A software package for system identification in the behavioral setting

Ivan Markovsky

Vrije Universiteit Brussel

Outline

Introduction: system identification in the behavioral setting

Solution approach: structured low-rank approximation

Examples

Work plan

1. define a problem
2. develop methods/algorithms to solve the problem
3. implement the algorithm in software
an identification problem involves:

- data collection \leadsto set of time-series (trajectories)
- choice of model class \leadsto bounded complexity LTI
- choice of identification criteria \leadsto weighted 2-norm

Representation free problem formulation

- model \mathscr{B} - set of trajectories $w: \mathbb{Z} \rightarrow \mathbb{R}^{q}$
- representation - equations, which solution set $=\mathscr{B}$
- parameters - specify the representation
- behavioral setting - problem definitions involve the model, not its representations
- solution methods do involve representations, however they are implementation details of the methods

LTI model representations

- kernel representation

$$
\begin{equation*}
\mathscr{B}=\left\{w \mid R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0\right\} \tag{KER}
\end{equation*}
$$

where σ is the shift operator $(\sigma w)(t)=w(t+1)$

- input/state/output representation

$$
\begin{align*}
& \mathscr{B}=\{w=\Pi(u, y) \mid \exists x, \text { such that } \\
& \quad \sigma x=A x+B u, y=C x+D u\} \tag{I/S/O}
\end{align*}
$$

Π is a permutation matrix, defining the I/O partitioning

Model class $\mathscr{L}_{\mathrm{m}, \ell}$

- the smallest ℓ, for which (KER) exists, is the lag of \mathscr{B}
- the smallest $\mathrm{n}=\operatorname{dim}(x)$, for which (I/S/O) exists, is the order of \mathscr{B}
- the number of inputs m is invariant of the repr. (I/S/O)
- (m, ℓ) and (m, n) are measures of model's complexity
- $\mathscr{L}_{\mathrm{m}, \ell}$ - LTI models with $\leq \mathrm{m}$ inputs and lag $\leq \ell$

Approximation criterion

- orthogonal distance between data and model

$$
M(w, \mathscr{B}):=\min _{\widehat{w} \in \mathscr{B}}\|w-\widehat{w}\|_{2}
$$

- $M(w, \mathscr{B})$ shows how much \mathscr{B} fails to "explain" w
- called misfit (lack of fit) between w and \mathscr{B}
system identification problem

$$
\text { minimize } \quad \text { over } \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell} \quad M(w, \widehat{\mathscr{B}})
$$

Generalizations

- multiple time-series $w=\left\{w^{1}, \ldots, w^{N}\right\}$

$$
M(w, \mathscr{B}):=\min _{\left\{\widehat{w}^{1}, \ldots, \widehat{w}^{N}\right\} \subset \mathscr{B}} \sqrt{\sum_{i=1}^{N}\left\|w^{i}-\widehat{w}^{i}\right\|_{2}^{2}}
$$

- fixed initial conditions $w_{\text {ini }}$

$$
M(w, \mathscr{B}):=\min _{\left(w_{\mathrm{in}}, \widehat{W}\right) \in \mathscr{B}}\|w-\widehat{w}\|_{2}
$$

- fixed variables $\mathscr{I} \subset\{1, \ldots, q\}$

$$
M(w, \mathscr{B}):=\min _{\widehat{w} \in \mathscr{B}, \widehat{w} \mathscr{\mathscr { A }}=w_{\mathscr{A}}}\|w-\widehat{w}\|_{2}
$$

- missing data: $w_{j}^{i}(t)=\mathrm{NaN} \Longrightarrow w_{j}^{i}(t)$ is missing

Mosaic-Hankel matrix

$1 \times N$ block matrix

$$
\mathscr{H}_{\ell+1}(w):=\left[\begin{array}{lll}
\mathscr{H}_{\ell+1}\left(w^{1}\right) & \cdots & \mathscr{H}_{\ell+1}\left(w^{N}\right)
\end{array}\right]
$$

with block-Hankel blocks

$$
\mathscr{H}_{\ell+1}\left(w^{i}\right):=\left[\begin{array}{cccc}
w^{i}(1) & w^{i}(2) & \cdots & w^{i}(T-\ell) \\
w^{i}(2) & w^{i}(3) & \cdots & w^{i}(T-\ell+1) \\
\vdots & \vdots & & \vdots \\
w^{i}(\ell+1) & w^{i}(\ell+2) & \cdots & w^{i}(T)
\end{array}\right]
$$

Mosaic-Hankel low-rank approximation

$$
\begin{gathered}
\left(w^{i}(1), \ldots, w^{i}\left(T_{i}-\ell\right)\right) \in \mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell}, \quad \text { for } i=1, \ldots, N \\
\hat{\mathbb{}} \\
\operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)\right) \leq \ell q+\mathrm{m}
\end{gathered}
$$

(SYSID) is mosaic-Hankel low-rank approx. problem:

$$
\text { minimize } \quad \text { over } \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell} \quad M(w, \widehat{\mathscr{B}})
$$

$$
\Uparrow
$$

minimize over $\widehat{w} \underbrace{(w-\widehat{w})^{\top} \operatorname{diag}(v)(w-\widehat{w})}_{\|w-\widehat{w}\|_{v}}$
subject to $\quad \operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)\right) \leq \ell q+m$
$v_{i}=0$ if $w_{i}=$ NaN, $v_{i}=\infty$ if w_{i} is exact, $w_{i}=1$ otherwise

Solution method

- kernel representation of the rank constraint

$$
\begin{array}{lll}
\operatorname{rank}\left(\mathscr{H}_{\ell+1}(\widehat{w})\right) \leq r \quad \Longleftrightarrow \quad \begin{array}{l}
R \mathscr{H}_{\ell+1}(\widehat{w})=0 \\
R R^{\top}=I_{(\ell+1) q-r}
\end{array}
\end{array}
$$

