Affine data modeling by low-rank approximation

Ivan Markovsky

University of Southampton

Data fitting example

Problem: given data points

$$
d_{i}=\left(a_{i}, b_{i}\right), \quad i=1, \ldots, N
$$

find a fitting line

$$
\mathscr{A}_{p, c}=\{p \ell+c \mid \ell \in \mathbb{R}\}
$$

that minimizes the sum-of-squares of the orthogonal distances

$$
\operatorname{dist}\left(\mathscr{A}_{p, c}, d_{i}\right)=\min _{\widehat{d}_{i} \in \mathscr{A}_{p, c}}\left\|d_{i}-\widehat{d}_{i}\right\|_{2}
$$

A "two-stage solution"

Problem: minimize over p and $c \quad \sum_{i=1}^{N}\left(\operatorname{dist}\left(\mathscr{A}_{p, c}, d_{i}\right)\right)^{2}$
Heruistic solution method:

1. Compute the data mean

$$
\widehat{c}:=\left(d_{1}+\cdots+d_{N}\right) / N
$$

2. Solve the problem

$$
\text { minimize over } p \sum_{i=1}^{N}\left(\operatorname{dist}\left(\mathscr{A}_{p, \hat{c}}, d_{i}\right)\right)^{2}
$$

Step 2 is a standard problem, which can be solved by the singular value decomposition of the data matrix

$$
D:=\left[\begin{array}{lll}
d_{1} & \cdots & d_{N}
\end{array}\right]
$$

Empirical observation: the two-stage solution $\mathscr{A}_{\hat{\mathrm{p}}, \hat{c},}$ coincides with the optimal solution $\mathscr{A}_{p^{*}, c^{*}}$, however, ($\left.p^{*}, c^{*}\right)$ is not unique.

General problem: low-rank approximation

Consider $q \times N$ data matrix and affine space of dimension r.

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{D} \text { and } c \quad\left\|D-c 1^{\top}-\widehat{D}\right\|_{\mathrm{F}} \\
\text { subject to } & \operatorname{rank}(\widehat{D}) \leq r \tag{*}
\end{array}
$$

Notation:

- $\|D\|_{\mathrm{F}}:=\sqrt{\sum_{i=1}^{N}\left\|d_{i}\right\|^{2}}$ - Frobenius norm
- $\mathscr{M}(D):=\left(d_{1}+\cdots+d_{N}\right) / N \in \mathbb{R}^{q}$ - mean
- $\mathscr{C}(D):=D-\mathscr{M}(D) \mathbf{1}^{\top}$ - centering

Main results

Theorem (Optimality of the two-stage procedure)

A solution to (*) is the mean of $D, c^{*}=\mathscr{M}(D)$, and an optimal in a Frobenius norm rank-r approximation \widehat{D}^{*} of the centered data matrix $\mathscr{C}(D)$.

Theorem (Nonuniqueness)

Let

$$
\widehat{D}=P L, \quad \text { where } \quad P \in \mathbb{R}^{q \times r} \text { and } L \in \mathbb{R}^{r \times N}
$$

be a rank revealing factorization of an optimal in a Frobenius norm rank-r approximation of the centered data matrix $\mathscr{C}(D)$. The solutions of (*) are of the form

$$
\begin{aligned}
& c^{*}(z)=\mathscr{M}(D)+P z \\
& \widehat{D}^{*}(z)=P\left(L-z 1^{\top}\right) \quad \text { for } \quad z \in \mathbb{R}^{r} .
\end{aligned}
$$

Geometry of the nonuniqueness

Conclusions and future work

- In a reprospect the results are trivial, however, as far as I know they are not available in the literature.
- Slight modifications of problem (*) make the two stage procedure suboptimal.
- Modification \#1: use a weighted norm
$\|D\|_{\Sigma}:=\|\Sigma \odot D\|_{\mathrm{F}}, \quad$ where $\Sigma \in \mathbb{R}_{+}^{q \times N}$ and \odot is Hadamard prod.
- Modification \#2: impose constraints on \widehat{D}, e.g.,
- nonnegativity
- Hankel structure.

Thank you

