) \mid \theta \in \Theta\}
$$

- optimization problem

$$
\text { minimize } \quad \text { over } \theta \in \Theta, \widehat{w} \quad\|w-\widehat{w}\|_{\alpha}
$$

subject to $g_{\theta}(\widehat{w})=0$
$\left(\mathrm{SYSID}_{\theta}\right)$

Bilinear structure of the problem

- $\left(\mathrm{SYSID}_{\theta}\right)$ - constrained nonlinear least-squares
- \mathscr{B} linear
$\Longrightarrow \quad g_{\theta}(\widehat{w})$ bilinear (in θ and \widehat{w})
$\Longrightarrow \quad\left(\mathrm{SYSID}_{\theta}\right)$ can be solved globally for given θ
- variable projection (VARPRO) for separable nonlinear least-squares problems
- if $T \gg \ell$, elimination of \widehat{w} leads to big reduction

System theoretic view of VARPRO

solving (SYSID ${ }_{\theta}$) for given θ
\Uparrow
misfit evaluation: $\operatorname{error}(w, \mathscr{B}(\theta))$

likelihood evaluation
I
least-squares smoothing of w by $\mathscr{B}(\theta)$
I
fast algorithms:
Kalman smoothing
Cholesky factorization

Non-convexity of $\operatorname{error}(w, \mathscr{B}(\theta))$

Computational details

- $O(T)$ evaluation of error $(w, \mathscr{B}(\theta))$ and its derivatives
- using the Kalman smoother
- Cholesky factorization of banded Toeplitz matrix
- $\mathscr{B}(\theta)=\mathscr{B}(\alpha \theta)$, for all $\alpha \neq 0$
- $\Theta=\left\{\theta \mid\|\theta\|_{2}=1\right\} \Longrightarrow$ optimization on a manifold
- generic methods (optimization theory)
- custom methods (system identification)
- data driven local coordinates (McKelvey)
- ...

Summary: solution methods

- solution methods involve two choices:

1. model representation
2. optimization method

- in the linear case, bilinear structure \sim VARPRO
- constraint nonlinear least-squares problem

$$
\min _{\theta \in \Theta} \operatorname{error}(w, \mathscr{B}(\theta))
$$

- Θ is a manifold \leadsto optimization on a manifold

