The Behavioral Toolbox

Ivan Markovsky

How to check if two LTI systems are equal?

we would like this MATLAB code to give 'true'

```
m = 2; p = 2; n = 3;
sys1 = drss(n, p, m);
sys2 = ss2ss(sys1, rand(n));
sys1 == sys2
```

however, it gives an error:

Operator '==' is not supported **for** operands of type 'ss'.

why are ss objects not comparable?

A system is a set of signals (the behavior) signals

$$w \in (\mathbb{R}^q)^{\mathbb{N}}, w : \mathbb{N} \to \mathbb{R}^q$$

 $w|_T := (w(1), \dots, w(T))$
 $\sigma, (\sigma w)(t) := w(t+1)$

q-variate discrete-time signal restriction of w to [1, T] unit shift operator

systems

$$\mathcal{B} \subset (\mathbb{R}^q)^{\mathbb{N}}$$

 $\mathcal{B}|_{\mathcal{T}} := \{ w|_{\mathcal{T}} \mid w \in \mathcal{B} \}$
 $\mathcal{L}^q_{(m,\ell,n)}$

q-variables discrete-time system restriction of \mathscr{B} to [1, T]bounded complexity LTI systems

 $\mathbf{m}(\mathscr{B})$ / $\boldsymbol{\ell}(\mathscr{B})$ / $\mathbf{n}(\mathscr{B})$ — # of inputs / lag / order

 \mathscr{B} is represented by basis a B_T for $\mathscr{B}|_T$

$$\mathscr{B}|_{\mathcal{T}} = \operatorname{image} \begin{bmatrix} b^1 & \cdots & b^r \end{bmatrix}$$
 $(B_{\mathcal{T}})$

 (B_T) is nonparameteric representation of $\mathscr{B}|_T$

$$w \in \mathscr{B}|_T \iff w = B_T g, \ g \in \mathbb{R}'$$

 $\mathscr{B} \in \mathscr{L}^{q}_{c}$ and $T \geq \ell(\mathscr{B})$ implies that

$$r = \dim \mathscr{B}|_{\mathcal{T}} = \mathbf{m}(\mathscr{B})\mathcal{T} + \mathbf{n}(\mathscr{B}) \qquad (\dim \mathscr{B}|_{\mathcal{T}})$$

 $\mathscr{B}|_{\ell(\mathscr{B})+1}$ defines $\mathscr{B} \implies (B_T)$ is representation of \mathscr{B}

 B_T is obtained from data or representations

data:
$$\mathscr{W}_{d} = \{ w_{d}^{1}, \dots, w_{d}^{N} \} \mapsto B_{T}$$
 (w2BT)

$$(A, B, C, D) \mapsto B_T = \Pi \begin{bmatrix} 0_{mT \times n} & I_{mT} \\ \mathscr{O}_T(A, C) & \mathscr{T}_T(H) \end{bmatrix} \quad (\text{ss2BT})$$

kernel: $R \mapsto B_T := \begin{bmatrix} b^1 & \cdots & b^r \end{bmatrix}$ (R2BT)

indirect "data-driven approach" (B2BT)

- 1. simulate data \mathscr{W}_d from parametric representation
- **2.** use w2BT to obtain (B_T) from the data

 B_T is structured, due to the LTI dynamics

the structure is fully revealed when $T \ge \ell(\mathscr{B})$ $\mathscr{B}|_T$ is (mT + n)-dimensional shift-invariant subspace

complexity bounded $\iff \dim \mathscr{B}|_T < qT$

$$\mathscr{B} \in \mathscr{L}^{q}_{(m,\ell,n)} \Longrightarrow \dim \mathscr{B}|_{T} = mT + n = \operatorname{rank} B_{T}$$

time-invariance \iff shift-invariance

- autonomous case: sum-of-exponentials
- open systems: the structure is hidden
- image $\mathscr{H}_T(w_d)$ imposes shift-invariance by construction

Computing B_T has hidden dangers

it involves rank computation

$$\dim \mathscr{B}|_{\mathcal{T}} = qT - \operatorname{rank} \mathscr{M}_{\mathcal{T}}(R) = \operatorname{rank} \mathscr{H}_{\mathcal{T}}(\mathscr{W}_{\mathsf{d}})$$

rank is computed by singular values thresholding

$$\widehat{r} := #$$
 of singular values $\geq tol$ (\widehat{r})

the data has to be informative

$$\operatorname{rank} \mathscr{H}_{T}(\mathscr{W}_{d}) = \mathbf{m}(\mathscr{B})T + \mathbf{n}(\mathscr{B})$$
(GPE)

The SVD approximation doesn't impose time-invariant structure on B_T

two options for complexity estimation:

- 1. specify tol, in which case r is found from (\hat{r}) , or
- 2. $c := (m, \ell, n)$, in which case r is found from $(\dim \mathscr{B}|_T)$

SVD approximation

when "small" singular values are discarded, B_T is not shift-invariant and therefore does not represent $\mathscr{B}|_T$ of $\mathscr{B} \in \mathscr{L}^q_c$

Back to the example of systems equality

equality in the behavioral setting: $\mathscr{B}^1 \stackrel{?}{=} \mathscr{B}^2$

using (B_T) with $T \ge \max\{\ell(\mathscr{B}^1), \ell(\mathscr{B}^2)\}$

$$\mathscr{B}^1 = \mathscr{B}^2 \quad \Longleftrightarrow \quad \mathscr{B}^1|_{\mathcal{T}} = \mathscr{B}^2|_{\mathcal{T}}$$

possible implementation

```
T = max(lag(B1), lag(B2));
BT1 = B2BT(B1, T);
BT2 = B2BT(B2, T);
rank([BT1 BT2]) == rank(BT1)
```

analysis

- complexity computation
- input/output partitioning
- controllability test

BT2c is_io, BT2IO isunctr, distunctr

parametric representations

kernel	BT2R, R2BT
input/state/output	BT2ss, ss2BT
conversions	R2ss,R2Rmin

identification and signal-processing

exact identification w2BT, w2R, w2ss
 approximate identification ident
 data-driven signal-processing ddint