- variable projection: elimination of the variable \widehat{w}

$$
M(R):=\min _{\widehat{w}}\|w-\widehat{w}\|_{v} \quad \text { subject to } \quad R \mathscr{H}_{\ell+1}(\widehat{w})=0
$$

is a least-norm problem with analytic solution

$$
M(R)=\operatorname{vec}^{\top}(w) \Gamma^{-1}(R) \operatorname{vec}(w)
$$

where Γ is a positive definite banded Toeplitz matrix

SLRA software package

- the identification problem is then
minimize over $R \quad M(R)$ subject to $R R^{\top}=I$
- nonconvex optimization problem on a manifold
- efficient evaluation of $M(R)$ exploiting the structure
- software implementation is available

Usage and implementation

- [sysh,info,wh] = ident(w, m, ell, opt)
- sysh - (I/S/O) repr. of the identified model
- opt. sys0 - (I/S/O) repr. of initial approximation
- opt.wini - initial conditions
- opt. exct - exact variables
- info.Rh - parameter R of (KER)
- info.M - misfit
- [M, wh, xini] = misfit(w, sysh, opt)
- implemented as a literate program
- the code "lives" in research papers
- the papers document the code
- the code reveals the full implementation details

The simulation setup

- simulation parameters

$$
\text { ell }=2 ; \mathrm{m}=1 ; \mathrm{p}=1 ; \mathrm{T}=30 ; \mathrm{s}=0.02 \text {; }
$$

- define constants

$$
q=m+p ; n=e l l * p ;
$$

- the "true" system and "true" data

$$
\begin{aligned}
& \text { sys0 }=\operatorname{drss}(\mathrm{n}, \mathrm{p}, \mathrm{~m}) ; \\
& \mathrm{u} 0=\operatorname{rand}(\mathrm{T}, 1) ; \mathrm{y} 0=\operatorname{lsim}(\operatorname{sys} 0, \mathrm{u} 0) ;
\end{aligned}
$$

The simulation setup

- add noise

$$
\mathrm{w} 0=[u 0 \mathrm{y} 0] ; \mathrm{w}=\mathrm{w} 0+\mathrm{s} * \operatorname{randn}(\mathrm{~T}, \mathrm{q}) ;
$$

- generate noisy data for the examples

$$
\begin{aligned}
& \text { clear all } \\
& \text { ell }=2 ; \mathrm{m}=1 ; \mathrm{p}=1 ; \mathrm{T}=30 ; \mathrm{s}=0.02 ; \\
& \mathrm{q}=\mathrm{m}+\mathrm{p} ; \mathrm{n}=\mathrm{ell} * \mathrm{p} ; \\
& \text { sys } 0=\operatorname{drss}(\mathrm{n}, \mathrm{p}, \mathrm{~m}) ; \\
& \mathrm{u} 0=\operatorname{rand}(\mathrm{T}, 1) ; \mathrm{y} 0=\operatorname{lsim}(\operatorname{sys} 0, \mathrm{u} 0) ; \\
& \mathrm{w} 0=[u 0 \mathrm{y} 0] ; \mathrm{w}=\mathrm{w} 0+\mathrm{s} * \operatorname{randn}(\mathrm{~T}, \mathrm{q}) ;
\end{aligned}
$$

Invariance to variables permutation

- identify a model with permuted variables

```
io = fliplr(1:q);
[sysh, info] = ident(w(:, io), m, ell);
disp(info.M)
    0.0086
```

- identify a model with the original variables order

```
io = 1:q;
[sysh, info] = ident(w(:, io), m, ell);
disp(info.M)
    0.0086
```


Zero initial conditions

- identify the system with option opt.wini $=0$

$$
\begin{aligned}
& \text { opt.wini }=0 ; \\
& \text { [sysh0, info0, wh] = ident(w, m, ell, opt); } \\
& \text { disp(info0.M) } \\
& \quad 0.0090
\end{aligned}
$$

- verify that $(0, \ldots, 0, \widehat{w}) \in \widehat{\mathscr{B}}$

```
whext = [zeros(ell, q); wh];
disp(misfit(whext, sysh0))
    1.8227e-32
```

- compare the misfit with
- free initial conditions $8.61 \cdot 10^{-3}$
- zero initial conditions $8.98 \cdot 10^{-3}$

Identification from multiple trajectories

- split w into two parts and apply ident on them

```
wm{1} = w(1:10, :); wm{2} = w(11:T, :);
[sysh, infom, wmh] = ident(wm, m, ell);
disp(infom.M)
    0.0072
```

- compare the misfit when fitting
- one trajectory $8.61 \cdot 10^{-3}$
- the same trajectory split into two parts $7.22 \cdot 10^{-3}$

System identification with missing data

- w^{1} is the noisy trajectory of the system
- $w^{2}=(\delta$, NaN $)$ - exact input, missing output, and zero initial conditions
- $\widehat{w}^{2}=(\delta, \widehat{h})$ - estimate of the system's impulse resp.
- data-driven simulation problem
- \widehat{y}^{2} is compared with the true impulse response and the impulse response of the model identified from w^{1}

System identification with missing data

```
wm{1} = w;
wm{2} = [1 NaN; O NaN; O NaN; O NaN];
opt.wini = {[] 0}; opt.exct = {[] 1};
[~, info, wh] = ident(wm, m, ell, opt);
disp(wh{2}(:, 2)')
    -0.0633 0.1407 0.0563 0.0287
disp(impulse(sys0, 3)')
-0.0713 0.1353 0.0487 0.0360
```

